JP2011014369A - Method for producing positive electrode active material particles - Google Patents

Method for producing positive electrode active material particles Download PDF

Info

Publication number
JP2011014369A
JP2011014369A JP2009157188A JP2009157188A JP2011014369A JP 2011014369 A JP2011014369 A JP 2011014369A JP 2009157188 A JP2009157188 A JP 2009157188A JP 2009157188 A JP2009157188 A JP 2009157188A JP 2011014369 A JP2011014369 A JP 2011014369A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
material particles
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009157188A
Other languages
Japanese (ja)
Other versions
JP5332965B2 (en
Inventor
Motofumi Isono
基史 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009157188A priority Critical patent/JP5332965B2/en
Publication of JP2011014369A publication Critical patent/JP2011014369A/en
Application granted granted Critical
Publication of JP5332965B2 publication Critical patent/JP5332965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing positive electrode active material particles, in which a cell can be composed by using an easy to handle material in a negative electrode side, to provide such positive electrode active material particles, and to provide a lithium ion secondary battery comprising such positive electrode active material particles in a positive electrode active material layer.SOLUTION: The method for producing positive electrode active material particles 1 constituted of amorphous LiFePO(0<x≤2.5, 0<y≤2) comprises a synthesis step of synthesizing the positive electrode active material particles 1 by a sol-gel process. In the synthesis step, the positive electrode active material particles 1 are synthesized in an acid solution with a hydrogen ion exponent (pH) of 4.0 or less.

Description

本発明は、非晶質の正極活物質粒子の製造方法に関する。   The present invention relates to a method for producing amorphous positive electrode active material particles.

近年、ハイブリッド車やノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、リチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
このような電池には、非晶質の正極活物質粒子を用いるものが挙げられる。例えば特許文献1においては、LixMn2-yy4(Mは2価金属,0.45≦y≦0.60,0≦x≦1)で表される正極(正極活物質粒子)を、ゾルゲル法を用いて製造する技術が開示されている。また、特許文献2においては、7A族及び8A族の少なくとも1種の遷移金属の酸化物により構成され、その一部がアモルファス構造を有する正極活物質(正極活物質粒子)が開示されている。この特許文献2では、正極活物質粒子を製造する手法として、溶融状態から急冷凝固させる溶融急冷法や、ゾルゲル法が、例示されている。
In recent years, lithium ion secondary batteries (hereinafter also simply referred to as batteries) have been used as power sources for driving portable electronic devices such as hybrid cars, notebook computers, and video camcorders.
Such batteries include those using amorphous positive electrode active material particles. For example, in Patent Document 1, a positive electrode (positive electrode active material particle) represented by Li x Mn 2 -y My O 4 (M is a divalent metal, 0.45 ≦ y ≦ 0.60, 0 ≦ x ≦ 1) ) Is manufactured using a sol-gel method. Patent Document 2 discloses a positive electrode active material (positive electrode active material particles) that is composed of an oxide of at least one transition metal of Group 7A and Group 8A, part of which has an amorphous structure. In Patent Document 2, as a method for producing positive electrode active material particles, a melt quench method in which a solid is rapidly solidified from a molten state and a sol-gel method are exemplified.

特表2000−515672号公報JP 2000-515672 A 特開平8−78002号公報JP-A-8-78002

ところで、正極活物質として、非晶質のLixFePyz(0<x≦2.5,0<y≦2)が好ましいことが判ってきた。
しかるに、このLixFePyzにおけるFeは2価及び3価を取りうる。このようなLixFePyzのうちLiFePOzにおいて、2価のFeを含むLiFePOzからなる正極活物質では、これを正極活物質層に含む電池について充電すると、
LiFePOz → FePOz+Li++e- ・・・式(1)
で示すように、Feの価数が2価から3価に換わって、正極活物質からLiイオンが放出されることが知られている。これを放電させると、式(1)と逆の化学変化が生じる。従って、充放電とも、正極活物質が本来有していたLiイオンを用いることになる。但し、まず当初に充電を行う必要がある。
By the way, it has been found that amorphous Li x FeP y O z (0 <x ≦ 2.5, 0 <y ≦ 2) is preferable as the positive electrode active material.
However, Fe in this Li x FeP y O z can be divalent and trivalent. Among such Li x FeP y O z , in LiFePO z , in a positive electrode active material made of LiFePO z containing divalent Fe, when charging a battery including this in the positive electrode active material layer,
LiFePO z → FePO z + Li + + e (1)
It is known that the valence of Fe changes from divalent to trivalent, and Li ions are released from the positive electrode active material. When this is discharged, a chemical change opposite to the formula (1) occurs. Therefore, Li ion originally possessed by the positive electrode active material is used for both charging and discharging. However, it is necessary to charge first.

一方、3価のFeを含むLiFePOzからなる正極活物質では、既にFeの価数が3価であるので、上述の式(1)のような化学変化を伴う充電をすることはできない。即ち、この3価のFeを含む正極活物質からは、Liイオンを放出することができない。但し、例えば負極などに、別途、Liイオンが存在する場合には、放電と共に、このLiイオンを正極活物質に挿入する化学変化を生じさせうる。即ち、放電により、下記の式(2)の反応が生じ、Feの価数が3価から2価に換わると共にLiイオンが正極活物質に挿入される。
LiFePOz+Li++e- → Li2FePOz ・・・式(2)
とはいえ、この場合には、別途、負極活物質に予めLiを挿入しておくなど、Liを含む負極を用いる必要がある。しかし、Liイオンを含む負極を用いうるのであれば、当初に放電から始めることができる。
On the other hand, in the positive electrode active material composed of LiFePO z containing trivalent Fe, since already the valence of Fe is trivalent, it is not possible to charge with a chemical change, such as the above equation (1). That is, Li ions cannot be released from the positive electrode active material containing trivalent Fe. However, for example, when Li ions are separately present in the negative electrode or the like, a chemical change in which the Li ions are inserted into the positive electrode active material can be caused along with the discharge. That is, by the discharge, the reaction of the following formula (2) occurs, the valence of Fe is changed from trivalent to divalent, and Li ions are inserted into the positive electrode active material.
LiFePO z + Li + + e → Li 2 FePO z (2)
However, in this case, it is necessary to separately use a negative electrode containing Li, such as inserting Li in advance in the negative electrode active material. However, if a negative electrode containing Li ions can be used, the discharge can be started from the beginning.

なお、このLixFePyzにおけるFeの平均価数が、2.0を超え3.0未満の値である場合には、2価のFeを含むLixFePyzと、3価のFeを含むLixFePyzとが混在していると考えることができる。従って、LixFePyzにおけるFeの平均価数が2.0に近い正極活物質ほど、式(1)に従って、充電によって3価に換わることが可能な2価のFeをより多く含むことになる。逆に、Feの平均価数が3に近い正極活物質ほど、LixFePyzとは別に、負極側により多くのLiイオンを予め挿入しておく必要があることになる。つまり、負極活物質に、Liイオンをより多く挿入した、取り扱いの困難な材料を用いなければならない。 In addition, when the average valence number of Fe in Li x FeP y O z is a value exceeding 2.0 and less than 3.0, Li x FeP y O z containing divalent Fe and trivalent It can be considered that Li x FeP y O z containing Fe is mixed. Therefore, as the cathode active material near the Li x FeP y O z average valence of Fe in 2.0, according to equation (1), that contain more divalent Fe capable to replace the trivalent by the charging become. On the contrary, the positive electrode active material having an average Fe valence of 3 needs to insert more Li ions in advance on the negative electrode side separately from Li x FeP y O z . That is, it is necessary to use a material that is difficult to handle, in which more Li ions are inserted into the negative electrode active material.

しかしながら、このLixFePyzからなる正極活物質粒子をゾルゲル法で製造すると、この正極活物質粒子を用いた電池では、負極(負極活物質)には、Liイオンをより多く挿入した、取り扱いの困難な材料を用いなければならない場合がある。この場合には、Feの平均価数が3.0に近い正極活物質粒子ができてしまうためであると考えられる。また、正極活物質中のLiのほかに、別途負極にもLiが必要となり、Liの利用効率が低いうえに、コストが増大してしまう。 However, when producing a positive electrode active material particles composed of the Li x FeP y O z by a sol-gel method, in the battery using the positive electrode active material particles, the negative electrode (negative electrode active material) was inserted more Li ions, It may be necessary to use materials that are difficult to handle. In this case, it is considered that positive electrode active material particles having an average valence number of Fe close to 3.0 are formed. In addition to Li in the positive electrode active material, Li is also required for the negative electrode separately, which lowers the utilization efficiency of Li and increases the cost.

本発明は、かかる問題点に鑑みてなされたものであって、取り扱いの容易な材料を負極側に用いて電池を構成することができる正極活物質粒子の製造方法を提供することを目的とする。   This invention is made | formed in view of this problem, Comprising: It aims at providing the manufacturing method of the positive electrode active material particle which can comprise a battery using the material which is easy to handle for the negative electrode side. .

本発明の一態様は、非晶質のLixFePyz(0<x≦2.5,0<y≦2)からなる正極活物質粒子の製造方法であって、ゾルゲル法により上記正極活物質粒子を合成する合成工程を備え、上記合成工程は、水素イオン指数(pH)を4.0以下とした酸性溶液中で、上記正極活物質粒子を合成する正極活物質粒子の製造方法である。 One aspect of the present invention is a method for producing positive electrode active material particles made of amorphous Li x FeP y O z (0 <x ≦ 2.5, 0 <y ≦ 2). A synthesis step of synthesizing active material particles, wherein the synthesis step is a method for producing positive electrode active material particles in which the positive electrode active material particles are synthesized in an acidic solution having a hydrogen ion index (pH) of 4.0 or less. is there.

発明者らの研究により、水素イオン指数(pH)を4.0以下とした酸性溶液中で、非晶質のLixFePyzからなる正極活物質粒子を合成すると、この正極活物質粒子を用いた電池では、負極に挿入するLiイオンを低減或いはなくすことができることが判ってきた。これは、このLixFePyzのうちFeの平均価数が2.0に近づけることができると考えられる。
この知見に基づき、この正極活物質粒子の製造方法では、pHを4.0以下とした酸性溶液中で、正極活物質粒子を合成する。このため、平均価数が2.0に近づけた、LixFePyzからなる正極活物質粒子を製造できる。従って、電池に、この正極活物質粒子と共に、Liイオンを低減させた、取り扱いの容易な材料を負極に用いることができる。
According to the inventors' research, positive electrode active material particles made of amorphous Li x FeP y O z were synthesized in an acidic solution having a hydrogen ion index (pH) of 4.0 or less. It has been found that in a battery using, Li ions inserted into the negative electrode can be reduced or eliminated. This is considered that the average valence of Fe in Li x FeP y O z can approach 2.0.
Based on this knowledge, in the method for producing positive electrode active material particles, the positive electrode active material particles are synthesized in an acidic solution having a pH of 4.0 or less. For this reason, positive electrode active material particles made of Li x FeP y O z with an average valence approaching 2.0 can be produced. Therefore, an easy-to-handle material with reduced Li ions can be used for the negative electrode together with the positive electrode active material particles.

なお、平均価数とは、正極活物質粒子をなすLixFePyzの各Feの価数の平均値をいう。また、正極活物質粒子におけるFeの平均価数を検知する手法としては、例えば、メスバウワー分光法が挙げられる。 The average valence refers to a valence of the average value of each Fe in Li x FeP y O z forming a positive electrode active material particles. An example of a method for detecting the average valence number of Fe in the positive electrode active material particles is Mossbauer spectroscopy.

さらに、上述の正極活物質粒子の製造方法であって、前記合成工程は、水素イオン指数(pH)を3.4以下とした酸性溶液中で、上記正極活物質粒子を合成する正極活物質粒子の製造方法とすると良い。   Furthermore, in the method for producing the positive electrode active material particles described above, the synthesis step includes synthesizing the positive electrode active material particles in an acidic solution having a hydrogen ion index (pH) of 3.4 or less. It is good to use this manufacturing method.

上述の正極活物質粒子の製造方法によれば、Feの平均価数をほぼ2.0とすることができると考えられる。従って、電池に、この正極活物質粒子と共に、Liイオンを含まない、取り扱いの容易な材料を負極に用いることができる。   According to the method for producing positive electrode active material particles described above, it is considered that the average valence number of Fe can be made approximately 2.0. Therefore, an easy-to-handle material that does not contain Li ions can be used for the negative electrode together with the positive electrode active material particles.

実施形態1のリチウムイオン二次電池の斜視図である。1 is a perspective view of a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1のリチウムイオン二次電池の拡大断面図である。1 is an enlarged cross-sectional view of a lithium ion secondary battery according to Embodiment 1. FIG. 実施形態1にかかる正極活物質粒子の合成工程を示すフローチャートである。3 is a flowchart illustrating a synthesis process of positive electrode active material particles according to the first embodiment. 正極活物質粒子の合成時の水素イオン指数(pH)と、合成した正極活物質粒子と用いたリチウムイオン二次電池における初回の充放電効率との関係を示すグラフである。It is a graph which shows the relationship between the hydrogen ion index | exponent (pH) at the time of the synthesis | combination of positive electrode active material particle | grains, and the initial charging / discharging efficiency in the lithium ion secondary battery using the synthesized positive electrode active material particle | grains.

(実施形態1)
まず、本発明の実施形態1について、図面を参照しつつ説明する。
図1は、本実施形態1のリチウムイオン二次電池100(以下、単に電池100とも言う)であり、図1は、この電池100の斜視図、図2は、この電池100の拡大縦断面図である。
この電池100は、正極活物質粒子1を主体に圧縮成形してなる正極活物質層10のほか、電池ケース50、負極活物質層20、セパレータ30及び電解液(図示しない)からなる、リチウムイオン二次電池である。
(Embodiment 1)
First, Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 shows a lithium ion secondary battery 100 (hereinafter also simply referred to as battery 100) according to Embodiment 1, FIG. 1 is a perspective view of the battery 100, and FIG. 2 is an enlarged longitudinal sectional view of the battery 100. It is.
The battery 100 includes a positive electrode active material layer 10 formed mainly by compression molding of the positive electrode active material particles 1, a lithium ion including a battery case 50, a negative electrode active material layer 20, a separator 30, and an electrolyte (not shown). It is a secondary battery.

このうち、電池ケース50は、ステンレス鋼板からなり、底部51aが円形の概略コイン形状を有している。この電池ケース50は、容器体51と蓋体52とを有する。このうち、容器体51は、円板状の底部51a、及び、この周縁からこれに直交する方向に立ち上がり、先端側が内側に曲げられると共に縮径する形態の円筒壁部51bからなる。
また、蓋体52は円板形状を有し、円筒壁部51bの先端で構成される開口部51cを封口してなる。これら容器体51と蓋体52との間には、絶縁体のガスケット53が介在しており、容器体51が正極端子を、蓋体52が負極端子をそれぞれ兼ねている。
Among these, the battery case 50 is made of a stainless steel plate, and the bottom 51a has a substantially coin shape with a circular shape. The battery case 50 includes a container body 51 and a lid body 52. Among these, the container body 51 includes a disk-shaped bottom portion 51a and a cylindrical wall portion 51b that rises from the peripheral edge in a direction perpendicular to the peripheral edge and bends inward while being reduced in diameter.
The lid 52 has a disk shape and is formed by sealing an opening 51c formed by the tip of the cylindrical wall 51b. An insulating gasket 53 is interposed between the container body 51 and the lid body 52. The container body 51 also serves as a positive electrode terminal, and the lid body 52 serves as a negative electrode terminal.

この電池ケース50の内部には、正極活物質層10及び負極活物質層20が、セパレータ30を介して、図2中、上下方向に積層してある(図2参照)。なお、正極活物質層10は容器体51の底部51a側に、負極活物質層20は蓋体52側にそれぞれ配置されると共に、電気的に接続している。   Inside the battery case 50, the positive electrode active material layer 10 and the negative electrode active material layer 20 are stacked in the vertical direction in FIG. 2 via the separator 30 (see FIG. 2). The positive electrode active material layer 10 is disposed on the bottom 51a side of the container body 51, and the negative electrode active material layer 20 is disposed on the lid body 52 side, and is electrically connected.

次いで、正極活物質層10について説明する。この正極活物質層10は、正極活物質粒子1、アセチレンブラック(AB)からなる導電助剤5、及び、ポリテトラフルオロエチレン(PTFE)からなる結着剤6の混合物を円板状に圧縮成形したものである。
一方、負極活物質層20には、グラファイトからなる負極活物質粒子8、及び、アセチレンブラック(AB)からなる導電助剤5を、円板状に圧縮成形したものを用いた。また、セパレータ30としては、多孔質ポリエチレンシートを用いた。さらに、電解液としては、エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶媒に、1モル/lの濃度でLiPF6を溶解させたものを使用した。この電解液は、上述のセパ
レータ30に含浸されている。
また、この正極活物質層10の正極活物質粒子1は、粒径が数百nmで非晶質のLi2FeP1.5zからなる。
Next, the positive electrode active material layer 10 will be described. This positive electrode active material layer 10 is formed by compression-molding a mixture of positive electrode active material particles 1, a conductive additive 5 made of acetylene black (AB), and a binder 6 made of polytetrafluoroethylene (PTFE) into a disk shape. It is a thing.
On the other hand, for the negative electrode active material layer 20, a negative electrode active material particle 8 made of graphite and a conductive additive 5 made of acetylene black (AB) were compression-molded into a disk shape. As the separator 30, a porous polyethylene sheet was used. Further, as the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used. This electrolytic solution is impregnated in the separator 30 described above.
The positive electrode active material particles 1 of the positive electrode active material layer 10 are made of amorphous Li 2 FeP 1.5 O z having a particle size of several hundred nm.

次いで、本実施形態1にかかる正極活物質粒子1の製造方法の合成工程について、図3を参照しつつ説明する。
まず、ステップS1において、200mlの水に、C464Feを0.10mol/l、C23LiO2・2H2Oを0.20mol/l、及び、NH42PO4を0.15mol/lを原料としてそれぞれ投入した。さらに、この水溶液中に、シュウ酸(C243)を0.50mol/lを投入し、この水溶液の水素イオン指数(pH)を3.5に調整した。そして、オイルバスでこの水溶液を48時間、80℃に保持した。
次いで、液温を80℃としたまま水溶液から24時間かけて水を飛散、粉末状の析出物を得た(ステップS2)。
Next, a synthesis process of the method for producing the positive electrode active material particles 1 according to the first embodiment will be described with reference to FIG.
First, in step S1, C 4 H 6 O 4 Fe 0.10 mol / l, C 2 H 3 LiO 2 .2H 2 O 0.20 mol / l, and NH 4 H 2 PO 4 in 200 ml of water. Of 0.15 mol / l was added as a raw material. Furthermore, 0.50 mol / l of oxalic acid (C 2 H 4 O 3 ) was added to this aqueous solution, and the hydrogen ion index (pH) of this aqueous solution was adjusted to 3.5. And this aqueous solution was hold | maintained at 80 degreeC for 48 hours with the oil bath.
Next, water was scattered from the aqueous solution over 24 hours while keeping the liquid temperature at 80 ° C. to obtain a powdery precipitate (step S2).

続いて、ステップS3では、析出物を、110℃で48時間、乾燥を行った。具体的には、110℃に加熱した乾燥炉中で、48時間乾燥させた。
さらに、ステップS4で、400℃の温度で焼成した。具体的には、アルゴン雰囲気中で、昇温速度を毎分1℃で400℃まで昇温させ、その後、400℃を5時間維持させた。かくして、本実施形態1にかかる正極活物質粒子1ができあがる。
Subsequently, in step S3, the precipitate was dried at 110 ° C. for 48 hours. Specifically, it was dried for 48 hours in a drying furnace heated to 110 ° C.
Further, in step S4, firing was performed at a temperature of 400 ° C. Specifically, in an argon atmosphere, the temperature rising rate was raised to 400 ° C. at 1 ° C. per minute, and then maintained at 400 ° C. for 5 hours. Thus, the positive electrode active material particles 1 according to the first embodiment are completed.

一方、上述の正極活物質粒子1の比較例として、上述のステップS1において、水素イオン濃度(pH)を3.5位に調整するためのシュウ酸(C243)を投入しない点で異なる、正極活物質粒子2を製造した。
即ち、200mlの水に、C464Feを0.10mol/l、C23LiO2・2H2Oを0.20mol/l、及び、NH42PO4を0.15mol/lを原料としてそれぞれ投入した。このときの水溶液の水素イオン指数(pH)は5.0であった。そして、オイルバスでこの水溶液を48時間、80℃に保持した。
次いで、80℃としたまま水溶液から24時間かけて水を飛散させ、その後、110℃で48時間、乾燥を行った。さらに、400℃の温度で焼成して、正極活物質粒子2を製造した。
On the other hand, as a comparative example of the positive electrode active material particles 1 described above, in the above-described step S1, oxalic acid (C 2 H 4 O 3 ) for adjusting the hydrogen ion concentration (pH) to the 3.5 position is not added. Different positive electrode active material particles 2 were produced.
That is, 0.10 mol / l of C 4 H 6 O 4 Fe, 0.20 mol / l of C 2 H 3 LiO 2 .2H 2 O, and 0.15 mol of NH 4 H 2 PO 4 in 200 ml of water. / L was used as a raw material. The hydrogen ion exponent (pH) of the aqueous solution at this time was 5.0. And this aqueous solution was hold | maintained at 80 degreeC for 48 hours with the oil bath.
Next, water was spattered from the aqueous solution over 24 hours while maintaining the temperature at 80 ° C., followed by drying at 110 ° C. for 48 hours. Furthermore, the positive electrode active material particles 2 were manufactured by firing at a temperature of 400 ° C.

これら正極活物質粒子1,正極活物質粒子2をそれぞれ用いて作製した電池C1及び電池C2について、合成時の水溶液の水素イオン指数(pH)と初回の充放電効率との関係を調査した。
具体的には、各電池C1,C2、初回の充電(即ち、各電池C1,C2を製造して最初の充電)と、その後の放電とを行って、初回の充放電効率をそれぞれ算出した。なお、充電は、電池C1,C2の各電圧がそれぞれ4.5Vになるまで、一定の大きさの電流(電流密度が0.2mA/cm2の電流)で充電した。また、放電は、電池C1,C2の各電圧がそれぞれ1.5Vになるまで、一定の大きさの電流(電流密度が0.2mA/cm2の電流)で放電させた。
さらに、初回の充放電効率は、上述した放電時の電流積算量を、充電時の電流積算量で割った百分率で表す。
各電池C1,C2の合成時の水溶液の水素イオン指数(pH)と、初回の充放電効率との関係を、図4に示す。
The relationship between the hydrogen ion index (pH) of the aqueous solution at the time of synthesis and the initial charge / discharge efficiency was investigated for the battery C1 and the battery C2 produced using the positive electrode active material particles 1 and the positive electrode active material particles 2, respectively.
Specifically, each battery C1, C2, first charge (that is, first charge after manufacturing each battery C1, C2) and subsequent discharge were performed, and the first charge / discharge efficiency was calculated. The charging was performed with a constant current (current having a current density of 0.2 mA / cm 2 ) until each voltage of the batteries C1 and C2 became 4.5V. Further, the discharge was performed with a constant current (current density of 0.2 mA / cm 2 ) until each voltage of the batteries C1 and C2 became 1.5V.
Further, the initial charge / discharge efficiency is expressed as a percentage obtained by dividing the above-described current integrated amount during discharging by the current integrated amount during charging.
FIG. 4 shows the relationship between the hydrogen ion exponent (pH) of the aqueous solution at the time of synthesis of the batteries C1 and C2 and the initial charge / discharge efficiency.

この図4によると、電池C2の充放電効率は420%である。即ち、初回の充電時に正極側から放出したLiイオンの量よりも、放電時に負極側から放出したLiイオンの量の方が約4.2倍多いことが判る。これに対し、電池C1の充放電効率が110%であり、初回の充電時に正極側から放出したLiイオンの量と、放電時に負極側から放出したLiイオンの量とがほぼ等しいことが判る。
これは、電池C2の正極活物質粒子2におけるFeの平均価数が3.0に近いために、電池C2では、前述の式(1)に従う化学反応がわずかしか生じず、すぐに満充電となると考えられる。一方、放電時には、式(1)と逆方向の化学変化のほかに、負極(金属リチウム箔)のLiを用いて、前述の式(2)の化学変化も生じたと考えられる。
According to FIG. 4, the charge / discharge efficiency of the battery C2 is 420%. That is, it can be seen that the amount of Li ions released from the negative electrode side during discharge is about 4.2 times greater than the amount of Li ions released from the positive electrode side during the first charge. On the other hand, the charge / discharge efficiency of the battery C1 is 110%, and it can be seen that the amount of Li ions released from the positive electrode side during the first charge and the amount of Li ions released from the negative electrode side during the discharge are substantially equal.
This is because the average valence number of Fe in the positive electrode active material particles 2 of the battery C2 is close to 3.0, so that in the battery C2, the chemical reaction according to the above formula (1) occurs only slightly, It is considered to be. On the other hand, during the discharge, in addition to the chemical change in the direction opposite to the formula (1), it is considered that the chemical change of the formula (2) described above also occurred using Li of the negative electrode (metal lithium foil).

これに対し、電池C1では、これに用いた正極活物質粒子1におけるFeの平均価数が2.0に近いために、電池C1では、用いた正極活物質粒子1のほぼ全量について、式(1)の化学反応をさせて充電し、これと逆の反応によって放電を行うことができると考えられる。このため、充放電とも、もともと正極活物質が有していたLiイオンを用いて行うことができる。かくして、初回の放電にあたって、正極活物質由来とは別に、予めLiを負極に持たせておく必要がなく、Liの利用効率も高い。   On the other hand, in the battery C1, since the average valence of Fe in the positive electrode active material particles 1 used for the battery C1 is close to 2.0, in the battery C1, the expression ( It is considered that the chemical reaction of 1) can be performed for charging, and discharging can be performed by the reverse reaction. For this reason, both charge and discharge can be performed using Li ions originally possessed by the positive electrode active material. Thus, in the first discharge, it is not necessary to have Li in advance in the negative electrode separately from the positive electrode active material, and the utilization efficiency of Li is high.

また、この図4から判るように、合成時の水溶液のpHが3〜5の範囲では、このpHが小さいほど、初回の充放電効率が急速に100%に近くなる。正極活物質粒子のFeの平均価数が2.0である場合には、初回の充放電効率が100%となることから、合成時の水溶液のpHが小さくなるほど、正極活物質粒子のFeの平均価数が2.0に近づくことが考えられる。この図4から、合成時のpHを3.4以下とすることで、確実にFeの平均価数を2.0とすることができることが判る。
また、図4から、pHを4.0以下とした水溶液中でLi2FeP1.5zを合成すれば、正極活物質粒子のFeの平均価数を2.0に近づけることができることが判る。
Further, as can be seen from FIG. 4, when the pH of the aqueous solution at the time of synthesis is in the range of 3 to 5, the first charge / discharge efficiency rapidly approaches 100% as the pH decreases. When the average valence of Fe of the positive electrode active material particles is 2.0, the initial charge / discharge efficiency is 100%. Therefore, the lower the pH of the aqueous solution during synthesis, the lower the Fe of the positive electrode active material particles. It is conceivable that the average valence approaches 2.0. It can be seen from FIG. 4 that the average valence of Fe can be reliably set to 2.0 by setting the pH during synthesis to 3.4 or less.
In addition, it can be seen from FIG. 4 that if Li 2 FeP 1.5 O z is synthesized in an aqueous solution having a pH of 4.0 or less, the average valence of Fe of the positive electrode active material particles can be made close to 2.0.

以上より、正極活物質粒子1の製造方法として、pHを4.0以下(本実施形態1では3.5)とした酸性溶液中で、正極活物質粒子1を合成する。このため、Feの平均価数が2.0に近づけたLi2FeP1.5zからなる正極活物質粒子1を製造できる。従って、電池100に、この正極活物質粒子1を用いることで、予めドープしたLiの量を低減させた、取り扱いの容易な材料を負極活物質層20に用いることができる。 From the above, as a method for producing the positive electrode active material particles 1, the positive electrode active material particles 1 are synthesized in an acidic solution having a pH of 4.0 or lower (3.5 in the present embodiment 1). Thus, it can be produced a positive electrode active material particles 1 having an average valence of Fe consists Li 2 FeP 1.5 O z as close to 2.0. Therefore, by using the positive electrode active material particles 1 for the battery 100, an easily handled material in which the amount of previously doped Li is reduced can be used for the negative electrode active material layer 20.

また、この製造方法において、水素イオン指数(pH)を3.4以下とすれば、Feの平均価数をほぼ2.0とすることができると考えられる。従って、電池100に、この正極活物質粒子1と共に、Liイオンを含まない、取り扱いの容易な材料(グラファイト等)を負極活物質層20に用いることができる。   In this production method, if the hydrogen ion index (pH) is 3.4 or less, it is considered that the average valence of Fe can be made approximately 2.0. Therefore, an easy-to-handle material (such as graphite) that does not contain Li ions can be used for the negative electrode active material layer 20 together with the positive electrode active material particles 1 in the battery 100.

以上において、本発明を実施形態1に即して説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、Li2FeP1.5zからなる正極活物質粒子1の合成工程では、Feの原料としてC464Feを、Liの原料としてC23LiO2・2H2Oを、Pの原料としてNH42PO4をそれぞれ用いた。しかし、このうちのFeの原料として、例えば、Fe(OC253を用いても良い。また、Liの原料として、例えば、LiOCH3を用いても良い。また、Pの原料として、例えば、PO(OCH33を用いても良い。
また、実施形態1の合成工程では、処理時間や設定温度等の条件を示したが、これに限定されず、例えば、正極活物質粒子に用いる原料によって条件の少なくともいずれかを変更しても良い。
While the present invention has been described with reference to the first embodiment, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention can be appropriately modified and applied without departing from the gist thereof.
For example, in the step of synthesizing the positive electrode active material particles 1 made of Li 2 FeP 1.5 O z , C 4 H 6 O 4 Fe is used as a raw material for Fe, C 2 H 3 LiO 2 .2H 2 O is used as a raw material for Li, P NH 4 H 2 PO 4 was used as a raw material for each. However, for example, Fe (OC 2 H 5 ) 3 may be used as a raw material for Fe. Further, for example, LiOCH 3 may be used as a Li source. Moreover, as a raw material of P, for example, PO (OCH 3 ) 3 may be used.
In the synthesis process of Embodiment 1, conditions such as processing time and set temperature are shown. However, the present invention is not limited to this. For example, at least one of the conditions may be changed depending on the raw material used for the positive electrode active material particles. .

1 正極活物質粒子
10 正極活物質層
100 電池(リチウムイオン二次電池)
DESCRIPTION OF SYMBOLS 1 Positive electrode active material particle 10 Positive electrode active material layer 100 Battery (lithium ion secondary battery)

Claims (2)

非晶質のLixFePyz(0<x≦2.5,0<y≦2)からなる正極活物質粒子の製造方法であって、
ゾルゲル法により上記正極活物質粒子を合成する合成工程を備え、
上記合成工程は、
水素イオン指数(pH)を4.0以下とした酸性溶液中で、上記正極活物質粒子を合成する
正極活物質粒子の製造方法。
A method for producing positive electrode active material particles composed of amorphous Li x FeP y O z (0 <x ≦ 2.5, 0 <y ≦ 2),
Comprising a synthesis step of synthesizing the positive electrode active material particles by a sol-gel method,
The above synthesis process
A method for producing positive electrode active material particles, wherein the positive electrode active material particles are synthesized in an acidic solution having a hydrogen ion index (pH) of 4.0 or less.
請求項1に記載の正極活物質粒子の製造方法であって、
前記合成工程は、
水素イオン指数(pH)を3.4以下とした酸性溶液中で、上記正極活物質粒子を合成する
正極活物質粒子の製造方法。
It is a manufacturing method of the positive electrode active material particle of Claim 1, Comprising:
The synthesis step includes
A method for producing positive electrode active material particles, wherein the positive electrode active material particles are synthesized in an acidic solution having a hydrogen ion index (pH) of 3.4 or less.
JP2009157188A 2009-07-01 2009-07-01 Method for producing positive electrode active material particles Active JP5332965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157188A JP5332965B2 (en) 2009-07-01 2009-07-01 Method for producing positive electrode active material particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157188A JP5332965B2 (en) 2009-07-01 2009-07-01 Method for producing positive electrode active material particles

Publications (2)

Publication Number Publication Date
JP2011014369A true JP2011014369A (en) 2011-01-20
JP5332965B2 JP5332965B2 (en) 2013-11-06

Family

ID=43593058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157188A Active JP5332965B2 (en) 2009-07-01 2009-07-01 Method for producing positive electrode active material particles

Country Status (1)

Country Link
JP (1) JP5332965B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113857A (en) * 2009-11-27 2011-06-09 Toyota Motor Corp Method of manufacturing electrode active material
JP2012226916A (en) * 2011-04-18 2012-11-15 Sharp Corp Cathode active material and manufacturing method thereof, cathode, and nonaqueous electrolyte secondary battery
WO2014155408A1 (en) * 2013-03-25 2014-10-02 株式会社豊田自動織機 Hydrogen-containing lithium silicate compound, process for producing same, positive active material for nonaqueous-electrolyte secondary battery, positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200051A (en) * 2001-12-28 2003-07-15 Sony Corp Catalyst for oxygen oxidation-reduction device and electrode using the same
WO2008105490A1 (en) * 2007-02-28 2008-09-04 Santoku Corporation Compound having olivine-type structure, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009527085A (en) * 2006-02-14 2009-07-23 ハイ パワー リチウム ソシエテ アノニム Lithium manganese phosphate cathode material for lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003200051A (en) * 2001-12-28 2003-07-15 Sony Corp Catalyst for oxygen oxidation-reduction device and electrode using the same
JP2009527085A (en) * 2006-02-14 2009-07-23 ハイ パワー リチウム ソシエテ アノニム Lithium manganese phosphate cathode material for lithium secondary battery
WO2008105490A1 (en) * 2007-02-28 2008-09-04 Santoku Corporation Compound having olivine-type structure, positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7011003921; Kuei-Feng Hsu,et.al: 'Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-bas' J.Mater.Chem 14, 20040701, 2690-2695, RSC *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113857A (en) * 2009-11-27 2011-06-09 Toyota Motor Corp Method of manufacturing electrode active material
JP2012226916A (en) * 2011-04-18 2012-11-15 Sharp Corp Cathode active material and manufacturing method thereof, cathode, and nonaqueous electrolyte secondary battery
WO2014155408A1 (en) * 2013-03-25 2014-10-02 株式会社豊田自動織機 Hydrogen-containing lithium silicate compound, process for producing same, positive active material for nonaqueous-electrolyte secondary battery, positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery

Also Published As

Publication number Publication date
JP5332965B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
KR100674287B1 (en) Layered core·shell cathode active materials for lithium secondary batteries, Method for preparing thereof And lithium secondary batteries using the same
KR101338816B1 (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
KR101447453B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
EP2237348B1 (en) Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using lithium secondary battery
KR101430843B1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
TWI446611B (en) Non-homogeneous positive electrode materials combining high safety and high power in a li rechargeable battery
US8968925B2 (en) Metal-doped transition metal hexacyanoferrate (TMHCF) battery electrode
CN107534143B (en) Positive electrode active material, method for producing same, and nonaqueous electrolyte secondary battery
US20110121226A1 (en) Method for manufacturing lithium titanate for lithium secondary battery active material
CN107922212B (en) Manganese-nickel composite hydroxide and method for producing same, lithium-manganese-nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
KR20170139462A (en) Anode active material for sodium secondary battery, and manufacturing method therefor
KR102044735B1 (en) Layered lithium nickel oxide, process for producing the same and lithium secondary cell employing it
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
WO2003069701A1 (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
KR20180043842A (en) Lithium metal oxide material, its use in an anode of a secondary battery, and a method of producing such a lithium metal oxide material
KR20170100529A (en) Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery
JP5332965B2 (en) Method for producing positive electrode active material particles
KR102220491B1 (en) Positive active materials for rechargable lithium battery, method of preparing the same and rechargable lithium battery using the same
JP6362033B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2016103558A1 (en) Lithium-phosphorus composite oxide carbon composite, production method therefor, electrochemical device, and lithium ion secondary battery
CN111373583A (en) Positive electrode active material for lithium ion secondary battery and method for producing same
JP2019212365A (en) Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same
US11855284B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery
US11873234B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, and method of manufacturing positive electrode active material precursor for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120118

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5332965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151