JP2011014443A - Substrate with conductive thin film - Google Patents

Substrate with conductive thin film Download PDF

Info

Publication number
JP2011014443A
JP2011014443A JP2009158823A JP2009158823A JP2011014443A JP 2011014443 A JP2011014443 A JP 2011014443A JP 2009158823 A JP2009158823 A JP 2009158823A JP 2009158823 A JP2009158823 A JP 2009158823A JP 2011014443 A JP2011014443 A JP 2011014443A
Authority
JP
Japan
Prior art keywords
film
substrate
conductive
thin film
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009158823A
Other languages
Japanese (ja)
Other versions
JP5480546B2 (en
Inventor
Masaru Onishi
賢 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2009158823A priority Critical patent/JP5480546B2/en
Publication of JP2011014443A publication Critical patent/JP2011014443A/en
Application granted granted Critical
Publication of JP5480546B2 publication Critical patent/JP5480546B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a substrate with a conductive thin film in which conductivity of a conductive polymer thin film is improved while ensuring airtightness to the substrate.SOLUTION: The substrate with the conductive thin film has a base film B and a conductive film A on a surface of the substrate C in this order. The conductive film A contains polythiophene-based polymer as the main component, the base film B is airtightly in close contact by physically or chemically acting on the substrate C, and furthermore a controlling function of molecular orientation against the conductive film A is equipped.

Description

本発明は、導電性薄膜付き基板に関する。   The present invention relates to a substrate with a conductive thin film.

Poly(3,4-ethylenedioxythiophene)(PEDOT)に代表されるチオフェン系高分子は、優れた導電性を有する導電性高分子として知られている。導電性高分子の導電性は金属導体と比較すると低いものの、金属導電体にはない特性である柔軟性および透明性を有するため、主に液晶、タッチパネル等の表示デバイス用透明配線部材や電磁遮蔽膜として利用されている。そして、さらに幅広い範囲で利用するため、さらなる導電性向上が望まれている。例えば、透明配線部材用途では導電性向上は透過率向上に直結するため、新規導電性向上技術が切望されてきた。   A thiophene polymer represented by Poly (3,4-ethylenedioxythiophene) (PEDOT) is known as a conductive polymer having excellent conductivity. Although the conductivity of the conductive polymer is lower than that of the metal conductor, it has flexibility and transparency, which are characteristics not found in metal conductors. Therefore, it is mainly used for transparent wiring members for display devices such as liquid crystal and touch panels, and electromagnetic shielding. It is used as a membrane. And since it utilizes in a wider range, the further electroconductivity improvement is desired. For example, in the transparent wiring member application, since the improvement in conductivity is directly linked to the improvement in transmittance, a new technique for improving conductivity has been eagerly desired.

ポリチオフェン系導電性高分子の導電性向上技術として、例えば特許文献1には、高極性溶媒、アルコール、エーテル、DMSO(ジメチルスルホシド)、DMF(ジメチルホルムアミド)等の添加による導電性向上について記載されている。   As a technique for improving the conductivity of a polythiophene-based conductive polymer, for example, Patent Document 1 describes improvement in conductivity by adding a highly polar solvent, alcohol, ether, DMSO (dimethylsulfoside), DMF (dimethylformamide), or the like. ing.

特開2000−153229号公報JP 2000-153229 A

しかしながら、この高極性溶媒は揮発性かつ可燃性であるため、電気・電子材料として利用した場合、導電特性が不安定になる恐れがあった。また、ここに例示した特許文献1に記載のような従来法では、基板上に形成されたポリチオフェン系導電性高分子からなる薄膜の導電性を向上するために、導電性高分子そのものの分子設計、組成制御により分子配向制御、ドーピング制御などを施し、導電性の向上を図ってきたが、経時的に安定かつ導電性を向上させることは導電性高分子そのものによる導電性向上には限界があり、簡便な手法での新規導電性向上方法の開発が望まれてきた。
例えば、溶媒を導電性高分子に添加しているため、経時的な溶媒の揮発による導電性組成物の組成変化または溶媒劣化による、導電性の安定性に問題があった。
また、導電性以外でも従来導電性高分子の導電性を向上させると、導電性高分子からなる薄膜の基板への密着性が低下する問題があった。
すなわち、従来は、導電性の向上と、基板への密着性の向上とはトレードオフの関係があり、両立させることが困難であった。
However, since this highly polar solvent is volatile and flammable, when it is used as an electric / electronic material, there is a possibility that the conductive characteristics become unstable. Moreover, in the conventional method as described in Patent Document 1 exemplified here, in order to improve the conductivity of a thin film made of a polythiophene-based conductive polymer formed on a substrate, the molecular design of the conductive polymer itself is designed. However, we have tried to improve the conductivity by controlling the molecular orientation and doping by controlling the composition, but there is a limit to improving the conductivity with the conductive polymer itself in order to improve the conductivity stably over time. Therefore, it has been desired to develop a new method for improving conductivity by a simple method.
For example, since the solvent is added to the conductive polymer, there is a problem in the stability of the conductivity due to the composition change of the conductive composition due to the volatilization of the solvent over time or the solvent deterioration.
Further, when the conductivity of a conventional conductive polymer is improved other than the conductivity, there is a problem that the adhesion of the thin film made of the conductive polymer to the substrate is lowered.
That is, conventionally, there is a trade-off relationship between improvement in conductivity and improvement in adhesion to the substrate, and it has been difficult to achieve both.

本発明は上記の問題を解決することを課題とする。
すなわち、本発明の課題は、基板への密着性を確保しつつ、導電性高分子薄膜の導電性を向上させる、導電性薄膜付き基板を提供することにある。
An object of the present invention is to solve the above problems.
That is, the subject of this invention is providing the board | substrate with an electroconductive thin film which improves the electroconductivity of an electroconductive polymer thin film, ensuring the adhesiveness to a board | substrate.

本発明者は鋭意検討し、基板上に特定構造の化合物を主成分とする下地膜を有し、その上にポリチオフェンを主成分として含む導電性薄膜を有する導電性薄膜付き基板は、上記課題を解決できることを見出し、本発明を完成させた。   The inventor has intensively studied, and a substrate with a conductive thin film having a base film containing a compound having a specific structure as a main component on a substrate and a conductive thin film containing polythiophene as a main component on the substrate has the above-mentioned problems. The inventors have found that this can be solved and completed the present invention.

本発明は次の(i)〜(xiii)である。
(i)基板Cの表面上に、下地膜Bおよび導電膜Aをこの順に有する導電性薄膜付き基板であって、前記導電膜Aがポリチオフェン系高分子を主成分として含み、前記下地膜Bが、前記基板Cに物理的または化学的に作用して密着しており、さらに前記導電膜Aに対して分子配向制御能を備える、導電性薄膜付き基板。
(ii)前記下地膜Bが交互吸着膜B1を含む、上記(i)に記載の導電性薄膜付き基板。
(iii)前記下地膜Bが前記交互吸着膜B1である、上記(i)または(ii)に記載の導電性薄膜付き基板。
(iv)前記交互吸着膜B1と前記導電膜Aとが密着しており、前記交互吸着膜B1における前記導電膜Aと密着する表面が高分子電解質からなる、上記(ii)または(iii)に記載の導電性薄膜付き基板。
(v)前記下地膜Bが高極性置換基を有する修飾膜B2を含む、上記(i)に記載の導電性薄膜付き基板。
(vi)前記下地膜Bが化合物αを用いて形成した修飾膜B2を含み、前記化合物αが、高極性置換基と接着性置換基とを有する化合物である、上記(v)に記載の導電性薄膜付き基板。
(vii)前記下地膜Bが前記修飾膜B2である、上記(v)または(vi)に記載の導電性薄膜付き基板。
(viii)前記高極性置換基が、ヘテロ原子を有しカチオン性である環状置換基および/または―N(RY)(RZ)[RYおよびRZは各々、水素原子、炭素数1〜20のアルコキシル基、またはエーテル結合を有していてもよい炭素数1〜20のアルキル基である。]で表わされるカチオン性であるN含有官能基である、上記(v)〜(vii)のいずれかに記載の導電性薄膜付き基板。
(ix)前記化合物αが、イミダゾリウム誘導体またはピリジニウム誘導体もしくはピロリジウム誘導体である、上記(v)〜(viii)のいずれかに記載の導電性薄膜付き基板。
(x)前記修飾膜B2が、その表面をイオン交換処理したものである、上記(v)〜(ix)のいずれかに記載の導電性薄膜付き基板。
(xi)前記下地膜Bが、前記交互吸着層B1および前記修飾膜B2からなり、前記基板Cの表面上に、前記修飾膜B2、前記交互吸着層B1および前記導電膜Aをこの順に有する、上記(i)、(ii)、(iv)、(v)、(viii)、(ix)または(x)に記載の導電性薄膜付き基板。
(xii)前記ポリチオフェン系高分子が、3,4−エチレンジオキシチオフェンおよび/またはその誘導体である、上記(i)〜(xi)のいずれかに記載の導電性薄膜付き基板。
(xiii)基板Cの表面上に前記下地膜Bを形成し、その後、前記下地膜Bの表面上に前記導電膜Aを形成して得た、上記(i)〜(xii)のいずれかに記載の導電性薄膜付き基板。
The present invention includes the following (i) to (xiii).
(i) A substrate with a conductive thin film having a base film B and a conductive film A in this order on the surface of the substrate C, wherein the conductive film A contains a polythiophene-based polymer as a main component, and the base film B A substrate with a conductive thin film, which is in close contact with the substrate C by physical or chemical action, and further has a molecular orientation control ability with respect to the conductive film A.
(ii) the underlayer B comprises alternating adsorption film B 1, a conductive thin film-attached substrate according to the above (i).
(iii) the underlayer B is the alternate adsorption film B 1, the (i) or a conductive thin film-attached substrate according to (ii).
(iv) The alternating adsorption film B 1 and the conductive film A are in close contact, and the surface of the alternating adsorption film B 1 that is in close contact with the conductive film A is made of a polymer electrolyte. The board | substrate with an electroconductive thin film as described in).
(V) the underlayer B contains a modified film B 2 having a highly polar substituents, the conductive thin film-attached substrate according to the above (i).
(vi) The base film B includes a modified film B 2 formed using the compound α, and the compound α is a compound having a highly polar substituent and an adhesive substituent, as described in (v) above Substrate with conductive thin film.
(vii) the underlayer B is the modifying film B 2, (v) above or a conductive thin film-attached substrate according to (vi).
(viii) the highly polar substituent is a cyclic substituent having a hetero atom and a cationic group and / or —N (R Y ) (R Z ) [R Y and R Z are each a hydrogen atom, a carbon number of 1; It is a C1-C20 alkyl group which may have -20 alkoxy groups or an ether bond. ] The board | substrate with an electroconductive thin film in any one of said (v)-(vii) which is N containing functional group which is cationic represented by these.
(ix) The substrate with a conductive thin film according to any one of (v) to (viii) above, wherein the compound α is an imidazolium derivative, a pyridinium derivative, or a pyrrolidinium derivative.
(x) the modified membrane B 2 is, the surface is obtained by ion exchange treatment, (v) above conductive thin film-attached substrate according to any one of ~ (ix).
(xi) The base film B includes the alternate adsorption layer B 1 and the modification film B 2 , and the modification film B 2 , the alternate adsorption layer B 1, and the conductive film A are formed on the surface of the substrate C. The substrate with a conductive thin film according to the above (i), (ii), (iv), (v), (viii), (ix) or (x) in this order.
(xii) The substrate with a conductive thin film according to any one of (i) to (xi) above, wherein the polythiophene polymer is 3,4-ethylenedioxythiophene and / or a derivative thereof.
(xiii) Any one of the above (i) to (xii) obtained by forming the base film B on the surface of the substrate C and then forming the conductive film A on the surface of the base film B The board | substrate with an electroconductive thin film of description.

本発明によれば、薄膜の導電性が高く、基板への密着性が高く、導電性高分子が安定しており、薄膜中に溶媒を含む場合でも導電性薄膜付き基板を提供することができる。   According to the present invention, it is possible to provide a substrate with a conductive thin film even when the thin film has high conductivity, high adhesion to the substrate, the conductive polymer is stable, and the thin film contains a solvent. .

本発明の薄膜付き基板を示す概略断面図である。It is a schematic sectional drawing which shows the board | substrate with a thin film of this invention. 本発明の下地膜Bを形成する化合物αを説明するための模式図である。It is a schematic diagram for demonstrating the compound (alpha) which forms the base film B of this invention. 実施例3の結果を示すグラフである。10 is a graph showing the results of Example 3. 実施例4の結果を示すグラフである。It is a graph which shows the result of Example 4. 実施例8の結果を示すグラフである。10 is a graph showing the results of Example 8. 実施例9の結果を示すグラフである。10 is a graph showing the results of Example 9. 実施例10の結果を示すグラフである。It is a graph which shows the result of Example 10. 実施例11の結果を示すグラフである。10 is a graph showing the results of Example 11.

本発明について詳細に説明する。
本発明は、基板Cの表面上に、下地膜Bおよび導電膜Aをこの順に有する導電性薄膜付き基板であって、前記導電膜Aがポリチオフェン系高分子を主成分として含み、前記下地膜Bが、前記基板Cに物理的または化学的に作用して密着しており、さらに前記導電膜Aに対して分子配向制御能を備える、導電性薄膜付き基板である。
このような導電性薄膜付き基板を、以下では「本発明の薄膜付き基板」ともいう。
The present invention will be described in detail.
The present invention is a substrate with a conductive thin film having a base film B and a conductive film A in this order on the surface of a substrate C, wherein the conductive film A contains a polythiophene polymer as a main component, and the base film B However, it is a substrate with a conductive thin film that is physically and chemically bonded to the substrate C and has a molecular orientation control ability with respect to the conductive film A.
Hereinafter, such a substrate with a conductive thin film is also referred to as a “substrate with a thin film of the present invention”.

本発明の薄膜付き基板として、例えば図1に表すものが挙げられる。図1は本発明の薄膜付き基板の概略断面図である。図1において本発明の薄膜付き基板は、基板Cの表面上に下地膜Bおよび導電膜Aをこの順で有している。   An example of the substrate with a thin film of the present invention is shown in FIG. FIG. 1 is a schematic sectional view of a substrate with a thin film according to the present invention. In FIG. 1, the substrate with a thin film of the present invention has a base film B and a conductive film A in this order on the surface of the substrate C.

初めに下地膜Bについて説明する。
本発明の薄膜付き基板において下地膜Bは、前記基板Cに物理的または化学的に作用して密着しており、さらに前記導電膜Aに対して分子配向制御能を備えるものであれば特に限定されない。下地膜Bとしてはいくつかの態様が考えられ、具体的には、下地膜Bが交互吸着膜B1である態様1、下地膜Bが修飾膜B2である態様2、下地膜Bが交互吸着膜B1および修飾膜B2からなる態様3を挙げることができる。
First, the base film B will be described.
In the substrate with a thin film of the present invention, the base film B is particularly limited as long as it is in close contact with the substrate C by physical or chemical action and further has a molecular orientation control ability with respect to the conductive film A. Not. Several modes are conceivable as the base film B. Specifically, the mode 1 in which the base film B is the alternate adsorption film B 1 , the mode 2 in which the base film B is the modification film B 2 , and the base film B are alternately arranged. An embodiment 3 comprising the adsorption film B 1 and the modification film B 2 can be mentioned.

なお、下地膜Bの基板Cへの物理的または化学的な作用としては、例えば疎水性相互作用、電荷移動相互作用、静電気的相互作用などが挙げられる。また、下地膜Bと基板Cとが化学的に結合していてもよい。化学的な結合としては、配位結合、水素結合、抗原−抗体反応による結合、共有結合、van der Waals力による結合などが挙げられる。   Examples of the physical or chemical action of the base film B on the substrate C include a hydrophobic interaction, a charge transfer interaction, and an electrostatic interaction. Further, the base film B and the substrate C may be chemically bonded. Examples of the chemical bond include coordinate bond, hydrogen bond, bond by antigen-antibody reaction, covalent bond, and bond by van der Waals force.

次に、態様1〜3について具体的に説明する。   Next, Embodiments 1 to 3 will be specifically described.

<態様1:交互吸着膜B1
下地膜Bが交互吸着膜B1である態様1について説明する。
交互吸着膜B1とは、カチオン性を有する薄膜とアニオン性を有する薄膜とが交互に積層され、各薄膜間および薄膜と基板Cとが物理的または化学的な作用(主に静電気的相互作用)によって強固に結合してなるものである。交互吸着膜B1は基板Cに対して、物理的または化学的に作用するが、その程度(静電気的相互作用の程度)が高いので密着性も高く、例えば基板上の交互吸着膜B1の表面に粘着テープを貼り付けた後にこれを剥がしても、交互吸着膜B1は基板Cから剥がれない。
<Embodiment 1: alternate adsorption film B 1>
Base film B will be described embodiments 1 is alternately adsorbed film B 1.
The alternately adsorbed film B 1 is formed by alternately laminating a thin film having a cationic property and a thin film having an anionic property, and a physical or chemical action (mainly an electrostatic interaction) between each thin film and between the thin film and the substrate C. ). The alternating adsorption film B 1 acts physically or chemically on the substrate C, but its degree (the degree of electrostatic interaction) is high, so that the adhesion is high. For example, the alternating adsorption film B 1 on the substrate Even if the adhesive tape is attached to the surface and then peeled off, the alternating adsorption film B 1 is not peeled off from the substrate C.

カチオン性またはアニオン性を有する薄膜は、高分子材料、タンパク質、コロイド粒子(金属コロイド、酸化物コロイド、ラテックスコロイド)、粘土鉱物、半導体微粒子、ヘテロポリ酸、色素などから形成することができる。これらの中でも、水溶性または水分散性を備える高分子材料(例えば高分子電解質)を用いて形成した薄膜であることが好ましい。得られる薄膜の柔軟性が優れ、導電膜Aに対する分子配向制御が良好となり、ドーパントとしての効果も高まる傾向があるからである。   The thin film having a cationic property or an anionic property can be formed from a polymer material, protein, colloidal particles (metal colloid, oxide colloid, latex colloid), clay mineral, semiconductor fine particles, heteropolyacid, dye, and the like. Among these, a thin film formed using a polymer material having water solubility or water dispersibility (for example, a polymer electrolyte) is preferable. This is because the resulting thin film has excellent flexibility, better molecular orientation control with respect to the conductive film A, and tends to increase the effect as a dopant.

アニオン性高分子電解質としては、例えばスルホン酸、カルボン酸等など負電荷を帯びることができる官能基を有するもの、具体的にはポリスチレンスルホン酸(PSS)、ポリビニルスルホン酸、デキストラン硫酸、コンドロイチン硫酸、ピアルロン酸、ポリアクリル酸、ポリ(メタ)アクリル酸およびそのイオン化物、ポリマレイン酸、ポリフマル酸、Poly(1-(4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido)-1,2-ethanediyl)、Poly(anilinepropanesulfonic acid)、Sulfonated polyaniline、Poly(thiophene-3-acetic acid)、Poly(2-acrylamido-2-methy1-1-propanesulfonic acid)、ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)、ポリアミック酸、さらには上記ポリマーを構成するモノマーと(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-イソプロピル(メタ)アクリルアミドなどのノニオン性水溶液モノマーとの共重合体、ポリチオフェンやポリアニリンなどの導電性高分子、発色団を有する高分子、液晶型ポリマー、DNAなどの生体高分子が挙げられる。   Examples of the anionic polymer electrolyte include those having a negatively charged functional group such as sulfonic acid and carboxylic acid, specifically polystyrene sulfonic acid (PSS), polyvinyl sulfonic acid, dextran sulfate, chondroitin sulfate, Pearuronic acid, polyacrylic acid, poly (meth) acrylic acid and its ionized product, polymaleic acid, polyfumaric acid, Poly (1- (4- (3-carboxy-4-hydroxyphenylazo) benzenesulfonamido) -1,2-ethanediyl), Poly (anilinepropanesulfonic acid), Sulfonated polyaniline, Poly (thiophene-3-acetic acid), Poly (2-acrylamido-2-methy1-1-propanesulfonic acid), Poly (2-acrylamido-2-methyl-1-propanesulfonic acid) ), Polyamic acid, and monomers constituting the polymer and (meth) acrylamide, 2-hydroxyethyl (meth) acrylate, N-isopropyl (meth) acrylamide Copolymers of any nonionic aqueous monomer, conductive polymers such as polythiophene, polyaniline, a polymer having a chromophore, a liquid crystal polymer include biopolymers, such as DNA.

カチオン性高分子電解質としては、例えば4級アンモニウム基、アミノ基などの正荷電を有する官能基を有するもの、具体的には、ポリエチレンイミンおよびその4級化物、ポリジアリルジメチルアンモニウムクロライド、ポリ(N,N’-ジメチル-3,5-ジメチレン-ピペリジニウムクロライド)、ポリアリルアミンおよびその4級化物、ポリジメチルアミノエチル(メタ)アクリレートおよびその4級化物、ポリジメチルアミノプロピル(メタ)アクリルアミドおよびその4級化物、ポリジメチル(メタ)アクリルアミドおよびその4級化物、ポリエチレンイミン、ポリジアリルジメチルアンモニウムクロリド、ポリビニルピリジン、ポリリジン、polystyrenemethylenediethylmethylamine、polymethylpyridylvinylを挙げることができる。   Examples of the cationic polymer electrolyte include those having a positively charged functional group such as a quaternary ammonium group and an amino group, specifically, polyethyleneimine and its quaternized product, polydiallyldimethylammonium chloride, poly (N , N′-dimethyl-3,5-dimethylene-piperidinium chloride), polyallylamine and its quaternized product, polydimethylaminoethyl (meth) acrylate and its quaternized product, polydimethylaminopropyl (meth) acrylamide and its Quaternized products, polydimethyl (meth) acrylamide and its quaternized products, polyethyleneimine, polydiallyldimethylammonium chloride, polyvinylpyridine, polylysine, polystyrenemethylenediethylmethylamine, polymethylpyridylvinyl can be mentioned.

上記のアニオン性またはカチオン性の高分子電解質の分子量は、各々、1,000〜5,000,000g/molであることが好ましく、10,000〜1,000,000g/molであることがより好ましい。   The molecular weight of the anionic or cationic polymer electrolyte is preferably 1,000 to 5,000,000 g / mol, more preferably 10,000 to 1,000,000 g / mol.

交互吸着膜B1は、カチオン性を有する薄膜およびアニオン性を有する薄膜を、各々、少なくとも1膜以上有するものであるが、交互吸着膜B1の全体の厚さは特に限定はされないものの、0.5〜50nmであることが好ましく、1〜10nmであることがより好ましい。
このような膜の厚さは、交互吸着膜B1を形成する際に用いる高分子電解質等の種類、分子量、水溶液濃度、pH、粘度、温度等でコントロールすることができる。
The alternating adsorption film B 1 includes at least one thin film having a cationic property and at least one thin film having an anionic property. Although the total thickness of the alternating adsorption film B 1 is not particularly limited, It is preferably 5 to 50 nm, and more preferably 1 to 10 nm.
The thickness of such a film can be controlled by the type of polymer electrolyte, etc. used when forming the alternately adsorbing film B 1 , molecular weight, aqueous solution concentration, pH, viscosity, temperature, and the like.

本発明の導電性薄膜付き基板は、交互吸着膜B1と前記導電膜Aとが接触しかつ密着しており、交互吸着膜B1における導電膜Aと密着する表面がアニオン性高分子電解質からなることが好ましい。導電膜Aに対する分子配向制御がより良好となり、ドーパントとしての効果もより高まる傾向があるからである。 In the substrate with a conductive thin film of the present invention, the alternately adsorbing film B 1 and the conductive film A are in contact and in close contact with each other, and the surface of the alternating adsorbing film B 1 in close contact with the conductive film A is made of an anionic polymer electrolyte. It is preferable to become. This is because the molecular orientation control for the conductive film A becomes better and the effect as a dopant tends to be higher.

交互吸着膜B1を形成する際は、上記のようなカチオン性またはアニオン性の高分子電解質塩に、塩化ナトリウム、塩化カリウム、過塩素酸リチウムなどの電解塩を添加して用いてもよい。 When forming the alternate adsorption film B 1 represents, in a cationic or anionic polyelectrolyte salt as described above, sodium chloride, potassium chloride, it may be used by adding an electrolytic salt such as lithium perchlorate.

<態様2:修飾膜B2
次に、下地膜Bが修飾膜B2である態様2について説明する。
修飾膜B2は高極性置換基を有する薄膜である。また、修飾膜B2は、化合物αを主成分とする薄膜である。
<Embodiment 2: modifying film B 2>
Next, Embodiment 2 in which the base film B is the modification film B2 will be described.
The modified film B 2 is a thin film having a highly polar substituent. The modification film B 2 is a thin film containing the compound α as a main component.

化合物αは、高極性置換基と接着性置換基とを有する化合物である。
高極性置換基は、ヘテロ原子を有しカチオン性である環状置換基または−N(RY)(RZ)[RYおよびRZは各々、水素原子、炭素数1〜20のアルコキシル基、またはエーテル結合を有していてもよい炭素数1〜20のアルキル基である。]で表わされるカチオン性であるN含有官能基であることが好ましい。
すなわち、化合物αは、前記環状置換基と前記接着性置換基とを有する化合物、前記N含有官能基と前記接着性置換基とを有する化合物、または前記環状置換基とN含有官能基と前記接着性置換基とを有する化合物であることが好ましい。
The compound α is a compound having a highly polar substituent and an adhesive substituent.
The highly polar substituent is a cyclic substituent having a hetero atom and being cationic, or —N (R Y ) (R Z ) [R Y and R Z are each a hydrogen atom, an alkoxyl group having 1 to 20 carbon atoms, Or it is a C1-C20 alkyl group which may have an ether bond. It is preferable that it is an N containing functional group which is cationic represented by these.
That is, the compound α is a compound having the cyclic substituent and the adhesive substituent, a compound having the N-containing functional group and the adhesive substituent, or the cyclic substituent and the N-containing functional group and the adhesive. It is preferable that the compound has an ionic substituent.

前記環状置換基は、式(1)に示すイミダゾリウム誘導体またはピリジウム誘導体であることが好ましい。   The cyclic substituent is preferably an imidazolium derivative or a pyridium derivative represented by the formula (1).

Figure 2011014443
Figure 2011014443

式(1)において、R1〜R12は、各々独立して、水素原子、炭素数1〜20のアルコキシル基、またはエーテル結合を有していてもよい炭素数1〜20のアルキル基である。また、R1〜R12は同一であっても異なっていてもよく、複素環を形成していてもよい。
ここで、炭素数1〜20のアルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、各種ペントキシ基、各種ヘプトキシ基、各種オクトキシ基などが挙げられる。
また、R1〜R12のエーテル結合を有していてもよい炭素数1〜20のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、各種ペンチル基、各種ヘキシル基、各種ヘプチル基、各種オクチル基、2−メトキシエチル基などが挙げられる。
In Formula (1), R 1 to R 12 are each independently a hydrogen atom, an alkoxyl group having 1 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms that may have an ether bond. . R 1 to R 12 may be the same or different, and may form a heterocyclic ring.
Here, as a C1-C20 alkoxy group, a methoxy group, an ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, various pentoxy groups , Various heptoxy groups, various octoxy groups and the like.
The alkyl group of R 1 to R 12 of the ether bond carbon atoms, which may have 1 to 20, a methyl group, an ethyl group, n- propyl group, an isopropyl group, n- butyl group, an isobutyl group, Examples thereof include a sec-butyl group, a tert-butyl group, various pentyl groups, various hexyl groups, various heptyl groups, various octyl groups, and 2-methoxyethyl groups.

次に、化合物αにおける前記N含有官能基について説明する。
N含有官能基は、−N(RY)(RZ)[RYおよびRZは各々、水素原子、炭素数1〜20のアルコキシル基、またはエーテル結合を有していてもよい炭素数1〜20のアルキル基である。]で表わされるカチオン性である官能基である。
Next, the N-containing functional group in the compound α will be described.
The N-containing functional group is -N (R Y ) (R Z ) [R Y and R Z are each a hydrogen atom, an alkoxyl group having 1 to 20 carbon atoms, or an optionally bonded ether bond. ˜20 alkyl groups. ] Which is a functional group that is cationic.

次に、化合物αにおける接着性置換基について説明する。
接着性置換基は、基板Cの表面と化学的に反応して結合する置換基であれば特に限定されない。化学的な結合としては、共有結合、配位結合、イオン結合、水素結合が挙げられる。基板Cの表面と反応して共有結合を形成する置換基として、例えばSi−X(Xは、メトキシ、エトキシ、Cl、Br等のハロゲン、H等)、燐酸基、酸塩化物、カルボン酸、イソシアネート、チオール、エポキシなどが挙げられる。また、共有結合、配位結合、イオン結合または水素結合により結合する置換基として、例えばアルコキシ基、エーテル基、エステル基、カルボニル基、カルボキシ基が挙げられる。
Next, the adhesive substituent in the compound α will be described.
The adhesive substituent is not particularly limited as long as it is a substituent that chemically reacts with and bonds to the surface of the substrate C. Chemical bonds include covalent bonds, coordination bonds, ionic bonds, and hydrogen bonds. Examples of the substituent that reacts with the surface of the substrate C to form a covalent bond include Si-X (X is halogen such as methoxy, ethoxy, Cl, Br, etc., H, etc.), phosphoric acid group, acid chloride, carboxylic acid, Isocyanates, thiols, epoxies and the like. In addition, examples of the substituent bonded by a covalent bond, a coordinate bond, an ionic bond, or a hydrogen bond include an alkoxy group, an ether group, an ester group, a carbonyl group, and a carboxy group.

化合物αは、このようなカチオン性を奏するヘテロ原子を有する環状置換基および/または前記N含有官能基と、前記接着性置換基とを有する化合物であり、例えば図2に示すような、環状置換基(またはN含有官能基)10と前記接着性置換基20とが、接続部分30で接続された態様である。
このような接続部分30は両置換基を接続できるものであれば特に限定されないが、前記環状置換基またはN含有官能基が自己配列することを促す構造であることが好ましい。自己配列することによりドーピング効果および配列制御効果が増大するためである。
The compound α is a compound having a cyclic substituent having a hetero atom having such a cationic property and / or the N-containing functional group and the adhesive substituent. For example, as shown in FIG. In this embodiment, the group (or N-containing functional group) 10 and the adhesive substituent 20 are connected by a connecting portion 30.
Such a connecting portion 30 is not particularly limited as long as both substituents can be connected, but preferably has a structure that promotes the self-arrangement of the cyclic substituent or the N-containing functional group. This is because the self-alignment increases the doping effect and the alignment control effect.

このような化合物αは、前記接着性置換基が基板Cの表面と化学的に結合する。具体的には共有結合、配位結合、イオン結合または水素結合等によって結合する。よって修飾膜B2と基板Cとが強固に結合することができる。 In such a compound α, the adhesive substituent is chemically bonded to the surface of the substrate C. Specifically, they are bonded by a covalent bond, a coordination bond, an ionic bond, a hydrogen bond, or the like. Therefore, the modification film B 2 and the substrate C can be firmly bonded.

前記環状置換基と前記接着性置換基とを有する化合物αとして、次の式(2)、式(3)および式(4)で示す化合物を好適例として挙げられる。   Preferred examples of the compound α having the cyclic substituent and the adhesive substituent include compounds represented by the following formulas (2), (3) and (4).

Figure 2011014443
Figure 2011014443

Figure 2011014443
Figure 2011014443

Figure 2011014443
Figure 2011014443

式(2)においてR13、R14は各々独立して水素、メチル基、エチル基、プロピル基またはフェニル基を意味する。
また、式(3)においてR15は、各々独立して、水素、炭素数1〜20のアルキル基またはアルコキシ基であり、1〜8の酸素原子および/または硫黄原子が挿入されてもよい。例えば炭素数1〜20のジオキシアルキレン基または炭素数1〜20のジオキシアリーレン基であってもよい。
In the formula (2), R 13 and R 14 each independently represents hydrogen, a methyl group, an ethyl group, a propyl group or a phenyl group.
Moreover, in Formula (3), R < 15 > is respectively independently hydrogen, a C1-C20 alkyl group, or an alkoxy group, and a 1-8 oxygen atom and / or a sulfur atom may be inserted. For example, it may be a C 1-20 dioxyalkylene group or a C 1-20 dioxyarylene group.

前記N含有官能基と前記接着性置換基とを有する化合物αとしては、トリメトキシシラン、具体的には3-Aminopropyltrimethoxysilane, N-Trimethoxylsilylpropyl-N,N,N-trimethylammonium chloride, N-(2-aminoethyl)-3-amionopropyltrimethoxysilane, (3-Trimethoxysilylpropyl)diethiylentriaminoを好適例として挙げられる。   Examples of the compound α having the N-containing functional group and the adhesive substituent include trimethoxysilane, specifically 3-aminopropyltrimethoxysilane, N-trimethoxylsilylpropyl-N, N, N-trimethylammonium chloride, N- (2-aminoethyl ) -3-amionopropyltrimethoxysilane, (3-Trimethoxysilylpropyl) diethiylentriamino are preferred examples.

<態様3>
次に、下地膜Bが交互吸着膜B1および修飾膜B2からなる態様3について説明する。
態様3において本発明の導電性薄膜付き基板は、基板Cの表面上に、前記修飾膜B2、前記交互吸着層B1および導電膜Aをこの順に有するものである。
例えば、上記の式(2)、式(3)または式(4)で示した化合物を用いて基板Cの表面上に修飾膜B2を形成すると、得られた修飾膜B2の表面は正電荷もしくは負電荷もしくはその両方を有することなる。そこで、この表面に前記カチオン性高分子電解質を用いて薄膜を形成し、その上面に前記アニオン性高分子電解質を用いて別の薄膜を形成し、その後も繰り返して交互吸着層B1を前記修飾層B2の上に形成することができる。
このような態様3であると、基板Cが修飾膜B2と化学的に結合して密着し、さらに修飾膜B2と交互吸着膜B1とがクーロン力によって強固に結合する。
<Aspect 3>
Next, Embodiment 3 in which the base film B is composed of the alternating adsorption film B 1 and the modification film B 2 will be described.
In aspect 3, the substrate with a conductive thin film of the present invention has the modification film B 2 , the alternating adsorption layer B 1, and the conductive film A in this order on the surface of the substrate C.
For example, when the modified film B 2 is formed on the surface of the substrate C using the compound represented by the above formula (2), formula (3), or formula (4), the surface of the obtained modified film B 2 is positive. It has a charge or a negative charge or both. Therefore, a thin film is formed on the surface using the cationic polymer electrolyte, another thin film is formed on the top surface using the anionic polymer electrolyte, and then the alternating adsorption layer B 1 is repeatedly modified. it can be formed on the layer B 2.
With such an embodiment 3 in close contact substrate C is modifying film B 2 and chemically coupled to form further a modified film B 2 and alternate adsorption film B 1 is strongly bonded by the Coulomb force.

前記修飾膜B2は、さらにその表面を、後述するイオン交換処理したものであることが好ましい。 It is preferable that the modified film B 2 is further subjected to an ion exchange treatment to be described later.

前記下地膜Bは上記のような態様1〜態様3であることが好ましいが、前記基板Cに物理的または化学的に作用して密着しており、さらに前記導電膜Aに対して分子配向制御能を備えるものであれば、その他の態様であってもよい。例えば、下地膜Bが交互吸着膜B1とその他の膜とからなるものであってもよい。また、例えば下地膜Bが修飾膜B2とその他の膜とからなるものであってもよい。 The base film B is preferably in the first to third embodiments as described above, but is in close contact with the substrate C by physical or chemical action, and further controls molecular orientation with respect to the conductive film A. Other aspects may be used as long as they have the ability. For example, the base film B may be composed of the alternating adsorption film B 1 and other films. Further, for example, the base film B may be composed of the modification film B 2 and other films.

なお、態様1〜3の下地膜Bを有する本発明の薄膜付きの各々は、先行技術との対比において発明が有する技術上の意義が共通若しくは密接に関連している場合に該当するので、発明の単一性の要件を満たしている。   In addition, since each of the thin film of the present invention having the base film B of aspects 1 to 3 corresponds to a case where the technical significance of the invention is common or closely related to the prior art, the invention Meets the requirements of unity.

<導電膜A>
次に、本発明の導電性薄膜付き基板が有する導電膜Aについて説明する。
導電膜Aはポリチオフェン系高分子を主成分として含む。
<Conductive film A>
Next, the conductive film A included in the substrate with a conductive thin film of the present invention will be described.
The conductive film A contains a polythiophene polymer as a main component.

チオフェン系高分子は特に限定されず、例えば公知のものを用いることができる。
チオフェン系高分子を構成する繰り返し単位として、式(5)、式(6)および式(7)に示される態様を好適例として挙げることができる。
The thiophene polymer is not particularly limited, and for example, a known thiophene polymer can be used.
As preferred examples of the repeating unit constituting the thiophene polymer, the embodiments shown in the formula (5), the formula (6), and the formula (7) can be given.

Figure 2011014443
Figure 2011014443

Figure 2011014443
Figure 2011014443

Figure 2011014443
Figure 2011014443

式(5)においてR15およびR16は、各々独立して、水素、炭素数1〜20のアルキル基またはアルコキシ基であり、1〜8個の酸素原子および/または硫黄原子が挿入されてもよい。例えば炭素数1〜20のジオキシアルキレン基または炭素数1〜20のジオキシアリーレン基であってもよい。 In the formula (5), R 15 and R 16 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms or an alkoxy group, and 1 to 8 oxygen atoms and / or sulfur atoms may be inserted. Good. For example, it may be a C 1-20 dioxyalkylene group or a C 1-20 dioxyarylene group.

式(6)においてAは、置換されていてよい炭素数1〜5のアルキレン残基または炭素数1〜12のアリーレン残基であり、これらの中でもAは炭素数2または3のアルキレン残基であることが好ましい。
ここで炭素数1〜5のアルキレン残基Aは、例えばメチレン、エチレン、n−プロピレン、n−ブチレンまたはn−ペンチレンである。
また、炭素数1〜12のアリーレン残基Aは、例えばフェニレン、ナフチレン、ベンジリデンまたはアントラセニリデンである。
In Formula (6), A is an optionally substituted alkylene residue having 1 to 5 carbon atoms or an arylene residue having 1 to 12 carbon atoms, and among these, A is an alkylene residue having 2 or 3 carbon atoms. Preferably there is.
Here, the alkylene residue A having 1 to 5 carbon atoms is, for example, methylene, ethylene, n-propylene, n-butylene or n-pentylene.
Moreover, the C1-C12 arylene residue A is, for example, phenylene, naphthylene, benzylidene, or anthracenylidene.

また、式(6)においてR17は、直鎖状または分枝鎖状の置換されていてよい炭素数1〜18のアルキル残基であり、直鎖状または分枝鎖状の置換されていてよい炭素数1〜14のアルキル残基、置換されていてよい炭素数5〜12のシクロアルキル残基、置換されていてよい炭素数6〜14のアリール残基、置換されていてよい炭素数7〜18のアラルキル残基、または置換されていてよい炭素数1〜4のヒドロキシアルキル残基であることが好ましく、置換されていてよい炭素数1または2のヒドロキジアルキル残基またはヒドロキシル残基であることがより好ましい。 In the formula (6), R 17 is a linear or branched alkyl residue having 1 to 18 carbon atoms which may be substituted, and is linear or branched substituted. C1-C14 alkyl residue, C5-C12 cycloalkyl residue which may be substituted, C6-C14 aryl residue which may be substituted, C7 which may be substituted It is preferably an aralkyl residue of -18, or an optionally substituted hydroxyalkyl residue having 1 to 4 carbon atoms, and is an optionally substituted hydroxyalkyl residue or hydroxyl residue having 1 or 2 carbon atoms. It is more preferable.

ここで炭素数1〜18のアルキル基は、直鎖状または分枝鎖状のもの、例えばメチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、n−ペンチル、1−メチルブチル、2−メチルブチル、3−メチルブチル、1−エチルプロピル、1,1−ジメチルプロピル、1,2−ジメチルプロピル、2,2−ジメチルプロピル、n−ヘキシル、n−ヘプチル、n−オクチル、2−エチルヘキシル、n−ノニル、n−デシル、n−ウンデシル、n−ドデシル、n−トリデシル、n−テトラデシル、n−ヘキサデシルまたはn−オクタデシルである。
また、炭素数1〜20のアルキル基は、例えばn−ノナデシルおよびn−エイコシルである。
また、炭素数5〜12のシクロアルキルは、例えばシクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニルまたはシクロデシルである。
また、炭素数5〜14のアリールは、例えばフェニルまたはナフチルである。
また、炭素数7〜18のアラルキルは、例えばベンジル、o−トリル、m−トリル、p−トリル、2,3−キシリル、2,4−キシリル、2,5−キシリル、2,6−キシリル、3,4−キシリル、3,5−キシリルまたはメシチルである。
また、炭素数1〜20のオキシアルキルは、例えばメトキシ、エトキシ、n−プロポキシ、イソプロポキシ、n−ブトキシ、イソブトキシ、sec−ブトキシ、tert−ブトキシ、n−ペンチルオキシ、1−メチルブチルオキシ、2−メチルブチルオキシ、3−メチルブチルオキシ、1−エチルプロピルオキシ、1,1−ジメチルプロピルオキシ、1,2−ジメチルプロピルオキシ、2,2−ジメチルプロピルオキシ、n−ヘキシルオキシ、n−ヘプチルオキシ、n−オクチルオキシ、2−エチルヘキシルオキシ、n−ノニルオキシ、n−デシルオキシ、n−ウンデシルオキシ、n−ドデシルオキシ、n−トリデシルオキシ、n−テトラデシルオキシ、n−ヘキサデシルオキシ、n−ノナデシルオキシまたはn−エイコシルオキシである。
Here, the alkyl group having 1 to 18 carbon atoms is linear or branched, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n- Pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 1-ethylpropyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, n-hexyl, n-heptyl, n- Octyl, 2-ethylhexyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, n-tridecyl, n-tetradecyl, n-hexadecyl or n-octadecyl.
Moreover, a C1-C20 alkyl group is n-nonadecyl and n-eicosyl, for example.
C5-C12 cycloalkyl is, for example, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclodecyl.
Moreover, C5-C14 aryl is a phenyl or a naphthyl, for example.
Aralkyl having 7 to 18 carbon atoms is, for example, benzyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl or mesityl.
The oxyalkyl having 1 to 20 carbon atoms is, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, tert-butoxy, n-pentyloxy, 1-methylbutyloxy, 2 -Methylbutyloxy, 3-methylbutyloxy, 1-ethylpropyloxy, 1,1-dimethylpropyloxy, 1,2-dimethylpropyloxy, 2,2-dimethylpropyloxy, n-hexyloxy, n-heptyloxy N-octyloxy, 2-ethylhexyloxy, n-nonyloxy, n-decyloxy, n-undecyloxy, n-dodecyloxy, n-tridecyloxy, n-tetradecyloxy, n-hexadecyloxy, n- Nonadecyloxy or n-eicosyloxy.

また式(6)においてXはR17で表わす官能基の個数を示しており、具体的にはXは0〜8の整数であり、0〜6の整数であることが好ましく、0または1であることがより好ましい。
ここでXが2以上である場合、R17で表わす官能基は同一であっても、異なっていてもよい。
また、複数のR17がAに結合されている場合に、これらは同一であってもよく、異なっていてもよい。
また、R17は、アルキレン残基またはアリーレン残基AにX個結合していてもよい。
ここで、アルキレン残基またはアリーレン残基Aは、例えばアルキル基、シクロアルキル基、アリール基、ハロゲン基、エーテル基、チオエーテル基、ジスルフィド基、スルホキシド基、スルホン基、スルポネート基、アミノ基、アルデヒド基、ケト基、カルボン酸エステル基、カルボン酸基、カーボネート基、カルボキシレート基、シアノ基、アルキルシラン基、アルコキシシラン基およびカルボキシルアミド基である。
In the formula (6), X represents the number of functional groups represented by R 17. Specifically, X is an integer of 0 to 8, preferably an integer of 0 to 6, preferably 0 or 1. More preferably.
Here, when X is 2 or more, the functional groups represented by R 17 may be the same or different.
When a plurality of R 17 is bonded to A, these may be the same or may be different.
R 17 may be bonded to the alkylene residue or arylene residue A by X.
Here, the alkylene residue or arylene residue A is, for example, an alkyl group, cycloalkyl group, aryl group, halogen group, ether group, thioether group, disulfide group, sulfoxide group, sulfone group, sulfonate group, amino group, aldehyde group. , Keto group, carboxylic acid ester group, carboxylic acid group, carbonate group, carboxylate group, cyano group, alkylsilane group, alkoxysilane group and carboxylamide group.

また、式(7)においてR18およびXは、式(6)におけるR17およびXと同様であってよい。 In the formula (7), R 18 and X may be the same as R 17 and X in the formula (6).

チオフェン系高分子は式(5)〜式(7)に示した繰り返し単位を1つ以上含んでいればよく、共重合体であってもかまわない。
チオフェン系高分子は、1つまたはそれ以上の光学異性体を有してもよく、チオフェン誘導体は、ラセミ体、エナンチオマー的に純粋なもしくはジアステレオマーとして純粋な化合物、または任意の割合で光学異性体比調整してもよい。またこれらの混合物であってもよい。
The thiophene polymer may contain one or more repeating units represented by the formulas (5) to (7), and may be a copolymer.
Thiophene-based polymers may have one or more optical isomers, and thiophene derivatives can be racemic, enantiomerically pure or diastereomeric pure compounds, or optical isomers in any proportion. You may adjust the body ratio. A mixture thereof may also be used.

チオフェン系高分子の分子量は100〜10,000,000g/molであることが好ましい。   The molecular weight of the thiophene polymer is preferably 100 to 10,000,000 g / mol.

また、チオフェン系高分子が、3,4−エチレンジオキシチオフェンおよび/またはその誘導体であることが好ましい。製膜プロセスが容易でかつ実績があるためである。   The thiophene polymer is preferably 3,4-ethylenedioxythiophene and / or a derivative thereof. This is because the film forming process is easy and proven.

導電膜Aは上記のポリチオフェン系高分子を主成分とするが、その他に、ドーパント、触媒、高分子電解質、イオン交換樹脂、水、アルコール、グリコール類、アミン系溶剤等溶剤、塩、界面活性剤、ワックスなどを含有していてもよい。また、硬化剤、耐磨耗剤、バインダー等を含んでいてもよい。   The conductive film A has the above polythiophene polymer as a main component, but in addition, a dopant, a catalyst, a polymer electrolyte, an ion exchange resin, water, an alcohol, a glycol, a solvent such as an amine solvent, a salt, a surfactant. Further, it may contain a wax or the like. Further, it may contain a curing agent, an antiwear agent, a binder and the like.

導電膜Aの厚さは特に限定されないが、0.001〜1000μmであることが好ましく、0.001〜10μmであることがより好ましく、0.05〜1μmであることがさらに好ましい。   The thickness of the conductive film A is not particularly limited, but is preferably 0.001 to 1000 μm, more preferably 0.001 to 10 μm, and still more preferably 0.05 to 1 μm.

<基板C>
次に、本発明の導電性薄膜付き基板における基板Cについて説明する。
基板Cは特に限定されず、例えばガラス、石英等の基板、(メタ)アクリル系樹脂、ポリスチレン、ポリ酢酸ビニル、ポリエチレンやポリプロピレンのようなポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイミド、ポリアミド、ポリスルホン、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、液晶ポリマーなどのポリエステルや、アミノ基、エポキシ基、ヒドロキシル基、カルボニル基等の官能基で一部変性した樹脂、トリアセチルセルロースなどからなるフィルムが挙げられる。
<Substrate C>
Next, the board | substrate C in the board | substrate with an electroconductive thin film of this invention is demonstrated.
The substrate C is not particularly limited. For example, a substrate such as glass or quartz, (meth) acrylic resin, polystyrene, polyvinyl acetate, polyolefin such as polyethylene or polypropylene, polyvinyl chloride, polyvinylidene chloride, polyimide, polyamide, polysulfone. , Polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyester such as liquid crystal polymer, resin partially modified with functional groups such as amino group, epoxy group, hydroxyl group, carbonyl group, triacetyl cellulose, etc. The film which becomes is mentioned.

基板Cの大きさや厚さも特に限定されない。   The size and thickness of the substrate C are not particularly limited.

基板Cとしては、例えば厚さが1mm程度のガラス板を挙げることができる。   An example of the substrate C is a glass plate having a thickness of about 1 mm.

基板Cは、洗浄または乾燥したものであってもよい。また、コロナ処理、プラズマ処理、火炎処理などの易接着処理がなされたものであることが好ましい。   The substrate C may be washed or dried. Moreover, it is preferable that easy-adhesion treatments such as corona treatment, plasma treatment, and flame treatment have been performed.

次に、本発明の薄膜付き基板の製造方法について説明する。
本発明の薄膜付き基板の製造方法は特に限定されず、例えば従来公知の方法で製造することができる。以下では上記で説明した態様1または態様2の下地膜Bを有する本発明の薄膜付き基板の製造方法を説明する。
Next, the manufacturing method of the board | substrate with a thin film of this invention is demonstrated.
The manufacturing method of the board | substrate with a thin film of this invention is not specifically limited, For example, it can manufacture by a conventionally well-known method. Below, the manufacturing method of the board | substrate with a thin film of this invention which has the base film B of aspect 1 or aspect 2 demonstrated above is demonstrated.

<製造方法1:下地膜Bが交互吸着膜B1である場合>
下地膜Bが交互吸着膜B1である場合の本発明の導電性薄膜付き基板の製造方法について説明する。
交互吸着膜B1は、前述のような、カチオン性(+)高分子電解質水溶液と、アニオン性(−)高分子電解質水溶液とに、表面電荷を与えた基板Cを交互に浸すことにより交互吸着膜を得ることができる。具体的には、例えば基板Cとしてガラス基板を用いた場合、このガラス基板の表面を親水処理してOH-基を導入し、これをカチオン性高分子電解質水溶液に浸すと、クーロン力(静電気的相互作用)により表面電荷(OH-)が中和されるまでカチオン性高分子電解質がガラス基板の表面に吸着される。そして、洗浄乾燥した後、この基板をアニオン性高分子電解質水溶液に浸すと、クーロン力によりアニオン性高分子電解質が吸着される。そしてこのような操作を繰り返すことで交互吸着膜B1を形成することができる。
<Production Method 1: If the underlying film B is alternately adsorbed film B 1>
Base film B will be described conductive manufacturing method of a thin film-attached substrate of the present invention when it is alternately adsorbed film B 1.
The alternately adsorbing film B 1 is alternately adsorbed by alternately immersing the substrate C to which surface charge is applied in the cationic (+) polymer electrolyte aqueous solution and the anionic (−) polymer electrolyte aqueous solution as described above. A membrane can be obtained. Specifically, for example, when a glass substrate is used as the substrate C, when the surface of the glass substrate is subjected to a hydrophilic treatment to introduce an OH - group and immersed in an aqueous cationic polymer electrolyte, the Coulomb force (electrostatic property) The cationic polymer electrolyte is adsorbed on the surface of the glass substrate until the surface charge (OH ) is neutralized by the interaction. After washing and drying, when the substrate is immersed in an aqueous anionic polymer electrolyte solution, the anionic polymer electrolyte is adsorbed by Coulomb force. The alternating adsorption film B 1 can be formed by repeating such an operation.

交互吸着膜B1のその他の製造方法としては、例えば1992年にG.デッカーらによって発表された方法(Decher.G,Hong.J.D.and J.Schmit,Thin Solid Films,210/211,831(1992))が挙げられる。 Other methods for manufacturing the alternate adsorption film B 1, for example, the method published by G. Decker et al in 1992 (Decher.G, Hong.JDand J.Schmit, Thin Solid Films, 210 / 211,831 (1992)) is Can be mentioned.

基板Cの表面に交互吸着膜B1を形成した後、導電膜Aを形成する。
形成方法は特に限定されず、例えば従来公知の方法を適用することができるが、交互吸着膜B1の表面上に、導電膜Aを構成する液体を塗布して導電膜Aを形成することが好ましい。導電膜Aの形成過程において交互吸着層とポリチオフェン系高分子とが相互作用し、ポリチオフェン系高分子の配向が促進され、導電膜Aの導電性が高まるからである。
例えば、PEDOT/PSSのような混合溶液をそのまま使用してもよく、チオフェン系高分子を基板Cの表面上で重合してもよい。
塗布方法は特に限定されず、例えばスクリーン印刷法、インクジェット印刷法、リップダイレクト法、コンマコーター法、スリットリバース法、ダイコーター法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法、バーコーター法などを例示することができる。また、これらの方法の中の2種以上を組み合わせて用いてもよい。
After the alternate adsorption film B 1 is formed on the surface of the substrate C, the conductive film A is formed.
The formation method is not particularly limited, and for example, a conventionally known method can be applied. However, the conductive film A can be formed by applying a liquid constituting the conductive film A on the surface of the alternating adsorption film B 1. preferable. This is because the alternating adsorption layer and the polythiophene polymer interact with each other in the formation process of the conductive film A, the orientation of the polythiophene polymer is promoted, and the conductivity of the conductive film A is increased.
For example, a mixed solution such as PEDOT / PSS may be used as it is, or a thiophene polymer may be polymerized on the surface of the substrate C.
The coating method is not particularly limited. For example, screen printing method, ink jet printing method, lip direct method, comma coater method, slit reverse method, die coater method, gravure roll coater method, blade coater method, spray coater method, air knife coating method. Examples thereof include a dip coating method and a bar coater method. Two or more of these methods may be used in combination.

<製造方法2:下地膜Bが修飾膜B2である場合>
下地膜Bが修飾膜B2である場合の本発明の導電性薄膜付き基板の製造方法について説明する。
好ましい製造方法として、次の(作成法1)〜(作成法3)が挙げられる。
(作成法1):基板Cにヘテロ原子を有する環状置換基と接着性置換基とを有する化合物αを直接塗布する。
(作成法2):基板Cにヘテロ原子を有する環状置換基を有する物質を塗布する。ここで、ヘテロ原子を有する環状置換基を有する物質は、ヘテロ原子を有する環状置換基を有していればよく、ポリエステル、フェノール、エポキシ、ポリイミド、シリコンに例示される樹脂を含有していてもよい。例えヘテロ原子を有する環状置換基を有する物質と樹脂との混合物であったり、樹脂にヘテロ原子を有する環状置換基を有する分子を結合させても良い。
(作成法3):基板Cに修飾膜B2を形成後、修飾膜B2と導電膜Aとの間に他の膜(ギャップ調整、易接着、接着層、相互吸着膜層)を形成する。
<Method 2: If the underlying film B is a modified film B 2>
A method for producing a substrate with a conductive thin film of the present invention when the base film B is the modification film B 2 will be described.
Preferred production methods include the following (Production Method 1) to (Production Method 3).
(Production Method 1): A compound α having a cyclic substituent having a hetero atom and an adhesive substituent is directly applied to the substrate C.
(Production Method 2): A substance having a cyclic substituent having a hetero atom is applied to the substrate C. Here, the substance having a cyclic substituent having a hetero atom may have a cyclic substituent having a hetero atom, and may contain a resin exemplified by polyester, phenol, epoxy, polyimide, and silicon. Good. For example, it may be a mixture of a substance having a cyclic substituent having a hetero atom and a resin, or a molecule having a cyclic substituent having a hetero atom may be bonded to the resin.
(Preparation method 3): to form after the formation of the modified layer B 2 on the substrate C, the other film between the modified membrane B 2 and the conductive film A (gap adjustment, easy adhesion, the adhesive layer, mutual adsorption film layer) of .

基板Cの表面に修飾膜B2を形成する方法は特に限定されず、例えば従来公知の方法を適用することができる。例えばスクリーン印刷法、インクジェット印刷法、リップダイレクト法、コンマコーター法、スリットリバース法、ダイコーター法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法、バーコーター法などを例示することができる。また、これらの方法の中の2種以上を組み合わせて用いてもよい。 A method of forming a surface modifying film B 2 of substrate C is not particularly limited, it can be applied, for example a conventionally known method. For example, screen printing method, inkjet printing method, lip direct method, comma coater method, slit reverse method, die coater method, gravure roll coater method, blade coater method, spray coater method, air knife coating method, dip coating method, bar coater method Etc. can be illustrated. Two or more of these methods may be used in combination.

修飾膜B2を形成した後、その表面をイオン交換処理することが好ましい。例えば修飾膜B2の表面がカチオン性の場合、アニオンイオンを含む水溶液と修飾膜B2とが接触するように(例えば修飾膜B2を形成した基板Cを当該水溶液に浸漬して)、イオン交換処理することができる。アニオンイオンとしては、I-、Br-、Cl-、ClO4 -、BF4 -、SbF6 -、PF6 -、(CF3SO22-(すなわちビス(トリフルオロメチルスルホニル)イミド)アニオン(TFSI))、(C25SO22-、RSO3 -(ここでRは脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、エーテル基、エステル基、アシル基などが挙げられ、水素原子はフッ素原子で置換されていてもよい。)が挙げられる。イオン半径が大きいアニオンイオンであるほうがドープ効果が高いので好ましい。 After the modification film B 2 is formed, the surface is preferably subjected to ion exchange treatment. For example, in the case where the surface of the modified film B 2 is cationic, an ion is used so that the aqueous solution containing anion ions and the modified film B 2 come into contact (for example, the substrate C on which the modified film B 2 is formed is immersed in the aqueous solution). Can be exchanged. Examples of the anion ions include I , Br , Cl , ClO 4 , BF 4 , SbF 6 , PF 6 , (CF 3 SO 2 ) 2 N (that is, bis (trifluoromethylsulfonyl) imide). Anion (TFSI)), (C 2 F 5 SO 2 ) 2 N , RSO 3 (where R is an aliphatic hydrocarbon group, alicyclic hydrocarbon group, aromatic hydrocarbon group, ether group, ester group) And an acyl group, and a hydrogen atom may be substituted with a fluorine atom). An anion ion having a large ionic radius is preferable because the doping effect is high.

基板Cの表面に修飾膜B2を形成した後、導電膜Aを形成する。
形成方法は特に限定されず、例えば従来公知の方法を適用することができる。上記の下地膜Bが交互吸着膜B1である場合と同様に導電膜Aを形成することもできる。
After the modification film B 2 is formed on the surface of the substrate C, the conductive film A is formed.
The forming method is not particularly limited, and for example, a conventionally known method can be applied. The conductive film A can be formed in the same manner as in the case where the base film B is the alternating adsorption film B 1 .

上記で説明した態様3の下地膜Bを有する本発明の薄膜付き基板は、ここで説明した製造方法1と製造方法2とを組み合わせて、製造することができる。   The substrate with a thin film of the present invention having the base film B of the aspect 3 described above can be manufactured by combining the manufacturing method 1 and the manufacturing method 2 described here.

以下に本発明の実施例を示す。   Examples of the present invention are shown below.

<実施例1(交互吸着膜B1)>
(基板洗浄方法)
初めに、基板Cとしてガラススライド(25mm×38mm)を用意した。そして、この基板Cを酸洗浄後、純水で4回すすぎ、さらに純水中超音波で10分洗浄した後、雰囲気温度を60℃に調整したオーブン内で1晩乾燥した。ここで得られた乾燥後の基板Cを「乾燥後基板C1」ともいう。
<Example 1 (alternate adsorption film B 1)>
(Substrate cleaning method)
First, a glass slide (25 mm × 38 mm) was prepared as the substrate C. The substrate C was washed with acid, rinsed 4 times with pure water, further washed with pure water ultrasonic waves for 10 minutes, and then dried overnight in an oven with the atmospheric temperature adjusted to 60 ° C. The dried substrate C obtained here is also referred to as “post-dried substrate C 1 ”.

(基板処理)
0.01Mアミノプロピルテトラエトキシシラン(APS)(トルエン溶液)中に乾燥後基板C1を1晩浸漬し、乾燥後基板C1の表面にAPSを修飾した。さらに0.01M塩酸水溶液に3時間浸漬し、その表面をカチオン性とした。
次に蒸留水で3回以上洗浄し、余分な塩または酸を除去し、残留物の影響を排除した。
ここで得られたものを「APS修飾済み基板C1」ともいう。
(Substrate processing)
After drying, the substrate C 1 was immersed in 0.01M aminopropyltetraethoxysilane (APS) (toluene solution) overnight, and after drying, the surface of the substrate C 1 was modified with APS. Furthermore, it was immersed in 0.01M hydrochloric acid aqueous solution for 3 hours, and the surface was made cationic.
It was then washed 3 times with distilled water to remove excess salt or acid and eliminate the effects of the residue.
What was obtained here is also referred to as “APS-modified substrate C 1 ”.

(交互吸着膜B1の作成)
カチオン(+)を有する高分子電解質として、アルドリッチ社製のpoly(diallyldimethylammonium chloride)(PDADMAC)の1mg/ml水溶液を作成した。得られた水溶液を「PDADMAC水溶液」ともいう。
また、アニオン(−)を有する高分子電解質として、アルドリッチ社製のpoly(sodium 4-styrenesulfonate)(PSS)の1mg/ml水溶液を作成した。得られた水溶液を「PSS水溶液」ともいう。
(Creation of alternating adsorption film B 1 )
As a polymer electrolyte having a cation (+), a 1 mg / ml aqueous solution of poly (diallyldimethylammonium chloride) (PDADMAC) manufactured by Aldrich was prepared. The obtained aqueous solution is also called "PDADMAC aqueous solution".
Moreover, a 1 mg / ml aqueous solution of poly (sodium 4-styrenesulfonate) (PSS) manufactured by Aldrich was prepared as a polymer electrolyte having an anion (-). The obtained aqueous solution is also referred to as “PSS aqueous solution”.

次に、APS修飾済み基板C1をPSS水溶液に15分間浸漬し、APS修飾済み基板C1の表面にPSSを吸着させた。APS修飾済み基板C1をPSS水溶液から取り出した後、蒸留水で3回以上洗浄して余分なPSSを除去し、PSSからなる膜が付いたAPS修飾済み基板C1(「PSS膜付き基板C1」ともいう)を得た。
次に、PSS膜付き基板C1をPDADMAC水溶液に浸漬し、当該PSS膜付き基板C1のPSS膜の表面にPDADMACを吸着させた。そしてPDADMAC水溶液から取り出した後、蒸留水で3回以上洗浄して余分なPDADMACを除去し、PDADMACからなる膜が付いたPSS膜付き基板C1(「PDADMAC膜付き基板C1」ともいう)を得た。
Next, the APS-modified substrate C 1 was immersed in an aqueous PSS solution for 15 minutes, and PSS was adsorbed on the surface of the APS-modified substrate C 1 . After the APS-modified substrate C 1 is taken out from the PSS aqueous solution, it is washed with distilled water three times or more to remove excess PSS, and the APS-modified substrate C 1 with the PSS film (“PSS-coated substrate C 1 ”).
Next, the substrate C 1 with a PSS film was immersed in a PDADMAC aqueous solution, and the PDADMAC was adsorbed on the surface of the PSS film of the substrate C 1 with the PSS film. After removing from the PDADMAC aqueous solution, the substrate is washed with distilled water three or more times to remove excess PDADMAC, and the PSS film-coated substrate C 1 (also referred to as “PDADMAC film-coated substrate C 1 ”) with a film made of PDADMAC is removed. Obtained.

(導電膜A)
導電性高分子溶液であるPEDOT/PSS(CLEVIOS P)(PEDOT:PSS=1:2.5(質量比))水溶液(H.C.Starck社製)に超音波を10分間かけ、分散させた。
次に、PDADMAC膜付き基板C1のPDADMAC膜の表面に、PEDOT/PSS水溶液を3000rpmでスピンコートした。その後、120℃の大気雰囲気において30分間保持して乾燥させ、PEDOT/PSSからなる厚さ100nmの導電膜Aを形成した。
(Conductive film A)
Ultrasonic waves were applied to an aqueous solution of PEDOT / PSS (CLEVIOS P) (PEDOT: PSS = 1: 2.5 (mass ratio)) (manufactured by HCStarck), which is a conductive polymer solution, for 10 minutes for dispersion.
Next, a PEDOT / PSS aqueous solution was spin-coated at 3000 rpm on the surface of the PDADMAC film of the substrate C 1 with a PDADMAC film. Thereafter, the film was kept in an air atmosphere at 120 ° C. for 30 minutes and dried to form a conductive film A made of PEDOT / PSS having a thickness of 100 nm.

このような操作によって、APS修飾済み基板C1の表面にPSS膜およびPDADMAC膜をこの順に形成し、その上に導電膜Aを形成したものを「1BL」と称する。また、APS修飾済み基板C1の表面にPSS膜およびPDADMAC膜をこの順に形成した後、同様の操作を繰り返して、さらにPSS膜およびPDADMAC膜をこの順に形成した後に、その上に導電膜Aを形成したものを「2BL」と称する。
本実施例では1BL〜10BLおよび15BLを作成し、各々の表面抵抗率を直流4端子法にて測定した。
測定結果を第1表に示す。
なお、第1表には、乾燥後基板C1およびAPS修飾済み基板C1の表面抵抗率を直流4端子法にて測定した結果も示す。
By performing such an operation, a PSS film and a PDADMAC film are formed in this order on the surface of the APS-modified substrate C 1 , and a conductive film A is formed thereon, which is referred to as “1BL”. Further, after forming the PSS film and the PDADMAC film in this order on the surface of the APS-modified substrate C 1 , the same operation is repeated, and after further forming the PSS film and the PDADMAC film in this order, the conductive film A is formed thereon. The formed one is referred to as “2BL”.
In this example, 1BL to 10BL and 15BL were prepared, and each surface resistivity was measured by a direct current four-terminal method.
The measurement results are shown in Table 1.
Table 1 also shows the results of measuring the surface resistivity of the dried substrate C 1 and the APS-modified substrate C 1 by the direct current four-terminal method.

Figure 2011014443
Figure 2011014443

第1表に示したように、交互吸着膜B1の積層数が多くなるにつれて表面抵抗率が低下することがわかった。 As shown in Table 1 , it has been found that the surface resistivity decreases as the number of alternately adsorbed films B 1 stacked increases.

<実施例2(交互吸着膜B1)>
実施例1に記載の方法と同様の方法で、APS修飾済み基板C1の表面にPSS膜およびPDADMAC膜をこの順に形成した。そして、実施例1に記載の方法と同様の方法で、当該PDADMAC膜の表面にPSS膜を形成し、さらにその上に導電膜Aを形成した。
<Example 2 (alternate adsorption film B 1)>
In the same manner as described in Example 1, a PSS film and a PDADMAC film were formed in this order on the surface of the APS-modified substrate C 1 . Then, a PSS film was formed on the surface of the PDADMAC film by the same method as described in Example 1, and a conductive film A was further formed thereon.

このような操作によって、APS修飾済み基板C1の表面にPSS膜、PDADMAC膜およびPSS膜をこの順に形成し、その上に導電膜Aを形成したものを「1BL+PSS」と称する。また、APS修飾済み基板C1の表面にPSS膜、PDADMAC膜およびPSS膜をこの順に形成した後、同様の操作を繰り返して、さらにPDADMAC膜およびPSS膜をこの順に形成した後に、その上に導電膜Aを形成したものを「2BL+PSS」と称する。
本実施例では1BL+PSS〜10BL+PSSおよび15BL+PSSを作成し、各々の表面抵抗率を直流4端子法にて測定した。
測定結果を第2表に示す。
なお、第2表には、乾燥後基板C1およびAPS修飾済み基板C1の表面抵抗率を直流4端子法にて測定した結果も示す。
Such operation, PSS film on the surface of the APS-modified pre substrate C 1, to form a PDADMAC film and PSS film in this order, a material obtained by forming a conductive film A on it is referred to as "1BL + PSS". Further, PSS film on the surface of the APS-modified pre substrate C 1, after forming a PDADMAC film and PSS film in this order, by repeating the same operation, further PDADMAC film and PSS film after forming in this order, a conductive thereon The film A formed is referred to as “2BL + PSS”.
In this example, 1BL + PSS to 10BL + PSS and 15BL + PSS were prepared, and each surface resistivity was measured by a direct current four-terminal method.
The measurement results are shown in Table 2.
Table 2 also shows the results of measuring the surface resistivity of the dried substrate C 1 and the APS-modified substrate C 1 by the direct current four-terminal method.

Figure 2011014443
Figure 2011014443

第2表に示したように、交互吸着膜B1の積層数が多くなるにつれて表面抵抗率が低下することがわかった。
また、実施例1と比較して、実施例2の方が表面抵抗率が低くなることがわかった。これは交互吸着層B1における導電膜Aと接する表面がPSS膜(アニオン)である方が、PDADMAC膜(カチオン)である場合よりも、表面抵抗率が低くなることを意味するものと考えられる。
As shown in Table 2, it was found that the surface resistivity decreased as the number of alternately adsorbed films B 1 stacked increased.
Further, it was found that the surface resistivity of Example 2 was lower than that of Example 1. This is considered to mean that the surface resistivity of the surface of the alternating adsorption layer B 1 in contact with the conductive film A is lower than that of the PDADMAC film (cation) when the surface is a PSS film (anion). .

<実施例3(修飾膜B2)>
(基板洗浄方法)
初めに、基板Cとしてガラススライド(25mm×38mm)を10枚用意した。そして、これらの基板CをPiranha(濃硫酸:過酸化水素水(30質量%)=3:1(体積比))で1時間洗浄後、純水で4回すすぎ、さらに純水中超音波で10分洗浄した後、雰囲気温度を60℃に調整したオーブン内で1晩乾燥した。ここで得られた乾燥後の基板Cを「乾燥後基板C3」ともいう。
<Example 3 (modifying film B 2)>
(Substrate cleaning method)
First, ten glass slides (25 mm × 38 mm) were prepared as the substrate C. These substrates C were washed with Piranha (concentrated sulfuric acid: hydrogen peroxide solution (30 mass%) = 3: 1 (volume ratio)) for 1 hour, rinsed 4 times with pure water, and further subjected to 10 ultrasonic waves with pure water. After minute washing, the film was dried overnight in an oven with the atmospheric temperature adjusted to 60 ° C. The substrate C after drying obtained here is also referred to as “substrate C 3 after drying”.

(修飾膜B2の作成)
式(2)に示した化合物αを6種類作成した。
6種類の化合物αの各々は、式(2)のR13およびR14が異なるものである。
13およびR14の具体的内容およびそれらのR13およびR14を有する化合物αの略称を、第3表に示す。
(Preparation of modified film B 2 )
Six types of compounds α shown in the formula (2) were prepared.
Each of the six types of compounds α is different in R 13 and R 14 in the formula (2).
Abbreviations of compounds with specific contents and their R 13 and R 14 of R 13 and R 14 alpha, shown in Table 3.

各種類の化合物αは、次の式(8)に示すイミダゾールと(3-chloropropyl)trimethoxy silaneとを等モルずつ反応容器に入れ、トルエン中で1日以上沸点還流により作成した。精製後、核磁気共鳴法を用いて同定したところ、目的物であることを確認できた。   Each type of compound α was prepared by boiling reflux in toluene for 1 day or longer in an equimolar amount of imidazole represented by the following formula (8) and (3-chloropropyl) trimethoxysilane. After purification, identification using a nuclear magnetic resonance method confirmed that the product was the desired product.

Figure 2011014443
Figure 2011014443

次に、式(3)に示した化合物αを3種類作成した。
3種類の化合物αの各々は、式(3)のR15が異なるものである。
15の具体的内容およびR15を有する化合物αの略称を、第3表に示す。
Next, three types of compounds α shown in Formula (3) were prepared.
Each of the three types of compounds α is different in R 15 of formula (3).
Abbreviations of compounds with specific contents and R 15 of R 15 alpha, shown in Table 3.

各種類の化合物αは、次の式(9)に示すイミダゾールと(3-chloropropyl)trimethoxy silaneとを等モルずつ反応容器に入れ、トルエン中で1日以上沸点還流により作成した。精製後、核磁気共鳴法を用いて同定したところ、目的物であることを確認できた。   Each type of compound α was prepared by boiling reflux in toluene for 1 day or longer in an equimolar amount of imidazole represented by the following formula (9) and (3-chloropropyl) trimethoxysilane. After purification, identification using a nuclear magnetic resonance method confirmed that the product was the desired product.

Figure 2011014443
Figure 2011014443

次に、式(4)に示した化合物αを1種類作成した。
この化合物αは、ピロリジンと(3-chloropropyl)trimethoxy silaneとを等モルずつ反応容器に入れ、トルエン中で1日以上沸点還流により作成した。精製後、核磁気共鳴法を用いて同定したところ、目的物であることを確認できた。
ここで得た式(4)に示す化合物αを、「Me-Pyz-TMS」ともいう。
Next, one type of compound α shown in Formula (4) was prepared.
This compound α was prepared by boiling reflux of pyrrolidine and (3-chloropropyl) trimethoxysilane in toluene in equimolar amounts for 1 day or longer in toluene. After purification, identification using a nuclear magnetic resonance method confirmed that the product was the desired product.
The compound α represented by the formula (4) obtained here is also referred to as “Me-Pyz-TMS”.

Figure 2011014443
Figure 2011014443

上記のようにして得た10類の化合物α(Me-Im-TMS,Et-Im-TMS,Bu-Im-TMS,Di-Me-Im-TMS,Bz-Me-Im-TMS,2-Me-Im-TMS,Py-TMS,Me-Py-TMS,Et-Py-TMS,Me-Pyz-TMS)を各々、0.05質量%となるようにトルエンに溶解し、各種トルエン溶液を得た。
次に、各種トルエン溶液の各々に、1枚ずつ乾燥後基板C3を1晩以上浸漬した後、トルエンで2回洗浄、エタノールで2回洗浄、純水で2回洗浄して、化合物αからなる10種類の修飾膜B2を有する基板Cを得た。各々の種類の化合物αからなる修飾膜B2を有する基板Cを、各々、「Me-Im-TMS膜付き基板C」、「Et-Im-TMS膜付き基板C」、「Bu-Im-TMS膜付き基板C」、「Di-Me-Im-TMS膜付き基板C」、「Bz-Me-Im-TMS膜付き基板C」、「2-Me-Im-TMS膜付き基板C」、「Py-TMS膜付き基板C」、「Me-Py-TMS膜付き基板C」、「Et-Py-TMS膜付き基板C」、「Me-Pyz-TMS膜付き基板C」ともいう。
Ten compounds α (Me-Im-TMS, Et-Im-TMS, Bu-Im-TMS, Di-Me-Im-TMS, Bz-Me-Im-TMS, 2-Me obtained as described above. -Im-TMS, Py-TMS, Me-Py-TMS, Et-Py-TMS, Me-Pyz-TMS) were dissolved in toluene to a concentration of 0.05% by mass to obtain various toluene solutions. .
Next, after drying one by one in each of the various toluene solutions, the substrate C 3 was dipped for one night or longer, then washed twice with toluene, twice with ethanol, twice with pure water, and from compound α. A substrate C having 10 types of modified films B 2 was obtained. Substrates C having a modification film B 2 made of each kind of compound α are referred to as “Substrate C with Me-Im-TMS film”, “Substrate C with Et-Im-TMS film”, “Bu-Im-TMS”, respectively. Substrate with film C, Substrate C with Di-Me-Im-TMS film, Substrate C with Bz-Me-Im-TMS film, Substrate C with 2-Me-Im-TMS film, Py Also referred to as “-TMS film-coated substrate C”, “Me-Py-TMS film-coated substrate C”, “Et-Py-TMS film-coated substrate C”, and “Me-Pyz-TMS film-coated substrate C”.

10種類の修飾膜B2を有する基板Cの各々、および乾燥後基板C3に、実施例1と同様の方法で導電膜Aを形成した。導電膜Aの種類および厚さも同様である。
このようにして得られた10つの導電性薄膜付き基板の各々、および導電膜Aのみを有する乾燥後基板C3(「比較基板C3」ともいう)について、実施例1と同様に直流4端子法にて表面抵抗率を測定した。そして、比較基板C3における表面抵抗率を100とした場合の相対値(百分率)を求めた。比較基板C3における表面抵抗率は16.7Ω・cmであった。
結果を図3および第4表に示す。
A conductive film A was formed in the same manner as in Example 1 on each of the substrates C having 10 types of modification films B 2 and on the substrate C 3 after drying. The same applies to the type and thickness of the conductive film A.
For each of the 10 substrates with conductive thin films thus obtained, and the substrate C 3 after drying having only the conductive film A (also referred to as “comparative substrate C 3 ”), DC 4 terminals as in Example 1. The surface resistivity was measured by the method. Then it was determined the relative values of the case where the surface resistivity in Comparative board C 3 as 100 (percent). The surface resistivity of the comparative substrate C 3 was 16.7 Ω · cm.
The results are shown in FIG. 3 and Table 4.

Figure 2011014443
Figure 2011014443

図3および第4表から、いずれの修飾膜B2も比較基板C3と比較して導電性が向上したことがわかる。また、Me-Im-TMS膜付き基板C、Et-Im-TMS膜付き基板C、Bu-Im-TMS膜付き基板C、およびDi-Me-Im-TMS膜付き基板Cの表面抵抗率を対比すると、アルキル鎖の短いものほど表面抵抗率が低くなり、導電性が改善することがわかる。 From FIG. 3 and Table 4, it can be seen that the conductivity of all the modification films B 2 is improved as compared with the comparative substrate C 3 . Also, the surface resistivity of the substrate C with Me-Im-TMS film, the substrate C with Et-Im-TMS film, the substrate C with Bu-Im-TMS film, and the substrate C with Di-Me-Im-TMS film are compared. Then, it can be seen that the shorter the alkyl chain, the lower the surface resistivity and the better the conductivity.

<実施例4(修飾膜B2)>
実施例3に示した方法で、Me-Im-TMS膜付き基板Cを15枚得た後、それらの各々の表面をイオン交換処理した。
イオン源である塩を11種類用意し、各々、0.01Mに調整し、得られた水溶液の各々に、Me-Im-TMS膜付き基板Cを3時間以上浸漬することで、イオン交換処理を行った。
11種類のイオン源である塩は、LiCl、NaCl、KCl、CaCl2、LiClO4、NaClO4、KClO4、NH4ClO4、[(C2H5)4N]ClO4、LiBETI(リチウムヒ゛ス(ヘ゜ンタフルオロエタンスルフォン)イミト゛)、LiTFSI(リチウムヒ゛ス(トリフルオロメタンスルフォン)イミト゛)である。
<Example 4 (modified film B 2)>
After obtaining 15 Me-Im-TMS film-coated substrates C by the method shown in Example 3, each of the surfaces thereof was subjected to ion exchange treatment.
Prepare 11 types of salt as ion source, adjust each to 0.01M, and immerse the substrate C with Me-Im-TMS film in each of the obtained aqueous solutions for 3 hours or more. went.
Eleven types of ion source salts are LiCl, NaCl, KCl, CaCl 2 , LiClO 4 , NaClO 4 , KClO 4 , NH 4 ClO 4 , [(C 2 H 5 ) 4 N] ClO 4 , LiBETI (lithium hiss). (Hentafluoroethanesulfone) imido), LiTFSI (Lithium hiss (trifluoromethanesulfone) imido).

次に、0.1mM、1.0mM、10mMおよび100mMの4種類の塩酸溶液を調整し、各々にMe-Im-TMS膜付き基板Cを3時間以上浸漬することで、イオン交換処理を行った。これらは表面処理剤を酸処理した場合の実験結果である。
このようにして得られた15枚のイオン交換処理後のMe-Im-TMS膜付き基板Cについて、実施例1と同様の方法で導電膜Aを形成した。
そして、実施例1と同様に直流4端子法にて表面抵抗率を測定した。
結果を図4および第5表に示す。なお、比較基板C3の体積抵抗率(Ω・m)も合わせて示す。
Next, four kinds of hydrochloric acid solutions of 0.1 mM, 1.0 mM, 10 mM, and 100 mM were prepared, and ion exchange treatment was performed by immersing the substrate C with Me-Im-TMS film in each for 3 hours or more. . These are experimental results when the surface treatment agent is acid-treated.
A conductive film A was formed in the same manner as in Example 1 on the 15 substrates with Me-Im-TMS film after the ion exchange treatment thus obtained.
Then, the surface resistivity was measured by the direct current four-terminal method in the same manner as in Example 1.
The results are shown in FIG. 4 and Table 5. The volume resistivity (Ω · m) of the comparative substrate C 3 is also shown.

Figure 2011014443
Figure 2011014443

図4および第5表により、イオン交換処理することで、導電性が向上することが確認できる。   From FIG. 4 and Table 5, it can be confirmed that the conductivity is improved by the ion exchange treatment.

<実施例5(修飾膜B2)>
100μm厚のPETフィルムを用意し、表面をプラズマ処理した。
そして、得られたプラズマ処理後のPETフィルムを基板Cとし、実施例3と同様の方法で、Me-Im-TMSからなる修飾膜B2および導電膜Aを形成して、導電性薄膜付き基板C5を得た。
そして、プラズマ処理後のPETフィルムおよび導電性薄膜付き基板C5の表面抵抗率を直流4端子法にて測定したところ、導電性薄膜付き基板C5は、プラズマ処理後のPETフィルムに対して、導電性が25%向上したことがわかった。
<Example 5 (modifying film B 2)>
A 100 μm thick PET film was prepared, and the surface was plasma treated.
Then, using the obtained plasma-treated PET film as a substrate C, a modification film B 2 made of Me-Im-TMS and a conductive film A are formed in the same manner as in Example 3, and a substrate with a conductive thin film is formed. to obtain a C 5.
And when the surface resistivity of the plasma film-treated PET film and the substrate C 5 with a conductive thin film was measured by the direct current four-terminal method, the substrate C 5 with a conductive thin film was compared to the PET film after the plasma treatment. It was found that the conductivity was improved by 25%.

<実施例6(修飾膜B2+交互吸着膜B1)>
実施例3と同様の方法でMe-Im-TMS膜付き基板Cを得た。
次に、実施例1で用いたPDADMAC水溶液およびPSS水溶液を用意した。
そして、Me-Im-TMS膜付き基板CをPSS水溶液に15分間浸漬し、Me-Im-TMS膜付き基板Cの表面にPSSを吸着させた。Me-Im-TMS膜付き基板CをPSS水溶液から取り出した後、蒸留水で3回以上洗浄して余分なPSSを除去し、PSSからなる膜が付いたMe-Im-TMS膜付き基板C(「PSS膜付き基板C6」ともいう)を得た。
次に、PSS膜付き基板C6をPDADMAC水溶液に浸漬し、当該PSS膜付き基板C6のPSS膜の表面にPDADMACを吸着させた。そしてPDADMAC水溶液から取り出した後、蒸留水で3回以上洗浄して余分なPDADMACを除去し、PDADMACからなる膜が付いたPSS膜付き基板C(「PDADMAC膜付き基板C6」ともいう)を得た。
そして、得られたPDADMAC膜付き基板C6の表面に実施例1と同様の方法で導電膜Aを形成して、導電性薄膜付き基板C6を得た。
<Example 6 (modified film B 2 + alternative adsorption film B 1 )>
A substrate C with a Me-Im-TMS film was obtained in the same manner as in Example 3.
Next, the PDADMAC aqueous solution and the PSS aqueous solution used in Example 1 were prepared.
And the board | substrate C with a Me-Im-TMS film | membrane was immersed in PSS aqueous solution for 15 minutes, and PSS was made to adsorb | suck to the surface of the board | substrate C with a Me-Im-TMS film | membrane. After removing the substrate C with Me-Im-TMS film from the PSS aqueous solution, it was washed with distilled water three times or more to remove excess PSS, and the substrate C with Me-Im-TMS film with the PSS film ( (Also referred to as “PSS film-coated substrate C 6 ”).
Next, the substrate C 6 with a PSS film was immersed in a PDADMAC aqueous solution, and PDADMAC was adsorbed on the surface of the PSS film of the substrate C 6 with the PSS film. The obtained after removal from PDADMAC solution and washed three times or more with distilled water to remove excess PDADMAC, PSS film coated substrate C marked with film made of PDADMAC (also referred to as a "PDADMAC film coated substrate C 6") It was.
Then, by forming a conductive film A in the same manner as in Example 1 on the surface of PDADMAC film coated substrate C 6 obtained, to obtain a conductive thin film-substrate C 6.

次に、導電性薄膜付き基板C6の表面抵抗率を直流4端子法にて測定したところ、導電性薄膜付き基板C6は、比較基板C3に対して導電性が24%向上したことがわかった。 Next, when the surface resistivity of the substrate C 6 with a conductive thin film was measured by the direct current four-terminal method, the conductivity of the substrate C 6 with a conductive thin film was improved by 24% with respect to the comparative substrate C 3 . all right.

<実施例7(修飾膜B2)>
実施例3と同様の方法で、4枚の乾燥後の基板C(「乾燥後基板C7」ともいう)を得た。
<Example 7 (modifying film B 2)>
In the same manner as in Example 3, four dried substrates C (also referred to as “dried substrate C 7 ”) were obtained.

(修飾膜B2(N含有官能基を有する化合物αからなる場合)の作成)
化合物αに該当するものとして、4種類のトリメトキシシランを用意した。具体的には
3-Aminopropyltrimethoxysilane、N-Trimethoxylsilylpropyl-N,N,N-trimethylammonium chloride、N-(2-aminoethyl)-3-amionopropyltrimethoxysilane、(3-Trimethoxysilylpropyl)diethiylentriaminoである。各々、MASi、TMASi、DASi、TASiともいう。
そして、これら4種類の化合物α(MASi、TMASi、DASi、TASi)を各々、0.05質量%となるようにトルエンに溶解し、各種トルエン溶液を得た。次に、各種トルエン溶液に乾燥後基板C7を1晩以上浸漬した後、トルエンで2回洗浄、エタノールで2回洗浄、純水で2回洗浄して、化合物αからなる4種類の修飾膜B2を有する基板Cを得た。各々の種類の化合物αからなる修飾膜B2を有する基板Cを、各々、「MASi膜付き基板C」、「TMASi膜付き基板C」、「DASi膜付き基板C」、「TASi膜付き基板C」ともいう。
(Creation of modified film B 2 (in the case of compound α having an N-containing functional group))
Four types of trimethoxysilane were prepared as corresponding to the compound α. In particular
3-Aminopropyltrimethoxysilane, N-Trimethoxylsilylpropyl-N, N, N-trimethylammonium chloride, N- (2-aminoethyl) -3-amionopropyltrimethoxysilane, (3-Trimethoxysilylpropyl) diethiylentriamino. These are also referred to as MASi, TMASi, DASi, and TASi, respectively.
Then, these four kinds of compounds α (MASi, TMASi, DASi, TASi) were each dissolved in toluene so as to be 0.05% by mass to obtain various toluene solutions. Next, after drying the substrate after C 7 to various toluene solution was immersed overnight or more, washed twice with toluene, ethanol twice with wash, and washed twice with deionized water, 4 kinds of modified membrane of Compound α A substrate C having B 2 was obtained. Substrates C having a modification film B 2 made of each type of compound α are respectively referred to as “substrate C with MASi film”, “substrate C with TMASi film”, “substrate C with DASi film”, and “substrate C with TASi film”. "

次に、実施例1と同様の方法で、4種類の修飾膜B2を有する基板Cの各々、および乾燥後基板C3に、実施例1と同様の方法で導電膜Aを形成した。導電膜Aの種類および厚さも同様である。
このようにして得られた4つの導電性薄膜付き基板の各々、および導電膜Aのみを有する乾燥後基板C3(「比較基板C3」)について、実施例1と同様に直流4端子法にて表面抵抗率を測定した。
結果を第6表に示す。
Next, a conductive film A was formed in the same manner as in Example 1 on each of the substrates C having the four types of modification films B 2 and on the dried substrate C 3 by the same method as in Example 1. The same applies to the type and thickness of the conductive film A.
For each of the four substrates with conductive thin films thus obtained and the dried substrate C 3 having only the conductive film A (“comparison substrate C 3 ”), the direct current four-terminal method was applied in the same manner as in Example 1. The surface resistivity was measured.
The results are shown in Table 6.

Figure 2011014443
Figure 2011014443

<実施例8(修飾膜B2)>
実施例7に示した方法で、MASi膜付き基板Cを5枚作成した。その後、それらの各々の表面をイオン交換処理した。
イオン源である塩を5種類用意し、各々、0.01Mに調整し、得られた水溶液の各々に、MASi膜付き基板Cを3時間以上浸漬することでイオン交換処理を行った。5種類のイオン源である塩は、LiClO4、NaClO4、KClO4、NH4ClO4、[(C2H5)4N]ClO4である。
このようにして得られた、5枚のイオン交換処理後のMASi膜付き基板Cについて、実施例1と同様の方法で導電膜Aを形成した。
そして、実施例1と同様に直流4端子法にて表面抵抗率を測定した。
結果を図5および第7表に示す。なお、比較基板C3の表面抵抗率も合わせて示す。
<Example 8 (modifying film B 2)>
Five substrates C with MASi films were prepared by the method shown in Example 7. Thereafter, their respective surfaces were subjected to ion exchange treatment.
Five types of salts, which are ion sources, were prepared, each adjusted to 0.01 M, and the ion exchange treatment was performed by immersing the substrate C with MASi film in each of the obtained aqueous solutions for 3 hours or more. The salts which are five kinds of ion sources are LiClO 4 , NaClO 4 , KClO 4 , NH 4 ClO 4 , [(C 2 H 5 ) 4 N] ClO 4 .
A conductive film A was formed in the same manner as in Example 1 on the five substrates C with the MASi film after the ion exchange treatment thus obtained.
Then, the surface resistivity was measured by the direct current four-terminal method in the same manner as in Example 1.
The results are shown in FIG. 5 and Table 7. The surface resistivity of the comparative substrate C 3 is also shown.

Figure 2011014443
Figure 2011014443

図5および第7表から、いずれも表面抵抗率は比較基板C3に対して向上した。また、イオン半径が大きなカチオンほど導電性が高いことがわかった。 Figures 5 and Table 7, both the surface resistivity was improved compared to Comparative board C 3. Moreover, it turned out that electroconductivity is so high that the cation with a large ionic radius.

<実施例9(修飾膜B2)>
実施例7に示した方法で、MASi膜付き基板Cを5枚作成した。その後、それらの各々の表面をイオン交換処理した。
イオン交換処理は、イオン源である塩を5種類用意し、各々、0.01Mに調整し、得られた水溶液の各々に、MASi膜付き基板Cを3時間以上浸漬することで行った。5種類のイオン源である塩は、LiCl、NaClO4、LiPF6、LiTFSI、LiBETIである。
このようにして得られた5枚のイオン交換処理後のMASi膜付き基板Cについて、実施例1と同様の方法で導電膜Aを形成した。
そして、実施例1と同様に直流4端子法にて表面抵抗率を測定した。
結果を図6に示す。なお、比較基板C3の表面抵抗率も合わせて示す。
<Example 9 (modifying film B 2)>
Five substrates C with MASi films were prepared by the method shown in Example 7. Thereafter, their respective surfaces were subjected to ion exchange treatment.
The ion exchange treatment was performed by preparing five types of salts as ion sources, adjusting each to 0.01 M, and immersing the substrate C with MASi film in each of the obtained aqueous solutions for 3 hours or more. The salts which are five types of ion sources are LiCl, NaClO 4 , LiPF 6 , LiTFSI, and LiBETI.
A conductive film A was formed in the same manner as in Example 1 on the five substrates C with MASi film after the ion exchange treatment thus obtained.
Then, the surface resistivity was measured by the direct current four-terminal method in the same manner as in Example 1.
The results are shown in FIG. The surface resistivity of the comparative substrate C 3 is also shown.

<実施例10(修飾膜B2)>
実施例7に示した方法で、MASi膜付き基板Cの4枚を作成した。その後、それらの各々の表面をイオン交換処理した。
イオン交換処理は、イオン源である塩を4種類用意し、各々、0.01Mに調整し、得られた水溶液の各々に、MASi膜付き基板Cを3時間以上浸漬することで行った。5種類のイオン源である塩は、LiCl、NaCl、KCl、CaCl2である。
このようにして得られた、4枚のイオン交換処理後のMASi膜付き基板Cについて、実施例1と同様の方法で導電膜Aを形成した。
そして、実施例1と同様に直流4端子法にて表面抵抗率を測定した。
結果を図7および第8表に示す。なお、比較基板C3の表面抵抗率も合わせて示す。
<Example 10 (modifying film B 2)>
Four substrates C with MASi film were prepared by the method shown in Example 7. Thereafter, their respective surfaces were subjected to ion exchange treatment.
The ion exchange treatment was performed by preparing four types of salts as ion sources, adjusting each to 0.01 M, and immersing the substrate C with MASi film in each of the obtained aqueous solutions for 3 hours or more. Five salt is an ion source, LiCl, NaCl, KCl, a CaCl 2.
The conductive film A was formed in the same manner as in Example 1 on the four substrates C with the MASi film after the ion exchange treatment thus obtained.
Then, the surface resistivity was measured by the direct current four-terminal method in the same manner as in Example 1.
The results are shown in FIG. 7 and Table 8. The surface resistivity of the comparative substrate C 3 is also shown.

Figure 2011014443
Figure 2011014443

図7および第8表から、いずれも表面抵抗率は比較基板C3に対して向上した。また、イオン半径が小さなカチオンほど導電性が高いことがわかった。 7 and Table 8, both the surface resistivity was improved compared to Comparative board C 3. Moreover, it turned out that electroconductivity is so high that a cation with a small ionic radius.

<実施例11(修飾膜B2)>
実施例7に示した方法で、MASi膜付き基板Cを5枚作成した。その後、それらの各々の表面をイオン交換処理した。
イオン交換処理として、初めに0.01Mの塩酸溶液を用意し、これに5枚のMASi膜付き基板Cを3時間以上浸漬した。次に、イオン源である塩を5種類用意し、各々、0.01Mに調整し、得られた水溶液の各々に、上記塩酸溶液に浸漬した後のMASi膜付き基板Cを3時間以上浸漬することで行った。5種類のイオン源である塩は、LiClO4、NaClO4、KClO4、NH4ClO4、[(C2H5)4N]ClO4である。
このようにして得られた、5枚のイオン交換処理後のMASi膜付き基板Cについて、実施例1と同様の方法で導電膜Aを形成した。
そして、実施例1と同様に直流4端子法にて表面抵抗率を測定した。
結果を図8および第9表に示す。なお、比較基板C3の表面抵抗率も合わせて示す。
<Example 11 (modifying film B 2)>
Five substrates C with MASi films were prepared by the method shown in Example 7. Thereafter, their respective surfaces were subjected to ion exchange treatment.
As the ion exchange treatment, a 0.01 M hydrochloric acid solution was first prepared, and five substrates C with MASi films were immersed in the solution for 3 hours or more. Next, five types of salts as ion sources are prepared, each adjusted to 0.01M, and the MASi film-coated substrate C after being immersed in the hydrochloric acid solution is immersed in each of the obtained aqueous solutions for 3 hours or more. I went there. The salts which are five kinds of ion sources are LiClO 4 , NaClO 4 , KClO 4 , NH 4 ClO 4 , [(C 2 H 5 ) 4 N] ClO 4 .
A conductive film A was formed in the same manner as in Example 1 on the five substrates C with the MASi film after the ion exchange treatment thus obtained.
Then, the surface resistivity was measured by the direct current four-terminal method in the same manner as in Example 1.
The results are shown in FIG. 8 and Table 9. The surface resistivity of the comparative substrate C 3 is also shown.

Figure 2011014443
Figure 2011014443

図8および第9表から、いずれも表面抵抗率は比較基板C3に対して向上した。また、過塩素酸塩ではカチオンによる導電率依存性が低いことがわかった。 Figures 8 and Table 9, both the surface resistivity was improved compared to Comparative board C 3. It was also found that perchlorate has low conductivity dependency due to cations.

<実施例12(修飾膜B2)>
100μm厚のPETフィルムを用意し、表面をプラズマ処理した。
そして、得られたプラズマ処理後のPETフィルムを基板Cとし、実施例11と同様の方法で、イオン交換処理した修飾膜B2および導電膜Aを形成して、導電性薄膜付き基板C12を得た。ただしイオン交換処理で用いたものはLiClである(塩酸は実施例11と同様である)。
そして、実施例1と同様に直流4端子法にて表面抵抗率を測定した。
また、比較基板として基板をプラズマ処理後のPETフィルム基板Cに変更した以外は、実施例1と同様に作成した比較基板をC8とした。この表面抵抗率も同様に測定した。
結果を第10表に示す。
<Example 12 (modifying film B 2)>
A 100 μm thick PET film was prepared, and the surface was plasma treated.
Then, the obtained plasma-treated PET film is used as the substrate C, and the modified film B 2 and the conductive film A subjected to the ion exchange treatment are formed by the same method as in Example 11, and the substrate C 12 with the conductive thin film is formed. Obtained. However, the one used in the ion exchange treatment is LiCl (hydrochloric acid is the same as in Example 11).
Then, the surface resistivity was measured by the direct current four-terminal method in the same manner as in Example 1.
Also, except for changing the substrate to the PET film substrate C after the plasma treatment as compared substrate, the comparative substrate prepared in the same manner as in Example 1 was C 8. This surface resistivity was measured in the same manner.
The results are shown in Table 10.

Figure 2011014443
Figure 2011014443

第10表から、PETフィルムを用いた場合でも表面抵抗率が向上することを確認できた。   From Table 10, it was confirmed that the surface resistivity was improved even when the PET film was used.

いずれのサンプルも、密着性試験をした結果良好な密着性を示した。   All samples showed good adhesion as a result of the adhesion test.

1 環状置換基
2 接着性置換基
3 接続部分
10 導電膜A
20 下地膜B
30 基板C
DESCRIPTION OF SYMBOLS 1 Cyclic substituent 2 Adhesive substituent 3 Connection part 10 Conductive film A
20 Base film B
30 Substrate C

Claims (13)

基板Cの表面上に、下地膜Bおよび導電膜Aをこの順に有する導電性薄膜付き基板であって、
前記導電膜Aがポリチオフェン系高分子を主成分として含み、
前記下地膜Bが、前記基板Cに物理的または化学的に作用して密着しており、さらに前記導電膜Aに対して分子配向制御能を備える、導電性薄膜付き基板。
A substrate with a conductive thin film having a base film B and a conductive film A in this order on the surface of the substrate C,
The conductive film A contains a polythiophene polymer as a main component,
A substrate with a conductive thin film, wherein the base film B is in close contact with the substrate C by physical or chemical action, and further has a molecular orientation control ability with respect to the conductive film A.
前記下地膜Bが交互吸着膜B1を含む、請求項1に記載の導電性薄膜付き基板。 The substrate with a conductive thin film according to claim 1, wherein the base film B includes an alternating adsorption film B 1 . 前記下地膜Bが前記交互吸着膜B1である、請求項1または2に記載の導電性薄膜付き基板。 The underlayer B is the alternate adsorption film B 1, a conductive thin film-attached substrate according to claim 1 or 2. 前記交互吸着膜B1と前記導電膜Aとが密着しており、前記交互吸着膜B1における前記導電膜Aと密着する表面が高分子電解質からなる、請求項2または3に記載の導電性薄膜付き基板。 The alternate adsorption film B 1 and is in close contact with the conductive film A is the surface in close contact with the conductive film A is formed of a polymer electrolyte in the alternate adsorption film B 1, conductive according to claim 2 or 3 Substrate with thin film. 前記下地膜Bが高極性置換基を有する修飾膜B2を含む、請求項1に記載の導電性薄膜付き基板。 The substrate with a conductive thin film according to claim 1, wherein the base film B includes a modification film B 2 having a highly polar substituent. 前記下地膜Bが化合物αを用いて形成した修飾膜B2を含み、
前記化合物αが、高極性置換基と接着性置換基とを有する化合物である、請求項5に記載の導電性薄膜付き基板。
The base film B includes a modification film B 2 formed using the compound α,
The board | substrate with an electroconductive thin film of Claim 5 whose said compound (alpha) is a compound which has a highly polar substituent and an adhesive substituent.
前記下地膜Bが前記修飾膜B2である、請求項5または6に記載の導電性薄膜付き基板。 The underlayer B is the modifying film B 2, a conductive thin film-attached substrate according to claim 5 or 6. 前記高極性置換基が、ヘテロ原子を有しカチオン性である環状置換基および/または―N(RY)(RZ)[RYおよびRZは各々、水素原子、炭素数1〜20のアルコキシル基、またはエーテル結合を有していてもよい炭素数1〜20のアルキル基である。]で表わされるカチオン性であるN含有官能基である、請求項5〜7のいずれかに記載の導電性薄膜付き基板。 The highly polar substituent is a cyclic substituent having a hetero atom and being cationic and / or —N (R Y ) (R Z ) [R Y and R Z are each a hydrogen atom, a carbon number of 1 to 20 An alkoxyl group or an alkyl group having 1 to 20 carbon atoms which may have an ether bond. ] The board | substrate with an electroconductive thin film in any one of Claims 5-7 which is N containing functional group which is cationic represented by these. 前記化合物αが、イミダゾリウム誘導体またはピリジニウム誘導体もしくはピロリジウム誘導体である、請求項5〜8のいずれかに記載の導電性薄膜付き基板。   The board | substrate with an electroconductive thin film in any one of Claims 5-8 whose said compound (alpha) is an imidazolium derivative, a pyridinium derivative, or a pyrrolidinium derivative. 前記修飾膜B2が、その表面をイオン交換処理したものである、請求項5〜9のいずれかに記載の導電性薄膜付き基板。 It said modified layer B 2 is one in which the surface was ion-exchange treatment, the conductive thin film-attached substrate according to any one of claims 5-9. 前記下地膜Bが、前記交互吸着層B1および前記修飾膜B2からなり、前記基板Cの表面上に、前記修飾膜B2、前記交互吸着層B1および前記導電膜Aをこの順に有する、請求項1、2、4、5、8、9または10に記載の導電性薄膜付き基板。 The base film B includes the alternate adsorption layer B 1 and the modification film B 2 , and has the modification film B 2 , the alternate adsorption layer B 1, and the conductive film A in this order on the surface of the substrate C. A substrate with a conductive thin film according to claim 1, 2, 4, 5, 8, 9, or 10. 前記ポリチオフェン系高分子が、3,4−エチレンジオキシチオフェンおよび/またはその誘導体である、請求項1〜11のいずれかに記載の導電性薄膜付き基板。   The substrate with a conductive thin film according to claim 1, wherein the polythiophene polymer is 3,4-ethylenedioxythiophene and / or a derivative thereof. 基板Cの表面上に前記下地膜Bを形成し、その後、前記下地膜Bの表面上に前記導電膜Aを形成して得た、請求項1〜12のいずれかに記載の導電性薄膜付き基板。   The conductive film with conductive thin film according to claim 1, obtained by forming the base film B on the surface of the substrate C and then forming the conductive film A on the surface of the base film B. substrate.
JP2009158823A 2009-07-03 2009-07-03 Substrate with conductive thin film Expired - Fee Related JP5480546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158823A JP5480546B2 (en) 2009-07-03 2009-07-03 Substrate with conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158823A JP5480546B2 (en) 2009-07-03 2009-07-03 Substrate with conductive thin film

Publications (2)

Publication Number Publication Date
JP2011014443A true JP2011014443A (en) 2011-01-20
JP5480546B2 JP5480546B2 (en) 2014-04-23

Family

ID=43593116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158823A Expired - Fee Related JP5480546B2 (en) 2009-07-03 2009-07-03 Substrate with conductive thin film

Country Status (1)

Country Link
JP (1) JP5480546B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077621A (en) * 2019-11-12 2021-05-20 エルジー ディスプレイ カンパニー リミテッド Conductive film and display device comprising the same
US20210261836A1 (en) * 2020-02-26 2021-08-26 Corning Incorporated Temporary bonding of substrates with large roughness using multilayers of polyelectrolytes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306954A (en) * 1995-05-11 1996-11-22 Katsumi Yoshino Organic light-emitting diode and its manufacture
JP2003335846A (en) * 2002-03-09 2003-11-28 Samsung Electronics Co Ltd Novel conductive polymer and sensor and method of detecting target substance using the polymer
JP2006080056A (en) * 2004-07-30 2006-03-23 Sharp Corp Organic thin film using organic compound having at both ends different functional group differing in reactivity in elimination reaction and manufacturing method for the organic thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306954A (en) * 1995-05-11 1996-11-22 Katsumi Yoshino Organic light-emitting diode and its manufacture
JP2003335846A (en) * 2002-03-09 2003-11-28 Samsung Electronics Co Ltd Novel conductive polymer and sensor and method of detecting target substance using the polymer
JP2006080056A (en) * 2004-07-30 2006-03-23 Sharp Corp Organic thin film using organic compound having at both ends different functional group differing in reactivity in elimination reaction and manufacturing method for the organic thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077621A (en) * 2019-11-12 2021-05-20 エルジー ディスプレイ カンパニー リミテッド Conductive film and display device comprising the same
US11309515B2 (en) 2019-11-12 2022-04-19 Lg Display Co., Ltd. Conductive film and display device comprising the same
JP7171653B2 (en) 2019-11-12 2022-11-15 エルジー ディスプレイ カンパニー リミテッド Conductive film and display device containing the same
US20210261836A1 (en) * 2020-02-26 2021-08-26 Corning Incorporated Temporary bonding of substrates with large roughness using multilayers of polyelectrolytes

Also Published As

Publication number Publication date
JP5480546B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
US20210319927A1 (en) Conductor, conductive composition and laminate
JP5728631B2 (en) Process for preparing conductive polymers
US8721928B2 (en) Method for the production of conductive polymers
JP6021114B2 (en) Layer composition with improved electrical parameters comprising PEDOT / PSS and stabilizer
TW201437300A (en) Formulations comprising washed silver nanowires and PEDOT
TW201219444A (en) Dispersions comprising polythiophenes with a defined content of thiophene monomer
EP3318589A1 (en) Pedot/pss with coarse particle size and high pedot-content
JP5480546B2 (en) Substrate with conductive thin film
JP6977246B2 (en) Antistatic thin film and antistatic aqueous solution
US11078326B2 (en) Compositions useful for the formation of an antistatic layer or an electromagnetic radiation shield
JP2011505059A (en) Structuring of conductive polymer layer by lift-off process
CN105637037B (en) Conductive composition, conductor, method for forming conductor, and method for producing polymer
JP2011228222A (en) Conductive coating composition
WO2019177096A1 (en) Conductive film, method for producing same, conductor, resist pattern formation method, and laminate
WO2019198749A1 (en) Electrically conductive composition, electrically conductive film, and laminate
KR102581426B1 (en) Liquid composition comprising particles of a conductive polymer and an organic solvent forming an azeotrope with water
JP2011225789A (en) Electroconductive coating composition
WO2023222569A1 (en) Novel polythiophene/polyanion compositions
CN116600614A (en) Method for improving operation stability of poly (benzodifurandione) conductive high polymer material solution
KR20120031635A (en) A method for preparation of mechanically robust organic-inorganic hybrid conductive thin film by using vapor phase polymerization with silicone precursor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5480546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees