JP2011012644A - Heat engine cycle device - Google Patents

Heat engine cycle device Download PDF

Info

Publication number
JP2011012644A
JP2011012644A JP2009159393A JP2009159393A JP2011012644A JP 2011012644 A JP2011012644 A JP 2011012644A JP 2009159393 A JP2009159393 A JP 2009159393A JP 2009159393 A JP2009159393 A JP 2009159393A JP 2011012644 A JP2011012644 A JP 2011012644A
Authority
JP
Japan
Prior art keywords
working fluid
heat
expander
engine cycle
heat engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009159393A
Other languages
Japanese (ja)
Other versions
JP5083835B2 (en
Inventor
Noboru Yamada
昇 山田
Takahiro Minami
貴裕 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Original Assignee
Nagaoka University of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC filed Critical Nagaoka University of Technology NUC
Priority to JP2009159393A priority Critical patent/JP5083835B2/en
Publication of JP2011012644A publication Critical patent/JP2011012644A/en
Application granted granted Critical
Publication of JP5083835B2 publication Critical patent/JP5083835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new heat engine cycle device which increases net thermal efficiency, reduces a size and is enabled in flexible layout design.SOLUTION: A heat engine cycle device 10 is composed of heat exchangers HX1, HX2 for accommodating working fluids 19, a connection pipe 18, a control valve 11, an expander 12, introduction pipes 16, 17 for guiding heat source fluids from a heat source 1 or a cooling source 2 to the heat exchangers HX1, HX2, a flow path switching valve 14 for switching the heat source fluid guided to the introduction pipes 16, 17, and a control device 15 for monitoring a pressure difference between the working fluids 19 before and after the expander 12 circulating the working fluids 19 by opening the control valve 11 when the pressure difference reaches a set upper limit value and switching the heat source fluids guided to the introduction pipes 16, 17 by switching the flow path switching valve 14 when the pressure difference reaches the set lower limit value after the opening.

Description

本発明は、低温熱源から動力回収/発電を行う熱機関サイクル装置に関し、具体的には、高温熱源と低温熱源との温度差を利用して動作する温度差熱機関サイクル装置に関する。   The present invention relates to a heat engine cycle apparatus that performs power recovery / power generation from a low-temperature heat source, and more particularly, to a temperature difference heat engine cycle apparatus that operates using a temperature difference between a high-temperature heat source and a low-temperature heat source.

化石燃料の枯渇化や地球温暖化などのエネルギー・環境問題の対策の一つとして再生可能エネルギーの有効利用が挙げられ、太陽光、風力、水力、バイオマス等の利用が普及しつつある。また、大量に発生するものの温度が低くかつ分散性の高い低温熱源(例えば、工場排熱、小型ガスタービンや自動車エンジンの排熱、太陽熱など)であっても再生可能エネルギーとなることが期待されており、例えば、我が国(日本国)の年間工場排熱量の5%が動力または電力に変換された場合、炭素量に換算すると、年間約125万トンのCO排出量の削減が見込まれる。 One of the countermeasures for energy and environmental problems such as depletion of fossil fuels and global warming is the effective use of renewable energy, and the use of sunlight, wind power, hydropower, biomass, etc. is spreading. In addition, although it is generated in large quantities, it is expected to become a renewable energy even for low-temperature heat sources with low temperature and high dispersibility (for example, factory exhaust heat, exhaust heat from small gas turbines and automobile engines, solar heat, etc.). For example, if 5% of the annual factory exhaust heat in Japan (Japan) is converted into power or electric power, a reduction in CO 2 emissions of approximately 1.25 million tons per year is expected when converted to carbon.

低温熱源から動力回収/発電を行う熱機関サイクル装置として、ランキンサイクルを利用した装置が存在する(例えば、特許文献1参照)。ランキンサイクル装置は基本蒸気サイクル装置であり、通常、供給ポンプ(作動流体ポンプ)、蒸発器、タービン/膨張機、凝縮器、及び作動流体で構成される。低圧液の作動流体は供給ポンプにより断熱圧縮され高圧液となり、蒸発器で等圧加熱されて高圧蒸気となり、タービンで断熱膨張する際に機械仕事を行う。その後、低圧蒸気となり、凝縮器で等圧冷却され低圧の飽和液に戻る。ランキンサイクル装置の正味熱効率はタービン出力からポンプ動力を差し引き、加熱量で除した値となる。   As a heat engine cycle device that performs power recovery / power generation from a low-temperature heat source, there is a device that uses a Rankine cycle (see, for example, Patent Document 1). The Rankine cycle device is a basic steam cycle device and is typically composed of a feed pump (working fluid pump), an evaporator, a turbine / expander, a condenser, and a working fluid. The working fluid of the low-pressure liquid is adiabatically compressed by a supply pump to become high-pressure liquid, is heated at an equal pressure by an evaporator to become high-pressure steam, and performs mechanical work when adiabatically expanding by a turbine. After that, it becomes low-pressure steam and is cooled at the same pressure by a condenser to return to a low-pressure saturated liquid. The net thermal efficiency of the Rankine cycle system is a value obtained by subtracting the pump power from the turbine output and dividing by the heating amount.

小型・低温度差のランキンサイクル装置では、熱源温度つまり熱量が変動する場合、変動に応じて作動流体ポンプの吐出圧力と流量が変化するため、その変動範囲において高効率を維持する作動流体ポンプが必要となる。しかし、現状ではそのようなポンプの選定/設計は困難であり、ポンプ動力がある程度高い作動流体ポンプを使用するため正味熱効率の低下を招いている。またポンプ入口でのキャビテーション発生を防ぐために有効吸込みヘッドを確保する必要があり、装置の小型化や柔軟なレイアウト設計の障害となっている。   In a small, low temperature difference Rankine cycle device, when the heat source temperature, that is, the amount of heat fluctuates, the discharge pressure and flow rate of the working fluid pump change according to the fluctuation, so there is a working fluid pump that maintains high efficiency in the fluctuation range. Necessary. However, at present, it is difficult to select / design such a pump, and the use of a working fluid pump having high pump power to some extent leads to a decrease in net thermal efficiency. Also, it is necessary to secure an effective suction head to prevent cavitation from occurring at the pump inlet, which is an obstacle to downsizing of the apparatus and flexible layout design.

特許文献1のランキンサイクル装置は、流体ポンプ入口側の液相の作動流体に気相の作動流体を混ぜることにより、エンタルピーを殆ど変化させることなく、作動流体の密度だけを低下させ、それに伴って、膨張機入口側の作動流体の密度も同様に低下させることで、効率の良い条件で運転を可能にするものであるが、通常のランキンサイクル装置と同様に作動流体ポンプを必要とするものであり、上記の課題(特に後者の小型化や設計の柔軟性)を解決し得るものではない。   In the Rankine cycle device of Patent Document 1, the working fluid in the gas phase is mixed with the working fluid in the liquid phase on the inlet side of the fluid pump, so that only the density of the working fluid is reduced without substantially changing the enthalpy. The density of the working fluid on the inlet side of the expander is also reduced to enable operation under efficient conditions. However, like a normal Rankine cycle device, a working fluid pump is required. However, the above-described problems (particularly the latter miniaturization and design flexibility) cannot be solved.

また、特許文献2には、熱効率の低下や発電コストの上昇といった従来のランキンサイクルの欠点を除去するために、特に蒸発器、気液分離器、吸収器、再生器とを設けることにより高熱源と低熱源を汲み上げるための動力を低減した温度差発電装置が開示されているが、特許文献1と同様に作動流体ポンプを必要とするものであり、上記の課題を解決し得るものではない。   Patent Document 2 discloses a high heat source by providing an evaporator, a gas-liquid separator, an absorber, and a regenerator in order to eliminate the disadvantages of the conventional Rankine cycle, such as a decrease in thermal efficiency and an increase in power generation cost. Although the temperature difference power generation device which reduced the motive power for pumping up a low heat source is disclosed, a working fluid pump is required like patent document 1, and the above-mentioned subject cannot be solved.

なお、特許文献3には、作動流体ポンプを要さずに排熱を回収する発電装置が示されている。しかしながら、特許文献3の排熱回収用発電装置では、気密タンクから蒸発管への作動液の輸送を位置ヘッドにより行うため、小型化や装置設計の面からは許容不可能な非現実的な高低差が必要であるとともに、本発明者の経験上、当該発電装置を実際的に動作させることは非常に困難であると考えられる。   Patent Document 3 discloses a power generator that recovers exhaust heat without requiring a working fluid pump. However, in the exhaust heat recovery power generation device of Patent Document 3, since the working fluid is transported from the airtight tank to the evaporation pipe by the position head, it is an unrealistic height that is unacceptable in terms of downsizing and device design. While the difference is necessary, it is considered that it is very difficult to actually operate the power generation device based on the experience of the present inventor.

特開2009−103029号公報JP 2009-103029 A 特開平7−91361号公報Japanese Patent Laid-Open No. 7-91361 特開昭54−148944号公報JP 54-148944 A

本発明は、かかる課題を解決し、正味熱効率を増大するとともに小型化及び柔軟なレイアウト設計が可能な新しい熱機関サイクル装置を提供することを目的とする。   An object of the present invention is to solve this problem and to provide a new heat engine cycle device that can increase the net thermal efficiency and can be downsized and flexible in layout design.

本発明者は、鋭意検討の末、上記課題の主発生要因であった作動流体ポンプを従来のランキンサイクル装置の構成から排除し、弁操作のみで熱交換器の役割を蒸発器又は凝縮器として間欠的に交互に切り替えることができれば、ランキンサイクルに近似した新たな熱機関サイクル装置(動力回収/発電装置)を構成することができることを見出し、本発明を完成するに至った。   The present inventor removed the working fluid pump, which was the main cause of the above problem, from the configuration of the conventional Rankine cycle device after intensive study, and the role of the heat exchanger as an evaporator or a condenser only by operating the valve. It has been found that if it can be switched alternately and intermittently, a new heat engine cycle device (power recovery / power generation device) similar to the Rankine cycle can be constructed, and the present invention has been completed.

本発明の熱機関サイクル装置は、例えば、作動流体を収容する第1・第2熱交換器と、
前記第1・第2熱交換器と連結し、前記作動流体を流通させる連結管と、
前記連結管上に設けられ、弁の開閉により前記作動流体の流通を制御する制御弁と、
前記連結管上に設けられ、前記作動流体の流通により作動する膨張機と、
熱源又は冷却源からの熱源流体を前記第1・第2熱交換器に案内する第1・第2導入管と、
前記第1・第2導入管に案内される前記熱源流体を切り替える流路切替弁と、
前記膨張機前後の作動流体の圧力差を監視し、設定上限値に到達したときに前記制御弁を開放して前記作動流体の流通を行い、開放後に前記圧力差が設定下限値に到達したときに前記流路切替弁を切り替えて前記第1・第2導入管に案内される熱源流体を切り替える制御装置と、を備えることを特徴とする。
The heat engine cycle device of the present invention includes, for example, first and second heat exchangers that contain a working fluid,
A connecting pipe that is connected to the first and second heat exchangers and that circulates the working fluid;
A control valve provided on the connecting pipe and controlling the flow of the working fluid by opening and closing the valve;
An expander that is provided on the connecting pipe and operates by circulation of the working fluid;
First and second introduction pipes for guiding a heat source fluid from a heat source or a cooling source to the first and second heat exchangers;
A flow path switching valve for switching the heat source fluid guided to the first and second introduction pipes;
When the pressure difference of the working fluid before and after the expander is monitored and the set upper limit value is reached, the control valve is opened to flow the working fluid, and after opening, the pressure difference reaches the set lower limit value And a control device for switching the heat source fluid guided to the first and second introduction pipes by switching the flow path switching valve.

本発明の熱機関サイクル装置によれば、従来のランキンサイクル装置等で必須でありかつ正味熱効率低下の主要因となっていた作動流体ポンプを用いることなく熱機関サイクルを作動できるため、正味熱効率を向上することができる。   According to the heat engine cycle device of the present invention, the heat engine cycle can be operated without using a working fluid pump, which is essential in the conventional Rankine cycle device and the like and has been the main factor of the decrease in the net heat efficiency. Can be improved.

また、作動流体ポンプを使用しないため、装置のレイアウト設計に柔軟性を持たせることができるとともに、作動流体の密閉性を確保することができる。   Moreover, since the working fluid pump is not used, the layout design of the apparatus can be given flexibility and the sealing property of the working fluid can be ensured.

また、作動流体に沸点が水の沸点以下でありかつ熱源の温度域に適合する流体を選択すれば、温度が低くかつ高分散性の熱源(工場排熱、自動車排熱など)に本発明の熱機関サイクル装置を最適に適用でき、正味熱効率をさらに向上することができる。   In addition, if a fluid whose boiling point is lower than the boiling point of water and suitable for the temperature range of the heat source is selected as the working fluid, the heat source (factory exhaust heat, automobile exhaust heat, etc.) having a low temperature and high dispersibility can be used. The heat engine cycle device can be optimally applied, and the net thermal efficiency can be further improved.

本発明の実施例1に係る熱機関サイクル装置の装置構成を示した図である。It is the figure which showed the apparatus structure of the heat engine cycle apparatus which concerns on Example 1 of this invention. 本発明の熱機関サイクルにおけるT−s線図とp−h線図とを示す。The Ts diagram and ph diagram in the heat engine cycle of the present invention are shown. 本発明の制御装置15が行う制御方法を示すフローチャートである。It is a flowchart which shows the control method which the control apparatus 15 of this invention performs. 制御装置15が制御弁11を開放する間のタービン出力の経時変化の一例を示した図である。3 is a diagram illustrating an example of a change over time in turbine output while the control device 15 opens the control valve 11. FIG. 本発明の実施例2に係る熱機関サイクル装置の装置構成を示した図である。It is the figure which showed the apparatus structure of the heat engine cycle apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る熱機関サイクル装置の装置構成を示した図である。It is the figure which showed the apparatus structure of the heat engine cycle apparatus which concerns on Example 3 of this invention. 本発明の実施例4に係る熱機関サイクル装置の装置構成を示した図である。It is the figure which showed the apparatus structure of the heat engine cycle apparatus which concerns on Example 4 of this invention. 本発明の実施例5に係る熱機関サイクル多連結システムの構成を示した図である。It is the figure which showed the structure of the heat engine cycle multiple connection system which concerns on Example 5 of this invention. 実施例5の各サイクル装置でのタービン出力とこれらを重ね合わせたシステム全体の発電電力とを示した図である。It is the figure which showed the turbine output in each cycle apparatus of Example 5, and the generated electric power of the whole system which overlap | superposed these. 本発明の実施例6に係る熱機関サイクル多連結システムの装置構成を示した図である。It is the figure which showed the apparatus structure of the heat engine cycle multiple connection system which concerns on Example 6 of this invention. 本発明の実施例7に係る熱機関サイクル多連結システムの装置構成を示した図である。It is the figure which showed the apparatus structure of the heat engine cycle multiple connection system which concerns on Example 7 of this invention. 本発明の熱機関サイクルを検証するための実験装置の概略を示した図である。It is the figure which showed the outline of the experimental apparatus for verifying the heat engine cycle of this invention. 図12の検証実験の実験結果(圧力及びエンタルピーの時間変化)を示した図である。It is the figure which showed the experimental result (time change of a pressure and enthalpy) of the verification experiment of FIG. 図12の検証実験の実験結果(圧力差、エンタルピー差、質量流量、及びタービン出力の時間変化)を示した図である。It is the figure which showed the experimental result (Pressure difference, enthalpy difference, mass flow rate, and time change of turbine output) of the verification experiment of FIG.

以下、本発明を図面に示す実施例に基づき具体的に説明する。なお、本発明はこれらの実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. In addition, this invention is not limited to these Examples at all.

図1は、本発明の実施例1に係る熱機関サイクル装置10を示す。この熱機関サイクル装置10は、第1熱交換器HX1と、第2熱交換器HX2と、制御弁11と、往復流膨張機12と、流路切替弁14と、制御装置15と、第1導入管16と、第2導入管17と、連結管18と、から構成されている。   FIG. 1 shows a heat engine cycle apparatus 10 according to a first embodiment of the present invention. The heat engine cycle device 10 includes a first heat exchanger HX1, a second heat exchanger HX2, a control valve 11, a reciprocating flow expander 12, a flow path switching valve 14, a control device 15, a first The inlet pipe 16, the second inlet pipe 17, and the connecting pipe 18 are configured.

第1・第2熱交換器HX1,HX2は作動流体19を収容可能であるとともに連結管18によって互いに連結されているため、作動流体19は第1熱交換器HX1と第2熱交換器HX2との間を往来(流通)することができる。この連結管18上には制御装置15によって弁の開閉が制御される制御弁11と、制御弁11によって開放された作動流体19の流通によって駆動される往復流膨張機12が設けられている。この往復流膨張機12の動作によって動力を回収することが可能となる。さらに往復流膨張機12に発電機13を接続してもよく、これにより上記回収動力を電力に変換することが可能になる。   Since the first and second heat exchangers HX1 and HX2 can store the working fluid 19 and are connected to each other by the connecting pipe 18, the working fluid 19 includes the first heat exchanger HX1 and the second heat exchanger HX2. It is possible to go between (distribution). A control valve 11 whose opening and closing is controlled by the control device 15 and a reciprocating flow expander 12 driven by the flow of the working fluid 19 opened by the control valve 11 are provided on the connecting pipe 18. Power can be recovered by the operation of the reciprocating expander 12. Further, a generator 13 may be connected to the reciprocating expander 12, which makes it possible to convert the recovered power into electric power.

第1導入管16は、第1熱交換器HX1の内部を巡回するように配管されており、熱源1又は冷却源2の流体(以下「熱源流体」とも呼ぶ。)を第1熱交換器1内に案内して、作動流体19の加熱又は冷却を行う。同様に、第2導入管17は、第2熱交換器HX2の内部を巡回するように配管されており、熱源1又は冷却源2の熱源流体を第2熱交換器2内に案内して、作動流体19の加熱又は冷却を行う。   The first introduction pipe 16 is piped so as to circulate inside the first heat exchanger HX1, and the fluid of the heat source 1 or the cooling source 2 (hereinafter also referred to as “heat source fluid”) is the first heat exchanger 1. And the working fluid 19 is heated or cooled. Similarly, the second introduction pipe 17 is piped so as to circulate inside the second heat exchanger HX2, and guides the heat source fluid of the heat source 1 or the cooling source 2 into the second heat exchanger 2, The working fluid 19 is heated or cooled.

なお、熱源流体には気化した排熱ガス、液状の温水や冷却水等が挙げられる。これらの熱源流体はそれぞれ物性値(例えば比熱、熱伝導率)が異なるため、単一流量当たりに第1・第2導入管16,17及び第1・第2熱交換器HX1, HX2に付与される熱量が異なる。従って、熱源流体の物性・流量を適宜選択することで第1・第2導入管16,17及び第1・第2熱交換器HX1を柔軟・適切に設計(例えば、小型化)することができる。   Examples of the heat source fluid include vaporized exhaust heat gas, liquid warm water, and cooling water. Since these heat source fluids have different physical property values (for example, specific heat and thermal conductivity), they are applied to the first and second introduction pipes 16 and 17 and the first and second heat exchangers HX1 and HX2 per unit flow rate. The amount of heat is different. Therefore, the first and second introduction pipes 16 and 17 and the first and second heat exchangers HX1 can be flexibly and appropriately designed (for example, downsized) by appropriately selecting the physical properties and flow rate of the heat source fluid. .

次に、実施例1の装置構成を参照しながら本発明の作動原理を説明する。
(a)等積加熱
まず、制御弁11は制御装置15によって閉じた状態に設定され、第1熱交換器HX1には熱源1の高温流体が流れる一方、第2熱交換器HX2には冷却源2の低温流体が流れる。すなわち、第1熱交換器HX1は蒸発器として機能し、第2熱交換器HX2は凝縮器として機能する。このとき、初期状態として、第1熱交換器HX1には第2熱交換器HX2よりも多量の作動流体19が封入されているか、或いは、第1熱交換器HX1のみに作動流体19が封入されているものとする。等積加熱により、第1熱交換器HX1内の作動流体19は高温高圧の状態になる。(一方、第2熱交換器HX2内にも作動流体19が存在する場合は、第2熱交換器HX2内の作動流体19は低温低圧の状態になる。)
Next, the operation principle of the present invention will be described with reference to the apparatus configuration of the first embodiment.
(A) Equal volume heating First, the control valve 11 is set in a closed state by the control device 15, and the high-temperature fluid of the heat source 1 flows through the first heat exchanger HX1, while the cooling source is supplied to the second heat exchanger HX2. 2 cold fluid flows. That is, the first heat exchanger HX1 functions as an evaporator, and the second heat exchanger HX2 functions as a condenser. At this time, as an initial state, the first heat exchanger HX1 is filled with a larger amount of the working fluid 19 than the second heat exchanger HX2, or the working fluid 19 is sealed only in the first heat exchanger HX1. It shall be. By the equal volume heating, the working fluid 19 in the first heat exchanger HX1 becomes a high temperature and high pressure state. (On the other hand, when the working fluid 19 is also present in the second heat exchanger HX2, the working fluid 19 in the second heat exchanger HX2 is in a low temperature and low pressure state.)

(b)等圧加熱
第1・第2熱交換器HX1,HX2内の作動流体19の圧力が夫々制御装置15で設定された設定圧力に達したとき、制御装置15によって制御弁11を開放する。第1熱交換器HX1内の高温高圧の作動流体19がほぼ等圧の下で加熱され蒸気(ここで、作動流体19が水以外の場合も蒸気と呼ぶ。)となり、第1熱交換器HX1から連結管18を通して第2熱交換器HX2へ向かって流れる(図1中の右方向矢印を参照)。
(B) Isobaric heating When the pressure of the working fluid 19 in the first and second heat exchangers HX1 and HX2 reaches the set pressure set by the control device 15, the control valve 11 is opened by the control device 15. . The high-temperature and high-pressure working fluid 19 in the first heat exchanger HX1 is heated under substantially equal pressure to become steam (here, when the working fluid 19 is other than water, it is also called steam), and the first heat exchanger HX1. From the first through the connecting pipe 18 to the second heat exchanger HX2 (see the right arrow in FIG. 1).

(c)断熱膨張
この際、高温高圧の作動流体19は、往復流膨張機(本明細書では膨張機のことを「タービン」とも呼ぶ。)12で断熱膨張して機械仕事を行う。ここで、「断熱膨張」というのは、熱損失のない理想膨張であり、実際は熱損失を伴う「膨張」となる。ランキンサイクルの基本原理との比較を行う説明の便宜上、「断熱膨張」を用いる。このときの往復流膨張機12の理論タービン出力Lは作動流体19の質量流量mに往復流膨張機12前後のエンタルピーh、hの差を乗じた式(L=m×(h−h))となる。ただし,通常のランキンサイクルとは異なりタービン出力Lは時間とともに変化する。
(C) Adiabatic expansion At this time, the high-temperature and high-pressure working fluid 19 performs mechanical work by adiabatic expansion in a reciprocating flow expander (herein, the expander is also referred to as “turbine”) 12. Here, “adiabatic expansion” is ideal expansion without heat loss, and actually “expansion” with heat loss. For the convenience of explanation for comparison with the basic principle of Rankine cycle, “adiabatic expansion” is used. Reciprocating flow theory turbine output L T of the expander 12 is multiplied by the difference between the reciprocating flow expander 12 enthalpy of about h 1, h 2 in the mass flow rate m of the working fluid 19 expression at this time (L T = m × (h 1- h 2 )). However, unlike the conventional Rankine cycle turbine output L T changes with time.

(d)等圧冷却
往復流膨張機12を通過した蒸気(作動流体)19は低温低圧になり第2熱交換器HX2によりほぼ等圧下で冷却され飽和液(或いは気液二相状態)となる。本発明の作動原理によれば、制御弁11を開放してから第1熱交換器HX1内の作動流体19が第2熱交換器HX2に移動する(つまり往復流膨張機12前後の作動流体19の圧力差が零又は略零になる)までの間、タービン出力Lを得ることができる。
(D) Isobaric cooling The steam (working fluid) 19 that has passed through the reciprocating flow expander 12 becomes a low temperature and a low pressure, and is cooled under substantially equal pressure by the second heat exchanger HX2 to become a saturated liquid (or a gas-liquid two-phase state). . According to the operating principle of the present invention, the working fluid 19 in the first heat exchanger HX1 moves to the second heat exchanger HX2 after opening the control valve 11 (that is, the working fluid 19 before and after the reciprocating flow expander 12). during the pressure difference of the until) a zero or substantially zero, it is possible to obtain a turbine output L T.

(e)等積冷却
上述の過程を終了すると、大半の作動流体19は第2熱交換器HX2内に収容された状態になっている。制御装置15は作動流体19を通過させるために開放された制御弁11を閉じ,流路切替弁14の位置を切り替える。制御弁11を閉じてから流路切替弁14の位置を切り替えるまでの時間、第2熱交換器HX2内の作動流体19は等積冷却される。実際の稼動では、この時間は他の過程に比べて短時間で終わるものと想定されるため、図2の線図上には、便宜上、状態点を明示していない。
(E) Equal volume cooling Upon completion of the above process, most of the working fluid 19 is in a state of being accommodated in the second heat exchanger HX2. The control device 15 closes the control valve 11 opened to allow the working fluid 19 to pass, and switches the position of the flow path switching valve 14. During the time from when the control valve 11 is closed until the position of the flow path switching valve 14 is switched, the working fluid 19 in the second heat exchanger HX2 is cooled in the same volume. In actual operation, this time is assumed to end in a shorter time than other processes, and therefore, the state point is not clearly shown on the diagram of FIG.

このように過程(d)の等圧冷却を終え、制御弁11を閉じ、過程(e)の等積冷却を経た後、流路切替弁14の位置を切り替えると、第1導入管16(ひいては第1熱交換器HX1)に低温の熱源流体が導かれる一方、第2導入管17(ひいては第2熱交換器HX2)に高温の熱源流体が導かれることになり,本発明の一サイクルが完了する。そして、これ以降のサイクルでは、蒸発器として機能していた第1熱交換器HX1及び凝縮器として機能していた第2熱交換器HX2はそれぞれ凝縮器及び蒸発器として機能することになる。つまり、第2熱交換器HX2では再び過程(a)等積加熱過程へと戻り、本発明のサイクルが開始される。このように、本発明では熱交換器機能を切り替えることにより、従来技術のランキンサイクルでは低圧の凝縮器から高圧の蒸発器へ供給ポンプによって作動流体を押し込む動作を省略することができる。   In this way, after the equal pressure cooling in the step (d) is finished, the control valve 11 is closed, and after the equal volume cooling in the step (e), the position of the flow path switching valve 14 is switched. While the low-temperature heat source fluid is guided to the first heat exchanger HX1), the high-temperature heat source fluid is guided to the second introduction pipe 17 (and hence the second heat exchanger HX2), and one cycle of the present invention is completed. To do. In the subsequent cycles, the first heat exchanger HX1 functioning as an evaporator and the second heat exchanger HX2 functioning as a condenser function as a condenser and an evaporator, respectively. That is, in the second heat exchanger HX2, the process returns to the process (a) equal volume heating process again, and the cycle of the present invention is started. Thus, in the present invention, by switching the heat exchanger function, the operation of pushing the working fluid by the supply pump from the low-pressure condenser to the high-pressure evaporator can be omitted in the Rankine cycle of the prior art.

そして二回目のサイクルでも、上記過程(c)の断熱膨張過程と同様に、第1・第2熱交換器HX1,HX2内の作動流体19の圧力が夫々制御装置15で設定された設定圧力に達したとき、制御装置15によって制御弁11を開放する。第2熱交換器HX2内の高温高圧の作動流体19が等圧下で加熱され蒸気となり、往復流膨張機12で断熱膨張して機械仕事を行う。ただし、作動流体19は一つ前のサイクルとは反対に第2熱交換器HX2から第1熱交換器HX1に向かって流れる(図1中の左方向矢印を参照)。   In the second cycle, the pressure of the working fluid 19 in the first and second heat exchangers HX1 and HX2 is set to the set pressure set by the control device 15 as in the adiabatic expansion process of the process (c). When it reaches, the control valve 11 is opened by the control device 15. The high-temperature and high-pressure working fluid 19 in the second heat exchanger HX2 is heated under equal pressure to become steam, and adiabatically expands in the reciprocating flow expander 12 to perform mechanical work. However, the working fluid 19 flows from the second heat exchanger HX2 toward the first heat exchanger HX1 opposite to the previous cycle (see the left arrow in FIG. 1).

以上のような作動原理の下で実施例1の熱機関サイクル装置10は動作する。作動流体19が受ける変化過程に着目すると、本発明のサイクルは(a)等積加熱、(b)等圧加熱,(c)断熱膨張,(d)等圧冷却,(e)等積冷却の順に行われる。図2は、本発明の上記サイクルをT−S線図(T:温度、s:エントロピー)とp−h線図(p:圧力、h:エンタルピー)とで示したものである。これらの線図において、本発明のサイクルが動作するとA点→B点→C点→D点→(E点)→A点の順で状態が移行することになる(ただし、図2では(e)等積冷却とE点は省略してある)。ここで図2中のC点→D点までのエンタルピーhの差は往復流膨張機12が行う機械仕事に相当する。   The heat engine cycle device 10 according to the first embodiment operates under the operating principle as described above. Paying attention to the changing process experienced by the working fluid 19, the cycle of the present invention includes (a) equal volume heating, (b) isobaric heating, (c) adiabatic expansion, (d) isobaric cooling, and (e) isobaric cooling. It is done in order. FIG. 2 shows the cycle of the present invention with a TS diagram (T: temperature, s: entropy) and a ph diagram (p: pressure, h: enthalpy). In these diagrams, when the cycle of the present invention is operated, the state changes in the order of point A → B point → C point → D point → (E point) → A point (however, in FIG. 2, (e ) Equal volume cooling and point E are omitted). Here, the difference in enthalpy h from point C to point D in FIG. 2 corresponds to the mechanical work performed by the reciprocating flow expander 12.

また、図2(a)及び(b)中、破線で示した線図(A’点→Bp’点→B’点→C’点→D’点→(E’点)→A’点)は従来のランキンサイクルを示している(ただし、図2では(e)等積冷却とE’点は省略してある)。この従来のサイクルと比較すれば、作動流体ポンプの無い本発明のサイクルが従来サイクルとほぼ同様な線図を描き、同等な機械仕事を行うことがわかる。なお、従来サイクルがA’点→Bp’点→B’点のように状態が移行するのは、従来サイクルに必須の作動流体ポンプによって作動流体が一旦B’点まで昇圧されるからである。一方、本発明のサイクルでは作動流体ポンプが不要なためA点→B点まで状態が移行する。なお、従来サイクルで消費されていた作動流体ポンプの動力は、本発明のサイクルでは熱源流体の流れを切り替える流路切替弁14の制御に要する動力に置き換えられる。   2A and 2B, a diagram indicated by a broken line (A ′ point → Bp ′ point → B ′ point → C ′ point → D ′ point → (E ′ point) → A ′ point). Shows a conventional Rankine cycle (however, in FIG. 2, (e) equal volume cooling and E ′ point are omitted). Compared with this conventional cycle, it can be seen that the cycle of the present invention without a working fluid pump draws a diagram similar to that of the conventional cycle and performs equivalent mechanical work. Note that the state of the conventional cycle is changed from the point A ′ to the point Bp ′ to the point B ′ because the working fluid is once increased to the point B ′ by the working fluid pump essential for the conventional cycle. On the other hand, since the working fluid pump is unnecessary in the cycle of the present invention, the state shifts from point A to point B. The power of the working fluid pump consumed in the conventional cycle is replaced with the power required for controlling the flow path switching valve 14 that switches the flow of the heat source fluid in the cycle of the present invention.

次に、本発明の熱機関サイクル装置10を構成する主要な要素について詳述する。まず、流路切替弁14は、図1に示した四方弁に限定されず、例えば三方弁を利用してもよい。なお、三方弁を利用する場合には少なくとも2つを用意する必要があり、四方弁の場合は1つだけで流路切替を行うことが可能である。   Next, the main elements constituting the heat engine cycle device 10 of the present invention will be described in detail. First, the flow path switching valve 14 is not limited to the four-way valve shown in FIG. 1, and for example, a three-way valve may be used. In addition, when using a three-way valve, it is necessary to prepare at least two, and in the case of a four-way valve, it is possible to perform flow path switching with only one.

また、図1に示した制御弁11は第1熱交換器HX1と往復流膨張機12との間の連結管18上に設けられているが、これに限定されず、往復流膨張機12と第2熱交換器HX2との間の連結管18上に設けてもよい。さらに、制御弁11を2つ用意し、往復流膨張機12の前後の連結管18上に夫々配置するようにしてもよい。複数の制御弁11を配置した場合には、往復流膨張機12を取付・修理・交換する際に作業取扱(ハンドリング)が容易になる利点がある。   Further, the control valve 11 shown in FIG. 1 is provided on the connecting pipe 18 between the first heat exchanger HX1 and the reciprocating flow expander 12, but the present invention is not limited to this. You may provide on the connection pipe 18 between 2nd heat exchanger HX2. Further, two control valves 11 may be prepared and arranged on the connecting pipes 18 before and after the reciprocating flow expander 12, respectively. When a plurality of control valves 11 are arranged, there is an advantage that work handling (handling) is facilitated when the reciprocating flow expander 12 is mounted, repaired, or replaced.

また、往復流膨張機12には、波力発電に利用されるウェルズタービンや整流衝動タービン、スクリュー型タービン等が挙げられる。このような往復流膨張機12を用いれば、動力回収を一つの膨張機で済ますことができるとともに、作動流体19の往方向と復方向のいずれの流れであっても同一の一方向のみに回転するため装置10全体が極めてコンパクトになる。   Examples of the reciprocating expander 12 include a Wells turbine, a rectifying impulse turbine, and a screw turbine that are used for wave power generation. If such a reciprocating flow expander 12 is used, power can be recovered with a single expander and the working fluid 19 can rotate only in the same direction regardless of the forward or backward flow of the working fluid 19. Therefore, the entire apparatus 10 becomes very compact.

なお、本発明の熱機関サイクル装置10が発電を目的としている場合、往復流膨張機12に換えて、作動流体19の流れ方向に応じて正逆回転できる膨張機12を適用することも可能である。つまり、膨張機12の回転方向が逆転しても発電機13より出力側にインバータ及び回生コンバータ(交流の場合)や可逆チョッパ(直流の場合)を追加することで電力を発電又は貯蔵することが可能になる。この正逆回転膨張機12には、好適にはロータリーベーン型やギヤ型の膨張機が挙げられるが、これに限定されず、正逆方向に回転ができるように内部流路機構等の構造を付加すればスクリュー型、スクロール型、アキシャルピストン型、ディスクタービン型、及びラジアルタービン型などの膨張機でも適用可能である。   In addition, when the heat engine cycle device 10 of the present invention is intended for power generation, it is also possible to apply an expander 12 that can rotate forward and backward according to the flow direction of the working fluid 19 instead of the reciprocating flow expander 12. is there. That is, even if the rotation direction of the expander 12 is reversed, power can be generated or stored by adding an inverter and a regenerative converter (in the case of alternating current) or a reversible chopper (in the case of direct current) to the output side from the generator 13. It becomes possible. The forward / reverse rotation expander 12 preferably includes a rotary vane type or gear type expander, but is not limited to this, and has a structure such as an internal flow path mechanism so that it can rotate in the forward / reverse direction. If added, it can also be applied to expanders such as screw type, scroll type, axial piston type, disk turbine type, and radial turbine type.

また、図1に示した連結管18は一本のみであるが、複数(例えば2本)の連結管18が往復流膨張機(正逆回転膨張機)12に接続されていてもよい。この場合、それぞれの連結管18には制御弁11が設けられる。例えば、2本の連結管18を膨張機12に接続した場合、一方の連結管18を作動流体19が右方向(つまり第1熱交換器HX1から第2熱交換器HX2に進む方向)に流れる際に用い、他方の連結管18を左方向(つまり第2熱交換器HX2から第1熱交換器HX1に進む方向)に流れる際に用いることが可能となる。このような構成にすることで、種々のタービンの配管や入口出口構造に適合することが可能となる。   Although only one connecting pipe 18 is shown in FIG. 1, a plurality of (for example, two) connecting pipes 18 may be connected to the reciprocating flow expander (forward / reverse rotating expander) 12. In this case, each connecting pipe 18 is provided with a control valve 11. For example, when two connecting pipes 18 are connected to the expander 12, the working fluid 19 flows through the one connecting pipe 18 in the right direction (that is, the direction from the first heat exchanger HX1 to the second heat exchanger HX2). It is possible to use the other connecting pipe 18 when flowing in the left direction (that is, the direction from the second heat exchanger HX2 to the first heat exchanger HX1). By adopting such a configuration, it is possible to adapt to various turbine piping and inlet / outlet structures.

また、本発明の熱機関サイクル装置10は、従来の装置のように軸周りから作動流体が漏洩し易い作動流体ポンプを要しないため、従来のランキンサイクル装置よりも格段に作動流体19の密閉性を向上できる利点をも有する。つまり、密閉性の面からは、本発明に適用できる作動流体19を限定する必要はない。   In addition, the heat engine cycle device 10 of the present invention does not require a working fluid pump in which the working fluid easily leaks from the periphery of the shaft unlike the conventional device, and therefore, the hermeticity of the working fluid 19 is significantly higher than that of the conventional Rankine cycle device. There is also an advantage that can be improved. That is, it is not necessary to limit the working fluid 19 applicable to the present invention from the viewpoint of sealing.

なお、本発明の熱機関サイクル装置10を温度域の低い(例えば、100〜200℃)熱源に適用する場合、作動流体19は、その沸点が水の沸点以下となるものが好ましく、例えば、以下の表1に示すものが挙げられる。なお、下記の表1に示す作動流体19は各々、作動に適する温度域が異なることに留意されたい。(なお、表1に示す温度域はおおよその目安であり、圧力条件等によって変化し得る。)従って、本発明の熱機関サイクル装置10が適用される熱源1の温度域に合わせて下記の表から最適な作動流体19を選択することが好ましい。こうすることで更に本発明の熱機関サイクル装置10の正味熱効率をさらに向上することができる。   In addition, when applying the heat engine cycle apparatus 10 of the present invention to a heat source having a low temperature range (for example, 100 to 200 ° C.), the working fluid 19 preferably has a boiling point equal to or lower than that of water. The following are shown in Table 1. It should be noted that each working fluid 19 shown in Table 1 below has a different temperature range suitable for operation. (Note that the temperature range shown in Table 1 is an approximate guide, and may vary depending on pressure conditions, etc.) Therefore, the following table is used according to the temperature range of the heat source 1 to which the heat engine cycle device 10 of the present invention is applied. It is preferable to select the optimum working fluid 19 from the above. By doing so, the net thermal efficiency of the heat engine cycle device 10 of the present invention can be further improved.

Figure 2011012644
Figure 2011012644

次に、本発明の制御装置15について図1及び図3を参照しながら説明する。制御装置15は本発明のサイクルが運転する間は往復流膨張機12の前後にある連結管18の圧力p,pを監視する(図1参照)。図3は制御装置15が行う制御方法を示すフローチャートである。制御装置15はまず、制御弁11を閉鎖する(ステップS1)。そして流路切替弁14を操作し、熱源1又は冷却源2の流体を第1・第2導入管16,17に導いて第1・第2熱交換器HX1,HX2を加熱又は冷却する(ステップS2)。そうすると、第1・第2熱交換器HX1,HX2に接続された連結管18に収容された作動流体19は、往復流膨張機12の一方で加熱されるとともにその他方で冷却されるため、圧力pと圧力pとの圧力差Δpは増加する。この圧力差Δpが制御装置15において予め設定された圧力差(上限の圧力差)ΔpSETに到達すると、制御装置15は制御弁11を開放する(ステップS3)。これによって、往復流膨張機12(及び発電機13)が作動するため、動力/電力の回収が可能になる。 Next, the control device 15 of the present invention will be described with reference to FIGS. The control device 15 monitors the pressures p 1 and p 2 of the connecting pipe 18 before and after the reciprocating expander 12 during the operation of the cycle of the present invention (see FIG. 1). FIG. 3 is a flowchart showing a control method performed by the control device 15. First, the control device 15 closes the control valve 11 (step S1). Then, the flow path switching valve 14 is operated, and the fluid of the heat source 1 or the cooling source 2 is guided to the first and second introduction pipes 16 and 17 to heat or cool the first and second heat exchangers HX1 and HX2 (step). S2). Then, the working fluid 19 accommodated in the connecting pipe 18 connected to the first and second heat exchangers HX1 and HX2 is heated on one side of the reciprocating flow expander 12 and cooled on the other side. The pressure difference Δp between p 1 and the pressure p 2 increases. When the pressure difference Δp reaches a pressure difference (upper limit pressure difference) Δp SET set in advance in the control device 15, the control device 15 opens the control valve 11 (step S3). As a result, the reciprocating flow expander 12 (and the generator 13) operates, so that power / electric power can be recovered.

図4は制御弁11を開放する間のタービン出力Lの経時変化の一例を示す。図4より制御弁11開放直後は大きなタービン出力Lが得られるが、次第に出力は小さくなる(つまり、圧力pと圧力pとが同一となる)。圧力pと圧力pとが同一又はほぼ同一となった場合(つまり、圧力差Δpが零または所定の下限値Δpになった場合)、制御装置15は制御弁11を閉鎖する(ステップS4)。 Figure 4 shows an example of a change with time of the turbine output L T between opening the control valve 11. Figure 4 immediately after the control valve 11 open than it is large turbine output L T obtained gradually output decreases (i.e., the pressure p 1 and pressure p 2 the same). When the pressure p 1 and the pressure p 2 are the same or almost the same (that is, when the pressure difference Δp becomes zero or a predetermined lower limit Δp L ), the control device 15 closes the control valve 11 (step S1). S4).

更に動力/電力の回収をするため本発明の運転継続を望む場合には、ステップS5の熱源切替を行う(つまり流路切替弁14を切り換える)。熱源切替が行われるとステップS2に戻るが、前回のステップS2で一方の導入管(例えば第1導入管16)流れていた熱源1又は冷却源2の流体は他方の導入管(例えば第2導入管17)に導かれ、前回のステップS2で加熱(又は冷却)された第1・第2熱交換器HX1,HX2は今回のステップS2の際には冷却(又は加熱)される。なお、所望の動力/電力が回収され、本発明のサイクルの運転継続を望まない場合にはステップS2の熱源切替は実行されず、本発明のサイクルは終了する。   Further, if it is desired to continue the operation of the present invention to recover power / electric power, the heat source is switched in step S5 (that is, the flow path switching valve 14 is switched). When the heat source is switched, the process returns to step S2, but the fluid of the heat source 1 or the cooling source 2 that was flowing in one introduction pipe (for example, the first introduction pipe 16) in the previous step S2 is the other introduction pipe (for example, the second introduction pipe). The first and second heat exchangers HX1 and HX2 guided to the pipe 17) and heated (or cooled) in the previous step S2 are cooled (or heated) in the current step S2. In addition, when desired motive power / electric power is recovered and it is not desired to continue the operation of the cycle of the present invention, the heat source switching in step S2 is not executed, and the cycle of the present invention is terminated.

図5は本発明の実施例2に係る熱機関サイクル装置20の装置構成を示す。実施例2の熱機関サイクル装置20は、実施例1で使用した往復流膨張機12に換えて、作動流体19を一方向のみ流す一方向流膨張機22と一方向流膨張機22の前後の連結管18に接続する流路切替弁24が連結管18上に設けられている。なお、実施例2(及びこれ以降の実施例)において実施例1と同様の部分については同一符号を付し、その詳細な説明は省略する。また、図5及び図6は、作図の便宜上、発電機13を省略している。   FIG. 5 shows an apparatus configuration of a heat engine cycle apparatus 20 according to the second embodiment of the present invention. The heat engine cycle device 20 according to the second embodiment replaces the reciprocating flow expander 12 used in the first embodiment with a one-way flow expander 22 that allows the working fluid 19 to flow in only one direction, and before and after the one-way flow expander 22. A flow path switching valve 24 connected to the connecting pipe 18 is provided on the connecting pipe 18. In the second embodiment (and subsequent embodiments), the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. 5 and 6 omit the generator 13 for convenience of drawing.

実施例2の熱機関サイクル装置20を上記のような構成にすることで、特殊な構成の往復流膨張機12を用いることなく、より一般的で入手し易い一方向流膨張機22を用いて本発明のサイクルを作動させることができる。第1熱交換器HX1から第2熱交換器HX2へ作動流体19が流れる際には作動流体19は一方向流膨張機22のEX1側から流入しEX2側から流出する。そして、制御装置15によって流路切替弁14の熱源切替が行われ、第2熱交換器HX2から第1熱交換器HX1へ作動流体19が流れる際には制御装置15は流路切替弁24の弁位置を切り替え、作動流体19を一方向流膨張機22のEX1側から流入させて(EX2側から流出させて)から第1熱交換器HX1へ戻すように処理される。   By configuring the heat engine cycle device 20 of the second embodiment as described above, a more general and easily available one-way flow expander 22 is used without using the reciprocating flow expander 12 having a special configuration. The cycle of the present invention can be activated. When the working fluid 19 flows from the first heat exchanger HX1 to the second heat exchanger HX2, the working fluid 19 flows in from the EX1 side of the one-way flow expander 22 and flows out from the EX2 side. When the control device 15 switches the heat source of the flow path switching valve 14 and the working fluid 19 flows from the second heat exchanger HX2 to the first heat exchanger HX1, the control device 15 The valve position is switched, and the process is performed so that the working fluid 19 flows in from the EX1 side of the one-way flow expander 22 (outflows from the EX2 side) and then returns to the first heat exchanger HX1.

なお、実施例2の装置構成は、実施例1の装置構成に比べて連結管切替弁24を要すること及び連結管18の配管が複雑になることの点でデメリットがある。   Note that the apparatus configuration of the second embodiment is disadvantageous in that the connecting pipe switching valve 24 is required and the piping of the connecting pipe 18 is complicated compared to the apparatus configuration of the first embodiment.

図6は本発明の実施例3に係る熱機関サイクル装置30の構成を示す。実施例3の熱機関サイクル装置30は、実施例1で使用した往復流膨張機12に換えて、2つの一方向流膨張機32a,32bが設けられている。一方向流膨張機32aは、第1熱交換器HX1から第2熱交換器HX2への方向にのみ作動流体19が流れることによって駆動される一方、一方向流膨張機32bは、第2熱交換器HX2から第1熱交換器HX1への方向のみ作動流体19が流れることによって駆動される。一方向流膨張機32bにおける作動流体19の移動及び制御のために、連結管38と制御弁31が更に設けられている。制御弁31は、一方向流膨張機32b前後の作動流体19の圧力(圧力差)に応じて制御装置15によって開閉が制御される。   FIG. 6 shows a configuration of a heat engine cycle device 30 according to the third embodiment of the present invention. The heat engine cycle device 30 of the third embodiment is provided with two unidirectional flow expanders 32a and 32b instead of the reciprocating flow expander 12 used in the first embodiment. The one-way flow expander 32a is driven by the working fluid 19 flowing only in the direction from the first heat exchanger HX1 to the second heat exchanger HX2, while the one-way flow expander 32b is driven by the second heat exchange. It is driven by the working fluid 19 flowing only in the direction from the heater HX2 to the first heat exchanger HX1. A connecting pipe 38 and a control valve 31 are further provided for moving and controlling the working fluid 19 in the one-way flow expander 32b. Opening and closing of the control valve 31 is controlled by the control device 15 according to the pressure (pressure difference) of the working fluid 19 around the one-way flow expander 32b.

上述の通り、実施例1のサイクルは、図2の各々の線図上では従来のランキンサイクルに近い(但しポンプによる昇圧過程は無い)が、図4に示すように、制御弁11の開閉期間によってタービン出力に時間的な間欠性を有する動的サイクルである。加えて、実施例1のタービン出力は、制御弁11の開放期間中も開放直後に急峻に増加して一定の出力を保った後、時間の経過とともに減少する変動的な時間応答曲線を描く。従って、本発明をより実用化するにあたっては、タービン出力/電力を平準化するための工夫が必要となる。   As described above, the cycle of the first embodiment is similar to the conventional Rankine cycle on each of the diagrams in FIG. 2 (however, there is no step-up process by the pump), but as shown in FIG. This is a dynamic cycle having temporal intermittency in the turbine output. In addition, the turbine output of the first embodiment draws a fluctuating time response curve that rapidly increases immediately after the control valve 11 is opened and maintains a constant output even after the control valve 11 is opened, and then decreases with the passage of time. Therefore, in order to make the present invention more practical, a device for leveling the turbine output / power is required.

図7は本発明の実施例4に係る熱機関サイクル装置40の構成を示す。実施例4の熱機関サイクル装置40は、発電機13に接続された電力平準化装置431が更に追加されていること以外は実施例1の構成と同様である。電力平準化装置431には、例えば電気二重層キャパシタ等のキャパシタ回路、フライホイール、又はバッテリを含んだ装置が挙げられる。   FIG. 7 shows the configuration of a heat engine cycle device 40 according to Embodiment 4 of the present invention. The heat engine cycle device 40 of the fourth embodiment is the same as the configuration of the first embodiment except that a power leveling device 431 connected to the generator 13 is further added. Examples of the power leveling device 431 include a device including a capacitor circuit such as an electric double layer capacitor, a flywheel, or a battery.

なお、フライホイール又はバッテリを含んだ装置として、例えば、膨張機12の軸出力を、機械機構(ギヤや無段変速機など)を経由して機械式動力又は電力として貯蔵する運動エネルギー回生システム(Kinetic Energy-Recovery System:KERS)が挙げられる。電力平準化装置431の存在により図4に示されたような間欠的で急峻な電力はより平準化された電力に変換することが可能となる。   As a device including a flywheel or a battery, for example, a kinetic energy regeneration system (for example, storing the shaft output of the expander 12 as mechanical power or power via a mechanical mechanism (gear, continuously variable transmission, etc.)). Kinetic Energy-Recovery System: KERS). Due to the presence of the power leveling device 431, intermittent and steep power as shown in FIG. 4 can be converted into more leveled power.

図8は本発明の実施例5に係る熱機関サイクル多連結システム50の構成を示す。実施例5の熱機関サイクル多連結システム50は、実施例1に示すような構成の熱機関サイクル装置が複数用意され(図8では装置は3つであり、10a,10b,10cと表記)、これらが熱源1又は冷却源2に並列に接続されたシステムをなす。なお、発電機53は多連結システム全体で一つのみ設けられている。加えて、往復流膨張機12a,12b,12cからは、単一の軸533又は個別の出力軸533a,533b,533cが発電機53に連結されており(回転数やトルクを制御する差動ギヤ又は変速機を介して連結されていてもよい)、制御装置55によって制御弁11a,11b,11cの開閉時期及び流路切替弁14a,14b,14cの熱源切替時期を調節することにより、これらを重ね合わせたタービン出力LT systemはより連続的になる。この連続的なタービン出力を発電機53にて電力に変換し、変換された電力は電力平準化装置531により更に平準化されることになる。 FIG. 8 shows a configuration of a heat engine cycle multiple connection system 50 according to Embodiment 5 of the present invention. In the heat engine cycle multi-connection system 50 of the fifth embodiment, a plurality of heat engine cycle devices configured as shown in the first embodiment are prepared (in FIG. 8, there are three devices, denoted as 10a, 10b, and 10c), These form a system connected to the heat source 1 or the cooling source 2 in parallel. Note that only one generator 53 is provided in the entire multi-connection system. In addition, a single shaft 533 or individual output shafts 533a, 533b, and 533c are connected to the generator 53 from the reciprocating flow expanders 12a, 12b, and 12c (differential gears that control the rotational speed and torque). Or may be connected via a transmission) by adjusting the opening / closing timing of the control valves 11a, 11b, 11c and the heat source switching timing of the flow path switching valves 14a, 14b, 14c by the control device 55. The superimposed turbine output L T system becomes more continuous. The continuous turbine output is converted into electric power by the generator 53, and the converted electric power is further leveled by the power leveling device 531.

なお、制御装置55は、熱機関サイクル装置10毎に用意する必要はなく、多連結システム全体で一つのみで足り、各熱機関サイクル装置10の状態(例えば、圧力p,p)を監視し、各熱機関サイクル装置10a,10b,10cの要素(例えば、制御弁11a,11b,11cや流路切替弁14a,14b,14c)の操作を行うようにしてもよい。制御装置55において、図9に示すように各熱機関サイクル装置10a,10b,10cでの回収動力/発電電力(図中、LTa,LTb,LTc)を重ね合わせると平均的かつ連続的な値(図中、LT system)となるように各熱機関サイクル装置10a,10b,10cの制御弁11a,11b,11cの開閉時期及び流路切替弁14a,14b,14cの熱源切替時期を調節(互いにずらす)しておくことが望ましい。 The controller 55 does not need to be prepared for each heat engine cycle device 10, and only one control device 55 is required for the entire multi-connection system, and the state of each heat engine cycle device 10 (for example, pressures p 1 and p 2 ). It is possible to monitor and operate the elements of the heat engine cycle devices 10a, 10b, 10c (for example, the control valves 11a, 11b, 11c and the flow path switching valves 14a, 14b, 14c). In the control device 55, when the recovered power / generated power (L Ta , L Tb , L Tc in the figure) of the heat engine cycle devices 10a, 10b, 10c are superimposed as shown in FIG. Open / close timing of the control valves 11a, 11b, and 11c of the heat engine cycle devices 10a, 10b, and 10c and heat source switching timing of the flow path switching valves 14a, 14b, and 14c so as to obtain a proper value (L T system in the figure). It is desirable to adjust (shift each other).

図10は本発明の実施例6に係る熱機関サイクル多連結システム60の構成を示す。実施例6に係る熱機関サイクル多連結システム60は、実施例5と同様に、複数の熱機関サイクル装置10a,10b,10cが熱源1又は冷却源2に並列に接続されたシステムである。また、実施例5との相違は、図10の熱機関サイクル装置10a,10b,10cの往復流膨張機12a,12b,12cには夫々、発電機13a,13b,13cが取り付けられ、電力平準化装置631が各々の発電機13a,13b,13cに接続されていることである。従って、実施例6の熱機関サイクル多連結システム60が作動すると往復流膨張機12a,12b,12cは動力を回収し、発電機13a,13b,13c毎に個別に電力が取り出され、電力平準化装置631に供給される。電力平準化装置631に個別に供給される電力は、実施例5に示したように制御装置65によって制御弁11a,11b,11cの開放時期を機械的に調整することで発電時期を調整してもよいし、電力平準化装置631に供給された後に電気的に位相差をつけてシステム全体の電力を連続的に平準化させるようにしてもよい。   FIG. 10 shows a configuration of a heat engine cycle multiple connection system 60 according to Embodiment 6 of the present invention. The heat engine cycle multiple connection system 60 according to the sixth embodiment is a system in which a plurality of heat engine cycle devices 10a, 10b, and 10c are connected in parallel to the heat source 1 or the cooling source 2 as in the fifth embodiment. Further, the difference from the fifth embodiment is that power generators 13a, 13b, and 13c are attached to the reciprocating flow expanders 12a, 12b, and 12c of the heat engine cycle devices 10a, 10b, and 10c of FIG. The device 631 is connected to each generator 13a, 13b, 13c. Accordingly, when the heat engine cycle multi-connection system 60 of the sixth embodiment is operated, the reciprocating flow expanders 12a, 12b, 12c collect power, and power is taken out separately for each of the generators 13a, 13b, 13c, and power leveling is performed. Supplied to the device 631. The electric power supplied to the power leveling device 631 is adjusted by adjusting the power generation timing by mechanically adjusting the opening timing of the control valves 11a, 11b, and 11c by the control device 65 as shown in the fifth embodiment. Alternatively, after the power is supplied to the power leveling device 631, an electric phase difference may be added to continuously level the power of the entire system.

以上、実施例5,6の装置構成において説明したように、本発明の熱機関サイクル装置10a,10b,10cを多連結化させ、制御装置55,65により制御弁操作や熱源切替のタイミングを調節したり、電力平準化装置531,631を設置したりすることで、回収動力/発電電力は連続的かつ平準化される。   As described above in the device configurations of the fifth and sixth embodiments, the heat engine cycle devices 10a, 10b, and 10c of the present invention are connected in multiple, and the control devices 55 and 65 adjust the timing of control valve operation and heat source switching. Or the power leveling devices 531 and 631 are installed, the recovered power / generated power is continuously and leveled.

なお、実施例5及び6では、実施例1の熱機関サイクル装置10を基本とした熱機関サイクル装置10a,10b,10cを連結させたが、必ずしもこれに限定されず、本発明は実施例2,3で示したような一方向流膨張機を用いた熱機関サイクル装置20,30を基本とした装置を連結させた多連結システムとなるように構成してもよい。すなわち、実施例5及び6の膨張機12には、往復流膨張機として使用できるウェルズタービンや整流衝動タービン、往復流膨張機として使用できるロータリーベーン型やギヤ型の膨張機の他、種々の型式の一方向流膨張機でも適用可能であり、膨張機の形式を問わない。   In the fifth and sixth embodiments, the heat engine cycle devices 10a, 10b, and 10c based on the heat engine cycle device 10 of the first embodiment are connected. However, the present invention is not necessarily limited to this, and the present invention is not limited to the second embodiment. , 3 may be configured to be a multi-connection system in which apparatuses based on the heat engine cycle apparatuses 20 and 30 using the one-way flow expander are connected. That is, the expander 12 of Examples 5 and 6 includes various types other than the wells turbine and the rectifying impulse turbine that can be used as the reciprocating flow expander, the rotary vane type and the gear type expander that can be used as the reciprocating flow expander. It can be applied to any one-way flow expander, regardless of the type of expander.

図11は本発明の実施例7に係る熱機関サイクル多連結システム70の構成を示す。実施例7に係る熱機関サイクル多連結システム70は、複数(例えば、2つ)の熱機関サイクル装置10a,10bが熱源1又は冷却源2に直列に接続されたシステムである。実施例5,6との相違点は、上段のサイクル装置10aに収容される作動流体19aと、下段のサイクル装置10bに収容される作動流体19bとに用いられる流体(冷媒)が異なっている点である。上段用の作動流体19aには、熱源運転温度レベルの高温域に適合可能な流体(例えば水)を用い、下段用の作動流体19bは低温域に適合可能な流体(例えばHFO系冷媒)を用いることが好ましい。実施例7のようなサイクル装置10a,10bの多連結化及び装置毎に作動流体19a,19bの選択を行うことで、場合によっては単一の作動流体を使用した場合よりも大きな出力を取得することが可能になる。例えば、ある作動流体19aでは熱源1の動作温度域に適合しきれない場合に、別の物性を有する作動流体19bを下段のサイクル装置10bに用いれば、熱源1が動作している間は継ぎ目なく本発明の熱交換サイクルを実施することができる。   FIG. 11 shows a configuration of a heat engine cycle multiple connection system 70 according to Embodiment 7 of the present invention. The heat engine cycle multiple connection system 70 according to the seventh embodiment is a system in which a plurality of (for example, two) heat engine cycle devices 10 a and 10 b are connected in series to the heat source 1 or the cooling source 2. The difference from the fifth and sixth embodiments is that the fluid (refrigerant) used for the working fluid 19a accommodated in the upper cycle device 10a and the working fluid 19b accommodated in the lower cycle device 10b is different. It is. The upper working fluid 19a uses a fluid (for example, water) that can be adapted to a high temperature range of the heat source operating temperature level, and the lower working fluid 19b uses a fluid (for example, an HFO refrigerant) that can adapt to a low temperature range. It is preferable. By connecting multiple cycle devices 10a and 10b as in the seventh embodiment and selecting the working fluids 19a and 19b for each device, in some cases, a larger output is obtained than when a single working fluid is used. It becomes possible. For example, if a certain working fluid 19a cannot fully meet the operating temperature range of the heat source 1, if a working fluid 19b having other physical properties is used in the lower cycle device 10b, the heat source 1 can be seamlessly operated. The heat exchange cycle of the present invention can be carried out.

なお、複数の熱機関サイクル装置が熱源に並列に接続された実施例5や実施例6の多連結システム50,60と、複数の熱機関サイクル装置が直列に接続された実施例7の多連結システム70と、を組み合わせた構成の多連結システムを構成することも可能である。   In addition, the multiple connection system 50 and 60 of Example 5 and Example 6 in which the several heat engine cycle apparatus was connected in parallel with the heat source, and the multiple connection of Example 7 in which the several heat engine cycle apparatus was connected in series. It is also possible to configure a multi-connection system having a configuration in which the system 70 is combined.

(サイクル検証実験)
本発明の熱機関サイクルが真に作動するかを検証するために以下に説明する検証実験を行った。図12に実験装置の概略を示し、下記の表2に装置構成要素の仕様を示す。表2に示すように、作動流体19にはHFC245faを選択した。蒸発器/凝縮器の役割を果たす第1・第2熱交換器HX1,HX2にはプレート式熱交換器を用いた。熱源1及び冷却源2の流体には双方とも水を用い,高温側になる熱源1の流体は抵抗式プラグヒーターで加熱しながら循環を行い,低温側になる冷却源2の流体は冷却チラーで冷却しながら循環を行った。第1・第2熱交換器HX1,HX2への温水,冷水の切替には三方弁(流路切替弁14)を組み合わせて手動で行った。
(Cycle verification experiment)
In order to verify whether the heat engine cycle of the present invention really operates, a verification experiment described below was performed. FIG. 12 shows an outline of the experimental apparatus, and Table 2 below shows specifications of the apparatus components. As shown in Table 2, HFC245fa was selected as the working fluid 19. Plate-type heat exchangers were used for the first and second heat exchangers HX1 and HX2 serving as an evaporator / condenser. Both the heat source 1 and the cooling source 2 use water, the high temperature side heat source 1 fluid circulates while being heated by a resistance type plug heater, and the low temperature side cooling source 2 fluid is a cooling chiller. Circulation was performed while cooling. Switching between hot water and cold water to the first and second heat exchangers HX1, HX2 was manually performed by combining a three-way valve (flow path switching valve 14).

Figure 2011012644
Figure 2011012644

また,往復流膨張機12での断熱膨張は膨張バルブで模擬した。これは他のランキンサイクルの実験でも用いられている手法である。また、制御弁11を開閉するために制御装置15で設定する設定圧力を高温側1MPa,低温側0.1MPaとし(つまり圧力差ΔpSET=0.9MPa),この圧力差に達した時に膨張バルブを開けて作動流体19を断熱膨張させた。図12に示す位置において膨張バルブ前後の作動流体19の温度T,T、圧力p,p,第1・第2熱交換器内下部温度T’,T’(作動流体側)、及び作動流体19の質量移動量を2秒間隔でパソコン端末に取り込み,膨張バルブ前後の作動流体19の圧力、エンタルピーh,hおよび質量流量、及びタービン出力を算出した。 The adiabatic expansion in the reciprocating flow expander 12 was simulated by an expansion valve. This is a technique used in other Rankine cycle experiments. Further, the set pressure set by the control device 15 to open and close the control valve 11 is set to 1 MPa on the high temperature side and 0.1 MPa on the low temperature side (that is, the pressure difference Δp SET = 0.9 MPa), and when this pressure difference is reached, the expansion valve And the working fluid 19 was adiabatically expanded. In the position shown in FIG. 12, the temperatures T 1 and T 2 of the working fluid 19 before and after the expansion valve, the pressures p 1 and p 2 , the lower temperatures T 1 ′ and T 2 ′ in the first and second heat exchangers (the working fluid side) ), And the mass transfer amount of the working fluid 19 was taken into a personal computer terminal at intervals of 2 seconds, and the pressure, enthalpy h 1 and h 2, mass flow rate, and turbine output of the working fluid 19 before and after the expansion valve were calculated.

(実験結果)
図13に、本発明の熱機関サイクル(作動流体19の切り替え)を3回繰り返した際の膨張バルブ前後の圧力p,pの時間変化と、エンタルピーh,hの時間変化を示し、図14は、図13に示すような圧力、エンタルピー、及び作動流体19の温度T,T’,T,T’の時間変化などの実験データから算出された、圧力差Δpの絶対値、エンタルピーΔh(=h−h)の絶対値、質量流量m、及びタービン出力を示す。ここで、タービン出力は、数式1に示したように、質量流量mとエンタルピー差Δhとの積である。なお、図14は説明の便宜上、膨張バルブ開放期間中の時間応答のみプロットしている。
(Experimental result)
FIG. 13 shows the change over time of the pressures p 1 and p 2 before and after the expansion valve and the change over time of the enthalpies h 1 and h 2 when the heat engine cycle (switching of the working fluid 19) of the present invention is repeated three times. FIG. 14 shows the pressure difference Δp calculated from the experimental data such as the pressure, enthalpy, and temperature T 1 , T 1 ′, T 2 , T 2 ′ of the working fluid 19 as shown in FIG. The absolute value, the absolute value of enthalpy Δh (= h 1 −h 2 ), the mass flow rate m, and the turbine output are shown. Here, the turbine output is the product of the mass flow rate m and the enthalpy difference Δh, as shown in Equation 1. For convenience of explanation, FIG. 14 plots only the time response during the expansion valve opening period.

これらの図13,14より、本発明の新規な熱機関サイクルから実際に有効なタービン出力が得られる(図中の瞬間最大出力は約267Wであり、平均出力が約78Wである)ことがわかる。図13では、膨張バルブ(実際は膨張機となる部分の)前後の圧力p1,p2およびエンタルピーh1,h2は熱交換器HX1,HX2の機能切替により、時間の推移に従って交互に大小が入れ替わっていることがわかる。図14では、膨張バルブ開放期間中(実際は制御弁11を開放している期間中)において、膨張機前後の圧力差Δpの絶対値、エンタルピー差Δhの絶対値、質量流量が増加することで理論タービン出力が得られていることがわかる。このように本発明のタービン出力は間欠的になる特徴がある。通常のランキンサイクル装置では、作動流体ポンプが連続的に作動流体を蒸発器へと供給するため、タービン出力は連続的になる。   From these FIGS. 13 and 14, it can be seen that a practically effective turbine output can be obtained from the novel heat engine cycle of the present invention (the instantaneous maximum output in the figure is about 267 W, and the average output is about 78 W). . In FIG. 13, the pressures p1 and p2 and the enthalpies h1 and h2 before and after the expansion valve (actually the part that becomes the expander) are alternately switched in size according to the time transition by switching the functions of the heat exchangers HX1 and HX2. I understand. In FIG. 14, during the expansion valve opening period (actually during the period when the control valve 11 is opened), the absolute value of the pressure difference Δp before and after the expander, the absolute value of the enthalpy difference Δh, and the mass flow rate are increased. It can be seen that the turbine output is obtained. Thus, the turbine output of the present invention is intermittent. In a normal Rankine cycle device, the working fluid pump continuously supplies working fluid to the evaporator, so that the turbine output is continuous.

なお、本検証試験には作動流体19はHFC245faを選択したが、上記表1で挙げた作動流体を用いても定性的には図13,14で示した特性と同様の特性が得られるはずである。また、本サイクル検証実験での熱源には2kW未満のエネルギーが投入された。実際の自動車エンジンの場合には、数kW〜百kW近くまで排熱量が変化するものと想定される。このような場合、熱入力の増大に応じて、流路切替弁での熱源切替頻度を早めることで本発明の装置は十分に対応できるものとなる。   In this verification test, HFC245fa was selected as the working fluid 19, but qualitatively the same characteristics as those shown in FIGS. 13 and 14 should be obtained using the working fluid listed in Table 1 above. is there. In addition, energy of less than 2 kW was input to the heat source in this cycle verification experiment. In the case of an actual automobile engine, it is assumed that the amount of exhaust heat changes from several kW to nearly one hundred kW. In such a case, the apparatus of the present invention can sufficiently cope with the problem by increasing the heat source switching frequency in the flow path switching valve in accordance with the increase in heat input.

本発明は、工場排熱や自動車排熱など膨大な未利用エネルギー(低温かつ高分散性の熱源)の回収手段として有望である。特に、作動流体ポンプが不要となるため、装置の小型化、レイアウト設計の柔軟性、作動流体の漏洩防止が図れるため、産業上利用できる可能性は非常に高い。更に、低沸点の作動流体を用いることで200℃未満の温度レベルにある熱源からの動力回収/発電において特に有用となる。   The present invention is promising as a means for recovering a large amount of unused energy (low temperature and highly dispersible heat source) such as factory exhaust heat and automobile exhaust heat. In particular, since a working fluid pump is not required, downsizing of the apparatus, flexibility in layout design, and prevention of leakage of working fluid can be achieved, and therefore, the possibility of industrial use is very high. Furthermore, the use of a low-boiling working fluid is particularly useful in power recovery / power generation from a heat source at a temperature level below 200 ° C.

1 熱源
2 冷却源
10(10a,10b,10c),20,30,40,50,60 熱機関サイクル装置
11(11a,11b,11c) 制御弁
12(12a,12b,12c) 往復流膨張機(または正逆回転膨張機)
13(13a,13b,13c) 発電機
14(14a,14b,14c) 流路切替弁
15,55,65,75 制御装置
16(16a,16b,16c) 第1導入管
17(17a,17b,17c) 第2導入管
18(18a,18b,18c) 連結管
19(19a,19b,19c) 作動流体
22 一方向流膨張機
24 連結管切替弁
31 制御弁
32a,32b 一方向流膨張機
38 連結管
50,60,70 熱機関サイクル多連結システム
431,531,631,731 電力平準化装置
533(533a,533b,533c) 出力軸
1 Heat source 2 Cooling source 10 (10a, 10b, 10c), 20, 30, 40, 50, 60 Heat engine cycle device 11 (11a, 11b, 11c) Control valve 12 (12a, 12b, 12c) Reciprocating flow expander ( Or forward and reverse rotating expander)
13 (13a, 13b, 13c) Generator 14 (14a, 14b, 14c) Flow path switching valve 15, 55, 65, 75 Control device 16 (16a, 16b, 16c) First introduction pipe 17 (17a, 17b, 17c) ) Second introduction pipe 18 (18a, 18b, 18c) Connection pipe 19 (19a, 19b, 19c) Working fluid 22 One-way flow expander 24 Connection pipe switching valve 31 Control valve 32a, 32b One-way flow expander 38 Connection pipe 50, 60, 70 Heat engine cycle multi-connection system 431, 531, 631, 731 Power leveling device 533 (533a, 533b, 533c) Output shaft

Claims (6)

作動流体を収容する第1・第2熱交換器と、
前記第1・第2熱交換器と連結し、前記作動流体を流通させる連結管と、
前記連結管上に設けられ、弁の開閉により前記作動流体の流通を制御する制御弁と、
前記連結管上に設けられ、前記作動流体の流通により作動する膨張機と、
熱源又は冷却源からの熱源流体を前記第1・第2熱交換器に案内する第1・第2導入管と、
前記第1・第2導入管に案内される前記熱源流体を切り替える流路切替弁と、
前記膨張機前後の作動流体の圧力差を監視し、設定上限値に到達したときに前記制御弁を開放して前記作動流体の流通を行い、開放後に前記圧力差が設定下限値に到達したときに前記流路切替弁を切り替えて前記第1・第2導入管に案内される熱源流体を切り替える制御装置と、
を備えることを特徴とした熱機関サイクル装置。
First and second heat exchangers containing working fluid;
A connecting pipe that is connected to the first and second heat exchangers and that circulates the working fluid;
A control valve provided on the connecting pipe and controlling the flow of the working fluid by opening and closing the valve;
An expander that is provided on the connecting pipe and operates by circulation of the working fluid;
First and second introduction pipes for guiding a heat source fluid from a heat source or a cooling source to the first and second heat exchangers;
A flow path switching valve for switching the heat source fluid guided to the first and second introduction pipes;
When the pressure difference of the working fluid before and after the expander is monitored and the set upper limit value is reached, the control valve is opened to flow the working fluid, and after opening, the pressure difference reaches the set lower limit value A control device that switches the heat source fluid guided to the first and second introduction pipes by switching the flow path switching valve;
A heat engine cycle device comprising:
前記作動流体には、沸点が水の沸点以下となり、かつ、前記熱源の温度域に適合した流体が選択されていることを特徴とする請求項1記載の熱機関サイクル装置。   The heat engine cycle device according to claim 1, wherein a fluid that has a boiling point equal to or lower than that of water and that is suitable for a temperature range of the heat source is selected as the working fluid. 前記膨張機が往復流膨張機又は正逆回転膨張機であることを特徴とした請求項1又は2記載の熱機関サイクル装置。   The heat engine cycle device according to claim 1 or 2, wherein the expander is a reciprocating flow expander or a forward and reverse rotation expander. 前記膨張機が一方向流膨張機であり、
前記連結管の流路を切り替える連結管切替弁を更に備え、
前記制御装置は、前記作動流体の流通方向に応じて前記連結管切替弁を切り替えて前記作動流体を前記膨張機に案内することを特徴とする請求項1又は2記載の熱機関サイクル装置。
The expander is a one-way flow expander;
A connection pipe switching valve for switching the flow path of the connection pipe;
The heat engine cycle device according to claim 1 or 2, wherein the control device switches the connecting pipe switching valve according to a flow direction of the working fluid to guide the working fluid to the expander.
前記膨張機には複数の一方向流膨張機が設けられ、
前記制御弁と前記連結管とは前記膨張機の設置数分だけ用意され、
幾つかの前記膨張機は前記第1熱交換器から前記第2熱交換器へと前記作動流体を流通するように前記連結管に接続され、他の前記膨張機は前記第2熱交換器から前記第1熱交換器へと前記作動流体を流通するように前記連結管に接続され、
前記制御装置は、前記制御弁を開閉して前記作動流体の流通を行うことを特徴とする請求項1又は2記載の熱機関サイクル装置。
The expander is provided with a plurality of one-way flow expanders,
The control valve and the connecting pipe are prepared for the number of installation of the expander,
Some of the expanders are connected to the connecting pipe so as to distribute the working fluid from the first heat exchanger to the second heat exchanger, and the other expanders are connected to the second heat exchanger. Connected to the connecting pipe so as to circulate the working fluid to the first heat exchanger;
The heat engine cycle device according to claim 1 or 2, wherein the control device opens and closes the control valve to flow the working fluid.
発電機及び該発電機に接続された電力平準化装置を更に備えることを特徴とする請求項1〜5のいずれかに記載の熱機関サイクル装置。   The heat engine cycle device according to any one of claims 1 to 5, further comprising a power generator and a power leveling device connected to the power generator.
JP2009159393A 2009-07-06 2009-07-06 Heat engine cycle equipment Expired - Fee Related JP5083835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009159393A JP5083835B2 (en) 2009-07-06 2009-07-06 Heat engine cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009159393A JP5083835B2 (en) 2009-07-06 2009-07-06 Heat engine cycle equipment

Publications (2)

Publication Number Publication Date
JP2011012644A true JP2011012644A (en) 2011-01-20
JP5083835B2 JP5083835B2 (en) 2012-11-28

Family

ID=43591784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009159393A Expired - Fee Related JP5083835B2 (en) 2009-07-06 2009-07-06 Heat engine cycle equipment

Country Status (1)

Country Link
JP (1) JP5083835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229934A (en) * 2014-06-03 2015-12-21 国立大学法人長岡技術科学大学 Inscription gear type expander

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR368439A (en) * 1906-07-26 1906-11-28 Pierre Smal Hot air motor with constant pressure and variable and adjustable cycle
US4006595A (en) * 1975-12-30 1977-02-08 Orange State, Inc. Refrigerant-powered engine
JPS5410848A (en) * 1977-06-27 1979-01-26 Hideo Mochizuki Water power engine which utilizes steam pressure
GB2109868A (en) * 1981-11-19 1983-06-08 Sorelec Thermomechanical-conversion engine working with a low-boiling-point fluid
WO1996016250A1 (en) * 1994-11-23 1996-05-30 Kevin Smith Thermal energy differential power conversion apparatus
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
JP2005102357A (en) * 2003-09-22 2005-04-14 Meidensha Corp Method and device for preparing start/stop plan of generator, recording medium for recording process program thereof
JP2005098271A (en) * 2003-09-24 2005-04-14 Koji Kanamaru Hot air type rotary external combustion engine
WO2006033879A2 (en) * 2004-09-17 2006-03-30 Pat Romanelli Vapor pump power system
JP2008092722A (en) * 2006-10-04 2008-04-17 Yaskawa Electric Corp Power storage system
WO2009035326A1 (en) * 2007-09-10 2009-03-19 Hans Van Rij Installation and method for the conversion of heat into mechanical energy

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR368439A (en) * 1906-07-26 1906-11-28 Pierre Smal Hot air motor with constant pressure and variable and adjustable cycle
US4006595A (en) * 1975-12-30 1977-02-08 Orange State, Inc. Refrigerant-powered engine
JPS5410848A (en) * 1977-06-27 1979-01-26 Hideo Mochizuki Water power engine which utilizes steam pressure
GB2109868A (en) * 1981-11-19 1983-06-08 Sorelec Thermomechanical-conversion engine working with a low-boiling-point fluid
WO1996016250A1 (en) * 1994-11-23 1996-05-30 Kevin Smith Thermal energy differential power conversion apparatus
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
JP2005102357A (en) * 2003-09-22 2005-04-14 Meidensha Corp Method and device for preparing start/stop plan of generator, recording medium for recording process program thereof
JP2005098271A (en) * 2003-09-24 2005-04-14 Koji Kanamaru Hot air type rotary external combustion engine
WO2006033879A2 (en) * 2004-09-17 2006-03-30 Pat Romanelli Vapor pump power system
JP2008092722A (en) * 2006-10-04 2008-04-17 Yaskawa Electric Corp Power storage system
WO2009035326A1 (en) * 2007-09-10 2009-03-19 Hans Van Rij Installation and method for the conversion of heat into mechanical energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229934A (en) * 2014-06-03 2015-12-21 国立大学法人長岡技術科学大学 Inscription gear type expander

Also Published As

Publication number Publication date
JP5083835B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US9316121B2 (en) Systems and methods for part load control of electrical power generating systems
EP2241737B1 (en) Thermoelectric energy storage system having two thermal baths and method for storing thermoelectric energy
Kim et al. Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage
CN104612765B (en) For thermoelectric power stocking system and the method for store heat electric energy
EP2275649B1 (en) Thermoelectric energy storage system with an intermediate storage tank and method for storing thermoelectric energy
EP2182179B1 (en) Thermoelectric energy storage system and method for storing thermoelectric energy
EP2312129A1 (en) Thermoelectric energy storage system having an internal heat exchanger and method for storing thermoelectric energy
US11079143B2 (en) Heat pump
McTigue et al. Pumped thermal electricity storage with supercritical CO2 cycles and solar heat input
WO2014193724A9 (en) Systems and methods for power peaking with energy storage
EP2627876B1 (en) Method and system for the utilization of an energy source of relatively low temperature
KR101752230B1 (en) Generation system using supercritical carbon dioxide and method of driving the same by heat sink temperature
JP5083836B2 (en) Heat engine cycle multi-connection system
JP2011208569A (en) Temperature difference power generation device
JP5083835B2 (en) Heat engine cycle equipment
JP2016151191A (en) Power generation system
CN112303960A (en) Cold power engine
JP2011038503A (en) Co-generation system with external combustion engine
WO2023104333A1 (en) System for storing and using thermal energy
JP2013113235A (en) Non-rankine cycle using refrigerant cycle as heat source
McTigue et al. Pumped thermal electricity storage with supercritical CO
Lombard et al. Small scale organic Rankine cycle for solar applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120514

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees