JP2011012688A - Rotation transmission mechanism - Google Patents

Rotation transmission mechanism Download PDF

Info

Publication number
JP2011012688A
JP2011012688A JP2009154474A JP2009154474A JP2011012688A JP 2011012688 A JP2011012688 A JP 2011012688A JP 2009154474 A JP2009154474 A JP 2009154474A JP 2009154474 A JP2009154474 A JP 2009154474A JP 2011012688 A JP2011012688 A JP 2011012688A
Authority
JP
Japan
Prior art keywords
rotating member
rotation
elastomer
transmission mechanism
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009154474A
Other languages
Japanese (ja)
Inventor
Yoichiro Hamamoto
陽一郎 浜元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009154474A priority Critical patent/JP2011012688A/en
Publication of JP2011012688A publication Critical patent/JP2011012688A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rotation transmission mechanism in a simple structure, which is excellent in rotation transmission efficiency, rotational fluctuation responsiveness, and shock-absorbing properties between two rotating members.SOLUTION: In the rotation transmission mechanism with an inside rotating member 1 and an outside rotating member 2, an elastomer 3 is arranged in contact with an empty part on a rotational direction side surrounded by a meshing outward blade 11, an inward blade 21, an outer peripheral surface of the inside rotating member 1, the inner peripheral surface of the outside rotating member 2, and inner walls of both side plates 4. Using only elastic deformation of the elastomer 3 arranged in this way, the shock associated with a speed change between the two rotating members is absorbed, and an absorbed and stored energy is efficiently converted in a rotational motion energy. As a result, the rotation transmission efficiency transmitting an energy on a driving side to a driven side, the rotational fluctuation responsiveness associated with a change on the driving side, and the shock-absorbing properties are improved together. Moreover, since the both rotating members are mutually supported only by the elastomer 3, the structure is simple and maintenance is easy.

Description

本発明は、回転伝動機構、特に同心軸上に配置された比較的低速の二つの回転部材間で動力を伝達する回転伝動機構に関するものである。 The present invention relates to a rotation transmission mechanism, and more particularly to a rotation transmission mechanism that transmits power between two relatively low-speed rotation members disposed on a concentric shaft.

特許文献1は、弾性体を利用した自転車用の緩衝装置を開示している。特許文献1では、第1フレームに固定された内周面向きの複数の第1突出部を有する第1部材と、第1フレームに回転自在に取り付けられた第2フレームに固定され、外周面向きの複数の第2突出部を有する第2部材とを備えた緩衝機構において、この第1突出部と第2突出部の間に、第1部材の内周面か第2部材の外周面のいずれか一方に隙間をあけて、ウレタンゴム、ニトリルゴム、ポリエチレンエラストマーのごとき弾性体を配置し、第1フレームと第2フレームにかかる負荷を緩衝している。この緩衝作用は、第1突出部と第2突出部の相対的回動の際、弾性体が圧縮変形し、両突出部間の衝撃が緩和されるとともに、圧縮方向と交差する方向への弾性体の膨張で、両部材の回転量が多くなり、衝撃をさらに吸収するとしているが、いずれも駆動源と直接連結していない。 Patent Document 1 discloses a shock absorber for a bicycle using an elastic body. In Patent Document 1, the first member having a plurality of first protrusions facing the inner peripheral surface fixed to the first frame and the second frame rotatably attached to the first frame are fixed to the outer peripheral surface. And a second member having a plurality of second protrusions, wherein either the inner peripheral surface of the first member or the outer peripheral surface of the second member is between the first protrusion and the second protrusion. An elastic body such as urethane rubber, nitrile rubber, or polyethylene elastomer is disposed with a gap between them to buffer the load applied to the first frame and the second frame. This buffering action is caused by the elastic body compressively deforming during relative rotation of the first protrusion and the second protrusion, the impact between the protrusions is reduced, and the elasticity in the direction intersecting the compression direction is reduced. It is assumed that the amount of rotation of both members increases due to body expansion and further absorbs the impact, but none of them are directly connected to the drive source.

特許文献2は、自動二輪車のホイールに形成した凹部に弾性体を入れ、この弾性体にドリブンフランジを連結し、エンジンからの動力をドリブンフランジ及び弾性体を介してホイールに伝達する自動二輪車の動力伝達機構である。このドリブンフランジは、鉄のごとき高剛性金属材料からなるエンジン側フランジと、アルミニウム合金のごとき軽量材料からなるホイール側フランジに分割され、両フランジは締結部材で一体的に結合されている。特徴は、ホイールに仕切壁を設けて扇状凹部を形成し、ドリブンフランジを組みつけた状態で、この仕切壁とホイール側フランジのブロックの両側にダンパーラバーとバンプラバーを配置し、ダンパーラバーを介してドリブンフランジの回転をホイールに伝達するとともに、ホイールの逆回転をバンプラバーで緩衝し、正逆回転時の金属どうしの接触を回避にある。 Japanese Patent Laid-Open No. 2004-260688 describes a motorcycle power that inserts an elastic body into a recess formed in a wheel of a motorcycle, connects a driven flange to the elastic body, and transmits power from the engine to the wheel via the driven flange and the elastic body. It is a transmission mechanism. This driven flange is divided into an engine side flange made of a highly rigid metal material such as iron and a wheel side flange made of a light weight material such as an aluminum alloy, and both the flanges are integrally coupled by a fastening member. The feature is that a partition wall is provided on the wheel to form a fan-shaped recess, and a driven flange is assembled, and a damper rubber and a bump rubber are arranged on both sides of the block of the partition wall and the wheel side flange. In addition, the rotation of the driven flange is transmitted to the wheel, and the reverse rotation of the wheel is buffered by the bump rubber to prevent the metal from contacting each other during forward and reverse rotation.

特許文献3は、自転車用駆動ギアにおいて、ギア本体と支持体の間に動力伝達部を設け、動力伝達部にギア本体と支持体が所定角度回転できる隙間を設け、動力伝達部とは異なる部位に、この隙間を保持してゴム弾性体を配置し、弾性体の弾性変形により隙間を吸収し、動力伝達部からの動力を伝達するとともに、踏み込み初動時の衝撃を吸収する機構を開示している。 Patent Document 3 discloses a bicycle drive gear in which a power transmission unit is provided between a gear main body and a support, and a gap in which the gear main body and the support can rotate by a predetermined angle is provided in the power transmission unit. In addition, a rubber elastic body is disposed while holding this gap, and a mechanism that absorbs the impact from the power transmission unit and absorbs the impact at the time of initial depression is disclosed by absorbing the gap by elastic deformation of the elastic body. Yes.

特許文献4は、ゴム体を介して変速機の駆動源取付けフランジとプロペラシャフトを連結する機構を開示している。しかし、この発明では、ゴム体は、フランジ側ではスラストボルトにより、プロペラシャフト側ではラジアルボルトによりそれぞれ固定されている。したがって、ゴム体は、両固定手段間にあってフランジとプロペラシャフトの回転伝動をつかさどるのみであって、駆動側回転部材であるフランジと従側部回転部材であるプロペラシャフト相互の支持にはまったく関与していない。 Patent Document 4 discloses a mechanism for connecting a drive source mounting flange of a transmission and a propeller shaft via a rubber body. However, in the present invention, the rubber body is fixed by a thrust bolt on the flange side and by a radial bolt on the propeller shaft side. Therefore, the rubber body is between the two fixing means and only controls the rotation transmission of the flange and the propeller shaft, and is completely involved in the mutual support of the flange as the driving side rotating member and the propeller shaft as the secondary side rotating member. Not.

特許文献5の発明は、駆動車輪とドリブンプーリ間あって、車輪からの逆トルクを緩衝する弾発カップリングで、これによりベルト式無段変速機におけるベルトの長寿命化をはかっている。この弾発カップリングでは、ドライブリダクションギアに連結された外歯車カップリング要素とドリブンリダクションギアに連結された内歯車カップリング要素間において、ドライブリダクションギアからドリブンリダクションギアへの一方向性動力伝達、即ち逆トルクの緩衝に特化したものである。この弾発部材としては、スプリングあるいは合成ゴム材が開示されている。 The invention of Patent Document 5 is a resilient coupling that buffers a reverse torque from a wheel between a drive wheel and a driven pulley, thereby extending the life of the belt in a belt-type continuously variable transmission. In this elastic coupling, unidirectional power transmission from the drive reduction gear to the driven reduction gear between the external gear coupling element connected to the drive reduction gear and the internal gear coupling element connected to the driven reduction gear, That is, it specializes in buffering reverse torque. As this elastic member, a spring or a synthetic rubber material is disclosed.

特許文献6は、同心円的に配置された駆動部と被駆動部の回転方向における駆動部の1個の当接部から被駆動部の1個の当接部間部に1個の緩衝材を遊嵌したものである。駆動部の動力は、駆動部の当接部が一定角度回動して緩衝材の一方の端面に当接し、他方の端面に当接可能な被駆動部の当接部に伝達される。 In Patent Document 6, one cushioning material is provided between one abutting portion of the driving portion and the one abutting portion of the driven portion in the rotational direction of the driving portion and the driven portion arranged concentrically. It is loosely fitted. The power of the drive part is transmitted to the contact part of the driven part that can contact the one end surface of the cushioning material by rotating the contact part of the drive unit by a certain angle and contact the other end surface.

特開平11−278350号公報JP 11-278350 A 特開2001−241507号公報JP 2001-241507 A 特開昭64−63489号公報Japanese Patent Laid-Open No. 64-63489 特開2000−266076号公報JP 2000-266076 A 特開2000−291773号公報JP 2000-291773 A 特開平11−346456号公報JP-A-11-346456

特許文献1記載の発明は、基本的には回転自在に連結された二つの固定フレームに各々設けられた部材間の単なる衝撃緩衝機構であって、駆動源に接続された伝動機構ではない。このためゴム様弾性体は、第1部材の内周面か第2部材の外周面のいずれか一方に隙間をあけて配置されており、弾性体自体の圧縮弾性と、弾性体の圧縮と交差する空隙方向への弾性体の膨張とを利用して、フレームの相対的回動時の衝撃を緩衝しているにすぎない。第1部材の内周面か第2部材の外周面のいずれか一方に隙間をあけて弾性体を配置した構造で、仮に一方から他方へ動力を伝達しようとすると、始動時にこの空隙部分への弾性体の膨張に要する時間だけタイムラグが生じ、伝動応答性が悪い。 The invention described in Patent Document 1 is basically a simple shock absorbing mechanism between members provided on two fixed frames that are rotatably connected, and is not a transmission mechanism connected to a drive source. For this reason, the rubber-like elastic body is disposed with a gap on either the inner peripheral surface of the first member or the outer peripheral surface of the second member, and intersects with the compression elasticity of the elastic body itself and the compression of the elastic body. The impact at the time of relative rotation of the frame is merely buffered by utilizing the expansion of the elastic body in the direction of the air gap. In the structure where an elastic body is arranged with a gap on either the inner peripheral surface of the first member or the outer peripheral surface of the second member, if power is to be transmitted from one to the other, the gap portion is A time lag occurs only for the time required for the expansion of the elastic body, and the transmission response is poor.

特許文献2記載の発明は、自動二輪車においてエンジン又は車輪の急速回転変動を弾性体で緩衝しながら伝達するものではあるが、ダンパーラバーとバンプラバーの二つに分割された弾性体の配置により、主としてホイール仕切壁とホイール側ブロックを構成する金属同士の直接接触の回避を図ったものである。このため、全体の構造が複雑すぎ、多目的の回転伝動機構ユニットとして実用的ではない。 The invention described in Patent Document 2 is to transmit the rapid rotation fluctuation of the engine or wheels in the motorcycle while buffering with the elastic body, but by arranging the elastic body divided into two of the damper rubber and the bump rubber, The main purpose is to avoid direct contact between the metals constituting the wheel partition wall and the wheel side block. For this reason, the whole structure is too complicated and is not practical as a multipurpose rotation transmission mechanism unit.

特許文献3記載の発明は、ギア本体と支持体間に設けられた動力伝達部に、ギア本体と支持体の相対回転を可能にする隙間を設け、動力伝達部とは異なる部位にこの隙間を残して弾性体を配置して、この弾性体の弾性変形による隙間の吸収により動力を伝達するもので、特許文献1では空隙部が回転方向と交差する方向にあるのに対し、特許文献3では隙間が回転方向にある点で異なる。しかし、特許文献1同様に隙間を吸収するのに要する時間だけ回転を伝達するのにタイムラグが生じる点では変わりはない。したがって、とりわけ初動時の即応性に欠ける。 In the invention described in Patent Document 3, a gap that enables relative rotation between the gear body and the support body is provided in the power transmission section provided between the gear body and the support body, and this gap is provided in a portion different from the power transmission section. The elastic body is disposed and the power is transmitted by absorbing the gap due to the elastic deformation of the elastic body. In Patent Document 1, the gap is in the direction intersecting the rotation direction, whereas in Patent Document 3, The difference is that the gap is in the direction of rotation. However, as in Patent Document 1, there is no change in that a time lag occurs when the rotation is transmitted only for the time required to absorb the gap. Therefore, it lacks responsiveness especially at the first action.

特許文献4に記載の発明では、ゴム体はトルク伝達に関与するだけで、プロペラシャフトとフランジ相互の支持には関与していない。加えて、構造は複雑で、しかも初動時、加速時の変位による回転方向と交差する方向への膨張による加速作用はない。 In the invention described in Patent Document 4, the rubber body is only involved in torque transmission, and is not involved in the mutual support of the propeller shaft and the flange. In addition, the structure is complicated, and there is no acceleration action due to expansion in a direction crossing the rotation direction due to displacement at the time of initial acceleration.

特許文献5の弾発カップリングでは、内外回転部材の両歯車間に介装された弾性体として、スプリングあるいは合成ゴム材が配置されているが、このスプリングあるいは合成ゴムは、逆トルクの衝撃緩衝に対しては、同効作用手段であるが、内外回転部材の相互支持の観点からは、スプリングは回転方向と交差する方向への膨張がなく、所期の目的を達成できない。加えて弾性体は、内外回転軸の中点からみて偏在しており、双方向の駆動動力の伝達には不適である。 In the elastic coupling of Patent Document 5, a spring or a synthetic rubber material is disposed as an elastic body interposed between both gears of the inner and outer rotating members. However, from the viewpoint of mutual support of the inner and outer rotating members, the spring does not expand in a direction crossing the rotation direction, and the intended purpose cannot be achieved. In addition, the elastic body is unevenly distributed as viewed from the midpoint of the inner and outer rotating shafts, and is not suitable for transmitting bidirectional driving power.

特許文献6のように、駆動部と被駆動部間に遊嵌された切り欠きドーナツ型の1個の緩衝材の一方の端面に当接可能な駆動部の当接部を配置し、他方の端面に当接可能な被駆動部の当接部を配置した構造ではバランスが悪く、初動動力の伝達効率に劣るばかりでなく、すでに駆動部と被駆動部の当接部が緩衝材に当接している回転中の変速に対する緩衝応答性に欠け、特別なモータ制御が必要となる。 As in Patent Document 6, an abutting portion of a driving portion capable of abutting on one end surface of one notch-shaped donut-shaped cushion material loosely fitted between a driving portion and a driven portion is disposed, and the other The structure in which the abutment part of the driven part that can abut on the end face is not well balanced and inferior to the transmission efficiency of the initial power, and the abutment part between the drive part and the driven part already abuts against the cushioning material. Therefore, special motor control is required due to lack of buffer response to the shifting speed during rotation.

いずれにしろ、従来の弾性体を介した伝動機構は、主として弾性体の衝撃吸収機能に着目した衝撃の緩衝効果を狙ったものが大部分であって、回転伝動機構本来の回転伝動における応答性が犠牲になっていた。 In any case, most of the conventional transmission mechanisms via elastic bodies mainly aim at the shock buffering effect focusing on the impact absorbing function of the elastic bodies, and the responsiveness in the rotational transmission inherent in the rotary transmission mechanism. Was sacrificed.

本発明は、前記のごとき課題を解消したもので、二つの回転部材間の回転伝動性、回転伝動応答性、及び衝撃緩衝性にすぐれた回転伝動機構を提供することを目的としている。 An object of the present invention is to solve the above-described problems, and an object of the present invention is to provide a rotation transmission mechanism that is excellent in rotation transmission, rotation transmission response, and shock buffering between two rotation members.

また本発明は、構造がシンプルで部品数が少なく、操作及び保守が容易な回転伝動機構を提供することを目的としている。 Another object of the present invention is to provide a rotary transmission mechanism that is simple in structure, has a small number of parts, and is easy to operate and maintain.

前記目的を達成した本発明の回転伝動機構は、以下の特徴及び好適な態様を備えている。
項1:複数の外向羽根を有する内側回転部材と、外向羽根に歯合する複数の内向羽根を有する同心の外側回転部材とを備え、内側回転部材と外側回転部材のいずれか一方が駆動側で他方が従動側である回転伝動機構であって、外側回転部材の両側に内側回転部材から独立した側板を備え、外向羽根は外側回転部材の内周面と接触せず、内向羽根は内側回転部材の外周面と接触せず、両回転部材の内外周面と両各羽根間と両側板間で構成される回転方向側の各空部に、エラストマーが空部を構成する四囲の内壁に実質的に接して分散配置されており、該エラストマーを介してのみ内側回転部材の外周上に外側回転部材を支持するとともに、駆動側回転部材の回転を従動側回転部材に伝達することを特徴とする回転伝動機構。
項2:外側回転部材の両側に内側回転部材と同心の開口部を有する側板を有する項1に記載の回転伝動機構。
項3:内側回転部材の軸方向の両端面に両側側板の開口部より小径の隆厚部を有する項1又は2に記載の回転伝動機構。
項4:内側回転部材の外向羽根、外側回転部材の内向羽根、及びエラストマーが、その仮想延長線において内側回転部材の中点を通るように、放射状に配置されている項1乃至項3のいずれか1項に記載の回転伝動機構。
項5:エラストマーが、回転方向において手前により軟かい補助エラストマーを配置する項1乃至項4のいずれか1項に記載の回転伝動機構。
項6:内側回転部材が駆動体で外側回転部材が従動体であり、エラストマーが内側回転部材の外周表面から外側回転部材の内周表面に向かって重く構成された項1乃至項5のいずれか1項のいずれかに記載の回転伝動機構。
項7:項1乃至項6のいずれか1項に記載の回転伝動機構を利用した変速装置。
The rotation transmission mechanism of the present invention that has achieved the above object has the following features and preferred aspects.
Item 1: An inner rotation member having a plurality of outward blades and a concentric outer rotation member having a plurality of inward blades meshing with the outward blades, and either the inner rotation member or the outer rotation member is on the drive side The other side is a rotational transmission mechanism that is the driven side, and includes side plates that are independent of the inner rotating member on both sides of the outer rotating member, the outward blade is not in contact with the inner peripheral surface of the outer rotating member, and the inward blade is the inner rotating member. The inner surface of the rotating member is not in contact with the outer peripheral surface of each of the rotating members, and between each of the blades and between both side plates, each of the hollow portions on the rotational direction side is substantially formed on the inner wall of the four enclosures forming the empty portion. The rotation is characterized in that it is distributed in contact with the outer rotation member, supports the outer rotation member on the outer periphery of the inner rotation member only through the elastomer, and transmits the rotation of the driving side rotation member to the driven side rotation member. Transmission mechanism.
Item 2: The rotational transmission mechanism according to Item 1, comprising side plates having openings concentric with the inner rotating member on both sides of the outer rotating member.
Item 3: The rotational transmission mechanism according to Item 1 or 2, wherein the both ends of the inner rotation member in the axial direction have a thickened portion having a smaller diameter than the openings of the side plates.
Item 4: The outer blades of the inner rotating member, the inner blades of the outer rotating member, and the elastomer are radially arranged so as to pass through the midpoint of the inner rotating member at the virtual extension line. The rotation transmission mechanism according to claim 1.
Item 5: The rotation transmission mechanism according to any one of Items 1 to 4, wherein the elastomer is arranged with an auxiliary elastomer that is softer in the rotation direction.
Item 6: Any one of Items 1 to 5, wherein the inner rotating member is a driving body and the outer rotating member is a follower, and the elastomer is configured to be heavier from the outer peripheral surface of the inner rotating member toward the inner peripheral surface of the outer rotating member. The rotation transmission mechanism according to any one of claims 1 to 3.
Item 7: A transmission using the rotation transmission mechanism according to any one of Items 1 to 6.

本発明においてエラストマーとは、ゴム様の弾性を有する材料を意味し、発条等の機械的弾性体を含意しない。 In the present invention, an elastomer means a material having rubber-like elasticity, and does not imply a mechanical elastic body such as a streak.

本発明の回転伝動機構では、内側回転部材の外周表面と外向羽根、外側回転部材の内周表面と内向羽根で構成される空部の各内壁に接して、エラストマーを配置することにより、下記の効果及び利点がある。
(1)内外側回転部材は、エラストマーのみにより支承及び伝動されているので、ベアリング等の特別な支承、伝動軽減部材を必要としない。したがって、構造的にきわめて簡単であり、操作及び保守が容易であるばかりでなく、ベアリング等の摩擦損失もなく、回転伝動効率が高い。好適には、内側回転部材の外向羽根、外側回転部材の内向羽根、エラストマーを、その仮想延長線において内側回転部材の中点を通るように、放射状に配置することにより、安定且つ円滑な回転が得られる。
(2)駆動側の回転方向におけるエラストマーの弾性変位により蓄積された初動あるいは加速エネルギーが、回転方向と交差する方向の膨張によるエラストマーの反発エネルギーとなり、その合力が従動側の出力エネルギーに転化する結果、入力エネルギーが加速されて一時的に強い出力が生じる。その結果、エラストマーの変異によるタイムラグにもかかわらず、目的とする定常回転エネルギーに達する速度の遅れはなく、エネルギーの伝動効率及び伝動応答性がよい。
(3)入力エネルギーの変動がない場合には、内外回転部材はエラストマーを介して一体化されているので、駆動側の回転はそのまま従動側に伝達される。加えて、駆動側を内側回転部材、従動側を外側回転部材にした場合、回転慣性から生じる遠心力により、回転力を高める。
(4)初動時もしくは加速時の衝撃は、密装填されたエラストマーの弾性変位のみで吸収され、円滑に緩衝される。
(5)内側回転部材の複数の外向羽根、外側回転部材の複数の内向羽根と、各複数の外向羽根と各複数の内向羽根の間にエラストマーが分散配置されていることにより、特許文献6のように配置された単一エラストマーと比較して、同一エネルギーを入力した場合、複数の外向羽根11と複数の内向羽根の各々の間にエラストマーを配置した場合の方が、圧縮に伴うタイムラグが右複数羽根の数で除したタイムラグに短縮される。同一タイムラグである場合は、圧縮されたエラストマーは、右複数羽根の数で乗じた反発力を得ることができる。
In the rotation transmission mechanism of the present invention, by placing the elastomer in contact with the inner walls of the outer space formed by the outer peripheral surface and the outward blades of the inner rotary member and the inner peripheral surface and the inward blades of the outer rotary member, There are effects and benefits.
(1) Since the inner and outer rotating members are supported and transmitted only by the elastomer, no special support such as a bearing or a transmission reducing member is required. Therefore, it is very simple in structure and not only is easy to operate and maintain, but there is no friction loss of bearings and the like, and the rotational transmission efficiency is high. Preferably, by arranging the outward blades of the inner rotating member, the inward blades of the outer rotating member, and the elastomer radially so as to pass through the midpoint of the inner rotating member at the virtual extension line, stable and smooth rotation is achieved. can get.
(2) The result is that the initial motion or acceleration energy accumulated by the elastic displacement of the elastomer in the rotational direction on the drive side becomes the repulsive energy of the elastomer due to the expansion in the direction intersecting the rotational direction, and the resultant force is converted to the output energy on the driven side. The input energy is accelerated and a strong output is temporarily generated. As a result, despite the time lag due to the variation of the elastomer, there is no delay in the speed to reach the target steady rotational energy, and the energy transmission efficiency and the transmission response are good.
(3) When there is no change in input energy, the inner and outer rotating members are integrated via the elastomer, so that the rotation on the driving side is transmitted to the driven side as it is. In addition, when the driving side is the inner rotating member and the driven side is the outer rotating member, the rotational force is increased by the centrifugal force generated from the rotational inertia.
(4) The impact at the time of initial movement or acceleration is absorbed only by the elastic displacement of the densely packed elastomer and is smoothly buffered.
(5) A plurality of outward blades of the inner rotating member, a plurality of inward blades of the outer rotating member, and an elastomer distributed between each of the plurality of outward blades and each of the plurality of inward blades. When the same energy is input as compared to a single elastomer arranged in this way, the time lag associated with compression is more right when the elastomer is arranged between each of the plurality of outward blades 11 and the plurality of inward blades. The time lag is divided by the number of blades. In the case of the same time lag, the compressed elastomer can obtain a repulsive force multiplied by the number of right plural blades.

本発明の回転伝動機構の典型的な実施例を示すもので、(イ)は断面図、(ロ)は側面図である。The typical Example of the rotational transmission mechanism of this invention is shown, (A) is sectional drawing, (B) is a side view. 図1の回転伝動機構のA−A拡大断面図で、(イ)はエラストマー配置の基本構成、(ロ)及び(ハ)は異なった構成を各々模式的に示す。1. It is an AA expanded sectional view of the rotation transmission mechanism of FIG. 1, (A) shows the basic composition of elastomer arrangement | positioning, (B) and (C) each show a different structure typically. 本発明の回転伝動機構の内側回転部材の両側に隆厚部を設けた例を示すもので、(イ)は断面図、(ロ)は側面図である。The example which provided the thick part in the both sides of the inner side rotation member of the rotation transmission mechanism of this invention is shown, (A) is sectional drawing, (B) is a side view. 図3の回転伝動機構の内側回転部材を駆動側に、外側回転部材を従動側に設定した例を示すもので、(イ)はその断面図、(ロ)は平面図である。3 shows an example in which the inner rotating member of the rotation transmission mechanism of FIG. 3 is set on the driving side and the outer rotating member is set on the driven side, (A) is a cross-sectional view, and (B) is a plan view. 本発明の回転伝動機構におけるエラストマーの加速作用を示す速度グラフである。It is a speed graph which shows the acceleration effect | action of the elastomer in the rotational transmission mechanism of this invention. 本発明の回転伝動機構におけるエラストマーのエネルギー効率を示すエネルギーグラフである。It is an energy graph which shows the energy efficiency of the elastomer in the rotational transmission mechanism of this invention. 本発明の回転伝動機構における内側回転部材の衝撃緩衝作用を示す模式図で、(イ)は側板に加わる衝撃ベクトル、(ロ)は内側回転部材の隆厚部に加わる衝撃ベクトルである。FIG. 4 is a schematic diagram showing an impact buffering action of the inner rotating member in the rotation transmission mechanism of the present invention, in which (A) is an impact vector applied to the side plate, and (B) is an impact vector applied to the bulge portion of the inner rotating member. 本発明の回転伝動機構を空調機のコンプレッサーファンに用いた例を示す模式図である。It is a schematic diagram which shows the example which used the rotational transmission mechanism of this invention for the compressor fan of the air conditioner. 本発明の回転伝動機構をモーターシャフトに用いた例を示す模式図である。It is a schematic diagram which shows the example which used the rotational transmission mechanism of this invention for the motor shaft.

次に図面に従って、本発明の実施の形態を詳述する。図1及び図2は、本発明の代表的な一例を示す。図1及び2において、内側回転部材1と外側回転部材2は、各々歯合する外向羽根11及び内向羽根21を各複数枚備え、相対回転自在に嵌合されている。各羽根の枚数は用途に応じて適宜選択できるが、通常3〜6枚程度が実用的である。図2に示すように、内側回転部材1の外向羽根11は一体又は固設でもよく、外側回転部材2の内周面には接触せず、外側回転部材2の内向羽根21も一体又は固設でもよく、内側回転部材1の外周面には接触せず、交互に歯合している。図2(イ)に示すように、この内側回転部材1の外周面と複数の外向羽根11の片面、及び外側回転部材2の前記内側回転部材1の外周面に対抗する内周面と、前記内側回転部材1の複数の外向羽根11の片面に対抗する内向羽根21の片面、並びに外側回転部材2の両側に設けられた側板4で囲われた回転方向側となる空部(以下「空部」という)に各々エラストマー3が分散配置されている。このエラストマー3は、空部を構成する内壁面のいずれにも隙間なく接触して配置し、側板4により弾性変位を規制している。本発明において、このエラストマー3は、初動、変速時の衝撃に吸収と、回転とともに回転方向に交差する膨張により、内外回転部材を一体的に支持する二つの機能を有する。また本発明では、このようなエラストマー3を内側回転部材1の複数の外向羽根11、外側回転部材2の複数の内向羽根21と、各複数の外向羽根11と各複数の内向羽根21の間に分散配置することにより、特許文献6のように配置された単一エラストマー3と比較して、同一エネルギーを入力した場合、複数の外向羽根11と複数の内向羽根21の各々の間にエラストマー3を配置した場合の方が、圧縮に伴うタイムラグが複数羽根の数で除したタイムラグに短縮される。並びに、同一タイムラグである場合は、圧縮されたエラストマー3は、複数羽根の数で乗じた反発力を得ることができる。さらに本発明では、内側回転部材1の外向羽根11、外側回転部材2の内向羽根21、及びエラストマー3は、その仮想延長線が内側回転部材1の中点を通るように、好適には放射状に配置されている。これにより、いずれの方向の回転においても偏在がなく、特許文献5の弾性体とは異なり、振動ぶれ、ガタなどがなく、伝動機構としてきわめて安定、円滑な回転が得られる。加えて、側板4の重量を変えることにより、使用目的に応じて、所望の回転慣性あるいは遠心力を得ることもできる。いずれにしろ、この隙間のない接触配置により、エラストマー3が内側回転部材1の外向羽根11と外側回転部材2の内向羽根21間の相対回転伝達媒体として作用し、後述するように回転伝動効率、回転伝動応答性、及び衝撃緩衝性を示す。同時に、このエラストマー3は、内側回転部材1の外周面上に外側回転部材2を安定的に支持する。逆にいえば、本発明では、外側回転部材2をエラストマー3のみにより内側回転部材1の外周上に支持しており、在来の回転伝動機構のごとき軸受ベアリングのごとき特別の支承構造を持たないのが特徴のひとつである。このため、構造は極めてシンプルで、部品点数は少なく、軽量で、ベアリングのような機械的な摩擦回転損失も少ない。aは、内側回転部材1に回転軸を挿着するための透孔であるが、本発明では、用途に応じて、内側回転部材1及び外側回転部材2のいずれか一方を駆動側に、他方を従動側に任意に設定できる。bは、外板4の開口部である。 Next, embodiments of the present invention will be described in detail with reference to the drawings. 1 and 2 show a typical example of the present invention. 1 and 2, the inner rotating member 1 and the outer rotating member 2 include a plurality of outward blades 11 and inward blades 21 that mesh with each other, and are fitted so as to be relatively rotatable. The number of blades can be appropriately selected according to the application, but usually about 3 to 6 blades are practical. As shown in FIG. 2, the outward blades 11 of the inner rotating member 1 may be integrated or fixed, do not contact the inner peripheral surface of the outer rotating member 2, and the inward blades 21 of the outer rotating member 2 are also integrated or fixed. However, the outer peripheral surface of the inner rotation member 1 is not in contact with each other, and is alternately meshed. As shown in FIG. 2 (a), the outer peripheral surface of the inner rotary member 1, one side of the plurality of outward blades 11, and the inner peripheral surface of the outer rotary member 2 that opposes the outer peripheral surface of the inner rotary member 1, A hollow portion (hereinafter referred to as “empty portion”) that is surrounded by one side of the inward blade 21 that opposes one surface of the plurality of outward blades 11 of the inner rotary member 1 and the side plates 4 provided on both sides of the outer rotary member 2. The elastomers 3 are dispersedly arranged. The elastomer 3 is disposed in contact with any of the inner wall surfaces constituting the empty portion without any gap, and the elastic displacement is regulated by the side plate 4. In the present invention, the elastomer 3 has two functions of integrally supporting the inner and outer rotating members by absorbing the impact at the time of initial movement and shifting and by expanding in the direction of rotation with rotation. In the present invention, such an elastomer 3 is placed between the plurality of outward blades 11 of the inner rotating member 1, the plurality of inward blades 21 of the outer rotating member 2, and the plurality of outward blades 11 and the plurality of inward blades 21. When the same energy is input as compared with the single elastomer 3 arranged as in Patent Document 6, the elastomer 3 is placed between each of the plurality of outward blades 11 and the plurality of inward blades 21. In the case of arrangement, the time lag associated with compression is reduced to a time lag divided by the number of blades. And when it is the same time lag, the compressed elastomer 3 can obtain the repulsive force multiplied by the number of several blades. Further, in the present invention, the outward blades 11 of the inner rotating member 1, the inward blades 21 of the outer rotating member 2, and the elastomer 3 are preferably radially arranged so that their virtual extension lines pass through the midpoint of the inner rotating member 1. Has been placed. As a result, there is no uneven distribution in any direction of rotation, and unlike the elastic body of Patent Document 5, there is no vibration shake or play, and a very stable and smooth rotation can be obtained as a transmission mechanism. In addition, by changing the weight of the side plate 4, a desired rotational inertia or centrifugal force can be obtained according to the purpose of use. In any case, by this contact arrangement without a gap, the elastomer 3 acts as a relative rotation transmission medium between the outward blade 11 of the inner rotating member 1 and the inward blade 21 of the outer rotating member 2, and the rotation transmission efficiency, Rotational transmission response and shock buffering are shown. At the same time, the elastomer 3 stably supports the outer rotating member 2 on the outer peripheral surface of the inner rotating member 1. In other words, in the present invention, the outer rotating member 2 is supported on the outer periphery of the inner rotating member 1 only by the elastomer 3, and does not have a special support structure such as a bearing bearing such as a conventional rotation transmission mechanism. Is one of the features. Therefore, the structure is extremely simple, the number of parts is small, the weight is light, and the mechanical frictional rotation loss like a bearing is also small. a is a through-hole for inserting a rotating shaft into the inner rotating member 1. In the present invention, either the inner rotating member 1 or the outer rotating member 2 is set on the drive side, and the other is used according to the application. Can be set arbitrarily on the driven side. b is an opening of the outer plate 4.

本発明において、回転方向側と異なる空部とは、例えば、図2(イ)の回転伝動機構では、内側回転部材1が駆動源に連結されている場合、回転は時計周り方向となり、エラストマー3は、時計回り方向において外向羽根11と内向羽根21の間に介在しているが、反時計回り方向の外向羽根11と内向羽根21間には介在せず、反時計回り方向においては外向羽根11と内向羽根21は一体的に接している。逆に外側回転部材2が駆動源に連結されている場合には、反時計周り方向に回転し、エラストマー3は、反時計回り方向の内向羽根21と外向羽根11の間に介在し、時計回り方向の内向羽根21と外向羽根11の間には介在せず、時計回り方向においては、内向羽根21と外向羽根11が一体的に接している。さらに、駆動源が内側回転部材1に接続されている場合は、図2(ロ)に示すように、外向羽根11とエラストマー3の間に、エラストマー3より柔らかい補助エラストマー3aを配置することができる。逆に駆動源が外側回転部材2に接続されている場合には、図2(ハ)に示すように、内向羽根21とエラストマー3の間にエラストマー3より柔らかい補助エラストマー3bを配置することができる。図2(ロ)(ハ)の補助エラストマーは、初動時あるいは変速時の衝撃緩衝を主たる目的とした材料である。図2(ロ)(ハ)では、回転方向に一種類の補助エラストマー3a、3bを配置しているが、エラストマー全体を相対的に柔らかい補助的なものから支持性を兼ねたより硬いものの順に、複数層のエラストマーで構成してもよい。いずれにしろ、本発明では、駆動羽根となる方から順に相対的に柔らかいエラストマーから硬いエラストマーへと配置することにより、初動時又は変速時の衝撃を補助エラストマー(3a)(3b)で吸収するとともに、その吸収限界を超えた時点から、本来のエラストマー3により、回転向動力を相手側外向羽根11,内向羽根21に伝えるとともに、回転方向と交差する方向への膨張により、内、外側回転部材1、2を一体的に支持し、回転を一層加速する。 In the present invention, the empty portion different from the rotation direction side means, for example, in the rotation transmission mechanism of FIG. 2 (a), when the inner rotation member 1 is connected to the drive source, the rotation is clockwise and the elastomer 3 Is interposed between the outward blade 11 and the inward blade 21 in the clockwise direction, but is not interposed between the outward blade 11 and the inward blade 21 in the counterclockwise direction, and the outward blade 11 in the counterclockwise direction. And the inward blade 21 are in contact with each other. Conversely, when the outer rotating member 2 is connected to the drive source, the outer rotating member 2 rotates counterclockwise, and the elastomer 3 is interposed between the inward blade 21 and the outward blade 11 in the counterclockwise direction, and rotates clockwise. The inward blade 21 and the outward blade 11 are integrally in contact with each other in the clockwise direction. Further, when the drive source is connected to the inner rotating member 1, an auxiliary elastomer 3 a softer than the elastomer 3 can be disposed between the outward blade 11 and the elastomer 3 as shown in FIG. . Conversely, when the drive source is connected to the outer rotating member 2, an auxiliary elastomer 3 b that is softer than the elastomer 3 can be disposed between the inward blade 21 and the elastomer 3 as shown in FIG. . The auxiliary elastomers shown in FIGS. 2 (b) and 2 (c) are materials mainly intended for shock buffering at the time of initial movement or shifting. In FIGS. 2 (b) and (c), one type of auxiliary elastomer 3a, 3b is arranged in the rotational direction, but the entire elastomer is arranged in order from a relatively soft auxiliary material to a harder material that also serves as support. The layer may be composed of an elastomer. In any case, according to the present invention, the impact at the time of initial movement or speed change is absorbed by the auxiliary elastomer (3a) (3b) by arranging the relatively soft elastomer to the hard elastomer in order from the driving blade. From the time when the absorption limit is exceeded, the original elastomer 3 transmits the rotational direction power to the opposite outward blade 11 and the inward blade 21 and also expands in the direction crossing the rotational direction, thereby causing the inner and outer rotating members 1 to rotate. 2 are integrally supported to further accelerate the rotation.

本発明に使用するエラストマー3は、天然ゴム、合成ゴム、その他常温でゴム様弾性を有する材料から適宜に選択可能であるが、その種類、機能から合成ゴムが望ましい。合成ゴムとしては、二重結合の有無により、ジエン系ゴムとしては、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、アクリロニトリルブタジエンゴム等を挙げることができる。非ブタジエンゴムとしては、ブチルゴム、エチレン・プロピレンゴム、ウレタンゴム、シリコンゴム、クロロスルフォンゴム、塩素化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、フッ素ゴム等を挙げることができる。本発明では、回転伝動効率、回転伝動応答性、衝撃緩衝性、及び支持安定性の観点から、エラストマー3の選定は、用途に応じて選択可能であるが、一般的にはブタジエンゴムの使用が実用的である。 The elastomer 3 used in the present invention can be appropriately selected from natural rubber, synthetic rubber, and other materials having rubber-like elasticity at room temperature, but synthetic rubber is desirable from the type and function thereof. Examples of the synthetic rubber include the presence or absence of a double bond, and examples of the diene rubber include isoprene rubber, butadiene rubber, styrene-butadiene rubber, chloroprene rubber, and acrylonitrile butadiene rubber. Examples of the non-butadiene rubber include butyl rubber, ethylene / propylene rubber, urethane rubber, silicon rubber, chlorosulfone rubber, chlorinated polyethylene, acrylic rubber, epichlorohydrin rubber, and fluorine rubber. In the present invention, from the viewpoint of rotational transmission efficiency, rotational transmission responsiveness, impact buffering properties, and support stability, the selection of the elastomer 3 can be selected according to the application, but in general, the use of butadiene rubber is used. It is practical.

図3は、内側回転部材1の中央両側端に隆厚部cを設けた例を示す。この隆厚部cは、外側回転部材2の側板4の開口部bよりも小径で、側板4の開口端面と同じ程度の幅だけ隆厚となっており、外側回転部材2に異常な衝撃が加わった場合、側板4と接触してこれを支え、後述する図7に示すように衝撃力を緩和するとともに、側板4が駆動軸5に直接接触するのを防止している。その結果、回転伝動機構全体が致命的な損壊を受ける恐れは少ない。 FIG. 3 shows an example in which a bulge portion c is provided at both ends of the center of the inner rotating member 1. The thickened portion c is smaller in diameter than the opening b of the side plate 4 of the outer rotating member 2 and is thicker than the opening end surface of the side plate 4, and an abnormal impact is applied to the outer rotating member 2. When it is added, it contacts and supports the side plate 4 to alleviate the impact force and prevent the side plate 4 from directly contacting the drive shaft 5 as shown in FIG. As a result, the entire rotation transmission mechanism is less likely to be fatally damaged.

図4は、内側回転部材1を駆動側に、外側回転部材2を従動側に設定した伝動装置、例えば自転車のべダルと車輪の回転伝動の例を示すが、むろんその逆の使用も可能である。図4の(イ)に示すように、駆動側の内側回転部材1は、その透孔aに挿着された駆動軸5を有する。この駆動軸5は、例えば回転するモータのごとき駆動源(図示せず)に連結されている。一方、図4の(ロ)に示すように、従動側の外側回転部材2は、その外周上にスプロケット6を備えている。このスプロケット6は、作動する他の回転体(図示せず)に、例えばチェーンを介して連結されている。この応用例において、回転遠心力の慣性を有効に利用するには、エラストマー3を内側回転部材1の外周面から外側回転部材2の外周面へと、連続あるいは段階的に重く構成するのが望ましい。また、必要に応じて、内側回転部材1の外向羽根11の端面と外側回転部材2の内周面との間に錘(図示せず)を配置して、回転慣性による遠心力をさらに積極的に利用することもできる。 FIG. 4 shows an example of a transmission device in which the inner rotating member 1 is set on the drive side and the outer rotating member 2 is set on the driven side, for example, rotation transmission of a bicycle pedal and a wheel. is there. As shown in FIG. 4A, the drive-side inner rotating member 1 has a drive shaft 5 inserted into the through hole a. The drive shaft 5 is connected to a drive source (not shown) such as a rotating motor. On the other hand, as shown in FIG. 4B, the driven-side outer rotary member 2 includes a sprocket 6 on the outer periphery thereof. The sprocket 6 is connected to another rotating body (not shown) that operates, for example, via a chain. In this application example, in order to effectively use the inertia of the rotational centrifugal force, it is desirable that the elastomer 3 is configured to be heavier continuously or stepwise from the outer peripheral surface of the inner rotating member 1 to the outer peripheral surface of the outer rotating member 2. . Further, if necessary, a weight (not shown) is arranged between the end face of the outward blade 11 of the inner rotating member 1 and the inner peripheral surface of the outer rotating member 2, so that the centrifugal force due to the rotation inertia is more positive. It can also be used.

図5は、本発明の回転伝動機構におけるエラストマー3の加速作用を示す。本発明では、図5に示すように、エラストマー3がない例に比べて、エラストマー3を用いた例は、初動時の遅れが、エラストマー3の弾性圧縮によるエネルギーとしてエラストマー3内に蓄積され、回転方向と交差する方向への膨張による反発エネルギーと化し、加速的に出力されるものと推定される。 FIG. 5 shows the acceleration action of the elastomer 3 in the rotational transmission mechanism of the present invention. In the present invention, as shown in FIG. 5, in the example using the elastomer 3, the delay at the initial movement is accumulated in the elastomer 3 as energy due to the elastic compression of the elastomer 3 as compared with the example without the elastomer 3. It is estimated that the energy is repelled by expansion in the direction intersecting the direction and is output at an accelerated rate.

図6は、本発明の回転伝動機構におけるエラストマー3のエネルギー効率を示す。図5の加速作用は、図6のエネルギーの推移からも裏付けられる。すなわち、図6においても、エラストマー3を用いない例に比べ、エラストマー3を用いた例は、初動時の立ち上がりの遅れ分、高いエネルギーピークを示している。本発明では、この反発エネルギーを回転体の初動時に必要な大きな負荷に当てることができので、そのエネルギー効率は著しく改善される。さらに、補助エラストマーを図2(ロ)(ハ)に示すように配置しておくと、初動時の衝撃吸収は著しく改善される。 FIG. 6 shows the energy efficiency of the elastomer 3 in the rotational transmission mechanism of the present invention. The acceleration action of FIG. 5 is supported by the energy transition of FIG. That is, also in FIG. 6, the example using the elastomer 3 shows a higher energy peak corresponding to the rise delay at the time of the initial movement than the example using the elastomer 3. In the present invention, since this repulsive energy can be applied to a large load required at the time of the initial motion of the rotating body, the energy efficiency is remarkably improved. Furthermore, if the auxiliary elastomer is disposed as shown in FIGS. 2 (B) and 2 (C), the impact absorption at the initial movement is remarkably improved.

図7は、内側回転部材1の隆厚部cの作用を示す。本発明では、外側回転部材2に加わる異常な衝撃及び加重は、図7の(イ)に示すように、両回転部材の中心に向かう下向きのモーメントと、回転体の移動に伴う水平モーメントの対角線上の合力モーメントとなる。図3に示すように内側回転部材1に隆厚部cを設けておくと、図7の(ロ)に示すように、両側板の内周端面と隆厚部cの外周の接触干渉作用により、この合力モーメントは隆厚部cの直径の大きさに比例して軽減され、結果的に受ける衝撃力は緩和される。 FIG. 7 shows the operation of the thick portion c of the inner rotating member 1. In the present invention, the abnormal impact and load applied to the outer rotating member 2 are the diagonal lines of the downward moment toward the center of both rotating members and the horizontal moment accompanying the movement of the rotating body, as shown in FIG. The resultant resultant moment is As shown in FIG. 7, when the thickened portion c is provided in the inner rotating member 1, as shown in FIG. 7B, due to the contact interference action between the inner peripheral end surfaces of both side plates and the outer periphery of the thickened portion c. The resultant moment is reduced in proportion to the diameter of the ridge portion c, and the impact force received is consequently reduced.

図8は、図4とは別の使用例を示す。図8においては、本発明の回転伝動機構を空調機のコンプレッサーファンに用いている。回転伝動機構は、駆動モータの駆動軸5と一体となり、空調機のコンプレッサーファンにベルトを介して回転動力を与えている。また、図9では、同様に駆動モータの駆動軸5と一体となった本発明の回転伝動機構の外周に、図4(ロ)のスプロケット6に代えて歯車を設け、従動側の回転体の歯車と歯合させることにより、回転動力を伝達している。本発明の回転伝動機構は、これらの例示以外にも、多様な用途に利用可能であるが、比較的低速回転体への伝動に好適に使用できる。 FIG. 8 shows a usage example different from FIG. In FIG. 8, the rotation transmission mechanism of this invention is used for the compressor fan of an air conditioner. The rotation transmission mechanism is integrated with the drive shaft 5 of the drive motor and applies rotational power to the compressor fan of the air conditioner via a belt. In FIG. 9, a gear is provided on the outer periphery of the rotational transmission mechanism of the present invention, which is also integrated with the drive shaft 5 of the drive motor, instead of the sprocket 6 in FIG. Rotational power is transmitted by meshing with the gears. The rotation transmission mechanism of the present invention can be used for various purposes other than these examples, but can be suitably used for transmission to a relatively low-speed rotating body.

以上のごとき本発明の回転伝動機構は、図4の例に従うと、例えば以下のごとく作動する。まず、駆動入力前では、外側回転部材2はエラストマー3のみにより内側回転部材1の外周上に安定的に支持されている。駆動源からの回転は、駆動軸5により内側回転部材1に与えられる。内側回転部材1は、この回転を受けて外向羽根11によりエラストマー3を介して外側回転部材2の内向羽根21に伝達する。このとき本発明では、エラストマー3が空部を構成する内壁に密に接して配置されているので、使用するエラストマー3の弾性変異の範囲内でのみ圧縮されて、初動時、加速時における変位を図5及び図6に示すように効率的に伝達できるばかりでなく、定常回転速度に達する応答性においてもすぐれた性能を示す。また、その際受ける衝撃は、エラストマー3の弾性変位により吸収して、緩衝する。このとき、図2(ロ)(ハ)に示すように、駆動羽根とエラストマー3の間に、エラストマー3より柔らかい補助エラストマー3a、あるいは3bを配置しておくと、その衝撃吸収効果はより高まる。加えて、外側回転部材2に加わる異常負荷は、内側回転部材1の隆厚部cにより受け止められ、駆動軸5と接触することを回避している。このことにより、回転伝動機構が致命的な損壊を受けることも防止している。 The rotation transmission mechanism of the present invention as described above operates as follows, for example, according to the example of FIG. First, before driving input, the outer rotating member 2 is stably supported on the outer periphery of the inner rotating member 1 only by the elastomer 3. The rotation from the driving source is given to the inner rotating member 1 by the driving shaft 5. The inner rotating member 1 receives this rotation and transmits it to the inward blade 21 of the outer rotating member 2 through the elastomer 3 by the outward blade 11. At this time, in the present invention, since the elastomer 3 is arranged in close contact with the inner wall constituting the empty portion, the elastomer 3 is compressed only within the range of the elastic variation of the elastomer 3 to be used, and the displacement at the initial motion and acceleration is reduced. As shown in FIG. 5 and FIG. 6, not only can the transmission be performed efficiently, but also excellent performance is exhibited in the responsiveness to reach the steady rotational speed. Further, the impact received at this time is absorbed and buffered by the elastic displacement of the elastomer 3. At this time, as shown in FIGS. 2B and 2C, if the auxiliary elastomer 3a or 3b softer than the elastomer 3 is disposed between the driving blade and the elastomer 3, the impact absorbing effect is further enhanced. In addition, the abnormal load applied to the outer rotating member 2 is received by the thick portion c of the inner rotating member 1, thereby avoiding contact with the drive shaft 5. This also prevents the rotation transmission mechanism from undergoing fatal damage.

本発明の回転伝動機構は、比較的体側回転の自転車用伝動機、その他増減速を伴う各種変速機などに広く適用できる。例えば、自転車、車椅子、子供用三輪車、リヤカー、一輪車、風力発電機や扇風機のプロペラ部分、耕運機等に利用可能である。   The rotation transmission mechanism of the present invention can be widely applied to bicycle transmissions that rotate relatively on the body side, and other various transmissions that accompany speed increase / decrease. For example, it can be used for bicycles, wheelchairs, children's tricycles, rear cars, unicycles, wind power generators and electric fan propellers, and tillers.

1…内側回転部材
11…外向羽根
2…外側回転部材
21…内向羽根
3…エラストマー
3a、3b…補助エラストマー
4…側板
5…駆動軸
6…スプロケット
a…透孔
b…開口部
c…隆厚部
DESCRIPTION OF SYMBOLS 1 ... Inner rotating member 11 ... Outward blade | wing 2 ... Outer rotating member 21 ... Inward blade | wing 3 ... Elastomer 3a, 3b ... Auxiliary elastomer 4 ... Side plate 5 ... Drive shaft 6 ... Sprocket a ... Through-hole b ... Opening part c ... Thick part

Claims (7)

複数の外向羽根を有する内側回転部材と、外向羽根に歯合する複数の内向羽根を有する同心の外側回転部材とを備え、内側回転部材と外側回転部材のいずれか一方が駆動側で他方が従動側である回転伝動機構であって、外側回転部材の両側に内側回転部材から独立した側板を備え、外向羽根は外側回転部材の内周面と接触せず、内向羽根は内側回転部材の外周面と接触せず、両回転部材の内外周面と両各羽根間と両側板間で構成される回転方向側の各空部に、エラストマーが空部を構成する四囲の内壁に実質的に接して分散配置されており、該エラストマーを介してのみ内側回転部材の外周上に外側回転部材を支持するとともに、駆動側回転部材の回転を従動側回転部材に伝達することを特徴とする回転伝動機構。   An inner rotating member having a plurality of outward blades and a concentric outer rotating member having a plurality of inward blades meshing with the outward blades, one of the inner rotating member and the outer rotating member being driven and the other being driven A rotation transmission mechanism that is a side, provided with side plates that are independent of the inner rotating member on both sides of the outer rotating member, the outward blade is not in contact with the inner peripheral surface of the outer rotating member, and the inward blade is the outer peripheral surface of the inner rotating member The elastomer is substantially in contact with the inner wall of the four surroundings that constitutes the vacant space, in each of the hollow portions on the rotation direction side constituted by the inner and outer peripheral surfaces of both rotating members, between both blades and between both side plates. A rotation transmission mechanism that is arranged in a distributed manner, supports the outer rotation member on the outer periphery of the inner rotation member only through the elastomer, and transmits the rotation of the driving side rotation member to the driven side rotation member. 外側回転部材の両側に内側回転部材と同心の開口部を有する側板を有する請求項1に記載の回転伝動機構。   The rotation transmission mechanism according to claim 1, further comprising side plates having openings concentric with the inner rotation member on both sides of the outer rotation member. 内側回転部材の軸方向の両端面に両側側板の開口部より小径の隆厚部を有する請求項1又は2に記載の回転伝動機構。   The rotation transmission mechanism according to claim 1 or 2, wherein the inner rotation member has a thickened portion having a smaller diameter than the openings of both side plates on both end surfaces in the axial direction. 内側回転部材の外向羽根、外側回転部材の内向羽根、及びエラストマーが、その仮想延長線において内側回転部材の中点を通るように、放射状に配置されている請求項1乃至3のいずれか1項に記載の回転伝動機構。   The outward blades of the inner rotating member, the inward blades of the outer rotating member, and the elastomer are radially arranged so as to pass through the midpoint of the inner rotating member at a virtual extension line thereof. The rotation transmission mechanism described in 1. エラストマーが、回転方向において手前により軟かい補助ラストマーを配置する請求項1乃至4のいずれか1項に記載の回転伝動機構。   The rotation transmission mechanism according to any one of claims 1 to 4, wherein the elastomer is provided with an auxiliary lastomer that is softer toward the front in the rotation direction. 内側回転部材が駆動体で外側回転部材が従動体であり、エラストマーが内側回転部材の外周表面から外側回転部材の内周表面に向かって重く構成された請求項1乃至5のいずれか1項に記載の回転伝動機構。   The inner rotating member is a driving body, the outer rotating member is a follower, and the elastomer is configured to be heavier from the outer peripheral surface of the inner rotating member toward the inner peripheral surface of the outer rotating member. The described rotary transmission mechanism. 請求項1乃至6のいずれか1項に記載の回転伝動機構を利用した変速装置。   A transmission using the rotation transmission mechanism according to any one of claims 1 to 6.
JP2009154474A 2009-06-30 2009-06-30 Rotation transmission mechanism Pending JP2011012688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154474A JP2011012688A (en) 2009-06-30 2009-06-30 Rotation transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154474A JP2011012688A (en) 2009-06-30 2009-06-30 Rotation transmission mechanism

Publications (1)

Publication Number Publication Date
JP2011012688A true JP2011012688A (en) 2011-01-20

Family

ID=43591805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154474A Pending JP2011012688A (en) 2009-06-30 2009-06-30 Rotation transmission mechanism

Country Status (1)

Country Link
JP (1) JP2011012688A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178341A1 (en) * 2014-05-20 2015-11-26 日本電波工業株式会社 Ultrasound probe
KR20170000830A (en) * 2015-05-27 2017-01-04 강진우 Off-road performance is improved camping trailer
WO2017006621A1 (en) * 2015-07-03 2017-01-12 Nok株式会社 Damper for absorbing rotational variation
JP2018004064A (en) * 2016-07-08 2018-01-11 陽一郎 濱元 Rotation transmission mechanism and bicycle equipped with the same
CN107939906A (en) * 2017-11-23 2018-04-20 哈尔滨工业大学 A kind of flexible member for using metal-rubber on flexible machine person joint
CN109466684A (en) * 2015-02-14 2019-03-15 知识产权之桥号有限责任公司 Rotary transfer machine and the bicycle for having the rotary transfer machine
EP3594097A4 (en) * 2017-03-08 2020-12-16 Yoichiro Hamamoto Rotation transmission mechanism and bicycle equipped with the rotation transmission mechanism

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178341A1 (en) * 2014-05-20 2015-11-26 日本電波工業株式会社 Ultrasound probe
JP2015217208A (en) * 2014-05-20 2015-12-07 日本電波工業株式会社 Ultrasonic probe
US10463342B2 (en) 2014-05-20 2019-11-05 Nihon Dempa Kogyo Co., Ltd. Ultrasonic transducer
CN109466684A (en) * 2015-02-14 2019-03-15 知识产权之桥号有限责任公司 Rotary transfer machine and the bicycle for having the rotary transfer machine
KR20170000830A (en) * 2015-05-27 2017-01-04 강진우 Off-road performance is improved camping trailer
KR101710955B1 (en) * 2015-05-27 2017-02-28 강진우 Off-road performance is improved camping trailer
WO2017006621A1 (en) * 2015-07-03 2017-01-12 Nok株式会社 Damper for absorbing rotational variation
JP2018004064A (en) * 2016-07-08 2018-01-11 陽一郎 濱元 Rotation transmission mechanism and bicycle equipped with the same
EP3594097A4 (en) * 2017-03-08 2020-12-16 Yoichiro Hamamoto Rotation transmission mechanism and bicycle equipped with the rotation transmission mechanism
CN107939906A (en) * 2017-11-23 2018-04-20 哈尔滨工业大学 A kind of flexible member for using metal-rubber on flexible machine person joint

Similar Documents

Publication Publication Date Title
JP2011012688A (en) Rotation transmission mechanism
JP4016398B2 (en) Torsional vibration damper
JP6147753B2 (en) Pendulum type damper system with improved guide device
JP2010019419A (en) Vehicular torque attenuation compensator
JP6384573B1 (en) Torsional vibration reduction device
KR960702075A (en) Power train with vibration dampening mechanism
JP6363720B2 (en) Dynamic damper
KR101338081B1 (en) Flywheel of engine
JP5714891B2 (en) Damper with limiter for hybrid vehicles
JPH0141848B2 (en)
KR100507068B1 (en) Dual mass flywheel using air damping
JP2008144933A (en) Lock-up damper device for torque converter
JPH05106688A (en) Shock absorption tupe double flywheel for automobile
CN110230660B (en) Damping device and engine system
JP2598472Y2 (en) Power transmission device
JP5179813B2 (en) Damper mounting structure for hybrid vehicles with limiter
JP2002195290A (en) Multiple-disk clutch device
JPH0727174A (en) Viscous twist vibration damping device
JP5276280B2 (en) Damper mounting structure for hybrid vehicles with limiter
JP2008180306A (en) Lock-up damper device equipped with torque converter damping mechanism
CN201779209U (en) Torsional damper and clutch cover assembly containing torsional damper
JP2001099186A (en) Clutch structure
JP7103266B2 (en) Rotational force transmission mechanism
JP6776615B2 (en) Dynamic vibration absorber
JP7449255B2 (en) Clutch device and clutch outer used for it