JP2011009836A - Multi-frequency shared antenna - Google Patents

Multi-frequency shared antenna Download PDF

Info

Publication number
JP2011009836A
JP2011009836A JP2009148698A JP2009148698A JP2011009836A JP 2011009836 A JP2011009836 A JP 2011009836A JP 2009148698 A JP2009148698 A JP 2009148698A JP 2009148698 A JP2009148698 A JP 2009148698A JP 2011009836 A JP2011009836 A JP 2011009836A
Authority
JP
Japan
Prior art keywords
radiating
antenna
frequency
radiating element
radiating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009148698A
Other languages
Japanese (ja)
Other versions
JP5257266B2 (en
Inventor
Kenichiro Imai
謙一郎 今井
Junya Muramatsu
潤哉 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2009148698A priority Critical patent/JP5257266B2/en
Publication of JP2011009836A publication Critical patent/JP2011009836A/en
Application granted granted Critical
Publication of JP5257266B2 publication Critical patent/JP5257266B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-frequency shared antenna capable of easily setting and adjusting a stop band zone.SOLUTION: The wavelength of frequencies fα, fβ, and fγ (fα<fβ<fγ) is referred to as λα, λβ, and λγ (λα>λβ>λγ). The element length of a crank-like linear antenna (first radiating element) composed of a first L-shaped individual part 121 and a common part 123 is set to λα/4. The element length of a crank-like linear antenna (second radiating element) composed of a second L-shaped individual part 122 and the common part 123 is set to λγ/4. The element length of a U-shaped part (ends opening element) composed of the first individual part 121 and the second individual part 122 is set to λβ/2. Thus, the first radiating element transmits and receives a signal of the frequency fα (wavelength λα), the second radiating element transmits and receives a signal of the frequency of fγ (wavelength λγ), and the ends opening element prevents transmission and reception of a signal of the frequency fβ (wavelength λβ).

Description

本発明は、複数の周波数帯をカバーする多周波共用アンテナに関する。   The present invention relates to a multi-frequency shared antenna that covers a plurality of frequency bands.

従来より、単一の給電点を有し、複数の周波数帯で共振する多周波共用アンテナが知られている。
この種のアンテナの一つとして、特許文献1には、共振周波数帯が第1の周波数帯に設定された第1モノポールアンテナと、第1モノポールアンテナと同一の給電点を有し、共振周波数帯が第1の周波数帯とは異なる第2の周波数帯に設定された二つの第2モノポールアンテナとを備え、第2モノポールアンテナを、第1モノポールアンテナを挟んで平行に、且つ第1モノポールアンテナとの間隔Lが等間隔となるように配置した多周波共用モノポールアンテナが開示されている。
Conventionally, a multi-frequency shared antenna having a single feeding point and resonating in a plurality of frequency bands is known.
As one of this type of antenna, Patent Document 1 discloses a first monopole antenna whose resonance frequency band is set to the first frequency band, and the same feeding point as that of the first monopole antenna. Two second monopole antennas having a frequency band set to a second frequency band different from the first frequency band, the second monopole antenna being parallel to and sandwiching the first monopole antenna, and There is disclosed a multi-frequency monopole antenna arranged so that the distance L between the first monopole antenna and the first monopole antenna is equal.

また、特許文献2や非特許文献1には、広帯域で動作する板状のアンテナ素子と、アンテナ素子と導通し、アンテナ素子の動作帯域内に設定される阻止帯域で共振する板状の共振子とを(誘電体基板を挟んで)対向配置することにより、阻止帯域以外で動作させるアンテナ装置が開示されている。   Patent Document 2 and Non-Patent Document 1 describe a plate-like antenna element that operates in a wide band, and a plate-like resonator that conducts with the antenna element and resonates in a stop band set within the operation band of the antenna element. Are arranged so as to face each other (with a dielectric substrate in between), thereby disclosing an antenna device that operates outside the stop band.

特開2008−79246号公報JP 2008-79246 A 特開2006−340202号公報JP 2006-340202 A

中村年宏,岩崎久雄著「阻止帯域を有するUWB用平面モノポールアンテナ」電子通信学会論文誌B、2006/9 Vol.J89-B,No.9,pp.1624-1632Toshihiro Nakamura, Hisao Iwasaki, "Planar monopole antenna for UWB with stopband" IEICE Transactions B, 2006/9 Vol.J89-B, No.9, pp.1624-1632

ところで、多周波共用アンテナは、与被干渉の観点から、所望の周波数以外では極力電波を放射しないこと、即ち、阻止帯域を持つこと、しかも、その阻止帯域の設定や調整が容易であることが望ましい。   By the way, from the viewpoint of interference, the multi-frequency shared antenna should not radiate radio waves as much as possible other than the desired frequency, that is, have a stop band, and it is easy to set and adjust the stop band. desirable.

しかし、特許文献2や非特許文献1に記載の従来装置では、阻止周波数を変更する場合に共振子の形状や大きさを変更する必要があり、変更の自由度が高いことから、却って調整が難しいという問題があった。   However, in the conventional devices described in Patent Document 2 and Non-Patent Document 1, it is necessary to change the shape and size of the resonator when changing the stop frequency, and the degree of freedom of change is high. There was a problem that it was difficult.

また、特許文献1に記載の従来装置では、アンテナ間隔Lを変化させることによって、3つの周波数にて共振させることが示されているだけで、阻止帯域を任意に変化させることについて何の考慮もされていない。   Moreover, in the conventional apparatus described in Patent Document 1, it is shown that resonance is performed at three frequencies by changing the antenna interval L, and no consideration is given to arbitrarily changing the stop band. It has not been.

本発明は、上記問題点を解決するために、阻止帯域の設定,調整が容易な多周波共用アンテナを提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a multi-frequency antenna that can easily set and adjust a stop band.

上記目的を達成するためになされた発明である請求項1に記載の多周波共用アンテナは、一端が開放され他端が同一の給電点に接続されると共に、給電端から開放端に至る素子長がそれぞれ異なるN(Nは2以上の整数)本の放射素子からなる放射素子部を備え、隣接して配置された任意の放射素子対は、前記給電端側に両放射素子によって共用される共用部位、及び前記開放端側に該共用部位以外の個別部位を有し、前記放射素子対を構成する二つの放射素子は、異なる二つの波長λα,λγの信号を放射するように一方の素子長がλα/4、他方の素子長がλγ/4に設定され、且つ、前記共用部位を除いた前記個別部位の合計素子長がλβ/2(但し、λα>λβ>λγ)となるように前記共用部位及び前記個別部位の長さが設定されていることを特徴とする。   The multi-frequency shared antenna according to claim 1, which is an invention made to achieve the above object, has an element length extending from the feed end to the open end while one end is open and the other end is connected to the same feed point. Are each provided with a radiating element portion composed of N radiating elements different from each other (N is an integer of 2 or more), and any radiating element pair arranged adjacent to each other is shared by both radiating elements on the feeding end side. The two radiating elements having a part and an individual part other than the shared part on the open end side and constituting the radiating element pair have one element length so as to radiate signals of two different wavelengths λα and λγ. Is set to λα / 4, the other element length is set to λγ / 4, and the total element length of the individual portions excluding the shared portion is λβ / 2 (where λα> λβ> λγ). The common part and the length of the individual part are set. And features.

このように構成された本発明の多周波共用アンテナでは、放射素子対の共用部位を除いた部分(両放射素子対の個別部位を合わせた部分)が、両端が開放された長さλβ/2の素子(以下「両端開放素子」という)となり、波長λβとなる周波数では、両端開放素子を流れる電流を打ち消し合うため、その周波数の信号(波長λβとなる信号)の放射が抑制される。   In the multi-frequency shared antenna of the present invention thus configured, the length excluding the shared portion of the radiating element pair (the portion obtained by combining the individual portions of both radiating element pairs) has a length λβ / 2 where both ends are open. Since the current flowing through the open-ended element cancels out at the frequency of the wavelength λβ, the emission of the signal of that frequency (the signal having the wavelength λβ) is suppressed.

従って、本発明の多周波共用アンテナによれば、波長λα,λγとなる周波数帯である通過帯域の間に、通過帯域と比較してゲインの小さい周波数帯である阻止帯域が形成されるため、通過帯域以外での不要な電波の放射を抑制することができる。   Therefore, according to the multi-frequency shared antenna of the present invention, a stop band that is a frequency band having a smaller gain than the pass band is formed between the pass bands that are the frequency bands having the wavelengths λα and λγ. Unwanted emission of radio waves outside the passband can be suppressed.

しかも、本発明の多周波共用アンテナによれば、共用部位及び個別部位の長さを変化させるだけで、阻止帯域を容易に調整することができる。
ところで、前記放射素子対を構成する二つの放射素子は、請求項2に記載のように、互いの前記個別部位がリアクタンス素子を介して接続されていてもよい。
In addition, according to the multi-frequency shared antenna of the present invention, the stop band can be easily adjusted only by changing the lengths of the shared part and the individual part.
By the way, as for the two radiating elements which comprise the said radiating element pair, the said separate site | part may mutually be connected via the reactance element, as described in Claim 2.

この場合、リアクタンス素子の値を調整することによって、放射素子に変更を加えることなく、阻止帯域を簡単に変化させることができる。
なお、放射素子対を形成する二つの放射素子間には容量分(つまりリアクタンス分)が存在し、その値は、両放射素子の相対的な位置関係や、両放射素子の形状によって変化する。
In this case, by adjusting the value of the reactance element, the stop band can be easily changed without changing the radiating element.
Note that there is a capacitance (that is, reactance) between the two radiating elements forming the radiating element pair, and the value varies depending on the relative positional relationship between the two radiating elements and the shape of the two radiating elements.

そこで、前記放射素子対を構成する二つの放射素子は、請求項3に記載のように、両放射素子の相対的な位置関係によって、両放射素子間に生じるリアクタンス分が調整されていてもよいし、請求項4に記載のように、両放射素子の形状によって、両放射素子間に生じるリアクタンス分が調整されていてもよい。   Therefore, as for the two radiating elements constituting the radiating element pair, the reactance component generated between the two radiating elements may be adjusted according to the relative positional relationship between the two radiating elements as described in claim 3. However, as described in claim 4, the reactance component generated between the two radiating elements may be adjusted according to the shape of the two radiating elements.

なお、前記放射素子部は、請求項5に記載のように、誘電体基板上に形成されたパターンにより構成されていてもよい。
この場合、本発明の多周波共用アンテナを容易に製造することができ、また、誘電体基板の誘電率によって波長短縮が生じるため、放射素子ひいてはアンテナ全体を小型化することができる。
The radiating element portion may be configured by a pattern formed on a dielectric substrate as described in claim 5.
In this case, the multi-frequency antenna according to the present invention can be easily manufactured, and the wavelength is shortened by the dielectric constant of the dielectric substrate, so that the radiating element and thus the entire antenna can be downsized.

また、本発明の多周波共用アンテナは、請求項6に記載のように、前記放射素子部を二つ備え、該放射素子部が前記給電点を通る軸に対して軸対称に配置されていてもよい。   In addition, the multi-frequency antenna according to the present invention includes two radiating element portions as described in claim 6, and the radiating element portions are arranged symmetrically with respect to an axis passing through the feeding point. Also good.

第1実施形態の多周波共用アンテナの全体構成図。1 is an overall configuration diagram of a multi-frequency antenna according to a first embodiment. 放射素子部のサイズを示す説明図、及びアンテナの特性(リターンロス)のシミュレーション結果を示すグラフ。Explanatory drawing which shows the size of a radiation | emission element part, and the graph which shows the simulation result of the characteristic (return loss) of an antenna. 第1実施形態の変形例の全体構成図。The whole block diagram of the modification of 1st Embodiment. 第2実施形態の多周波共用アンテナの全体構成図。The whole block diagram of the multi-frequency antenna according to the second embodiment. リアクタンス値がアンテナの特性に与える影響を示すためのシミュレーション結果を示したグラフ。The graph which showed the simulation result for showing the influence which the reactance value has on the characteristic of an antenna. 第2実施形態の変形例の全体構成図。The whole block diagram of the modification of 2nd Embodiment. 第2実施形態の変形例の全体構成図。The whole block diagram of the modification of 2nd Embodiment. 第3実施形態の多周波共用アンテナの全体構成図。The whole block diagram of the multifrequency shared antenna of 3rd Embodiment. 第3実施形態の変形例の全体構成図。The whole block diagram of the modification of 3rd Embodiment. 第3実施形態の変形例の全体構成図。The whole block diagram of the modification of 3rd Embodiment.

以下に本発明の実施形態を図面と共に説明する。
[第1実施形態]
<全体構成>
図1は、第1実施形態の多周波共用アンテナ(以下単に「アンテナ」という)10の全体構成図である。
Embodiments of the present invention will be described below with reference to the drawings.
[First Embodiment]
<Overall configuration>
FIG. 1 is an overall configuration diagram of a multi-frequency shared antenna (hereinafter simply referred to as “antenna”) 10 of the first embodiment.

図1に示すようにアンテナ10は、平板状の金属からなる地板Gに接地された給電部11と、金属製の線材により構成され、給電部11からの給電を受けて電波を放射する放射素子部12とからなる。   As shown in FIG. 1, an antenna 10 includes a power feeding unit 11 grounded to a ground plate G made of a flat metal and a metal wire, and radiates a radio wave by receiving power from the power feeding unit 11. Part 12.

<放射素子部の構成>
放射素子部12は、各々がL字状に形成され、それぞれの一端を接続することによってコの字状に形成された第1及び第2個別部位121,122と、地板Gに対して垂直に立設され、一端(以下「給電端」ともいう)が給電部11に、他端(以下「分岐端」ともいう)が第1及び第2個別部位121,122の接続端に接続された共用部位123とからなる。
<Configuration of radiation element>
Each of the radiating element portions 12 is formed in an L shape, and is perpendicular to the ground plane G and the first and second individual portions 121 and 122 formed in a U shape by connecting one end of each. A common structure in which one end (hereinafter also referred to as “power supply end”) is connected to the power supply unit 11 and the other end (hereinafter also referred to as “branch end”) is connected to the connection ends of the first and second individual parts 121 and 122. It consists of part 123.

また、第1及び第2個別部位121,122のL字を構成する二つの直線部分のうち、接続端を有する側の直線部分(以下「接続部」ともいう)121a,122aは、互いに一直線に且つ地板Gに対して平行となるように設置されている。また、両個別部位121,122の他方の直線部分(以下「放射部」ともいう)121b,122bは、互いに平行に且つ地板Gに対して垂直となるように設置されている。   Of the two straight portions constituting the L-shape of the first and second individual parts 121 and 122, straight portions (hereinafter also referred to as “connecting portions”) 121a and 122a on the side having the connecting ends are aligned with each other. And it is installed so as to be parallel to the ground plane G. The other straight portions (hereinafter also referred to as “radiating portions”) 121 b and 122 b of both the individual parts 121 and 122 are installed so as to be parallel to each other and perpendicular to the ground plane G.

以下では、第1個別部位121と共用部位123とで構成されるクランク状の線状アンテナを第1放射素子、第2個別部位122と共用部位123とで構成されるクランク状の線状アンテナを第2放射素子、第1個別部位121と第2個別部位122とで構成されるコ字状の部分を両端開放素子とも言う。   Hereinafter, a crank-shaped linear antenna composed of the first individual part 121 and the common part 123 is referred to as a first radiating element, and a crank-shaped linear antenna composed of the second individual part 122 and the common part 123 is referred to as The U-shaped part composed of the second radiating element, the first individual part 121 and the second individual part 122 is also referred to as an open-ended element.

また、図2(a)に示すように、第1個別部位121,第2個別部位122,共用部位123の各部位長をA1,A2,Bで表し、また、接続部121a,122aの各部位長をC/2、その合計長をCで表すものとする。   Moreover, as shown to Fig.2 (a), each site | part length of the 1st individual site | part 121, the 2nd individual site | part 122, and the common site 123 is represented by A1, A2, B, and each site | part of connection part 121a, 122a The length is represented by C / 2, and the total length is represented by C.

そして、周波数fα,fβ,fγ(但し、fα<fβ<fγ)の波長をλα,λβ,λγ(即ち、λα>λβ>λγ)として、第1放射素子の素子長R1(=A1+B)がλα/4に設定され、第2放射素子の素子長R2(=A2+B)がλγ/4に設定され、両端開放素子の素子長R3(=A1+A2)がλβ/2に設定されている。   Then, assuming that the wavelengths of the frequencies fα, fβ, and fγ (where fα <fβ <fγ) are λα, λβ, and λγ (that is, λα> λβ> λγ), the element length R1 (= A1 + B) of the first radiating element is λα. / 4, the element length R2 (= A2 + B) of the second radiating element is set to λγ / 4, and the element length R3 (= A1 + A2) of the both-end open element is set to λβ / 2.

<動作>
このように構成されたアンテナ10では、第1放射素子(第1個別部位121及び共用部位123)が周波数fα(波長λα)の信号を送受信し、第2放射素子(第2個別部位122及び共用部位123)が周波数fγ(波長λγ)の信号を送受信すると共に、両端開放素子(第1個別部位121及び第2個別部位122)が周波数fβ(波長λβ)の信号の送受信を阻止する。
<Operation>
In the antenna 10 configured as described above, the first radiating element (the first individual portion 121 and the common portion 123) transmits and receives a signal having the frequency fα (wavelength λα), and the second radiating element (the second individual portion 122 and the common portion is shared). The part 123) transmits and receives a signal having the frequency fγ (wavelength λγ), and the open-ended elements (the first individual part 121 and the second individual part 122) block the transmission and reception of the signal having the frequency fβ (wavelength λβ).

つまり、両端開放素子では、地板Gに対して平行な接続部121a,122aは信号の放射に寄与せず、地板Gに対して垂直な放射部121b,122bが信号の放射に寄与する。そして、周波数fβ付近の信号が両端開放素子で共振した場合、放射部121bを流れる電流と放射部122bを流れる電流とでは流れる向きが逆方向となり、その電流によって発生する磁界が打ち消し合うため、周波数fβ付近では信号の放射が阻止されることになる。   That is, in the both-end open element, the connecting portions 121a and 122a parallel to the ground plane G do not contribute to signal radiation, and the radiation portions 121b and 122b perpendicular to the ground plane G contribute to signal radiation. When a signal in the vicinity of the frequency fβ resonates with an open-ended element, the current flowing through the radiating portion 121b and the current flowing through the radiating portion 122b are in opposite directions, and the magnetic field generated by the current cancels out. Signal emission is blocked near fβ.

<効果>
以上説明したように、アンテナ10によれば、波長λα,λγとなる周波数帯である通過帯域の間に、通過帯域と比較してゲインの小さい周波数帯である阻止帯域が形成されるため、通過帯域以外での不要な電波の放射を抑制することができる。
<Effect>
As described above, according to the antenna 10, a stop band that is a frequency band with a smaller gain than the pass band is formed between the pass bands that are the frequency bands having the wavelengths λα and λγ. Unwanted emission of radio waves outside the band can be suppressed.

ここで、図2(b)は、アンテナ10の反射損失(Sパラメータの反射係数S11)をシミュレーションによって求めた結果を示すグラフである。但し、A1=102mm,A2=87mm,B=2mm,C=10mmである。   Here, FIG. 2B is a graph showing a result of obtaining the reflection loss (S-parameter reflection coefficient S11) of the antenna 10 by simulation. However, A1 = 102 mm, A2 = 87 mm, B = 2 mm, and C = 10 mm.

図2(b)からは、fα≒720MHz,fγ≒850MHz付近が通過帯域となり、fβ≒820MHz付近が阻止帯域となり、しかも、通過帯域と阻止帯域とでは、15dB以上の差があることがわかる。   From FIG. 2B, it can be seen that the vicinity of fα≈720 MHz and fγ≈850 MHz is the passband, the vicinity of fβ≈820 MHz is the stopband, and there is a difference of 15 dB or more between the passband and the stopband.

また、アンテナ10によれば、個別部位A1,A2及び共用部位Bの長さを適宜調整し、両端開放素子の素子長R3(=A1+A2)の長さを変化させることによって、阻止帯域を容易に調整することができる。   Further, according to the antenna 10, the lengths of the individual parts A1, A2 and the common part B are adjusted as appropriate, and the length of the open-ended element length R3 (= A1 + A2) is changed to facilitate the stop band. Can be adjusted.

<変形例>
本実施形態では、放射素子部12を金属製の線材によって構成したが、図3(a)に示すように、地板Gに対してパターン形成面が垂直となるように立設された誘電体基板P上のパターンによって構成してもよい。
<Modification>
In the present embodiment, the radiating element portion 12 is made of a metal wire. However, as shown in FIG. 3A, the dielectric substrate is erected so that the pattern formation surface is perpendicular to the ground plane G. You may comprise by the pattern on P.

本実施形態では、放射素子部12を構成する放射素子が二つである場合について説明したが、図3(b)に示すアンテナ10aのように、放射素子部12を構成する放射素子が三つ以上存在してもよい。   In the present embodiment, the case where two radiating elements are included in the radiating element unit 12 has been described. However, as in the antenna 10a illustrated in FIG. It may exist above.

この場合、放射素子がN個であるとすると、互いに隣接した放射部を有する放射素子対がN−1個存在することになり、そのうちの少なくとも一つの放射素子対が本実施形態で示した関係を有していればよい。   In this case, assuming that there are N radiating elements, there are N-1 radiating element pairs having radiating portions adjacent to each other, and at least one of the radiating element pairs has the relationship shown in the present embodiment. As long as it has.

但し、放射素子対を構成する二つの放射部が、共用部位の分岐端を挟んで互いに異なる側に位置する場合は、上述のアンテナ10と同様に、分岐端から給電端までを共用部位、それ以外を個別部位とし、二つの放射部が共用部位の分岐端に対して同じ側に位置する場合は、分岐端に近い側の放射部と接続部との接続点から給電端までを共用部位、それ以外を個別部位とすればよい。   However, when the two radiating parts constituting the radiating element pair are located on different sides across the branch end of the common part, the common part, that is, from the branch end to the feeding end, as in the antenna 10 described above, If the two radiation parts are located on the same side with respect to the branch end of the common part, the common part from the connection point between the radiation part near the branch end and the connection part to the feeding end, What is necessary is just to make another part into an individual part.

また、アンテナ10aの放射素子部12を、図3(a)に示した場合と同様に、地板Gに立設された誘電体基板P上のパターンによって構成してもよい。
[第2実施形態]
次に、第2実施形態について説明する。
Further, the radiating element portion 12 of the antenna 10a may be configured by a pattern on the dielectric substrate P standing on the ground plane G, similarly to the case shown in FIG.
[Second Embodiment]
Next, a second embodiment will be described.

<全体構成>
図4は、本実施形態のアンテナ20の全体構成図である。
アンテナ20は、図4に示すように、アンテナ10と同様に、給電部21と放射素子部22とで構成されている。
<Overall configuration>
FIG. 4 is an overall configuration diagram of the antenna 20 of the present embodiment.
As shown in FIG. 4, the antenna 20 includes a power feeding unit 21 and a radiating element unit 22 as with the antenna 10.

なお、給電部21は、給電部11と全く同様に構成されている。
また、放射素子部22は、放射素子部12と同様に、接続部221a,222a及び放射部221b,222bからなる第1及び第2個別部位221,222、共用部位223によって構成され、更に、放射部221b,222bを接続するリアクタンス素子224を備えている。
The power feeding unit 21 is configured in exactly the same way as the power feeding unit 11.
Similarly to the radiating element unit 12, the radiating element unit 22 includes first and second individual parts 221 and 222 including a connecting part 221a and 222a and radiating parts 221b and 222b, and a common part 223. A reactance element 224 for connecting the portions 221b and 222b is provided.

つまり、第1及び第2個別部位221,222からなる両端開放素子とリアクタンス素子224とが並列(又はループ状)に接続されている。
<リアクタンス素子>
なお、リアクタンス素子224は、コンデンサ、インダクタ、又はこれらの組合せからなり、可変コンデンサや可変インダクタであってもよい。
That is, the both-end open element composed of the first and second individual parts 221 and 222 and the reactance element 224 are connected in parallel (or in a loop).
<Reactance element>
The reactance element 224 includes a capacitor, an inductor, or a combination thereof, and may be a variable capacitor or a variable inductor.

但し、抵抗分は損失となり利得低下の原因となるため、リアクタンス素子224に抵抗分は可能な限り含まれていないことが望ましい。また、リアクタンス素子224の接続箇所は、第1及び第2個別部位221,222の先端(開放端)の近くであることが望ましい。   However, since the resistance component becomes a loss and causes a gain reduction, it is desirable that the resistance component is not included in the reactance element 224 as much as possible. Further, it is desirable that the connection point of the reactance element 224 is near the tips (open ends) of the first and second individual parts 221 and 222.

<動作>
このように構成されたアンテナ20では、リアクタンス素子224の値を変化させることによって、リアクタンス素子224を含んだ両端開放素子の共振周波数、即ち、信号の送受信が阻止される阻止周波数が変化する。
<Operation>
In the antenna 20 configured as described above, by changing the value of the reactance element 224, the resonance frequency of the open-ended element including the reactance element 224, that is, the blocking frequency at which signal transmission / reception is blocked is changed.

但し、リアクタンス素子224として、容量性素子(例えばコンデンサ)を用いた場合は阻止周波数が低くなり、誘導性素子(例えばインダクタ)を用いた場合は阻止周波数が高くなる。   However, when a capacitive element (for example, a capacitor) is used as the reactance element 224, the blocking frequency is low, and when an inductive element (for example, an inductor) is used, the blocking frequency is high.

即ち、両個別部位221,222間、特に、平行に配置された放射部221b,222b間には、リアクタンス素子224を接続していない状態でも容量分(即ち、リアクタンス)が存在しており、その容量分と両端開放素子とで形成される並列回路の共振周波数が阻止周波数となるものと考えられる。このため、リアクタンス素子224を接続することで放射部221b,222b間のリアクタンスを変化させると、共振状態が変化し、ひいては阻止周波数が変化することになる。   That is, there is a capacity (that is, reactance) between the individual parts 221 and 222, in particular, between the radiation parts 221b and 222b arranged in parallel even when the reactance element 224 is not connected. It is considered that the resonance frequency of the parallel circuit formed by the capacitance and the open-ended element becomes the blocking frequency. For this reason, when the reactance between the radiating portions 221b and 222b is changed by connecting the reactance element 224, the resonance state changes, and consequently, the blocking frequency changes.

一方、通過周波数は、第1個別部位221及び共用部位223からなる第1放射素子、または第2個別部位222及び共用部位223からなる第2放射素子上の電流分布が重要であり、両個別部位221,222間のリアクタンス分の影響が小さいため、リアクタンス素子224を変化させても大きく変化することはないものと考えられる。   On the other hand, the current distribution on the first radiating element composed of the first individual part 221 and the common part 223 or the second radiating element composed of the second individual part 222 and the common part 223 is important for the passing frequency. Since the influence of the reactance between 221 and 222 is small, it is considered that even if the reactance element 224 is changed, it does not change greatly.

<効果>
以上説明したようにアンテナ20によれば、第1実施形態のアンテナ10と同様の効果が得られるだけでなく、リアクタンス素子224の値を適宜変更することによって、第1及び第2放射素子に変更を加えることなく、阻止帯域を簡単に変化させることができる。
<Effect>
As described above, according to the antenna 20, not only the same effect as that of the antenna 10 of the first embodiment is obtained, but also the value of the reactance element 224 is changed as appropriate to change the first and second radiating elements. The stopband can be easily changed without adding.

ここで図5は、アンテナ20の反射損失(Sパラメータの反射係数S11)をシミュレーションによって求めた結果を示すグラフである。なお、図5(a)はリアクタンス素子224として容量性素子(−1000Ω)を接続した場合、図5(b)はリアクタンス素子224を接続しない場合、図5(c)は、リアクタンス素子224として誘導性素子(+1000Ω)を接続した場合を示す。   Here, FIG. 5 is a graph showing a result of obtaining the reflection loss (S-parameter reflection coefficient S11) of the antenna 20 by simulation. 5A shows a case where a capacitive element (−1000Ω) is connected as the reactance element 224, FIG. 5B shows a case where the reactance element 224 is not connected, and FIG. 5C shows an induction as the reactance element 224. This shows a case where a conductive element (+ 1000Ω) is connected.

図5からは、容量性のリアクタンス素子224を接続することによって阻止周波数fβが低下し、誘導性のリアクタンス素子224を接続することによって阻止周波数fβが上昇することがわかる。   From FIG. 5, it can be seen that the stop frequency fβ is decreased by connecting the capacitive reactance element 224, and the stop frequency fβ is increased by connecting the inductive reactance element 224.

<変形例>
本実施形態では、放射素子部22を金属製の線材によって構成したが、図6(a)に示すように、地板Gに対してパターン形成面が垂直となるように立設された誘電体基板P上のパターンによって構成してもよい。
<Modification>
In the present embodiment, the radiating element portion 22 is made of a metal wire. However, as shown in FIG. 6A, the dielectric substrate is erected so that the pattern formation surface is perpendicular to the ground plane G. You may comprise by the pattern on P.

本実施形態では、放射素子部22を構成する放射素子が二つである場合について説明したが、図6(b)に示すアンテナ20aのように、放射素子部22を構成する放射素子が三つ以上存在してもよい。   In the present embodiment, the case where there are two radiating elements constituting the radiating element unit 22 has been described, but there are three radiating elements constituting the radiating element unit 22 as in the antenna 20a shown in FIG. It may exist above.

この場合、放射素子がN個であるとすると、互いに隣接した放射部を有する放射素子対がN−1個存在することになり、そのうちの少なくとも一つ(図6(b)では全部)の放射素子対の間にリアクタンス素子224を接続すればよい。   In this case, assuming that there are N radiating elements, there are N-1 radiating element pairs having radiating portions adjacent to each other, and at least one of them (all in FIG. 6B) is radiated. A reactance element 224 may be connected between the element pair.

本実施形態では、第1及び第2個別部位221,222間のリアクタンスを、リアクタンス素子224を設けることによって調整しているが、リアクタンス素子224を設ける代わりに、図7(a)に示すアンテナ20bのように、第1及び第2個別部位221,222の放射部221b,222bを、地板Gに対する垂直方向から傾斜させることで、放射部221b,222b間のリアクタンス(ここでは容量分)を調整するように構成してもよい。   In this embodiment, the reactance between the first and second individual parts 221 and 222 is adjusted by providing the reactance element 224. Instead of providing the reactance element 224, the antenna 20b shown in FIG. As described above, by reacting the radiating portions 221b and 222b of the first and second individual parts 221 and 222 from the vertical direction with respect to the ground plane G, the reactance (here, the capacity) between the radiating portions 221b and 222b is adjusted. You may comprise as follows.

また、図7(b)に示すアンテナ20cのように、第1及び第2個別部位221,222の放射部221b,222bの形状を屈曲させることで、放射部221b,222b間のリアクタンス(ここでは容量分)を調整するように構成してもよい。   7B, the reactance between the radiating portions 221b and 222b (here, the radiating portions 221b and 222b is bent by bending the shapes of the radiating portions 221b and 222b of the first and second individual portions 221 and 222). The capacity may be adjusted.

即ち、アンテナ20b,20cのいずれの場合も、両個別部位の放射部間の距離を近づけることにより容量分を増大させ、遠ざけることにより容量分を減少させることができる。   That is, in either case of the antennas 20b and 20c, the capacity can be increased by reducing the distance between the radiating portions of both individual parts, and the capacity can be decreased by moving away.

また、アンテナ20a,20b,20cの放射素子部22を、図6(a)に示した場合と同様に、地板Gに立設された誘電体基板P上のパターンによって構成してもよい。
[第3実施形態]
次に、第3実施形態について説明する。
Further, the radiating element portion 22 of the antennas 20a, 20b, and 20c may be configured by a pattern on the dielectric substrate P erected on the ground plane G, similarly to the case shown in FIG.
[Third Embodiment]
Next, a third embodiment will be described.

<全体構成>
図8は、本実施形態のアンテナ30の全体構成図である。
アンテナ30は、図8に示すように、給電部31と、金属製の線材により構成され、給電部11からの給電を受けて電波を放射する第1及び第2放射素子部32,33とからなる。
<Overall configuration>
FIG. 8 is an overall configuration diagram of the antenna 30 of the present embodiment.
As shown in FIG. 8, the antenna 30 includes a power feeding unit 31 and first and second radiation element units 32 and 33 that are configured by a metal wire and radiate radio waves by receiving power from the power feeding unit 11. Become.

なお、給電部31は、給電部11と同様に構成されている。
また、一方の放射素子部32は、放射素子部12と同様に、第1及び第2個別部位321,322、共用部位323によって構成され、他方の放射素子部33も、放射素子部12と同様に、第1及び第2個別部位331,332、共用部位333によって構成されている。
The power feeding unit 31 is configured in the same manner as the power feeding unit 11.
Further, like the radiating element part 12, one radiating element part 32 is configured by the first and second individual parts 321 and 322 and the common part 323, and the other radiating element part 33 is also the same as the radiating element part 12. In addition, the first and second individual parts 331 and 332 and the common part 333 are configured.

但し、第1放射素子部32と第2放射素子部33とは、給電部31を通る軸(第1実施形態における地板Gの表面に相当する位置)に対して対称な位置に配置されている。
<効果>
このように構成されたアンテナ30によれば、第1実施形態のアンテナ10と同様の特性を有するため、これと同様の効果を得ることができ、しかも、地板Gを確保することができない場所にも設置することができる。
However, the first radiating element portion 32 and the second radiating element portion 33 are arranged at positions symmetrical with respect to an axis passing through the power feeding portion 31 (a position corresponding to the surface of the ground plane G in the first embodiment). .
<Effect>
According to the antenna 30 configured as described above, since the antenna 30 has the same characteristics as the antenna 10 of the first embodiment, the same effect can be obtained and the ground plane G cannot be secured. Can also be installed.

<変形例>
本実施形態では、放射素子部32,33を金属製の線材によって構成したが、図9(a)に示すように、誘電体基板P上のパターンによって構成してもよい。
<Modification>
In the present embodiment, the radiating element portions 32 and 33 are configured by metal wires, but may be configured by a pattern on the dielectric substrate P as shown in FIG.

本実施形態では、放射素子部32,33を構成する放射素子が二つである場合について説明したが、図9(b)に示すアンテナ30aのように、放射素子部32,33を構成する放射素子が三つ以上存在してもよい。   In the present embodiment, the case where there are two radiating elements constituting the radiating element portions 32 and 33 has been described. However, as in the antenna 30a illustrated in FIG. 9B, the radiating elements constituting the radiating element portions 32 and 33 are provided. There may be more than two elements.

また、放射素子部32,33を、図10(a)〜(d)に示すアンテナ30b〜30eのように、第2実施形態のアンテナ20,20a,20b,20cの放射素子部22と同様に構成してもよい。   Further, the radiating element portions 32 and 33 are similar to the radiating element portions 22 of the antennas 20, 20a, 20b, and 20c of the second embodiment, as in the antennas 30b to 30e shown in FIGS. It may be configured.

更に、これらアンテナ30b〜30eを、放射素子部32,33を、図9(a)に示した場合と同様に、誘電体基板P上のパターンによって構成してもよい。   Further, the antennas 30b to 30e may be configured by the pattern on the dielectric substrate P in the same manner as the radiation element portions 32 and 33 shown in FIG.

10,10a,20,20a〜20c,30,30a〜30e…多周波共用アンテナ 11,21,31…給電部 12,22,32,33…放射素子部 121,122,221,222,321,322,331,332…個別部位 121a,122a,221a,222a…接続部 121b,122b,221b,222b…放射部 123,223,323,333…共用部位 224…リアクタンス素子 G…地板 P…誘電体基板   10, 10 a, 20, 20 a to 20 c, 30, 30 a to 30 e... Multi-frequency shared antenna 11, 21, 31, feeding unit 12, 22, 32, 33, radiating element unit 121, 122, 221, 222, 321, 322 , 331, 332... Individual parts 121 a, 122 a, 221 a, 222 a... Connection part 121 b, 122 b, 221 b, 222 b ... radiation part 123, 223, 323, 333 ... common part 224 ... reactance element G ... ground plane P ... dielectric substrate

Claims (6)

一端が開放され他端が同一の給電点に接続されると共に、給電端から開放端に至る素子長がそれぞれ異なるN(Nは2以上の整数)本の放射素子からなる放射素子部を備え、
隣接して配置された任意の放射素子対は、前記給電端側に両放射素子によって共用される共用部位、及び前記開放端側に該共用部位以外の個別部位を有し、
前記放射素子対を構成する二つの放射素子は、異なる二つの波長λα,λγの信号を放射するように一方の素子長がλα/4、他方の素子長がλγ/4に設定され、且つ、前記共用部位を除いた前記個別部位の合計素子長がλβ/2(但し、λα>λβ>λγ)となるように前記共用部位及び前記個別部位の長さが設定されていることを特徴とする多周波共用アンテナ。
One end is opened and the other end is connected to the same feeding point, and the radiating element unit is composed of N (N is an integer of 2 or more) radiating elements having different element lengths from the feeding end to the opening end.
Arbitrary radiating element pairs arranged adjacent to each other have a shared part shared by both radiating elements on the feeding end side, and an individual part other than the shared part on the open end side,
The two radiating elements constituting the radiating element pair have one element length set to λα / 4 and the other element length set to λγ / 4 so as to radiate signals of two different wavelengths λα and λγ, and The lengths of the common part and the individual part are set so that the total element length of the individual parts excluding the common part is λβ / 2 (where λα>λβ> λγ). Multi-frequency antenna.
前記放射素子対を構成する二つの放射素子は、互いの前記個別部位がリアクタンス素子を介して接続されていることを特徴とする請求項1に記載の多周波共用アンテナ。   2. The multi-frequency antenna according to claim 1, wherein the two radiating elements constituting the radiating element pair are connected to each other through a reactance element. 前記放射素子対を構成する二つの放射素子は、両放射素子の相対的な位置関係によって、両放射素子間に生じるリアクタンス分が調整されていることを特徴とする請求項1又は請求項2に記載の多周波共用アンテナ。   3. The reactance component generated between the two radiating elements is adjusted according to the relative positional relationship between the two radiating elements in the two radiating elements constituting the radiating element pair. Multi-frequency antenna as described. 前記放射素子対を構成する二つの放射素子は、両放射素子の形状によって、両放射素子間に生じるリアクタンス分が調整されていることを特徴とする請求項1又は請求項2に記載の多周波共用アンテナ。   3. The multi-frequency according to claim 1, wherein the two radiating elements constituting the radiating element pair have a reactance component generated between the two radiating elements adjusted according to a shape of the both radiating elements. Shared antenna. 前記放射素子部は、誘電体基板上に形成されたパターンにより構成されていることを特徴とする請求項1乃至請求項4のいずれかに記載の多周波共用アンテナ。   The multi-frequency antenna according to any one of claims 1 to 4, wherein the radiating element section is configured by a pattern formed on a dielectric substrate. 前記放射素子部を二つ備え、該放射素子部が前記給電点を通る軸に対して軸対称に配置されていることを特徴とする請求項1乃至請求項5のいずれかに記載の多周波共用アンテナ。   6. The multi-frequency device according to claim 1, comprising two radiating element portions, the radiating element portions being arranged symmetrically with respect to an axis passing through the feeding point. Shared antenna.
JP2009148698A 2009-06-23 2009-06-23 Multi-frequency antenna Expired - Fee Related JP5257266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148698A JP5257266B2 (en) 2009-06-23 2009-06-23 Multi-frequency antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148698A JP5257266B2 (en) 2009-06-23 2009-06-23 Multi-frequency antenna

Publications (2)

Publication Number Publication Date
JP2011009836A true JP2011009836A (en) 2011-01-13
JP5257266B2 JP5257266B2 (en) 2013-08-07

Family

ID=43566026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148698A Expired - Fee Related JP5257266B2 (en) 2009-06-23 2009-06-23 Multi-frequency antenna

Country Status (1)

Country Link
JP (1) JP5257266B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253563A (en) * 2011-06-02 2012-12-20 Ntt Docomo Inc Multi-frequency shared antenna
JP2013046326A (en) * 2011-08-26 2013-03-04 Dainippon Printing Co Ltd Booster antenna for rfid tag, and rfid tag
JP2014011560A (en) * 2012-06-28 2014-01-20 Denso Corp Antenna device
JP2014053885A (en) * 2012-08-08 2014-03-20 Canon Inc Multi-band antenna
JP2014110561A (en) * 2012-12-03 2014-06-12 Hitachi Industrial Equipment Systems Co Ltd Planar antenna
JP2015185853A (en) * 2014-03-20 2015-10-22 株式会社日立国際八木ソリューションズ Multifrequency monopole antenna

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282347U (en) * 1975-12-16 1977-06-20
JPS5496557U (en) * 1977-12-21 1979-07-07
JPS63174412A (en) * 1987-01-14 1988-07-18 Matsushita Electric Works Ltd Phase difference feed type antenna
JPH06291530A (en) * 1993-04-02 1994-10-18 Nippon Sheet Glass Co Ltd Frequency switching type glass antenna
JPH1168453A (en) * 1997-08-18 1999-03-09 Uniden Corp Composite antenna
JP2005191792A (en) * 2003-12-25 2005-07-14 Matsushita Electric Ind Co Ltd Antenna system and radio communication apparatus using the same
JP2007300398A (en) * 2006-04-28 2007-11-15 Ntt Docomo Inc Multi-band antenna and multi-band multi-antenna
JP2008160314A (en) * 2006-12-21 2008-07-10 Fujitsu Ltd Antenna unit and radio communication equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282347U (en) * 1975-12-16 1977-06-20
JPS5496557U (en) * 1977-12-21 1979-07-07
JPS63174412A (en) * 1987-01-14 1988-07-18 Matsushita Electric Works Ltd Phase difference feed type antenna
JPH06291530A (en) * 1993-04-02 1994-10-18 Nippon Sheet Glass Co Ltd Frequency switching type glass antenna
JPH1168453A (en) * 1997-08-18 1999-03-09 Uniden Corp Composite antenna
JP2005191792A (en) * 2003-12-25 2005-07-14 Matsushita Electric Ind Co Ltd Antenna system and radio communication apparatus using the same
JP2007300398A (en) * 2006-04-28 2007-11-15 Ntt Docomo Inc Multi-band antenna and multi-band multi-antenna
JP2008160314A (en) * 2006-12-21 2008-07-10 Fujitsu Ltd Antenna unit and radio communication equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253563A (en) * 2011-06-02 2012-12-20 Ntt Docomo Inc Multi-frequency shared antenna
JP2013046326A (en) * 2011-08-26 2013-03-04 Dainippon Printing Co Ltd Booster antenna for rfid tag, and rfid tag
JP2014011560A (en) * 2012-06-28 2014-01-20 Denso Corp Antenna device
JP2014053885A (en) * 2012-08-08 2014-03-20 Canon Inc Multi-band antenna
JP2014110561A (en) * 2012-12-03 2014-06-12 Hitachi Industrial Equipment Systems Co Ltd Planar antenna
JP2015185853A (en) * 2014-03-20 2015-10-22 株式会社日立国際八木ソリューションズ Multifrequency monopole antenna

Also Published As

Publication number Publication date
JP5257266B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
KR100797172B1 (en) Loop-antenna having a matching circuit on it
JP6796429B2 (en) Antenna system and antenna module that reduces interference between radiation patterns
KR101797198B1 (en) Multi­resonance antenna, antenna module and radio device
JP5257266B2 (en) Multi-frequency antenna
EP1158602A1 (en) Two-frequency antenna, multiple-frequency antenna, two- or multiple-frequency antenna array
JP6395984B2 (en) Array antenna device
KR20100084615A (en) Antenna with active elements
US10944186B2 (en) Antenna system and antenna module with reduced interference between radiating patterns
US9362624B2 (en) Compact antenna with dual tuning mechanism
JPWO2015182677A1 (en) Multi-antenna and radio apparatus including the same
US10128552B2 (en) Structure and electronic circuit
KR20150110291A (en) Multiband hybrid antenna
JP6478510B2 (en) antenna
JP2014053885A (en) Multi-band antenna
US7432870B2 (en) Planar antenna
JP3114836B2 (en) Printed dipole antenna
US20140055319A1 (en) Mimo antenna with no phase change
KR101939948B1 (en) Compact jerusalem cross patch antenna with improved circular polarization characteristics
KR101040084B1 (en) Frequency selective surface unit cell and device for suppressing surface wave
JP5853883B2 (en) Antenna device
JP2003168916A (en) Antenna assembly
WO2018163695A1 (en) Multiband antenna and wireless communication device
Majeed et al. MIMO antenna array using cylindrical dielectric resonator for wide band communications applications
KR20100094190A (en) Multi resonant broadband antenna
KR101727859B1 (en) Multi-band antenna for energy harvesting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5257266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees