JP2011012977A - Inertial filter for classifying fine particles - Google Patents

Inertial filter for classifying fine particles Download PDF

Info

Publication number
JP2011012977A
JP2011012977A JP2009154804A JP2009154804A JP2011012977A JP 2011012977 A JP2011012977 A JP 2011012977A JP 2009154804 A JP2009154804 A JP 2009154804A JP 2009154804 A JP2009154804 A JP 2009154804A JP 2011012977 A JP2011012977 A JP 2011012977A
Authority
JP
Japan
Prior art keywords
hole
filter
diameter
inertial
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009154804A
Other languages
Japanese (ja)
Inventor
Yoshitomo Suzuki
恵友 鈴木
Masami Furuuchi
正美 古内
Yoshio Otani
吉生 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Corp
Original Assignee
Nitta Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Corp filed Critical Nitta Corp
Priority to JP2009154804A priority Critical patent/JP2011012977A/en
Publication of JP2011012977A publication Critical patent/JP2011012977A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus, capable of performing the process from the removal of coarse particles to the classification and collection of nano-particles by a small-sized lightweight structure and capable of measuring, for example, the exposure amount of fine particles in the breathing region of a worker with high accuracy.SOLUTION: This apparatus is constituted so that at least two first and second inertial filters 3 and 5 are respectively connected in series which are to be arranged on the upstream and downstream sides, in a solvent passing direction, and both inertial filters are respectively equipped with through-holes 3e2 and 5d2 filled with metal fibers 11 and 13. The first and second inertial filters are equipped with a structure that serve to establish the relation: D1<D2, L1<L2 and d1>d2, wherein D1 and D2 are the pore sizes of the mutual through-holes; L1 and L2 are the pore lengths of the mutual through-holes; and d1 and d2 are the fiber diameters of non-compressible fibers. The filling amount of the non-compressible fibers in the through-holes of the first inertial filter is adjusted so as to become more than that of the non-compressible fibers in the through-holes of the second inertial filter to set not only the first inertial filter as a coarse particle removing filter but also the second inertial filter as a nano-particle classifying filter.

Description

本発明は、貫通孔内に非圧縮性繊維を充填して粒子を捕集する慣性フィルタに関するものである。   The present invention relates to an inertial filter that collects particles by filling incompressible fibers in through holes.

カスケードインパクタ型粒子分級装置は、インパクタを上下方向複数段で直列に連ねてなる装置である(特許文献1の図1参照)。このカスケードインパクタ型粒子分級装置においては、下段側インパクタほど気流通過ノズル径を小さくすることで、順次に気流速度を高め、これにより各段のインパクタにより慣性質量が大きい粒径大の粒子から順次に捕集分級することができるようになっている。インパクタは、気流の向きを変えた際に慣性力によりその気流の向き変化に追随できない慣性質量を持つ粒子を捕集プレートに衝突させて捕集する装置であり、このようなインパクタを複数段連ねることで、粒径の大きい順に粒子を分級できるようになっている。   The cascade impactor type particle classifier is an apparatus in which impactors are connected in series in a plurality of stages in the vertical direction (see FIG. 1 of Patent Document 1). In this cascade impactor-type particle classifier, the lower the side impactor, the smaller the airflow passage nozzle diameter, the higher the airflow speed, and the higher the impact mass of each stage, the larger the inertial mass. It can be collected and classified. An impactor is a device that collects particles having an inertial mass that cannot follow the change in the direction of the airflow due to the inertial force when the direction of the airflow is changed. Thus, it is possible to classify the particles in descending order of particle size.

このような粒子分級装置では、ポンプ吸引により、装置内圧を下げて装置外圧との間で生成する気圧差で装置内部に上記粒子を分級させる気流を発生させるようになっているが、粒径が微小な粒子では、ノズル径を高精度に制作することが困難化し、微小粒子の分級は困難であった。   In such a particle classifier, an air flow for classifying the particles inside the apparatus is generated by a pumping suction to reduce the internal pressure of the apparatus and generate an air pressure difference with the external pressure of the apparatus. With fine particles, it has become difficult to produce nozzle diameters with high accuracy, and classification of fine particles has been difficult.

特許文献1には、上記カスケードインパクタ型粒子分級装置を上段側に配置して粒径の大きい粒子の分級を行う一方、下段側に特許文献1発明にかかる慣性フィルタ(特許文献1の図2参照)を配置し、微小粒子の分級を可能としたことが開示されている。   In Patent Document 1, the cascade impactor type particle classifier is arranged on the upper stage side to classify particles having a large particle size, while the inertia filter according to the invention of Patent Document 1 is installed on the lower stage side (see FIG. 2 of Patent Document 1). ) To enable classification of fine particles.

この慣性フィルタは、気体が通過する貫通孔を持つフィルタサポート部と、この貫通孔内に当該貫通孔を塞ぐように配置した通気性多孔質部材であるSUS繊維(従来慣性フィルタ)とを含むものである。  This inertial filter includes a filter support portion having a through hole through which gas passes, and SUS fiber (conventional inertia filter) which is a breathable porous member disposed so as to close the through hole in the through hole. .

特開2008−70222号公報JP 2008-70222 A

ところで従来の慣性フィルタの構造において、貫通孔内での金属繊維の充填率を高くして、貫通穴内での空隙率を微小化することで、ナノ粒子分級を行おうとする場合、貫通孔内における気流流通性が大きく低下して圧損が増大する結果、気流吸引ポンプとしても大型のものを使用する必要があった。そのため、従来の慣性フィルタを用いた粒子分級装置では、装置全体が大型化して携行性に不便な装置となる。一方、携行性を考慮し小流量の小型ポンプで吸引するには、空隙率の微小な貫通孔内では圧損により気流速度が低下してしまい、分級に必要とする粒子慣性効果が低下し、目的とするナノ粒子の分級が困難となる。   By the way, in the structure of a conventional inertia filter, when trying to classify nanoparticles by increasing the filling rate of metal fibers in the through hole and minimizing the porosity in the through hole, As a result of the significant decrease in air flow and an increase in pressure loss, it was necessary to use a large air flow suction pump. Therefore, in the particle classification device using the conventional inertial filter, the whole device becomes large and becomes an inconvenient device for portability. On the other hand, in consideration of portability, when sucking with a small pump with a small flow rate, the air velocity is reduced due to pressure loss in a small through hole with a low porosity, and the particle inertia effect required for classification is reduced. It becomes difficult to classify nanoparticles.

本発明は、携帯型ポンプで内部に小流量の気流を吸引するなどして、装置全体の小型軽量化を図る一方、そのポンプで吸引しても圧損を小さく抑制できるように、金属繊維充填の貫通孔内の空隙率を確保し、貫通孔内において、ナノ粒子の分級が可能な慣性フィルタを提供することを解決すべき課題としている。   The present invention aims to reduce the size and weight of the entire device by sucking a small flow rate of air inside with a portable pump, etc. An object to be solved is to provide an inertial filter capable of securing the porosity in the through-hole and classifying the nanoparticles in the through-hole.

本発明による慣性フィルタは、粒子を含む流体が通過する貫通孔を具備すると共に、この貫通孔内に非圧縮性繊維が充填されたフィルタ構造を具備し、上記貫通孔内の空隙率が、非圧縮性繊維の充填量調整により制御されていることを特徴とする。   The inertial filter according to the present invention has a through-hole through which a fluid containing particles passes, and has a filter structure in which the incompressible fiber is filled in the through-hole. It is controlled by adjusting the filling amount of the compressible fiber.

本発明による慣性フィルタは、貫通孔内をポンプで小流量吸引しても貫通孔内の非圧縮性繊維の充填量調整で貫通孔内の空隙率を制御することで貫通孔内の圧損を小さく抑制し、粒子分級に寄与し得る慣性質量効果を得ることができる結果、小型軽量のナノ粒子分級フィルタの構造とすることができる。   The inertial filter according to the present invention reduces the pressure loss in the through hole by controlling the porosity in the through hole by adjusting the filling amount of the incompressible fiber in the through hole even if a small flow rate is sucked into the through hole by the pump. As a result of being able to suppress and obtain an inertial mass effect that can contribute to particle classification, a structure of a small and lightweight nanoparticle classification filter can be obtained.

また、本発明による慣性フィルタは、例えば、流体通過上流側と下流側それぞれに少なくとも2つの第1、第2慣性フィルタを直列に連結配置し、当該両慣性フィルタそれぞれの貫通孔内の非圧縮性繊維の充填量調整により、上流側の第1慣性フィルタでは貫通孔内の空隙率を所定の粒径以上の粗粒子除去に対応した空隙率とし、下流側の第2慣性フィルタでは貫通孔内の空隙率を所定の粒径以下のナノ粒子の分級に対応した空隙率として、ナノ粒子の分級を行うことができる。   In addition, the inertial filter according to the present invention includes, for example, at least two first and second inertial filters connected in series on the upstream side and the downstream side of the fluid passage, respectively, and the incompressibility in the through holes of the two inertial filters. By adjusting the filling amount of the fiber, the porosity in the through hole in the first inertial filter on the upstream side is set to a porosity corresponding to the removal of coarse particles having a predetermined particle size or more, and the second inertial filter in the downstream side in the through hole. Nanoparticles can be classified using the porosity corresponding to the classification of nanoparticles having a predetermined particle size or less.

本発明において、好ましい態様は、上記非圧縮性繊維がステンレス繊維である。   In a preferred embodiment of the present invention, the incompressible fiber is a stainless fiber.

本発明において、好ましい態様は、上記貫通孔は、流体上流側の拡径貫通孔と、流体下流側の定径貫通孔とを含んだ構成になっており、拡径貫通孔は上流側から下流側方向に徐々に内径が拡径する貫通孔であり、定径貫通孔は、上流側から下流側方向に内径が一定の貫通孔であり、当該内部に上記非圧縮性繊維が充填してある、ことである。   In the present invention, a preferable aspect is that the through hole includes a diameter-enlarged through hole on the upstream side of the fluid and a constant-diameter through hole on the downstream side of the fluid. A through-hole whose inner diameter gradually increases in the lateral direction, and the constant-diameter through-hole is a through-hole having a constant inner diameter from the upstream side to the downstream side, and the inside thereof is filled with the incompressible fiber. That's it.

以上の本発明においては、第1、第2慣性フィルタの貫通孔内の非圧縮性繊維の充填量を調整して所定の貫通孔内空隙率を確保することで、流量を小流量として、非圧縮性繊維の充填量増加にほぼ比例して圧損が増加するものの、その圧損を共に極めて小さく抑制でき、粒径が大小の粒子を捕集することができる。その結果、小流量のポンプで吸引しても、圧損を小さく抑制することで、分級に必要な粒子慣性効果を得ることができ、ポンプ小型化とあいまって装置全体の小型軽量化が可能となる。   In the present invention described above, by adjusting the filling amount of the incompressible fibers in the through holes of the first and second inertial filters to ensure a predetermined through hole porosity, the flow rate is reduced to a small flow rate. Although the pressure loss increases almost in proportion to the increase in the filling amount of the compressible fiber, both of the pressure loss can be suppressed to be extremely small, and particles having a large and small particle diameter can be collected. As a result, even if suction is performed with a small flow rate pump, the particle inertia effect necessary for classification can be obtained by suppressing the pressure loss to a small level, and in combination with downsizing of the pump, the entire apparatus can be reduced in size and weight. .

本発明によれば、携帯型ポンプで小流量吸引するなど、装置全体を小型軽量化の構造でありながら、低圧損で粗粒子除去やナノ粒子分級ができる装置を提供することができる。   According to the present invention, it is possible to provide an apparatus that can remove coarse particles and classify nanoparticles with low-pressure loss, while having a structure that reduces the size and weight of the entire apparatus, such as sucking a small flow rate with a portable pump.

図1は本発明の実施の形態にかかる粒子分級装置を側面から見た概念構成を示す図である。FIG. 1 is a diagram showing a conceptual configuration of a particle classification device according to an embodiment of the present invention as viewed from the side. 図2(a)は図1装置内の第1慣性フィルタを拡大して示す図、図2(b)は同装置内の第2慣性フィルタを拡大して示す図である。2A is an enlarged view of the first inertia filter in the apparatus of FIG. 1, and FIG. 2B is an enlarged view of the second inertia filter in the apparatus. 図3(a)および図3(b)は、それぞれ、第1慣性フィルタと第2慣性フィルタそれぞれの金属繊維充填量対圧損とを示す図である。FIG. 3A and FIG. 3B are diagrams showing the metal fiber filling amount versus pressure loss of the first inertia filter and the second inertia filter, respectively. 図4(a)および図4(b)は、それぞれ、第1慣性フィルタと第2慣性フィルタそれぞれにおける、横軸が粒径(μm)、縦軸が粒子捕集効率(%)とする粒径(μm)対捕集効率(%)の関係を示す図である。4 (a) and 4 (b) show the particle diameters in which the horizontal axis is the particle size (μm) and the vertical axis is the particle collection efficiency (%) in the first inertia filter and the second inertia filter, respectively. It is a figure which shows the relationship of (micrometer) versus collection efficiency (%). 図5は実施の形態にかかる粒子分級装置の変形例を示す図である。FIG. 5 is a view showing a modification of the particle classifying apparatus according to the embodiment.

以下、添付した図面を参照して、本発明の実施の形態に係る慣性フィルタとこれを用いた粒子分級装置を説明する。なお、実施の形態において粒子は溶媒の一例として気体中に浮遊する粒子を想定するが、気体中に浮遊する粒子に限定されず、他の溶媒例えば液中やその他を浮遊する粒子を含むことができる。図1および図2(a)(b)を参照して、実施の形態の粒子分級装置1は、気流上流側から気流下流側にかけて、プレ慣性フィルタとして粗粒子除去用フィルタである第1慣性フィルタ3、本慣性フィルタとしてナノ粒子分級用フィルタである第2慣性フィルタ5、およびナノ粒子捕集用のバックアップフィルタ7と、慣性フィルタ内部気流を外部に排気する排気部9と、を備える。   Hereinafter, an inertial filter according to an embodiment of the present invention and a particle classifier using the same will be described with reference to the accompanying drawings. In the embodiment, the particles are assumed to be particles floating in a gas as an example of a solvent. However, the particles are not limited to particles floating in a gas, and may include other solvents such as particles floating in a liquid or others. it can. Referring to FIGS. 1 and 2 (a) and 2 (b), a particle classification device 1 according to an embodiment is a first inertia filter that is a coarse particle removal filter as a pre-inert filter from the air flow upstream side to the air flow downstream side. 3. As the inertial filter, a second inertial filter 5 that is a nanoparticle classification filter, a backup filter 7 for collecting nanoparticles, and an exhaust unit 9 that exhausts the airflow inside the inertial filter to the outside.

第1慣性フィルタ3は、円板状プレート3aと、円筒状プレート3bと、円柱状プレート3cと、を含むと共にこれらにより内部にフィルタ空間3dを構成する。   The first inertia filter 3 includes a disk-shaped plate 3a, a cylindrical plate 3b, and a columnar plate 3c, and forms a filter space 3d therein.

円板状プレート3aは、フィルタプレートとして、気流上流側に配置され、図示略の気流吸入孔を多数有し、気流下流側に配置した図示略の気流吸引ポンプの作用により、この気流吸入孔から内部に気流を吸入することができるようになっている。この円板状プレート3aは、必ずしも、必須ではなく、省略することもできる。円筒状プレート3bは、円板状プレート3aの外径と同じ外径を有し、第1慣性フィルタ3の側面を構成する。円柱状プレート3cは、当該プレート中央に軸方向の貫通孔3eを有する。この貫通孔3eは、上側から下側へかけて内径が下方へ漸次拡径する拡径貫通孔3e1と、拡径貫通孔3e1の下端に連続し内径が一定である定径貫通孔3e2と、から構成される。  The disc-like plate 3a is arranged as a filter plate on the upstream side of the airflow, has a number of airflow suction holes (not shown), and from the airflow suction hole by the action of an airflow suction pump (not shown) arranged on the downstream side of the airflow. Airflow can be inhaled inside. The disk-shaped plate 3a is not always essential and can be omitted. The cylindrical plate 3 b has the same outer diameter as that of the disk-shaped plate 3 a and constitutes the side surface of the first inertia filter 3. The columnar plate 3c has an axial through hole 3e at the center of the plate. The through-hole 3e has an enlarged through-hole 3e1 whose inner diameter gradually increases downward from the upper side to the lower side, a constant-diameter through-hole 3e2 that is continuous with the lower end of the enlarged-diameter through-hole 3e1, and has a constant inner diameter, Consists of

この定径貫通孔3e2には非圧縮性繊維として高速気流が通過しても体積変化が殆どない金属繊維好ましくはSUS(ステンレス)繊維11が緻密に絡まった状態で充填されている。なお、金属繊維としてはSUS繊維に限定するものではなく、アルミ繊維、銅繊維、その他の金属繊維から選ばれる1種以上の金属繊維でもよい。また、非圧縮性で高速気流が通過しても体積変化が殆どない繊維であれば、金属繊維に限定しない。   This constant diameter through hole 3e2 is filled with a metal fiber, preferably SUS (stainless steel) fiber 11, which hardly changes in volume even when a high-speed airflow passes as an incompressible fiber, in a state of being densely entangled. The metal fiber is not limited to SUS fiber, and may be one or more metal fibers selected from aluminum fiber, copper fiber, and other metal fibers. Further, the fibers are not limited to metal fibers as long as they are fibers that are incompressible and hardly change in volume even when a high-speed airflow passes through them.

第2慣性フィルタ5は、第1慣性フィルタ3に対して気流下流側直下に連続配置されて当該第1慣性フィルタ3に連結されている。第2慣性フィルタ5は、第1慣性フィルタ3外径と同じ外径の円筒状プレート5aと、円柱状プレート5bと、を含み、これらにより内部にフィルタ空間5cを構成する。円柱状プレート5bは、当該プレート中央に軸方向の貫通孔5dを有する。この貫通孔5dは、上側から下側へかけて内径が下方へ漸次拡径する拡径貫通孔5d1と、第1貫通孔部分5d1の下端に連続し内径が一定である定径貫通孔5d2と、から構成される。   The second inertia filter 5 is continuously arranged immediately downstream of the air flow with respect to the first inertia filter 3 and is connected to the first inertia filter 3. The second inertia filter 5 includes a cylindrical plate 5a having the same outer diameter as that of the first inertia filter 3 and a columnar plate 5b, and these constitute a filter space 5c. The columnar plate 5b has an axial through hole 5d at the center of the plate. The through-hole 5d has an enlarged through-hole 5d1 whose inner diameter gradually increases downward from the upper side to the lower side, a constant-diameter through-hole 5d2 that is continuous with the lower end of the first through-hole portion 5d1, and has a constant inner diameter. Is composed of.

この第2慣性フィルタ5の定径貫通孔5d2には金属繊維好ましくはSUS(ステンレス)繊維13が充填されている。この場合も上記と同様、第2慣性フィルタ5の定径貫通孔5d2には非圧縮性繊維として高速気流が通過しても体積変化が殆どない金属繊維好ましくはSUS(ステンレス)繊維13が緻密に絡まった状態で充填されている。なお、金属繊維としてはSUS繊維に限定するものではなく、アルミ繊維、銅繊維、その他の金属繊維から選ばれる1種以上の金属繊維でもよい。また、非圧縮性で高速気流が通過しても体積変化が殆どない繊維であれば、金属繊維に限定しない。   The constant-diameter through hole 5d2 of the second inertia filter 5 is filled with metal fibers, preferably SUS (stainless steel) fibers 13. Also in this case, in the same manner as described above, the constant-diameter through hole 5d2 of the second inertia filter 5 is densely made of metal fibers, preferably SUS (stainless) fibers 13, which hardly change in volume even when a high-speed air flow passes as incompressible fibers. It is filled in a tangled state. The metal fiber is not limited to SUS fiber, and may be one or more metal fibers selected from aluminum fiber, copper fiber, and other metal fibers. Further, the fibers are not limited to metal fibers as long as they are fibers that are incompressible and hardly change in volume even when a high-speed airflow passes through them.

バックアップフィルタ7は、ナノ粒子捕集用として、第2慣性フィルタ5に対して気流下流側直下に連続配置されて当該第2慣性フィルタ5に連結されている。バックアップフィルタ7は、第2慣性フィルタ5の外径と同じ外径の円筒状プレート7aと、円板状プレート7bと、を含み、円板状プレート7bはフィルタプレートとして作用し、これらにより内部にフィルタ空間7cを構成する。   The backup filter 7 is continuously disposed immediately downstream of the air flow with respect to the second inertia filter 5 and is connected to the second inertia filter 5 for collecting nanoparticles. The backup filter 7 includes a cylindrical plate 7a having the same outer diameter as that of the second inertia filter 5, and a disk-like plate 7b. The disk-like plate 7b acts as a filter plate, and thereby the inside. A filter space 7c is configured.

排気部9は、上記装置内から外部へ気流を排気するものであり、図示略の吸引ポンプにより上記排気を行うようになっている。   The exhaust unit 9 exhausts the airflow from the inside of the apparatus to the outside, and the exhaust is performed by a suction pump (not shown).

以上の構成において、気流上流側の第1慣性フィルタ3から気流下流側の排気部9へかけて気流が矢印で示すように流れると共に各フィルタ3,5,7を通過する際に粗粒子が除去され、ナノ粒子が分級されて、捕集される。   In the above configuration, the airflow flows from the first inertia filter 3 on the upstream side of the airflow to the exhaust part 9 on the downstream side of the airflow, and coarse particles are removed when passing through the filters 3, 5, 7. The nanoparticles are classified and collected.

そして、実施の形態では、第1慣性フィルタ3の定径貫通孔3e2と、第2慣性フィルタ5の定径貫通孔5d2とのそれぞれに金属繊維11,13を充填している。この金属繊維11,13は実施の形態ではSUS繊維である。   In the embodiment, the constant diameter through holes 3e2 of the first inertia filter 3 and the constant diameter through holes 5d2 of the second inertia filter 5 are filled with the metal fibers 11 and 13, respectively. The metal fibers 11 and 13 are SUS fibers in the embodiment.

第1慣性フィルタ3の定径貫通孔3e2内の金属繊維11の繊維径(μm)をd1、第2慣性フィルタ5の定径貫通孔5d2内の金属繊維13の繊維径(μm)をd2とすると、これらにはd1>d2の関係がある。また、第1慣性フィルタ3の定径貫通孔3e2、第2慣性フィルタ5の定径貫通孔5d2それぞれの金属繊維11,13の充填量(mg)をm1,m2とし、この金属繊維充填量m1,m2に対応した圧損(kPa:キロパスカル)をそれぞれΔP1,ΔP2とする。   The fiber diameter (μm) of the metal fiber 11 in the constant diameter through hole 3e2 of the first inertia filter 3 is d1, and the fiber diameter (μm) of the metal fiber 13 in the constant diameter through hole 5d2 of the second inertia filter 5 is d2. Then, there is a relationship of d1> d2. The filling amounts (mg) of the metal fibers 11 and 13 in the constant diameter through hole 3e2 of the first inertia filter 3 and the constant diameter through hole 5d2 of the second inertia filter 5 are m1 and m2, respectively, and the metal fiber filling amount m1. , M2 are ΔP1 and ΔP2, respectively.

以上の構成においては、第1慣性フィルタ3の拡径貫通孔3e1は気流下流側方向へ直径が小さくなっていくので、気流は徐々に加速した後、定径貫通孔3e2を一定速度で通過し、この通過の際に粗粒子を捕集する。   In the above configuration, the diameter-enlarged through-hole 3e1 of the first inertial filter 3 decreases in diameter toward the downstream side of the airflow, so that the airflow gradually accelerates and then passes through the constant-diameter through-hole 3e2 at a constant speed. During this passage, coarse particles are collected.

この定径貫通孔3e2は金属繊維11が層状になったフィルタ構造になっているので、気体の流速、繊維径の選択に用いることができるストークス数Stkと、ペクレ数Peと、を適用することができる。ストークス数Stkは、金属繊維構造のフィルタ内での、気体の流れに対する粒子の追従性を表す無次元の値である。その式は省略する。ストークス数Stkは、流速、粒子密度に比例し、粒径の2乗に比例し、繊維径に反比例する。   Since the constant diameter through hole 3e2 has a filter structure in which the metal fibers 11 are layered, the Stokes number Stk and the Peclet number Pe that can be used for selecting the gas flow velocity and fiber diameter are applied. Can do. The Stokes number Stk is a dimensionless value representing the followability of particles to a gas flow in a filter having a metal fiber structure. The formula is omitted. The Stokes number Stk is proportional to the flow velocity and particle density, is proportional to the square of the particle diameter, and is inversely proportional to the fiber diameter.

ストークス数Stkの式によると、気体の流速が大きくなるに従い、粒径が大きい浮遊粒子から順に気体の運動に追従できなくなり、気体の流路から外れて金属繊維と衝突するようになる。このストークス数Stkを参考にしつつ、気体の流速を制御することと、繊維径を選択することとにより、捕集目的の粒子の粒径を選択することができる。実施の形態では金属繊維の繊維径は極めて小さいので、インパクタほど流速を大きくする必要がない。また、金属繊維は、粒子の慣性だけではなく、さえぎり、重力、静電気力、拡散などの捕集機構によっても粒子を捕集することができる。   According to the equation of Stokes number Stk, as the gas flow rate increases, it becomes impossible to follow the movement of the gas in order from the suspended particle having the larger particle size, and the gas flows out of the gas flow path and collides with the metal fiber. With reference to the Stokes number Stk, the particle size of the particles to be collected can be selected by controlling the gas flow rate and selecting the fiber diameter. In the embodiment, since the fiber diameter of the metal fiber is extremely small, it is not necessary to increase the flow velocity as much as the impactor. Further, metal fibers can collect particles not only by the inertia of the particles but also by collection mechanisms such as interception, gravity, electrostatic force, and diffusion.

ペクレ数Peは、気流により粒子が運ばれる効果と、拡散によって粒子が運ばれる効果との比率を表す数であり、流速、繊維径に比例し、拡散係数に反比例する。拡散の影響を少なくするには、ペクレ数Peを大きくする必要がある。粒径が小さいほど、拡散係数が大きくなり、繊維径は小さい値が選択されているので、流速を高めることが粒径の選択性を高めることに好ましいことがわかる。以上から、流速、繊維径等を選択することで、目的とする粒子を金属繊維により捕集ないし分級することができる。   The Peclet number Pe is a number that represents the ratio between the effect of carrying particles by an air flow and the effect of carrying particles by diffusion, and is proportional to the flow velocity and fiber diameter and inversely proportional to the diffusion coefficient. In order to reduce the influence of diffusion, it is necessary to increase the Peclet number Pe. The smaller the particle size, the larger the diffusion coefficient and the smaller the fiber diameter selected, so it can be seen that increasing the flow rate is preferable for increasing the particle size selectivity. From the above, the target particles can be collected or classified by metal fibers by selecting the flow rate, fiber diameter, and the like.

そして、実施の形態では、特に、第1慣性フィルタ3の定径貫通孔3e2内の金属繊維11の充填量調整により、当該第1慣性フィルタ3の定径貫通孔3e2内部の空隙率調整を行うことと、金属繊維11の繊維径d1とにより、定径貫通孔3e2内における気流流通性を大きく低下させず圧損を小さく抑制した結果、小型の気流吸引ポンプで小流量吸引しても粗粒子除去に必要な粒子慣性効果を得られるようにしている。   In the embodiment, in particular, the porosity in the constant diameter through hole 3e2 of the first inertia filter 3 is adjusted by adjusting the filling amount of the metal fiber 11 in the constant diameter through hole 3e2 of the first inertia filter 3. As a result of the fact that the air flow in the constant-diameter through hole 3e2 is not greatly reduced by the fiber diameter d1 of the metal fiber 11, the pressure loss is suppressed to a small level, so that coarse particles can be removed even if a small air flow suction pump is used to suck a small flow rate. To obtain the particle inertia effect necessary for this.

同様に、第2慣性フィルタ5の定径貫通孔5d2内の金属繊維13の充填量調整により、当該第2慣性フィルタ5の定径貫通孔5d2内部の空隙率調整を行い、例えば金属繊維13の充填率を小さくして定径貫通孔5d2内での空隙率を大きくしても、金属繊維13の直径d2を小さく選択することで、定径貫通孔5d2内における気流流通性を大きく低下させず、気流吸引ポンプとしても小型のもので小流量吸引しても圧損を小さく抑制しつつ、ナノ粒子分級に必要な粒子慣性効果を得られるようにしている。   Similarly, by adjusting the filling amount of the metal fiber 13 in the constant diameter through hole 5d2 of the second inertia filter 5, the porosity in the constant diameter through hole 5d2 of the second inertia filter 5 is adjusted. Even if the filling rate is reduced and the porosity in the constant diameter through hole 5d2 is increased, the air flow in the constant diameter through hole 5d2 is not significantly reduced by selecting the diameter d2 of the metal fiber 13 to be small. The airflow suction pump is also small, and even when suctioned at a small flow rate, the particle inertia effect necessary for nanoparticle classification can be obtained while suppressing the pressure loss to a small level.

上記実施の形態に具体数値を適用すると、第1慣性フィルタ3の定径貫通孔3e2と第2慣性フィルタ5の定径貫通孔5d2それぞれは、その孔径D1,D2をそれぞれ3mm,6mm、孔長さL1,L2をそれぞれ4.5mm,5mm、金属繊維11,13それぞれの繊維径d1,d2をそれぞれ12μm、8μmとする。また、気流吸引ポンプにより吸引されることにより、発生する気流の流量Q1,Q2は共に同じ毎分6リットルの小流量とする。  When specific numerical values are applied to the above embodiment, the constant diameter through hole 3e2 of the first inertia filter 3 and the constant diameter through hole 5d2 of the second inertia filter 5 have the hole diameters D1 and D2 of 3 mm and 6 mm, respectively, and the hole length. The lengths L1 and L2 are 4.5 mm and 5 mm, respectively, and the fiber diameters d1 and d2 of the metal fibers 11 and 13 are 12 μm and 8 μm, respectively. Further, the airflow generated by the airflow suction pump has the same flow rate Q1 and Q2 of a small flow rate of 6 liters per minute.

以上の条件による金属繊維充填量m1,m2と圧損ΔP1,ΔP2との関係を図3(a)と図3(b)とに示す。図3(a)は、横軸に第1慣性フィルタ3の定径貫通孔3e2内の金属繊維充填量m1(mg)、縦軸に圧損ΔP1(kPa)をとり、これらの関係を示し、図3(b)は、横軸に第2慣性フィルタ5の定径貫通孔5d2内の金属繊維充填量m2(mg)、縦軸に圧損ΔP2(kPa)をとり、これらの関係を示す。   FIG. 3A and FIG. 3B show the relationship between the metal fiber filling amounts m1 and m2 and the pressure losses ΔP1 and ΔP2 under the above conditions. FIG. 3A shows the relationship between the horizontal axis indicating the metal fiber filling amount m1 (mg) in the constant-diameter through hole 3e2 of the first inertia filter 3 and the vertical axis indicating the pressure loss ΔP1 (kPa). 3 (b) shows the relationship between the horizontal axis representing the metal fiber filling amount m2 (mg) in the constant diameter through hole 5d2 of the second inertia filter 5 and the vertical axis representing the pressure loss ΔP2 (kPa).

図3(a)、図3(b)で示すように、第1慣性フィルタ3の定径貫通孔3e2の圧損ΔP1は、金属繊維充填量m1が10−20mgの調整範囲で0.3−0.4kPaであり、第2慣性フィルタ5の定径貫通孔5d2の圧損ΔP2は、金属繊維充填量m2が3−4mgの調整範囲で1.5−2kPaである。   As shown in FIGS. 3A and 3B, the pressure loss ΔP1 of the constant-diameter through hole 3e2 of the first inertia filter 3 is 0.3-0 in the adjustment range where the metal fiber filling amount m1 is 10-20 mg. The pressure loss ΔP2 of the constant-diameter through hole 5d2 of the second inertial filter 5 is 1.5-2 kPa in the adjustment range where the metal fiber filling amount m2 is 3-4 mg.

これら図3(a)、図3(b)から明らかであるように、携帯型ポンプでも可能な小流量で吸引しても、第1慣性フィルタ3、第2慣性フィルタ5内の金属繊維11,13それぞれの充填量調整でもって、空隙率を調整することで、低圧損で、第1慣性フィルタ3では粗粒子を除去し、第2慣性フィルタ5ではナノ粒子を分級できるので、例えば、小型軽量の粒子分級装置として、作業者の呼吸域での微小粒子曝露量を高精度に測定できるようになる。   As is clear from these FIGS. 3 (a) and 3 (b), the metal fibers 11 in the first inertia filter 3 and the second inertia filter 5, 13 By adjusting the porosity by adjusting the respective filling amounts, the first inertia filter 3 can remove coarse particles and the second inertia filter 5 can classify nanoparticles with low pressure loss. As a particle classifier, it is possible to measure the exposure of fine particles in the breathing area of the worker with high accuracy.

図4(a)および図4(b)それぞれに第1慣性フィルタ3と、第2慣性フィルタ5とにおける、横軸が粒径(μm)、縦軸が粒子捕集効率(%)とする粒径(μm)対捕集効率(%)の関係を示す。ただし、第1慣性フィルタ3と、第2慣性フィルタ5それぞれの定径貫通孔3e2,5d2での孔径D1,D2はそれぞれ6mm,3mm、孔長さL1,L2はそれぞれ3mm,4.5mm、金属繊維11,13それぞれの繊維径d1,d2はそれぞれ12μm、8μmとする。また、気流吸引ポンプにより吸引されることにより、発生する気流の流量Q1,Q2は共に同じ毎分6リットルの小流量とする。   4 (a) and FIG. 4 (b), the first inertial filter 3 and the second inertial filter 5, respectively, have a horizontal axis of particle size (μm) and a vertical axis of particle collection efficiency (%). The relationship between diameter (μm) and collection efficiency (%) is shown. However, the hole diameters D1 and D2 in the constant diameter through holes 3e2 and 5d2 of the first inertia filter 3 and the second inertia filter 5 are 6 mm and 3 mm, respectively, and the hole lengths L1 and L2 are 3 mm and 4.5 mm, respectively. The fiber diameters d1 and d2 of the fibers 11 and 13 are 12 μm and 8 μm, respectively. Further, the airflow generated by the airflow suction pump has the same flow rate Q1 and Q2 of a small flow rate of 6 liters per minute.

図4(a)で示すように第1慣性フィルタ3では0.5μm前後を粒子分離径とすることができ、また、図4(b)で示すように第2慣性フィルタ5では約190nmを粒子分離径とすることができる。   As shown in FIG. 4 (a), the first inertia filter 3 can have a particle separation diameter of around 0.5 μm, and the second inertia filter 5 has a particle separation diameter of about 190 nm as shown in FIG. 4 (b). It can be a separation diameter.

なお、第1慣性フィルタ3と第2慣性フィルタ5とを図5で示すように構成することもできる。図5は図1と対応する部分に同一符号を付して示している。図5では、第1慣性フィルタ貫通孔3e2と第2慣性フィルタ貫通孔5d2とを連続させた形態となっている。この図5で示す構造も図1と同様の作用を有する。   The first inertia filter 3 and the second inertia filter 5 can also be configured as shown in FIG. FIG. 5 shows parts corresponding to those in FIG. In FIG. 5, the first inertial filter through hole 3e2 and the second inertial filter through hole 5d2 are continuous. The structure shown in FIG. 5 also has the same operation as FIG.

以上説明したように本実施の形態では、気流上流側と気流下流側との上下2段で、第1、第2慣性フィルタ3,5を直列に連結配置し、第1、第2慣性フィルタ3,5は、互いの定径貫通孔3e2,5d2の孔径をD1,D2、孔長さをL1,L2、金属繊維11,13の繊維径をd1,d2とすると、D1<D2、L1<L2、d1>d2の関係となる構造を備えて、第1慣性フィルタ3の定径貫通孔3e2内の金属繊維充填量を第2慣性フィルタ5の定径貫通孔5d2内の金属繊維充填量より多くなるよう調整することで、第1慣性フィルタ3の定径貫通孔3e2内の圧損を第2慣性フィルタ5の定径貫通孔5d2内の圧損より小さく設定することができるので、第1慣性フィルタ3では小容積中で繊維径が大きい金属繊維11の充填量を多くしてもその圧損を可能な限り小さく抑制して粗粒子の捕集を効率的に行えると共に、第2慣性フィルタ5では大容積中で繊維径が小さい金属繊維13の充填量を少なくしたことで、圧損を可能な限り小さく抑制してナノ粒子の分級を効率的に行えるようになり、結局、小型軽量、低吸引流量のポンプを用いても、圧損を可能な限り小さく抑制して、粗粒子からナノ粒子までを分離捕集できる。   As described above, in the present embodiment, the first and second inertial filters 3 are connected in series in the upper and lower stages of the airflow upstream side and the airflow downstream side, and the first and second inertial filters 3 are connected in series. , 5 are D1 <D2 and L1 <L2 where D1 and D2 are the hole diameters of the constant diameter through holes 3e2 and 5d2, L1 and L2 are the hole lengths, and d1 and d2 are the fiber diameters of the metal fibers 11 and 13. , D1> d2, and the filling amount of the metal fibers in the constant diameter through hole 3e2 of the first inertia filter 3 is larger than the filling amount of the metal fibers in the constant diameter through hole 5d2 of the second inertia filter 5. By adjusting so that the pressure loss in the constant diameter through hole 3e2 of the first inertia filter 3 can be set smaller than the pressure loss in the constant diameter through hole 5d2 of the second inertia filter 5, the first inertia filter 3 Then, the filling amount of the metal fiber 11 having a large fiber diameter in a small volume Even if the number is increased, the pressure loss can be suppressed as small as possible to efficiently collect coarse particles, and in the second inertia filter 5, the filling amount of the metal fibers 13 having a small fiber diameter in a large volume is reduced. As a result, it is possible to efficiently classify nanoparticles by suppressing the pressure loss as small as possible. Separating and collecting particles to nanoparticles.

3 第1慣性フィルタ
3e 貫通孔
11 金属繊維
5 第2慣性フィルタ
5d 貫通孔
13 金属繊維
3 First inertia filter 3e Through hole 11 Metal fiber 5 Second inertia filter 5d Through hole 13 Metal fiber

Claims (4)

粒子を含む流体が通過する貫通孔を具備すると共に、この貫通孔内に非圧縮性繊維が充填されたフィルタ構造を具備し、上記貫通孔内の空隙率が、非圧縮性繊維の充填量調整により制御されている、ことを特徴とする慣性フィルタ。   It has a through-hole through which a fluid containing particles passes, and has a filter structure filled with incompressible fibers in the through-hole, and the porosity in the through-hole adjusts the filling amount of the incompressible fibers. An inertial filter that is controlled by 上記非圧縮性繊維がステンレス繊維であることである請求項1に記載の慣性フィルタ。   The inertial filter according to claim 1, wherein the incompressible fiber is a stainless fiber. 上記貫通孔は、流体上流側の拡径貫通孔と、流体下流側の定径貫通孔とを含んだ構成になっており、拡径貫通孔は上流側から下流側方向に徐々に内径が拡径する貫通孔であり、定径貫通孔は、上流側から下流側方向に内径が一定の貫通孔であり、当該内部に上記非圧縮性繊維が充填してある、請求項1または2に記載の慣性フィルタ。   The through hole is configured to include an enlarged diameter through hole on the upstream side of the fluid and a constant diameter through hole on the downstream side of the fluid, and the inner diameter of the enlarged diameter through hole gradually increases from the upstream side toward the downstream side. The through-hole which is a diameter, the constant-diameter through-hole is a through-hole having a constant inner diameter from the upstream side to the downstream side, and the inside thereof is filled with the incompressible fiber. Inertial filter. 請求項1ないし3のいずれかに記載の慣性フィルタを流体通過上流側と下流側とのそれぞれに少なくとも2つ直列に連結配置し、これら両慣性フィルタは、それぞれ、互いの貫通孔の孔径をD1,D2、孔長さをL1,L2、非圧縮性繊維の繊維径をd1,d2とすると、D1<D2、L1<L2、d1>d2の関係となるフィルタ構造を備え、それぞれの貫通孔内での非圧縮性繊維の充填量調整により、それぞれの貫通孔内の空隙率を調整することで、各慣性フィルタそれぞれの使用目的に応じて貫通孔内の流体通過による圧損を調整可能とした、ことを特徴とする慣性フィルタ組み合わせ構成。   The inertial filter according to any one of claims 1 to 3 is connected and arranged in series at each of the fluid passing upstream side and the downstream side, and each of the inertial filters has a through-hole diameter of D1. , D2, L1 and L2 of the hole length, and d1 and d2 of the fiber diameter of the incompressible fiber, the filter structure has a relationship of D1 <D2, L1 <L2, d1> d2, By adjusting the porosity in each through hole by adjusting the filling amount of the incompressible fiber, the pressure loss due to the passage of fluid in the through hole can be adjusted according to the purpose of use of each inertial filter, An inertial filter combination configuration characterized by that.
JP2009154804A 2009-06-30 2009-06-30 Inertial filter for classifying fine particles Pending JP2011012977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154804A JP2011012977A (en) 2009-06-30 2009-06-30 Inertial filter for classifying fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154804A JP2011012977A (en) 2009-06-30 2009-06-30 Inertial filter for classifying fine particles

Publications (1)

Publication Number Publication Date
JP2011012977A true JP2011012977A (en) 2011-01-20

Family

ID=43592050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154804A Pending JP2011012977A (en) 2009-06-30 2009-06-30 Inertial filter for classifying fine particles

Country Status (1)

Country Link
JP (1) JP2011012977A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832608B1 (en) * 2011-06-20 2011-12-07 ニッタ株式会社 Inertia filter
CN102680288A (en) * 2012-06-12 2012-09-19 东莞理工学院 Inertia fiber filter membrane device for grading particles
US10604896B2 (en) 2011-10-20 2020-03-31 Ecolab Usa Inc. Method for early warning chatter detection and asset protection management

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4832608B1 (en) * 2011-06-20 2011-12-07 ニッタ株式会社 Inertia filter
WO2012176245A1 (en) * 2011-06-20 2012-12-27 ニッタ株式会社 Inertial filter
US9616369B2 (en) 2011-06-20 2017-04-11 Nitta Corporation Inertial filter
US10604896B2 (en) 2011-10-20 2020-03-31 Ecolab Usa Inc. Method for early warning chatter detection and asset protection management
CN102680288A (en) * 2012-06-12 2012-09-19 东莞理工学院 Inertia fiber filter membrane device for grading particles

Similar Documents

Publication Publication Date Title
JP4822433B2 (en) Fine particle classifier and fine particle sampler
CA2803088C (en) Inertial filter and particle classification apparatus
US9506843B2 (en) Personal nanoparticle respiratory depositions sampler and methods of using the same
WO2012176245A1 (en) Inertial filter
JP2011012977A (en) Inertial filter for classifying fine particles
US8136416B2 (en) Personal nanoparticle sampler
JP2011012975A (en) Particle classification device
JP5837107B2 (en) Particle measuring instrument
Thongyen et al. Development of PM0. 1 personal sampler for evaluation of personal exposure to aerosol nanoparticles
Furuuchi et al. Development of a personal sampler for evaluating exposure to ultrafine particles
US8991271B2 (en) Portable nanoparticle sampler
US20180003110A1 (en) Acoustically-Enhanced Separators for Aircraft Engines
JP2011012974A (en) Particle classification apparatus
Hata et al. Development of a high-volume air sampler for nanoparticles
TWI463127B (en) Portable nanoparticle sampler
WO2011099093A1 (en) Inertial filter used in particle classification
JP5860780B2 (en) Portable nanoparticle sampler
JP2011012976A (en) Particle classification/concentration measurement apparatus
JP6392112B2 (en) Linear cyclone type sizing unit and sizing device, and method for measuring airborne dust concentration
JP4605707B2 (en) Filter separator
JP2013226496A (en) Dust collecting device
Wang et al. Removal of nanoparticles from gas streams by fibrous Filters