JP2011014334A - Method for manufacturing electrode paste - Google Patents

Method for manufacturing electrode paste Download PDF

Info

Publication number
JP2011014334A
JP2011014334A JP2009156485A JP2009156485A JP2011014334A JP 2011014334 A JP2011014334 A JP 2011014334A JP 2009156485 A JP2009156485 A JP 2009156485A JP 2009156485 A JP2009156485 A JP 2009156485A JP 2011014334 A JP2011014334 A JP 2011014334A
Authority
JP
Japan
Prior art keywords
electrolyte
catalyst
fuel cell
resin
mea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009156485A
Other languages
Japanese (ja)
Inventor
Yoshitaka Endo
美登 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009156485A priority Critical patent/JP2011014334A/en
Publication of JP2011014334A publication Critical patent/JP2011014334A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve dispersion of an electrolyte resin in an electrode paste used in the manufacture of a fuel cell electrode.SOLUTION: The method for manufacturing an electrode paste used in the manufacture of a fuel cell electrode includes a process to generate microbubbles in the electrolyte solution.

Description

本発明は、燃料電池の電極ペーストに関するものである。   The present invention relates to an electrode paste for a fuel cell.

一般に、燃料電池の電極には、電解質樹脂が含まれる。燃料電池の電極を製造する工程には、触媒担体(例えば、カーボン)に担持された触媒(例えば、白金)と、電解質樹脂が含まれる電解質溶液とを混練して、電極ペースト(電極インクともいう)を生成する工程が含まれる。電解質樹脂は、凝集して安定化する性質を有するため、電解質溶液に含まれる電解質樹脂は、粒子径が大きいものが多い。このように、電解質樹脂が凝集していると、触媒担体と、触媒と、電解質樹脂とが接する三相界面が形成されにくい。その結果、触媒の利用率が低下し、発電効率が低下するおそれがある。   In general, an electrode of a fuel cell contains an electrolyte resin. In the process of manufacturing an electrode for a fuel cell, a catalyst (for example, platinum) supported on a catalyst carrier (for example, carbon) and an electrolyte solution containing an electrolyte resin are kneaded to form an electrode paste (also referred to as electrode ink). ) Is included. Since the electrolyte resin has a property of being aggregated and stabilized, many electrolyte resins contained in the electrolyte solution have a large particle diameter. Thus, when the electrolyte resin is aggregated, it is difficult to form a three-phase interface where the catalyst carrier, the catalyst, and the electrolyte resin are in contact with each other. As a result, the utilization rate of the catalyst may decrease, and power generation efficiency may decrease.

このような問題に対して、電解質溶液に強アルカリ性の試薬を添加することにより、電解質樹脂の凝集をほぐす技術が提案されている(例えば、非特許文献1、2参照)。また、電極ペーストを製造する際に、電解質樹脂の凝集が発生しない程度の弱いせん断力で混練する技術(例えば、特許文献1参照)や、混練時の回転数、撹拌時間等を調節して電解質樹脂の凝集を抑制する技術(例えば、特許文献2参照)が提案されている。   In order to solve such a problem, there has been proposed a technique for loosening the aggregation of the electrolyte resin by adding a strongly alkaline reagent to the electrolyte solution (see, for example, Non-Patent Documents 1 and 2). In addition, when manufacturing the electrode paste, the electrolyte is adjusted by adjusting the technique of kneading with a weak shearing force that does not cause aggregation of the electrolyte resin (see, for example, Patent Document 1), the number of revolutions during kneading, the stirring time, and the like. A technique (for example, see Patent Document 2) that suppresses aggregation of the resin has been proposed.

特開2003−100305号公報JP 2003-100305 A 特開2006−210181号公報Japanese Patent Laid-Open No. 2006-210181 特開2006−331968号公報JP 2006-331968 A

Journal of Power Sources Volume165(2007) p.128−133Journal of Power Sources Volume 165 (2007) p. 128-133 Journal of Power Sources Volume169(2007) p.271−275Journal of Power Sources Volume 169 (2007) p. 271-275

しかしながら、非特許文献に記載されているように、強アルカリ性の試薬を用いると、触媒担体としてのカーボンの表面が親水性に改質されることにより、燃料電池の発電により生じる生成水が触媒層内に滞留し、フラッディグが生じて、燃料電池性能が低下するおそれがある。   However, as described in non-patent literature, when a strongly alkaline reagent is used, the surface of carbon as a catalyst carrier is modified to be hydrophilic, so that water generated by power generation of the fuel cell is generated in the catalyst layer. There is a risk that the fuel cell performance may be deteriorated due to retention in the inside and flooding.

本発明は、上記課題に鑑みてなされたものであり、燃料電池用電極の製造に用いられる電極ペーストにおいて、電解質樹脂の分散性を向上させる技術を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the technique which improves the dispersibility of electrolyte resin in the electrode paste used for manufacture of the electrode for fuel cells.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1] 燃料電池用電極の製造に用いられる電極ペーストの製造方法であって、
電解質樹脂が含まれる電解質溶液中にマイクロバブルを発生させる工程を含む、電極ペーストの製造方法。
Application Example 1 An electrode paste manufacturing method used for manufacturing a fuel cell electrode,
A method for producing an electrode paste, comprising a step of generating microbubbles in an electrolyte solution containing an electrolyte resin.

気泡は、マイナスに帯電している。そのため、電解質溶液中に気泡が入ると、疎水基の部分が親水性のような状態になり、疎水基同士が集まって凝集している部分に、溶媒(アルコール)が入り込む。これにより、電解質樹脂の凝集がほぐされる。マイクロバブルをその後、取り去っても、溶媒が入り込んでいるため、電解質樹脂が凝集してしまうことはない。したがって、燃料電池用電極の製造に用いられる電極ペーストにおいて、電解質樹脂の分散性を向上させることができる。   Bubbles are negatively charged. Therefore, when air bubbles enter the electrolyte solution, the hydrophobic group part becomes hydrophilic, and the solvent (alcohol) enters the part where the hydrophobic groups gather and aggregate. Thereby, aggregation of electrolyte resin is loosened. Even if the microbubbles are removed thereafter, the electrolyte is not aggregated because the solvent has entered. Therefore, the dispersibility of the electrolyte resin can be improved in the electrode paste used for manufacturing the fuel cell electrode.

なお、本発明は、種々の形態で実現することが可能であり、例えば、燃料電池用電極の製造方法、燃料電池の製造方法、その方法で製造された燃料電池、その燃料電池を搭載した車両等の形態で実現することができる。   The present invention can be realized in various forms. For example, a method for manufacturing a fuel cell electrode, a method for manufacturing a fuel cell, a fuel cell manufactured by the method, and a vehicle equipped with the fuel cell Or the like.

本発明の一実施例としての膜電極接合体の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the membrane electrode assembly as one Example of this invention. マイクロバブル発生処理を施した電解質溶液中の電解質樹脂の平均粒子形を示す図である。It is a figure which shows the average particle shape of electrolyte resin in the electrolyte solution which performed the microbubble generation process. 電解質溶液の粒子径分布を示す表である。It is a table | surface which shows the particle diameter distribution of electrolyte solution. 本実施例のMEAの酸素極のサイクリックボルタモグラムを示す図である。It is a figure which shows the cyclic voltammogram of the oxygen electrode of MEA of a present Example. 本実施例のMEAの水素極において水素のイオン化に要した電気量を示す表である。It is a table | surface which shows the quantity of electricity required for ionization of hydrogen in the hydrogen electrode of MEA of a present Example. 本実施例のMEAを用いた燃料電池の電流電圧特性を示す図である。It is a figure which shows the current-voltage characteristic of the fuel cell using MEA of a present Example.

図1は、本発明の一実施例としての膜電極接合体(以下、「MEA」と省略する)の製造方法を示す工程図である。工程S102では、電解質溶液中に、加圧減圧法にてマイクロバブルを発生させる。本実施例において、電解質溶液として、Nafion(登録商標)1100溶液(SE−5142 DuPont社製)を用いている。工程S102では、例えば、Nafion(登録商標)1100溶液100gと、分散媒(水25g,エタノール25g)との混合溶液中で、マイクロバブル発生機を30分間作動させる。これにより、電解質溶液中の電解質樹脂の凝集をほぐすことができる。本実施例において、マイクロバブル発生機として、Foamestコラムタイプ300(ナック社製)を用いている。このマイクロバブル発生機は、多孔質の高分子フィルムに圧縮気体を加えることによってマイクロバブルを発生させるものである。なお、他のマイクロバブル発生機を用いてもよい。   FIG. 1 is a process diagram showing a method for producing a membrane electrode assembly (hereinafter abbreviated as “MEA”) as one embodiment of the present invention. In step S102, microbubbles are generated in the electrolyte solution by a pressurized and reduced pressure method. In this example, a Nafion (registered trademark) 1100 solution (SE-5142 manufactured by DuPont) is used as the electrolyte solution. In step S102, for example, the microbubble generator is operated for 30 minutes in a mixed solution of Nafion (registered trademark) 1100 solution 100 g and a dispersion medium (water 25 g, ethanol 25 g). Thereby, aggregation of the electrolyte resin in the electrolyte solution can be loosened. In this embodiment, a Foamest column type 300 (manufactured by NAC) is used as a microbubble generator. This microbubble generator generates microbubbles by adding a compressed gas to a porous polymer film. Other microbubble generators may be used.

本実施例において、マイクロバブルとは、気泡の発生時に、その直径が10マイクロメートル〜数十マイクロメートルの微細な気泡をいう。なお、気泡の直径が数百ナノメートル〜10マイクロメートルの「マイクロナノバブル」や、数百ナノメートル以下の「ナノバブル」等のさらに気泡の直径の小さい気泡を用いてもよい。   In this embodiment, the microbubble means a fine bubble having a diameter of 10 micrometers to several tens of micrometers when bubbles are generated. A bubble having a smaller bubble diameter such as a “micro nano bubble” having a diameter of several hundred nanometers to 10 micrometers or a “nano bubble” having a diameter of several hundred nanometers or less may be used.

また、電解質樹脂としては、Nafion(登録商標)に限定されず、例えば、アシプレックス(登録商標)、フレミオン(登録商標)等の他のフッ素系スルホン酸樹脂を用いてもよい。また、例えば、フッ素系ホスホン酸樹脂、フッ素系カルボン酸樹脂、フッ素系グラフト樹脂、炭化水素系グラフト樹脂、芳香族樹脂等を用いてもよい。   The electrolyte resin is not limited to Nafion (registered trademark), and other fluorine-based sulfonic acid resins such as Aciplex (registered trademark) and Flemion (registered trademark) may be used. Further, for example, a fluorine-based phosphonic acid resin, a fluorine-based carboxylic acid resin, a fluorine-based graft resin, a hydrocarbon-based graft resin, an aromatic resin, or the like may be used.

工程S104では、工程S102で作成された、マイクロバブルを含有した電解質溶液(以下、「マイクロバブル含有電解質溶液」とも称する)と、燃料電池用触媒(以下、単に「触媒」とも称する)と、分散媒とを混練して、混練液を作成する。本実施例において、触媒として、白金を用いている。触媒としての白金は、カーボンブラックに担持されている。また、本実施例において、分散媒は水と、エタノール等の低級アルコールとを含む。具体的には、撹拌器に、マイクロバブル含有電解質溶液と、触媒と、分散媒とを入れ、数十秒〜数分間混練(撹拌)した。なお、撹拌器を用いず、人間が手で混練してもよい。   In step S104, the electrolyte solution containing microbubbles created in step S102 (hereinafter also referred to as “microbubble-containing electrolyte solution”), a fuel cell catalyst (hereinafter also simply referred to as “catalyst”), a dispersion A kneading liquid is prepared by kneading the medium. In this embodiment, platinum is used as the catalyst. Platinum as a catalyst is supported on carbon black. In this embodiment, the dispersion medium contains water and a lower alcohol such as ethanol. Specifically, the microbubble-containing electrolyte solution, the catalyst, and the dispersion medium were placed in a stirrer and kneaded (stirred) for several tens of seconds to several minutes. In addition, a human may knead by hand without using a stirrer.

なお、触媒は白金に限定されず、その他、ロジウム、パラジウム、イリジウム、オスミニウム、ルテニウム、レニウム、金、銀、ニッケル、コバルト、リチウム、ランタン、ストロンチウム、イットリウム等の種々の金属のうち、1種または2種以上を用いてもよい。また、これらの2種類以上を組み合わせた合金を、用いてもよい。   The catalyst is not limited to platinum, and in addition, rhodium, palladium, iridium, osmium, ruthenium, rhenium, gold, silver, nickel, cobalt, lithium, lanthanum, strontium, yttrium, etc. Two or more kinds may be used. Moreover, you may use the alloy which combined these 2 or more types.

また、触媒担体はカーボンブラックに限定されず、その他、天然黒鉛粉末、人造黒鉛粉末、メソカーボンマイクロビーズ(MCMB)、多層カーボンナノチューブ(MWCNT)等、種々の炭素材料を用いることができる。   The catalyst carrier is not limited to carbon black, and various other carbon materials such as natural graphite powder, artificial graphite powder, mesocarbon microbeads (MCMB), and multi-walled carbon nanotubes (MWCNT) can be used.

工程S106では、超音波ホモジナイザ(UH−600 SMT社製)を用いて、工程S104によって作成された混練液中のカーボンブラックを分散(粉砕、混合)させて、触媒インクを作成した。なお、超音波ホモジナイザに代えて、ジェットミル、ボールミル、振動ボールミル、マイクロカッター等を用いてもよい。   In step S106, a carbon black in the kneaded liquid prepared in step S104 was dispersed (pulverized and mixed) using an ultrasonic homogenizer (manufactured by UH-600 SMT) to prepare a catalyst ink. Instead of the ultrasonic homogenizer, a jet mill, a ball mill, a vibration ball mill, a micro cutter, or the like may be used.

工程S108では、電解質膜上に触媒層を形成する。具体的には、工程S106にて作成された触媒インクを基材シート上に塗布して触媒層を形成し、触媒層付基材シートを作成する。その後、触媒層付基材シートを、触媒層側が電解質膜に接するように重ね合わせて、130℃にてホットプレスし、触媒層を電解質膜上に転写する。触媒層を転写により電解質膜に接合する際に、触媒層中の気泡が消滅する。なお、気泡が消滅しても、電解質樹脂の分散は維持される。本実施例において、工程S108にて作成される、触媒層が形成された電解質膜を、「CCM(Catalyst Coated Membrane)」と称する。   In step S108, a catalyst layer is formed on the electrolyte membrane. Specifically, the catalyst ink created in step S106 is applied onto the base sheet to form a catalyst layer, and a base sheet with a catalyst layer is created. Thereafter, the base sheet with the catalyst layer is superposed so that the catalyst layer side is in contact with the electrolyte membrane, and hot-pressed at 130 ° C. to transfer the catalyst layer onto the electrolyte membrane. When the catalyst layer is joined to the electrolyte membrane by transfer, bubbles in the catalyst layer disappear. Even when the bubbles disappear, the dispersion of the electrolyte resin is maintained. In this example, the electrolyte membrane formed with the catalyst layer formed in step S108 is referred to as “CCM (Catalyst Coated Membrane)”.

なお、本実施例では、転写により電解質膜上に触媒層を形成しているが、スプレー法、インクジェット法、スクリーン印刷等の印刷手段によって、電解質膜上に触媒層を形成してもよい。転写以外の方法で、電解質膜上に触媒層を形成する場合には、電解質膜上に触媒層を形成した後に、130℃以上で熱処理を施してもよい。   In this embodiment, the catalyst layer is formed on the electrolyte membrane by transfer, but the catalyst layer may be formed on the electrolyte membrane by a printing means such as a spray method, an ink jet method, or screen printing. When a catalyst layer is formed on the electrolyte membrane by a method other than transfer, heat treatment may be performed at 130 ° C. or higher after the catalyst layer is formed on the electrolyte membrane.

工程S110では、工程S108で作成されたCCMに、拡散層シートを重ね合わせて、130℃未満でホットプレスすることにより、MEAを作成する。   In step S110, the MEA is created by superposing the diffusion layer sheet on the CCM created in step S108 and hot-pressing it below 130 ° C.

図2は、マイクロバブル発生処理を施した電解質溶液中の電解質樹脂の平均粒子形を示す図である。図2では、電解質溶液と分散媒の混合溶液中にマイクロバブルを30分間発生させた(工程S102における処理と同様)後、室温に12時間放置して、気泡を除去した後に、ゼータプラス(Brookhaven Instrument Corporation製)を用いて、電解質樹脂の平均粒子を測定した。図2において、マイクロバブル発生処理を30分間施したも(本実施例の製造方法)をa、比較例としてマイクロバブル発生処理を施していないものをbとして図示している。   FIG. 2 is a diagram showing an average particle shape of the electrolyte resin in the electrolyte solution subjected to the microbubble generation treatment. In FIG. 2, microbubbles were generated in the mixed solution of the electrolyte solution and the dispersion medium for 30 minutes (similar to the treatment in step S102), then left at room temperature for 12 hours to remove the bubbles, and then zeta plus (Brookhaven). The average particle | grains of electrolyte resin were measured using Instrument Corporation. In FIG. 2, a microbubble generation process is performed for 30 minutes (the manufacturing method of the present embodiment) is indicated as a, and a microbubble generation process is not performed as a comparative example as b.

図3は、図2に示す各電解質溶液の粒子径分布を示す表である。メジアン径とは積算分布曲線の50%に相当する粒子径である。一般に、電解質溶液の粒子径を表す場合には、メジアン径を用いる。図3に示すように、マイクロバブル発生処理を施した場合の電解質樹脂のメジアン径は60μm、マイクロバブル発生処理を施してない場合の電解質樹脂のメジアン径は、200μmである。また、図2,3に示すように、マイクロバブル発生処理を施した場合は、マイクロバブル発生処理を施してない場合に比較して、電解質樹脂の分布範囲が狭い。すなわち、マイクロバブル発生処理を施すことによって、電解質樹脂の粒子径が小さくなっているといえる。その結果、電解質樹脂溶液中にマイクロバブルを発生させることにより、電解質樹脂の分散性が向上されたといえる。   FIG. 3 is a table showing the particle size distribution of each electrolyte solution shown in FIG. The median diameter is a particle diameter corresponding to 50% of the cumulative distribution curve. Generally, when expressing the particle diameter of the electrolyte solution, the median diameter is used. As shown in FIG. 3, the median diameter of the electrolyte resin when the microbubble generation treatment is performed is 60 μm, and the median diameter of the electrolyte resin when the microbubble generation processing is not performed is 200 μm. As shown in FIGS. 2 and 3, when the microbubble generation process is performed, the distribution range of the electrolyte resin is narrower than when the microbubble generation process is not performed. That is, it can be said that the particle diameter of the electrolyte resin is reduced by performing the microbubble generation treatment. As a result, it can be said that the dispersibility of the electrolyte resin was improved by generating microbubbles in the electrolyte resin solution.

図4は、本実施例における製造方法で製造したMEA(以下、単に「本実施例のMEA」とも称する)の酸素極のサイクリックボルタモグラムを示す図である。図5は、本実施例のMEAの水素極において水素のイオン化に要した電気量を示す表である。図5に示す電気量は、電気化学的に活性な触媒の表面積を、図4に示すサイクリックボルタモグラムから算出し、その算出結果に基づいて算出されたものである。電気化学的に活性な触媒の表面積は、サイクリックボルタモグラムにおける酸化電流と還元電流のピーク面積から吸着水素、吸着酸素の量を求め、その量から換算される。図4,5では、本実施例のMEAをa、比較例としてマイクロバブル発生処理を施さずに製造したMEAをbとして図示している。   FIG. 4 is a diagram showing a cyclic voltammogram of the oxygen electrode of an MEA manufactured by the manufacturing method in the present embodiment (hereinafter also simply referred to as “MEA of the present embodiment”). FIG. 5 is a table showing the amount of electricity required for ionization of hydrogen at the hydrogen electrode of the MEA of this example. The amount of electricity shown in FIG. 5 is calculated based on the calculation result of the surface area of the electrochemically active catalyst calculated from the cyclic voltammogram shown in FIG. The surface area of the electrochemically active catalyst is converted from the amounts of adsorbed hydrogen and adsorbed oxygen obtained from the peak areas of the oxidation current and reduction current in the cyclic voltammogram. 4 and 5, the MEA of the present embodiment is shown as a, and the MEA manufactured without performing the microbubble generation process is shown as b as a comparative example.

図5に示すように、本実施例のMEAの電極では、水素をイオン化するのに、320mQの電気量を要した。一方、比較例のMEAを用いた場合に水素をイオン化するのに要した電気量は、250mQであった。すなわち、本実施例のMEAの電極の方が、触媒(白金)に吸着された水素原子の量が多かったといえる。したがって、触媒層における電解質樹脂の分散性が向上されたといえる。本実施例のMEAと比較例のMEAとでは、同量の触媒(白金)を用いているが、電気量はそれぞれ、320mQ、250mQである。すなわち、触媒(白金)の利用率が約30%向上したといえる。   As shown in FIG. 5, the MEA electrode of this example required 320 mQ of electricity to ionize hydrogen. On the other hand, when using the MEA of the comparative example, the amount of electricity required to ionize hydrogen was 250 mQ. That is, it can be said that the amount of hydrogen atoms adsorbed on the catalyst (platinum) was larger in the MEA electrode of this example. Therefore, it can be said that the dispersibility of the electrolyte resin in the catalyst layer is improved. In the MEA of this example and the MEA of the comparative example, the same amount of catalyst (platinum) is used, but the amount of electricity is 320 mQ and 250 mQ, respectively. That is, it can be said that the utilization rate of the catalyst (platinum) has improved by about 30%.

図6は、本実施例のMEAを用いた燃料電池の電流電圧特性を示す図である。図6でも、図4,5と同様に、本実施例のMEAをa、比較例としてマイクロバブル発生処理を施さずに製造したMEAをbとして図示している。図6では、MEAの両側にセパレータを配置して燃料電池を構成し、電子負荷装置FK400L(高砂製作所社製)と直流電源装置EX750(高砂製作所社製)を用いて電流電圧測定試験を行った結果を示している。測定条件は、アノードに水素、カソードに空気を供給し、水素出口圧力を0.15MPa、空気出口圧力を0.15MPa、測定セルの作動温度を80℃、供給される水素および酸素の露点を80度とした。図6に示すように、本実施例のMEAを用いた燃料電池は、比較例の燃料電池と比較して燃料電池特性が向上された。   FIG. 6 is a diagram showing current-voltage characteristics of a fuel cell using the MEA of this example. Also in FIG. 6, like FIG.4, 5, MEA of a present Example is shown as a, and MEA manufactured without performing a microbubble generation | occurrence | production process as a comparative example is shown as b. In FIG. 6, a fuel cell is configured by arranging separators on both sides of the MEA, and a current voltage measurement test is performed using an electronic load device FK400L (manufactured by Takasago Seisakusho) and a DC power supply device EX750 (manufactured by Takasago Seisakusho). Results are shown. The measurement conditions were as follows: hydrogen was supplied to the anode, air was supplied to the cathode, the hydrogen outlet pressure was 0.15 MPa, the air outlet pressure was 0.15 MPa, the operating temperature of the measurement cell was 80 ° C., and the dew point of the supplied hydrogen and oxygen was 80 Degree. As shown in FIG. 6, the fuel cell using the MEA of this example has improved fuel cell characteristics as compared with the fuel cell of the comparative example.

図2〜6に基づいて説明したように、本実施例のMEAの製造方法によれば、電解質樹脂の分散性が向上され、その結果、触媒の利用率が向上されて燃料電池の性能が向上される。   As described with reference to FIGS. 2 to 6, according to the MEA manufacturing method of this embodiment, the dispersibility of the electrolyte resin is improved, and as a result, the utilization rate of the catalyst is improved and the performance of the fuel cell is improved. Is done.

なお、この発明は上記の実施例に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。例えば、上記した実施例において、工程S102において電解質溶液中にマイクロバブルを発生させているが、他のタイミングでマイクロバブルを発生させてもよい。例えば、工程S104において、マイクロバブルを発生させつつ混練するようにしてもよい。また、工程S106において、混練液中にマイクロバブルを発生させつつ、カーボンブラックを分散させてもよい。   In addition, this invention is not restricted to said Example, In the range which does not deviate from the summary, it is possible to implement in various aspects. For example, in the above-described embodiment, microbubbles are generated in the electrolyte solution in step S102, but microbubbles may be generated at other timings. For example, in step S104, kneading may be performed while generating microbubbles. Further, in step S106, carbon black may be dispersed while generating microbubbles in the kneaded liquid.

Claims (1)

燃料電池用電極の製造に用いられる電極ペーストの製造方法であって、
電解質樹脂が含まれる電解質溶液中にマイクロバブルを発生させる工程を含む、電極ペーストの製造方法。
A method for producing an electrode paste used for producing a fuel cell electrode,
A method for producing an electrode paste, comprising a step of generating microbubbles in an electrolyte solution containing an electrolyte resin.
JP2009156485A 2009-07-01 2009-07-01 Method for manufacturing electrode paste Pending JP2011014334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009156485A JP2011014334A (en) 2009-07-01 2009-07-01 Method for manufacturing electrode paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009156485A JP2011014334A (en) 2009-07-01 2009-07-01 Method for manufacturing electrode paste

Publications (1)

Publication Number Publication Date
JP2011014334A true JP2011014334A (en) 2011-01-20

Family

ID=43593025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009156485A Pending JP2011014334A (en) 2009-07-01 2009-07-01 Method for manufacturing electrode paste

Country Status (1)

Country Link
JP (1) JP2011014334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976017A (en) * 2019-09-11 2022-08-30 北京航空航天大学 Lead-acid battery negative electrode lead paste, preparation method of negative electrode and lead-acid battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976017A (en) * 2019-09-11 2022-08-30 北京航空航天大学 Lead-acid battery negative electrode lead paste, preparation method of negative electrode and lead-acid battery
CN114976017B (en) * 2019-09-11 2023-06-27 北京航空航天大学 Lead-acid battery negative electrode lead paste, preparation method of negative electrode and lead-acid battery

Similar Documents

Publication Publication Date Title
CN102082275B (en) Electrode for polymer electrolyte membrane fuel cell and method for forming membrane-electrode assembly using the same
JP5202625B2 (en) Method for producing catalyst ink for membrane-electrode composite of fuel cell, and method for producing membrane-electrode composite of fuel cell using the same
Hosseini et al. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M= Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance
EP3536664B1 (en) Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
CN111900420A (en) Anode catalyst slurry, anode catalyst layer, membrane electrode and fuel cell
JP2017041454A (en) Fuel cell electrode with conduction network
JP2013534707A5 (en)
JP2010257929A (en) Method of manufacturing electrode catalyst slurry for fuel cell, electrode for polymer electrolyte fuel cell, and membrane electrode assembly
WO2019069789A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer-type fuel cell
JP5510181B2 (en) Electrocatalyst layer production method and polymer electrolyte fuel cell
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP2009117248A (en) Fuel cell
JP2011159517A (en) Method for manufacturing fuel cell catalyst layer
JP2005228601A (en) Solid polymer fuel cell
WO2022124407A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP2005235706A (en) Electrode for solid polymer fuel cell
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JP2014135229A (en) Catalyst ink for fuel cell
JP6727264B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP6819688B2 (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly manufactured from now on, and fuel cell containing this
JP2011014334A (en) Method for manufacturing electrode paste
JP2020077581A (en) Catalyst layer
KR20190136252A (en) Catalyst ink for forming electrode catalyst layer of fuel cell and manufacturing method thereof
KR102187990B1 (en) Manufacturing method of catalyst ink for forming fuel cell electrode catalyst layer
JP2009224031A (en) Fuel cell electrocatalyst ink, electrocatalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell