JP2011012305A5 - - Google Patents

Download PDF

Info

Publication number
JP2011012305A5
JP2011012305A5 JP2009157083A JP2009157083A JP2011012305A5 JP 2011012305 A5 JP2011012305 A5 JP 2011012305A5 JP 2009157083 A JP2009157083 A JP 2009157083A JP 2009157083 A JP2009157083 A JP 2009157083A JP 2011012305 A5 JP2011012305 A5 JP 2011012305A5
Authority
JP
Japan
Prior art keywords
alloy element
nitriding
thickness
low concentration
nitrided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009157083A
Other languages
Japanese (ja)
Other versions
JP5731107B2 (en
JP2011012305A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2009157083A priority Critical patent/JP5731107B2/en
Priority claimed from JP2009157083A external-priority patent/JP5731107B2/en
Publication of JP2011012305A publication Critical patent/JP2011012305A/en
Publication of JP2011012305A5 publication Critical patent/JP2011012305A5/ja
Application granted granted Critical
Publication of JP5731107B2 publication Critical patent/JP5731107B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、上記知見に基づいてなされたもので、合金元素を含む鉄鋼部材を窒化処理することにより得られた窒化部材であって、窒素化合物層を表層部に有し、該表層部の表面部に、内部よりも合金元素の濃度が低い厚さ0.1〜5μmの合金元素低濃度領域を有することを特徴としている。また、本発明の窒化部材の製造方法は、鉄鋼部材に酸化処理を行って表面に厚さ0.1〜5μmの酸化皮膜を形成し、次いで窒化処理を行うことを特徴としている。 The present invention has been made based on the above knowledge, and is a nitriding member obtained by nitriding a steel member containing an alloy element, having a nitrogen compound layer in a surface layer portion, and a surface of the surface layer portion The portion is characterized by having an alloy element low concentration region having a thickness of 0.1 to 5 μm, which is lower in concentration of the alloy element than the inside. The method for producing a nitrided member according to the present invention is characterized in that an oxidation treatment is performed on a steel member to form an oxide film having a thickness of 0.1 to 5 μm on the surface, and then a nitriding treatment is performed.

上記のような酸化処理後の鉄鋼部材に窒化処理を行うと窒化が促進され、酸化処理を行わない場合と比べて窒素化合物層と窒素拡散層の深さは5%程度増加する。その理由は以下のように考えられる。すなわち、鉄と窒素が結び付いて窒化鉄が生成されるよりも、酸化鉄の方が窒化鉄になり易いため、窒素化合物が容易に生成される。この点について、本発明者等が窒化鉄の反応生成系における熱力学計算を行ったところ、Fe Nの400〜700℃における生成自由エネルギーは、Fe、FeO、Fe、Feの順番で低くなることを確認した。したがって、鉄よりも酸化鉄の方が窒化され易く、また、酸化鉄の中でも酸素の原子比が高い方が窒化され易い。そして、上記のようにして生成された窒化鉄の下層には、酸化処理を行わない鉄鋼部材と同様に、鉄と窒素が結び付いて窒化鉄が生成されるから、結果として厚い窒化鉄層が生成される。また、窒化鉄層の下層に形成される窒素の拡散層も厚くなる。 When nitriding is performed on the steel member after the oxidation treatment as described above, nitriding is promoted, and the depths of the nitrogen compound layer and the nitrogen diffusion layer are increased by about 5% as compared with the case where the oxidation treatment is not performed. The reason is considered as follows. That is, since iron oxide is more likely to be iron nitride than iron and nitrogen are combined to generate iron nitride, a nitrogen compound is easily generated. In this regard, the present inventors or the like was carried out thermodynamic calculations in the reaction system for generating the iron nitride, free energy at 400 to 700 ° C. of Fe 2 N is, Fe, FeO, Fe 3 O 4, Fe 2 O It confirmed that it became low in order of 3 . Therefore, iron oxide is more easily nitrided than iron, and among iron oxides, the one having a higher oxygen atomic ratio is more easily nitrided. And, in the lower layer of iron nitride generated as described above, iron nitride is combined with iron and nitrogen, as in the case of steel members not subjected to oxidation treatment, resulting in the formation of a thick iron nitride layer. Is done. Further, the nitrogen diffusion layer formed under the iron nitride layer is also thickened.

窒化処理では、炉内を所定温度まで昇温して均熱で保持した後、炉内に例えばNガス、NHガス、およびCOガスからなる窒化ガスを導入し、所定時間保持した後に冷却する。この場合、炉内温度は500〜600℃であり、保持時間は100〜300分である。この窒化処理により、酸化皮膜であった部分に合金元素低濃度領域が形成される。合金元素低濃度領域の合金元素の濃度は、合金元素の総含有量に対して総量で0〜60%が望ましく、また、合金元素低濃度領域の厚さは、0.1〜0.5μmである。 In the nitriding treatment, after raising the temperature in the furnace to a predetermined temperature and keeping it soaked, a nitriding gas composed of, for example, N 2 gas, NH 3 gas, and CO 2 gas is introduced into the furnace and held for a predetermined time. Cooling. In this case, the furnace temperature is 500 to 600 ° C., and the holding time is 100 to 300 minutes. By this nitriding treatment, a low concentration region of the alloy element is formed in the portion that was the oxide film. The concentration of the alloy element in the low concentration region of the alloy element is preferably 0 to 60% in total with respect to the total content of the alloy element, and the thickness of the low concentration region of the alloy element is 0.1 to 0.5 μm. Oh Ru.

Claims (4)

合金元素を含む鉄鋼部材を窒化処理することにより得られた窒化部材であって、
窒素化合物層を表層部に有し、該表層部の表面部に、内部よりも合金元素の濃度が低い厚さ0.1〜5μmの合金元素低濃度領域を有することを特徴とする窒化部材。
A nitrided member obtained by nitriding a steel member containing an alloy element,
A nitriding member comprising a nitrogen compound layer in a surface layer portion, and a surface portion of the surface layer portion having an alloy element low concentration region having a thickness of 0.1 to 5 [mu] m in which the concentration of the alloy element is lower than the inside.
前記合金元素低濃度領域の合金元素の濃度は、合金元素の総含有量に対して総量で0〜60%であることを特徴とする請求項1に記載の窒化部材。2. The nitrided member according to claim 1, wherein the concentration of the alloy element in the alloy element low concentration region is 0 to 60% in total with respect to the total content of alloy elements. 鉄鋼部材に酸化処理を行って表面に厚さ0.1〜5μmの酸化皮膜を形成し、次いで窒化処理を行うことを特徴とする窒化部材の製造方法。   A method for producing a nitrided member, comprising subjecting a steel member to an oxidation treatment to form an oxide film having a thickness of 0.1 to 5 μm on the surface, followed by nitriding treatment. 前記窒化処理により前記酸化被膜に内部よりも合金元素の濃度が低い厚さ0.1〜5μmの合金元素低濃度領域を形成することを特徴とする請求項3に記載の窒化部材の製造方法。4. The method for producing a nitride member according to claim 3, wherein a low concentration region of 0.1 to 5 μm in thickness of the alloy element having a lower concentration of the alloy element than the inside is formed in the oxide film by the nitriding treatment.
JP2009157083A 2009-07-01 2009-07-01 Nitriding member and manufacturing method thereof Active JP5731107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157083A JP5731107B2 (en) 2009-07-01 2009-07-01 Nitriding member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157083A JP5731107B2 (en) 2009-07-01 2009-07-01 Nitriding member and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2011012305A JP2011012305A (en) 2011-01-20
JP2011012305A5 true JP2011012305A5 (en) 2012-08-16
JP5731107B2 JP5731107B2 (en) 2015-06-10

Family

ID=43591490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157083A Active JP5731107B2 (en) 2009-07-01 2009-07-01 Nitriding member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5731107B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132211B2 (en) * 2012-02-20 2017-05-24 パナソニックIpマネジメント株式会社 Sliding member, refrigerant compressor using the same, refrigerator and air conditioner
US10890363B2 (en) 2015-09-07 2021-01-12 Panasonic Intellectual Property Management Co., Ltd. Refrigerant compressor and refrigeration device including refrigerant compressor
JP6041176B1 (en) * 2016-04-15 2016-12-07 パナソニックIpマネジメント株式会社 Refrigerant compressor and refrigeration apparatus using the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5164431A (en) * 1974-12-02 1976-06-03 Riken Piston Ring Ind Co Ltd HYOMENSANKASHORINYORUCHITSUKAYOKUSEIHOHO
US4071382A (en) * 1976-07-22 1978-01-31 Midland-Ross Corporation Method for case hardening powdered metal parts
JPS5544516A (en) * 1978-09-21 1980-03-28 Honda Motor Co Ltd Soft-nitriding method with gas
JPS55134172A (en) * 1979-04-04 1980-10-18 Mazda Motor Corp Soft-nitriding method for iron base material
JPS62235463A (en) * 1986-04-04 1987-10-15 Toyota Central Res & Dev Lab Inc Gas nitriding method for high alloy member
JP2762157B2 (en) * 1990-07-02 1998-06-04 本田技研工業株式会社 Inspection method for compound layer
DE4140148A1 (en) * 1991-02-07 1992-08-13 Bosch Gmbh Robert METHOD FOR PRODUCING A SURFACE-HARDENED WORKPIECE FROM SINTER IRON
JPH0657400A (en) * 1992-08-06 1994-03-01 Parker Netsushiyori Kogyo Kk Method for nitriding steel parts
JP3139666B2 (en) * 1994-09-14 2001-03-05 住友電気工業株式会社 Spring excellent in nitriding characteristics and method of manufacturing the same
JPH08176789A (en) * 1994-12-20 1996-07-09 Tokico Ltd Production of highly corrosion resistant steel bar
JP2916751B2 (en) * 1995-09-08 1999-07-05 鹿児島県 Method for nitriding surface of austenitic stainless steel
JPH09122807A (en) * 1995-11-01 1997-05-13 Sumitomo Electric Ind Ltd Manufacture of coil spring
JP2004043962A (en) * 2002-05-14 2004-02-12 Nissan Motor Co Ltd Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method
JP2004132370A (en) * 2002-09-20 2004-04-30 Mitsubishi Materials Corp Sprocket integrated housing and its manufacturing method
KR100899578B1 (en) * 2007-10-01 2009-05-27 한국생산기술연구원 Method for surface hardening by high temperature nitriding in vacuum

Similar Documents

Publication Publication Date Title
JP4560077B2 (en) Powder for magnetic core and method for producing powder for magnetic core
JP2013501852A5 (en)
JP2017075388A (en) FeNi REGULAR ALLOY, MANUFACTURING METHOD OF FeNi REGULAR ALLOY AND MAGNETIC MATERIAL CONTAINING FeNi REGULAR ALLOY
JP2007051327A5 (en)
JP2011012305A5 (en)
JPS58189373A (en) Manufacture of protective oxide layer
JP2019094564A (en) Sintering method of austenite stainless steel
JP2019073783A (en) Nb-CONTAINING FERRITIC STAINLESS STEEL MATERIAL EXCELLENT IN CORROSION RESISTANCE, AND MANUFACTURING METHOD
CN101537496B (en) Process for producing porous metal body
JP5457000B2 (en) Surface treatment method of steel material, steel material and mold obtained thereby
JPWO2011115255A1 (en) Spring steel and steel surface treatment method
JP5731107B2 (en) Nitriding member and manufacturing method thereof
Schütze et al. Oxidation behavior of intermetallic titanium aluminide alloys
CZ288475B6 (en) Method of preventing local sticking when annealing a steel strip
JP5650331B2 (en) Annealing separator for producing grain oriented silicon steel with mirror-like surface and good magnetic performance
Arthur et al. Carbon and nitrogen concentration profiles of cassava-pack carbonitrided steel: model and experiment
JP2009544852A (en) Metal article having a high concentration of interstitial components
JPH0971854A (en) Carbohardened watch member or ornament and production thereof
TW200536960A (en) Beta titanium surface hardening method, beta titanium member and beta titanium surface hardening apparatus
JP6759842B2 (en) Steel manufacturing method
JP2012246524A (en) Method for nitriding stainless material, and nitrided material
KR100837789B1 (en) Nitriding treatment method
JP2018058088A (en) Cooling method of coiled steel plate
JP6530054B2 (en) Method of manufacturing retort for nitriding furnace and the retort
KR100950899B1 (en) Method for Manufacturing High Corrosion-Resistant Steels