JP2011015262A - Image decoder - Google Patents

Image decoder Download PDF

Info

Publication number
JP2011015262A
JP2011015262A JP2009158715A JP2009158715A JP2011015262A JP 2011015262 A JP2011015262 A JP 2011015262A JP 2009158715 A JP2009158715 A JP 2009158715A JP 2009158715 A JP2009158715 A JP 2009158715A JP 2011015262 A JP2011015262 A JP 2011015262A
Authority
JP
Japan
Prior art keywords
resolution
image data
pixel
image
resolution image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009158715A
Other languages
Japanese (ja)
Inventor
Takashi Masuno
貴司 増野
Tatsuro Shigesato
達郎 重里
Kenjiro Tsuda
賢治郎 津田
Hiroaki Shimazaki
浩昭 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009158715A priority Critical patent/JP2011015262A/en
Publication of JP2011015262A publication Critical patent/JP2011015262A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve the problem that the difference of a luminance level becomes visual distortion at the pixel boundary of a correlation derivation unit when pixels are simply mixed, while there is a method of increasing a resolution feeling by alternately picking up a high resolution image and a low resolution image, deriving correlation between the high resolution image and the low resolution image, segmenting the highly correlated part of the high resolution image, and mixing the pixel with the low resolution image in order to apply scalable video encoding requiring the high resolution image and low resolution image of the same time within the limited performance of an imaging element.SOLUTION: In the image decoder, the luminance level difference between the pixel of a detection motion detection position and a reduced reference image pixel is defined as a correction value, the high resolution image is referred to using position information for which the scaling processing of the motion detection position is performed to the position information of the high resolution image, the luminance level of the reference position pixel is corrected by the correction value, and then a reference image pixel for which the low resolution image is enlarged and a corrected pixel are mixed by a mixing ratio corresponding to a correlation degree and written back to the enlarged reference image.

Description

本発明は、動画像信号に対して動き検出と動き補償を用いて解像度の改善処理を施す画像処理方法に関するものである。   The present invention relates to an image processing method for performing resolution improvement processing on a moving image signal using motion detection and motion compensation.

MPEGビデオ方式に代表される従来の画像符号化方式においては、画面を予め定めた単位に分割し、その分割単位で符号化を行う。例えば、MPEG−4 AVC(Advanced Video Coding)方式(非特許文献1)においては、画面(ピクチャ)をマクロブロックと呼ばれる水平16画素、垂直16画素の単位で処理を行う。   In a conventional image encoding method typified by the MPEG video method, a screen is divided into predetermined units, and encoding is performed in the divided units. For example, in the MPEG-4 AVC (Advanced Video Coding) method (Non-Patent Document 1), a screen (picture) is processed in units of 16 horizontal pixels and 16 vertical pixels called macroblocks.

そして、動き補償を行う場合には、マクロブロックを矩形のブロック(最小で水平4画素、垂直4画素)に分割して、ブロック毎に異なる動きベクトルを用いて動き補償が可能である。   When motion compensation is performed, the macroblock can be divided into rectangular blocks (minimum horizontal 4 pixels and vertical 4 pixels), and motion compensation can be performed using different motion vectors for each block.

更に、非特許文献2では、高解像度の入力画像を縮小して低解像度画像に変換し、低解像度画像に対して符号化を実施する第1の符号化部と、第1の符号化部により得られた低解像度画像に対する局所復号画像を拡大処理した画像と高解像度の入力画像との差分画像に対して符号化を実施する第2の符号化部とを有する階層的動画像符号化方式が開示されている。   Further, in Non-Patent Document 2, a high-resolution input image is reduced and converted into a low-resolution image, and the low-resolution image is encoded by a first encoding unit and a first encoding unit. A hierarchical moving picture coding method having a second coding unit that performs coding on a difference image between an image obtained by enlarging a locally decoded image with respect to an obtained low resolution image and a high resolution input image It is disclosed.

また、復号化時に解像度の改善を図る従来技術レベルの実施形態として、特許文献1及び特許文献2があげられる。   Further, Patent Document 1 and Patent Document 2 are cited as embodiments at the prior art level for improving resolution at the time of decoding.

H.264/AVC ISO/IEC 14496-10 MPEG-4 Advanced Video Coding規格書H.264 / AVC ISO / IEC 14496-10 MPEG-4 Advanced Video Coding Standard H.264/AVC Annex G Scalable Video Coding(スケーラブル映像符号化)H.264 / AVC Annex G Scalable Video Coding

特開2007−96709号公報JP 2007-96709 A 特開2008−312163号公報JP 2008-31163 A

特許文献2を例に、従来の複合化装置を説明する。   A conventional compounding apparatus will be described using Patent Document 2 as an example.

図15は従来の画像復号化装置の構成図である。録画処理で符号化された動画像データを復号し再生するには、先ず、エントロピー復号手段1500によって、可変長符号化や算術符号化された符号化データのビット列を通常符号に復号する。復号された情報の内、画素係数情報は逆DCT手段1501、逆量子化手段1502を経て画素情報として取り出される。   FIG. 15 is a block diagram of a conventional image decoding apparatus. In order to decode and reproduce the moving image data encoded by the recording process, first, the entropy decoding unit 1500 decodes the bit string of the encoded data subjected to variable length encoding or arithmetic encoding into a normal code. Among the decoded information, the pixel coefficient information is taken out as pixel information through the inverse DCT means 1501 and the inverse quantization means 1502.

フレーム内符号化の場合は画像フレームメモリ1503に格納される。   In the case of intra-frame coding, it is stored in the image frame memory 1503.

フレーム間予測符号化の場合は、得られた画素情報は動き補償時の残差信号であり、エントロピー復号手段1500が復号した動きベクトル情報に従って、画像フレームメモリ1503に格納されている既に復号済みの画素データの参照位置から読み出された画素データは加算器1504で加算され、画像フレームメモリ1503に格納される。   In the case of inter-frame predictive coding, the obtained pixel information is a residual signal at the time of motion compensation, and is already decoded and stored in the image frame memory 1503 according to the motion vector information decoded by the entropy decoding unit 1500. Pixel data read from the reference position of the pixel data is added by the adder 1504 and stored in the image frame memory 1503.

画像フレームメモリ1503に格納された動画像データは順次超解像処理(拡大処理)されフレームメモリ1510に格納される。   The moving image data stored in the image frame memory 1503 is sequentially super-resolved (enlarged) and stored in the frame memory 1510.

一方、定期的、或いは散発的に上記画像データの一部のフレームと同時刻に撮像符号化された高解像度の静止画符号化データは、上述同様にエントロピー復号手段1505によって、可変長符号化や算術符号化された符号化データのビット列を通常符号に復号し、画素係数情報は逆DCT手段1506、逆量子化手段1507を経て画素情報としてフレームメモリ1508に格納される。   On the other hand, the high-resolution still image encoded data imaged and encoded at the same time as some frames of the image data periodically or sporadically is subjected to variable length encoding or entropy decoding by the entropy decoding unit 1505 as described above. The bit string of the arithmetically encoded data is decoded into a normal code, and the pixel coefficient information is stored in the frame memory 1508 as pixel information through the inverse DCT unit 1506 and the inverse quantization unit 1507.

続いて、フレームメモリ1510中の上述の高解像度画に対応する時刻の画像フレームを参照画としたフレームメモリ1510内の画像フレーム間で動き予測を行ない、得られた動き情報でフレームメモリ1508内の高解像度画を参照し、参照フレームメモリ1510内の画像フレームと画素合成を行なう。画素合成は、合成対象の画素値の差に応じて重み付けが制御され、画素値の差が少ないほど高解像度画がより強く重み付けされる。   Subsequently, motion prediction is performed between the image frames in the frame memory 1510 using the image frame at the time corresponding to the above-described high resolution image in the frame memory 1510 as a reference image, and the obtained motion information is used in the frame memory 1508. With reference to the high-resolution image, the image frame in the reference frame memory 1510 is combined with the pixel. In the pixel synthesis, weighting is controlled according to the difference in pixel values to be synthesized, and the higher the resolution, the higher the weight of the high resolution image.

合成後の画素は、フレームメモリ1510に書き戻され、所定のフレーム数蓄積後、表示読出制御手段1514によって所定の表示順で表示出力される。   The synthesized pixels are written back to the frame memory 1510, and after a predetermined number of frames are accumulated, the display readout control means 1514 displays and outputs them in a predetermined display order.

上述の文献の方法では、高解像度画像は、低解像度画像の局所復号画像を拡大した画像との差分画像として符号化される。そしてこの差分画像を符号化する際には、低解像度画像を符号化したときに用いた符号化モードや動きベクトル等の符号化情報が利用される。   In the above-described literature method, a high-resolution image is encoded as a difference image from an image obtained by enlarging a locally decoded image of a low-resolution image. When the difference image is encoded, encoding information such as an encoding mode and a motion vector used when the low-resolution image is encoded is used.

しかしながら、高解像度画像と、低解像度画像は同一時刻の画像を符号化する必要があり、第1、第2の符号化部と各解像度に応じた複数の符号化手段が必要であり、高い処理性能或いはハードウェアの増大を招くという課題を有していた。   However, the high-resolution image and the low-resolution image need to encode images at the same time, and the first and second encoding units and a plurality of encoding units corresponding to the respective resolutions are necessary, and high processing is required. There has been a problem of causing an increase in performance or hardware.

また、撮像素子からの取得した画像情報を符号化する装置の場合、CMOSやCCDセンサーに代表される一般的な撮像素子は、撮像データ読出し性能の制約から、静止画撮影用に高解像度画像データを低フレームレートで取り出すか、動画撮影用に静止画用より低い解像度画像データを連続で取り出すことは可能であるが、高解像度画像データを高フレームレートで取り出すことはできず、従来の高解像度画像を縮小して同一時刻の低解像度画像を作り出し符号化する手順を実現する事が困難であった。   In addition, in the case of an apparatus that encodes image information acquired from an image sensor, a general image sensor represented by a CMOS or CCD sensor uses high-resolution image data for still image shooting due to restrictions on image data read performance. Can be taken out at a low frame rate, or lower resolution image data can be taken out continuously for still image shooting than for still images, but high resolution image data cannot be taken out at a high frame rate. It has been difficult to realize a procedure for generating and encoding a low-resolution image at the same time by reducing the image.

また、特許文献1及び2の従来方式のように、動き補償を用いて高解像度画と低解像度画の混合比を制御して合成するだけでは、動き補償単位の画素境界で視覚上の段差が生じたりする課題があった。   Further, as in the conventional methods of Patent Documents 1 and 2, there is a visual step at the pixel boundary of the motion compensation unit simply by controlling and combining the high-resolution image and the low-resolution image using motion compensation. There was a problem that occurred.

(相関度導出)
高解像度画を縮小処理した縮小参照画と、低解像度画間で相関度の導出を行い、低解像画の画素と最も相関の高い縮小参照画の画素を相関度に応じて画素混合を行なうものであり、相関度の導出は、縮小参照画と、低解像度画間で所定領域の画素で動き検出を行ない、縮小参照画の動き検出位置の画素と、低解像度画の画素の輝度レベル差を求め、輝度レベル差の絶対値が小さいほど相関度が高いものとする。
(Derivation of correlation)
The degree of correlation is derived between the reduced reference picture obtained by reducing the high resolution picture and the low resolution picture, and the pixel of the reduced reference picture having the highest correlation with the pixel of the low resolution picture is mixed according to the degree of correlation. The degree of correlation is derived by performing motion detection with pixels in a predetermined area between the reduced reference image and the low resolution image, and the luminance level difference between the pixel at the motion detection position of the reduced reference image and the pixel of the low resolution image. And the degree of correlation is higher as the absolute value of the luminance level difference is smaller.

求めた輝度レベル差は、低解像度画の画素の輝度レベルに、縮小参照画の画素の輝度レベルを近づける補正値情報とする。   The obtained luminance level difference is used as correction value information for bringing the luminance level of the pixel of the reduced reference image closer to the luminance level of the pixel of the low-resolution image.

(画素混合)
画素混合は、高解像度画と、低解像度画を拡大処理した拡大基準画の画素を用いて行なわれ、相関度導出時の動き検出位置を高解像度画の位置情報にスケーリング処理した拡大位置情報を用いて参照した高解像度画の参照画素を、相関度導出で求めた補正値情報で輝度レベルを補正し、拡大基準画も低解像度画の処理対象画素位置に相当する位置の画素とを相関度に応じた混合比で画素混合し、拡大基準画に書き戻す。
(Pixel mixture)
Pixel mixing is performed using the pixels of the enlarged reference image obtained by enlarging the high-resolution image and the low-resolution image, and the enlarged position information obtained by scaling the motion detection position when deriving the correlation to the position information of the high-resolution image. The brightness level of the reference pixel of the high-resolution image that is used and referenced is corrected using the correction value information obtained by deriving the correlation, and the enlarged standard image is correlated with the pixel at the position corresponding to the processing pixel position of the low-resolution image. The pixels are mixed at a mixing ratio according to the above and written back to the enlarged reference image.

本発明の実施の形態1における画像複号化装置の構成図1 is a configuration diagram of an image decoding apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1における画像データのタイミング図Timing chart of image data in Embodiment 1 of the present invention 本発明の実施の形態1におけるピクチャ単位フロー図Picture unit flow chart in Embodiment 1 of the present invention 本発明の実施の形態1における相関導出フロー図Correlation derivation flowchart in embodiment 1 of the present invention 本発明の実施の形態1における画素混合フロー図Pixel mixing flowchart in Embodiment 1 of the present invention 本発明の実施の形態1における画素縮小処理の模式図Schematic diagram of pixel reduction processing in Embodiment 1 of the present invention 本発明の実施の形態1における画素拡大処理の模式図Schematic diagram of pixel enlargement processing in Embodiment 1 of the present invention 本発明の実施の形態1における動き検出処理の模式図Schematic diagram of motion detection processing in Embodiment 1 of the present invention 本発明の実施の形態1における動き検出結果のスケーリング処理の模式図Schematic diagram of scaling processing of motion detection results in Embodiment 1 of the present invention 本発明の実施の形態1における輝度補正の無い場合の模式図Schematic diagram without brightness correction in Embodiment 1 of the present invention 本発明の実施の形態1における輝度補正有りの場合の模式図Schematic diagram with luminance correction in Embodiment 1 of the present invention 本発明の実施の形態2における相関導出フロー図Correlation derivation flowchart in the second embodiment of the present invention 本発明の実施の形態3における動き検出処理の模式図Schematic diagram of motion detection processing in Embodiment 3 of the present invention 本発明の実施の形態2における動き検出結果のスケーリング処理の模式図Schematic diagram of scaling processing of motion detection results in Embodiment 2 of the present invention 従来の画像複号化装置の構成図Configuration of conventional image decoding device

以下に、本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施の形態の構成中、従来の画像復号装置の処理内容と共通する部分の説明は省略する。   In the configuration of the embodiment of the present invention, the description of the parts common to the processing contents of the conventional image decoding apparatus is omitted.

図1は従来例図15で説明した低解像度の動画像データに加えて、録画処理で撮像素子のデータ取り出し能力内で、低解像度の動画像データの取り出し中に高解像度の画像データの取り出し区間を挿入し、低解像度画の符号化と高解像度画の符号化を独立して並行に行なって得られた2つの符号化データを復号する画像復号化装置の構成図である。   FIG. 1 shows an extraction section of high-resolution image data during extraction of low-resolution moving image data within the data extraction capability of the image pickup device in the recording process in addition to the low-resolution moving image data described in FIG. 2 is a configuration diagram of an image decoding apparatus that decodes two encoded data obtained by inserting a low-resolution image and performing high-resolution image encoding independently and in parallel.

フレームメモリ103には低解像度画が、フレームメモリ108には高解像度画が格納された状態から説明を続ける。   The description will be continued from the state where the frame memory 103 stores the low resolution image and the frame memory 108 stores the high resolution image.

フレームメモリ108に格納された高解像度画は縮小処理手段113で低解像画と同じ解像度まで縮小処理され参照画としてフレームメモリ114に格納される。   The high resolution image stored in the frame memory 108 is reduced to the same resolution as the low resolution image by the reduction processing unit 113 and stored in the frame memory 114 as a reference image.

一方、フレームメモリ103の低解像度画は拡大処理手段110によってフレームメモリ108の高解像度画と同じ解像度に変換されフレームメモリ111に格納される。   On the other hand, the low resolution image in the frame memory 103 is converted into the same resolution as the high resolution image in the frame memory 108 by the enlargement processing unit 110 and stored in the frame memory 111.

次に、動き検出相関判定手段115はフレームメモリ114の参照画と、フレームメモリ103の処理対象画との間で動き検出処理を行なう。得られた低解像度精度の動き情報は、高解像度精度にスケーリング処理され、フレームメモリ108の対応フレームが参照される。   Next, the motion detection correlation determination unit 115 performs motion detection processing between the reference image in the frame memory 114 and the processing target image in the frame memory 103. The obtained motion information with low resolution accuracy is scaled with high resolution accuracy, and the corresponding frame in the frame memory 108 is referred to.

フレームメモリ111の処理対象画素とフレームメモリ108の参照画素は重み付け混合手段116で合成され、フレームメモリ111に書き戻されるのが基本的な処理の流れである。   The basic processing flow is that the processing target pixel in the frame memory 111 and the reference pixel in the frame memory 108 are synthesized by the weighting mixing unit 116 and written back to the frame memory 111.

図2−200は、低解像度の動画像データと高解像度画の時間的並びを模式したものである。   FIG. 2-200 schematically illustrates temporal arrangement of low-resolution moving image data and high-resolution images.

(実施の形態1)
実施の形態1を処理フロー図3、図4,図5を用いながら更に詳しく説明を加える。
(Embodiment 1)
The first embodiment will be described in further detail with reference to FIGS. 3, 4, and 5. FIG.

図3は画素フレーム単位の処理の流れを示しており、参照画縮小処理300、処理対象の基準画の拡大処理301に続いて、1フレームを所定のブロックに分割し302、ブロック単位で相関度導出処理303、画素混合処理304がブロック数分ループ処理されている流れを表している。   FIG. 3 shows the flow of processing in units of pixel frames. Following the reference image reduction processing 300 and the standard image enlargement processing 301 to be processed, one frame is divided into predetermined blocks 302, and the degree of correlation in units of blocks. This represents a flow in which the derivation process 303 and the pixel mixing process 304 are loop-processed for the number of blocks.

図4は相関度導出の処理内容のフローであり、動き検出処理400に続いて基準画と参照画の画素値の差も求め、画素混合の混合比を算出迄を示している。   FIG. 4 is a flow of processing contents for deriving the correlation. After the motion detection process 400, the difference between the pixel values of the standard image and the reference image is also obtained and the mixing ratio of the pixel mixture is calculated.

図5は画素混合処理のフローであり、相関導出処理で求めた混合比で重み付け混合し、フレームメモリに書き戻すまでを示している。   FIG. 5 is a flow of the pixel mixing process, and shows the process from the weighted mixing with the mixing ratio obtained in the correlation deriving process to the writing back to the frame memory.

図6は参照画縮小処理300の処理内容の模式図であり、高解像度と低解像度の解像度が水平垂直共2倍である場合の例であり、高解像度画の4画素平均を低解像画の1画素として縮小する様子を模式している。   FIG. 6 is a schematic diagram of the processing contents of the reference image reduction processing 300, which is an example in the case where the resolution of the high resolution and the low resolution is both horizontal and vertical, and the average of four pixels of the high resolution image is reduced to the low resolution image. The mode of reducing as one pixel is schematically shown.

図7は処理対象の基準画の拡大処理301の模式図であり、高解像度と低解像度の解像度が水平垂直共2倍である場合の例であり、低解像度画の1画素を2×2の4画素同値として複製し拡大する様子を模式している。   FIG. 7 is a schematic diagram of the enlargement process 301 of the reference image to be processed. This is an example in the case where the resolution of the high resolution and the low resolution is double in both horizontal and vertical directions. One pixel of the low resolution image is 2 × 2. This is a schematic illustration of copying and enlarging as 4-pixel equivalence.

図8は動き検出処理400がブロックマッチング法で所定の矩形領域単位で動き検出を行なっている模式図である。図8中、Block nの処理で、低解像度画素精度で矢印の示す動きベクトルmv(x,y)が得られた様子を示している。   FIG. 8 is a schematic diagram in which the motion detection processing 400 performs motion detection in units of a predetermined rectangular area by the block matching method. FIG. 8 shows a state where the motion vector mv (x, y) indicated by the arrow is obtained with the low resolution pixel accuracy by the processing of Block n.

図9は画素混合処理304での動きベクトルのスケーリング処理501の内容を模式しており、スケーリング後も低解像度画素精度の動きベクトルとなっている様子を示している。   FIG. 9 schematically shows the contents of the motion vector scaling processing 501 in the pixel mixture processing 304, and shows a state in which the motion vector has low resolution pixel accuracy even after scaling.

図11は画素混合処理304での重み付け混合504の内容を模式しており、画素値のレベル差を補正することで前後の画素と滑らかに混合している様子を示している。   FIG. 11 schematically shows the contents of the weighted mixture 504 in the pixel mixing process 304, and shows a state in which the pixel values are mixed smoothly by correcting the level difference of the pixel values.

図10は、画素値のレベル差の補正処理を行なわない場合の例を示しており、補正の無い場合は視覚的な劣化となる輝度レベルの段差が生じている。   FIG. 10 shows an example of the case where the correction process of the level difference of the pixel value is not performed, and when there is no correction, there is a luminance level step that causes visual degradation.

(実施の形態2)
実施の形態2は、図12のフローに示すように、前述の相関導出処理303の処理内容毎に視覚的改善効果が得られるようにしたものであり、ブロック単位の動き検出1200に続いて、この動き検出単位ブロック内の画素毎に相関度を求めるものである。
(Embodiment 2)
In the second embodiment, as shown in the flow of FIG. 12, a visual improvement effect is obtained for each processing content of the above-described correlation derivation processing 303. Following the motion detection 1200 in units of blocks, The degree of correlation is obtained for each pixel in the motion detection unit block.

(実施の形態3)
実施の形態3は、図13で模式するように、動き検出処理400の動きベクトル検出精度を低解像度画の半画素精度(高解像度画の整数画素精度)とするもので、縮小した参照画で疎探索後、得られた動きベクトルの周辺を縮小前の高解像度画を参照画として密探索することで最終的にあらわれる動きベクトルを高解像度画の整数画素精度まで高め、続く画素混合後の合成画の視覚的解像度を改善するものである。
(Embodiment 3)
In the third embodiment, as schematically illustrated in FIG. 13, the motion vector detection accuracy of the motion detection processing 400 is set to half pixel accuracy of a low resolution image (integer pixel accuracy of a high resolution image). After the sparse search, the motion vector that appears finally is densely searched around the obtained motion vector using the high-resolution image before the reduction as the reference image, and the resultant pixel is increased to the integer pixel accuracy of the high-resolution image, and then the composition after pixel mixture is performed It improves the visual resolution of the image.

本発明にかかる画像復号化装置は、デジタルビデオカメラや、デジタルスチルカメラの動画の自己録再機能を有する機器において、これらの機器が元々備えていた録画時にしか動作しなかった動き検出処理等の機能を再生時に活用することで、非常に安価に動画再生時の解像度感を改善することができ有用である。   The image decoding apparatus according to the present invention is a digital video camera or a device having a self-recording / playback function for moving images of a digital still camera, such as a motion detection process that has been operated only during recording originally included in these devices. By utilizing the function at the time of reproduction, it is possible to improve the resolution feeling at the time of moving image reproduction at a very low cost.

100、105 エントロピー復号手段
101,106 逆DCT手段
102、107 逆量子化手段
103 画像フレームメモリ
108 画像フレームメモリ
111 画像フレームメモリ
114 画像フレームメモリ
104,109 加算器
110 拡大処理手段
112 表示読出制御手段
113 縮小処理手段
115 動き検出相関判定手段
116 補正付き重み付け混合手段
1500、1505 エントロピー復号手段
1501,1506 逆DCT手段
1502、1507 逆量子化手段
1503 画像フレームメモリ
1504 加算器
1508 画像フレームメモリ
1509 超解像処理手段
1510 画像フレームメモリ
1511 動き予測手段
1512 残差検出・合成比制御手段
1513 重み付け混合手段
1514 表示読出制御手段
100, 105 Entropy decoding means 101, 106 Inverse DCT means 102, 107 Inverse quantization means 103 Image frame memory 108 Image frame memory 111 Image frame memory 114 Image frame memory 104, 109 Adder 110 Enlargement processing means 112 Display reading control means 113 Reduction processing means 115 Motion detection correlation determination means 116 Weighted mixing means with correction 1500, 1505 Entropy decoding means 1501, 1506 Inverse DCT means 1502, 1507 Inverse quantization means 1503 Image frame memory 1504 Adder 1508 Image frame memory 1509 Super-resolution processing Means 1510 Image frame memory 1511 Motion prediction means 1512 Residual detection / combination ratio control means 1513 Weighted mixing means 1514 Display readout control means

Claims (7)

第1の解像度と第2の解像度とが混在して撮像された画像がそれぞれの解像度毎に符号化された符号化データを復号して得られた画像データ群を入力とし、
前記第1の解像度の画像データを第2の解像度に変換した縮小画像データを参照画像データとして、前記第2の解像度の画像データとの間で所定の画素単位毎に動き検出を行い、
前記動き検出手段の検出結果を用いて、前記縮小画像データと、前記第2の解像度の画像データとの相関情報を導出し、
前記第2の解像度の画像データを前記第1の解像度に変換した拡大参照画像データと、前記第1の解像度の画像データとを前記相関情報を用いて、前記第1の解像度の出力画像データを生成する画像復号化装置。
An input is an image data group obtained by decoding encoded data in which an image captured by mixing the first resolution and the second resolution is encoded for each resolution,
Using the reduced image data obtained by converting the image data of the first resolution to the second resolution as reference image data, motion detection is performed for each predetermined pixel unit with the image data of the second resolution,
Using the detection result of the motion detection means, deriving correlation information between the reduced image data and the image data of the second resolution,
Using the correlation information, the enlarged reference image data obtained by converting the image data of the second resolution into the first resolution and the image data of the first resolution are used to output the output image data of the first resolution. An image decoding device to be generated.
前記第1の解像度は前記第2の解像度より高精細度である請求項1記載の画像復号化装置。 The image decoding apparatus according to claim 1, wherein the first resolution is higher in definition than the second resolution. 前記動き検出は、所定の矩形領域画素のブロックマッチング法で用いる事を特徴とした請求項1記載の画像復号化装置。 The image decoding apparatus according to claim 1, wherein the motion detection is used in a block matching method of a predetermined rectangular area pixel. 前記動き検出は、前記第1の解像度の画像データを第2の解像度に変換した縮小画像データを参照画像データとして、前記第2の解像度の画像データとの間で整数画素精度の疎探索後、前記第1の解像度の画素精度で密探索を行なう事を特徴とした請求項1記載の画像復号化装置。 In the motion detection, reduced image data obtained by converting the image data of the first resolution into the second resolution is used as reference image data, and after a sparse search with integer pixel accuracy with the image data of the second resolution, The image decoding apparatus according to claim 1, wherein a dense search is performed with pixel accuracy of the first resolution. 前記相関情報は、前記縮小画像データ中の前記動き検出結果の位置にある画素と、前記第2の解像度の画像データ中の対象画素との輝度レベルの差の絶対値を前記第2の解像度単位で得ることを特徴とした請求項1記載の画像復号化装置。 The correlation information includes an absolute value of a difference in luminance level between a pixel at the position of the motion detection result in the reduced image data and a target pixel in the image data of the second resolution as the second resolution unit. The image decoding device according to claim 1, wherein the image decoding device is obtained by: 前記動き検出によって得られた前記第2の解像度の検出結果を前記第1の解像度にあわせてスケーリングした位置の前記第1の解像度の画像データの画素と、前記拡大参照画像データの対応画素とを、前記第1の解像度の画素単位で混合し前記画出力画像データを得る際に、前記相関情報が小さいほど、前記第1の解像度の画像データ側の混合比を大きくする事を特徴とする請求項4記載の画像復号化装置。 A pixel of the first resolution image data at a position obtained by scaling the detection result of the second resolution obtained by the motion detection according to the first resolution, and a corresponding pixel of the enlarged reference image data When obtaining the image output image data by mixing in units of pixels of the first resolution, the smaller the correlation information, the larger the mixing ratio on the image data side of the first resolution. Item 5. The image decoding device according to Item 4. 前記動き検出によって得られた前記第2の解像度の検出結果を前記第1の解像度にあわせてスケーリングした位置の前記第1の解像度の画像データの画素と、
前記拡大参照画像データの対応画素とを、前記第1の解像度の画素単位で混合し前記画出力画像データを得る際に、
前記縮小画像データ中の前記動き検出結果の位置にある画素と、前記第2の解像度の画像データ中の対象画素との輝度レベルの差を輝度レベル補正値とし、
前記第1の解像度の画像データ側の前記輝度レベル補正値を減じてから画素混合する事を特徴とする請求項5記載の画像復号化装置。
Pixels of the image data of the first resolution at a position obtained by scaling the detection result of the second resolution obtained by the motion detection according to the first resolution;
When the corresponding pixels of the enlarged reference image data are mixed in pixel units of the first resolution to obtain the image output image data,
The luminance level difference between the pixel at the position of the motion detection result in the reduced image data and the target pixel in the image data of the second resolution is a luminance level correction value.
6. The image decoding apparatus according to claim 5, wherein pixel mixing is performed after the luminance level correction value on the image data side of the first resolution is reduced.
JP2009158715A 2009-07-03 2009-07-03 Image decoder Pending JP2011015262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158715A JP2011015262A (en) 2009-07-03 2009-07-03 Image decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158715A JP2011015262A (en) 2009-07-03 2009-07-03 Image decoder

Publications (1)

Publication Number Publication Date
JP2011015262A true JP2011015262A (en) 2011-01-20

Family

ID=43593679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158715A Pending JP2011015262A (en) 2009-07-03 2009-07-03 Image decoder

Country Status (1)

Country Link
JP (1) JP2011015262A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8879872B2 (en) 2011-06-27 2014-11-04 Samsung Electronics Co., Ltd. Method and apparatus for restoring resolution of multi-view image
CN104717925A (en) * 2012-09-27 2015-06-17 富士胶片株式会社 Image processing device, method, and program
CN104867108A (en) * 2014-02-20 2015-08-26 联想(北京)有限公司 Image processing method and electronic device
RU2666305C1 (en) * 2012-09-28 2018-09-06 Сони Корпорейшн Device and method of coding, device and method of decoding

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8879872B2 (en) 2011-06-27 2014-11-04 Samsung Electronics Co., Ltd. Method and apparatus for restoring resolution of multi-view image
CN104717925A (en) * 2012-09-27 2015-06-17 富士胶片株式会社 Image processing device, method, and program
RU2666305C1 (en) * 2012-09-28 2018-09-06 Сони Корпорейшн Device and method of coding, device and method of decoding
CN104867108A (en) * 2014-02-20 2015-08-26 联想(北京)有限公司 Image processing method and electronic device
CN104867108B (en) * 2014-02-20 2018-11-09 联想(北京)有限公司 A kind of method and electronic equipment of image procossing

Similar Documents

Publication Publication Date Title
US7899115B2 (en) Method for scalably encoding and decoding video signal
US10616592B2 (en) Method and encoder for encoding a video stream in a video coding format supporting auxiliary frames
EP3417617A1 (en) Methods and devices for encoding and decoding video pictures
JP5426655B2 (en) Compressed video encoding device, compressed video decoding device, compressed video encoding method, and compressed video decoding method
JP4095664B2 (en) Video encoding device
JP4875007B2 (en) Moving picture coding apparatus, moving picture coding method, and moving picture decoding apparatus
WO2009130886A1 (en) Moving image coding device, imaging device and moving image coding method
JP2011151430A (en) Image processing apparatus, and imaging device with the same
JP2009010492A (en) Image decoder and image conversion circuit
JP2009296300A (en) Image encoding device and method
JP2011015262A (en) Image decoder
KR100999818B1 (en) Scalable encoder, decoder and the thereof method using frame sorting
JP2010258576A (en) Scene change detector, and video recorder
JP7178907B2 (en) Transmitting device, transmitting method, receiving device and receiving method
JP2009218965A (en) Image processor, imaging device mounted with the same and image reproduction device
JPWO2010055675A1 (en) Video encoding apparatus and video decoding apparatus
JP2011055023A (en) Image encoding device and image decoding device
WO2016047250A1 (en) Signal processing apparatus, imaging apparatus and signal processing method
JP2010239230A (en) Image encoding apparatus
JP2009278473A (en) Image processing device, imaging apparatus mounting the same, and image reproducing device
JP2011015261A (en) Image decoder
JP2018129753A (en) Image encoder, image decoder, control method thereof, and control program
JPH0715654A (en) Still picture synthesis method
JP2011015260A (en) Image decoding apparatus and method therefor
JP4779207B2 (en) Motion vector conversion apparatus and motion vector conversion method