JP2011009516A - Method of manufacturing electronic component, and electronic component - Google Patents

Method of manufacturing electronic component, and electronic component Download PDF

Info

Publication number
JP2011009516A
JP2011009516A JP2009152268A JP2009152268A JP2011009516A JP 2011009516 A JP2011009516 A JP 2011009516A JP 2009152268 A JP2009152268 A JP 2009152268A JP 2009152268 A JP2009152268 A JP 2009152268A JP 2011009516 A JP2011009516 A JP 2011009516A
Authority
JP
Japan
Prior art keywords
thermosetting
resin layer
electronic component
resin material
sealing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009152268A
Other languages
Japanese (ja)
Inventor
Hiroaki Hasegawa
浩昭 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009152268A priority Critical patent/JP2011009516A/en
Publication of JP2011009516A publication Critical patent/JP2011009516A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an electronic component in which a sealing part can be securely sealed when lead members connected to a body extend to the outside of a housing through the sealing part, and to provide the electronic component.SOLUTION: In the method of manufacturing a multilayer electrolytic capacitor 1, the sealing part 6 of the housing 2 has a thermosetting resin material 15 to be thermally set injected between lead members 40, 50 and an inside resin layer of the housing 2. At this time, the thermosetting resin material 15 to be thermally set enters the gap between lead members 40, 50 and the housing 2, so even when the lead members 40, 50 connected to a laminate 3 extend to the outside of the housing 2 through the sealing part 6, the sealing part 6 can be securely sealed.

Description

本発明は、電子部品の製造方法及び電子部品に関する。   The present invention relates to an electronic component manufacturing method and an electronic component.

有機電解コンデンサ、リチウムイオン二次電池(LIB)、電気二重層キャパシタ(EDLC)等の電子部品においては、素体の収容に、いわゆるラミネート外装体が広く用いられている(例えば、特許文献1,2参照)。ラミネート外装体とは、内側樹脂層、内側樹脂層の外側に形成された金属層、及び金属層の外側に形成された外側樹脂層を有し、封止部において内側樹脂層同士を向かい合わせて溶着することができる外装体である。   In electronic parts such as an organic electrolytic capacitor, a lithium ion secondary battery (LIB), and an electric double layer capacitor (EDLC), a so-called laminate outer package is widely used for housing an element body (for example, Patent Document 1, 2). The laminate exterior body has an inner resin layer, a metal layer formed outside the inner resin layer, and an outer resin layer formed outside the metal layer, and the inner resin layers face each other at the sealing portion. It is the exterior body which can be welded.

特開2008−251464号公報JP 2008-251464 A 特開2000−77044号公報JP 2000-77044 A

しかしながら、素体に接続されたリード部材を、封止部を介して外装体の外部に延在させると、リード部材に邪魔されて、内側樹脂層同士を確実に溶着することが困難となり、素体が電解液等の液体を含む場合には、液漏れを起こすおそれがある。   However, if the lead member connected to the element body is extended to the outside of the exterior body through the sealing portion, it is obstructed by the lead member and it becomes difficult to reliably weld the inner resin layers to each other. If the body contains a liquid such as an electrolyte, there is a risk of liquid leakage.

本発明は、素体に接続されたリード部材が封止部を介して外装体の外部に延在する場合に、その封止部を確実に封止することができる電子部品の製造方法及び電子部品を提供することを課題とする。   The present invention provides a method of manufacturing an electronic component and an electronic device capable of reliably sealing a sealing portion when a lead member connected to the element body extends outside the exterior body via the sealing portion. It is an object to provide parts.

上記課題を解決するため、本発明に係る電子部品の製造方法は、内側樹脂層、内側樹脂層の外側に形成された金属層、及び金属層の外側に形成された外側樹脂層を有し、封止部において内側樹脂層同士を向かい合わせて溶着することができる外装体と、リード部材が接続された素体と、を準備する準備工程と、準備工程の後に、素体から封止部を介して外装体の外部にリード部材が延在するように、外装体内に素体を収容する収容工程と、収容工程の後に、封止部において内側樹脂層同士を向かい合わせて溶着する溶着工程と、収容工程の後且つ溶着工程の前に、又は溶着工程の後に、少なくとも封止部においてリード部材と内側樹脂層との間に、熱硬化前の熱硬化性樹脂材を配置する配置工程と、を含むことを特徴とする。   In order to solve the above problems, a method of manufacturing an electronic component according to the present invention includes an inner resin layer, a metal layer formed outside the inner resin layer, and an outer resin layer formed outside the metal layer, A preparatory step of preparing an exterior body that can be welded with the inner resin layers facing each other in the sealing portion, and an element body to which the lead member is connected, and after the preparation step, the sealing portion is removed from the element body A housing step of housing the element body in the exterior body so that the lead member extends outside the exterior body, and a welding step of welding the inner resin layers facing each other in the sealing portion after the housing step, An arrangement step of disposing a thermosetting resin material before thermosetting between the lead member and the inner resin layer at least in the sealing portion after the housing step and before the welding step or after the welding step; It is characterized by including.

この電子部品の製造方法では、外装体の封止部においてリード部材と内側樹脂層との間に、熱硬化前の熱硬化性樹脂材を配置する。このとき、リード部材と内側樹脂層との間の隙間に熱硬化前の熱硬化性樹脂材が入り込むため、素体に接続されたリード部材が封止部を介して外装体の外部に延在する場合に、その封止部を確実に封止することができる。   In this method of manufacturing an electronic component, a thermosetting resin material before thermosetting is disposed between the lead member and the inner resin layer in the sealing portion of the exterior body. At this time, since the thermosetting resin material before thermosetting enters the gap between the lead member and the inner resin layer, the lead member connected to the element body extends to the outside of the exterior body through the sealing portion. In that case, the sealing portion can be reliably sealed.

ここで、収容工程の後且つ溶着工程の前に配置工程を実施する場合には、内側樹脂層の溶融温度及び熱硬化性樹脂材の熱硬化温度のうち高い方の温度以上の温度で溶着工程を実施することが好ましい。この場合、内側樹脂層の溶着と熱硬化性樹脂材の熱硬化とを同じ工程で効率良く行うことができる。   Here, when the placement step is performed after the housing step and before the welding step, the welding step is performed at a temperature equal to or higher than the higher one of the melting temperature of the inner resin layer and the thermosetting temperature of the thermosetting resin material. It is preferable to implement. In this case, the welding of the inner resin layer and the thermosetting of the thermosetting resin material can be efficiently performed in the same process.

また、素体が液体を含む場合には、熱硬化温度が液体の沸点よりも低い熱硬化性樹脂材を使用することが好ましい。この場合、熱硬化性樹脂材を熱硬化させるときに、液体が気化するのを防止することができる。   When the element body contains a liquid, it is preferable to use a thermosetting resin material having a thermosetting temperature lower than the boiling point of the liquid. In this case, it is possible to prevent the liquid from being vaporized when the thermosetting resin material is thermoset.

また、熱硬化前の粘度が100mPa・s以下である熱硬化性樹脂材を使用することが好ましい。この場合、リード部材と内側樹脂層との間の隙間に熱硬化前の熱硬化性樹脂材が入り込み易くなる。   Moreover, it is preferable to use the thermosetting resin material whose viscosity before thermosetting is 100 mPa * s or less. In this case, the thermosetting resin material before thermosetting can easily enter the gap between the lead member and the inner resin layer.

本発明に係る電子部品は、内側樹脂層、内側樹脂層の外側に形成された金属層、及び金属層の外側に形成された外側樹脂層を有し、封止部において内側樹脂層同士が向かい合わされて溶着された外装体と、外装体内に収容された素体と、素体に接続され、素体から封止部を介して外装体の外部に延在するリード部材と、を備え、少なくとも封止部においてリード部材と内側樹脂層との間には、熱硬化後の熱硬化性樹脂材が配置されていることを特徴とする。   The electronic component according to the present invention includes an inner resin layer, a metal layer formed outside the inner resin layer, and an outer resin layer formed outside the metal layer, and the inner resin layers face each other in the sealing portion. An exterior body that has been welded, an element body accommodated in the exterior body, and a lead member connected to the element body and extending from the element body to the outside of the exterior body through the sealing portion, A thermosetting resin material after thermosetting is disposed between the lead member and the inner resin layer in the sealing portion.

この電子部品では、封止部においてリード部材と内側樹脂層との間に熱硬化後の熱硬化性樹脂材が配置されているので、その封止部を確実に封止することができる。   In this electronic component, since the thermosetting resin material after thermosetting is disposed between the lead member and the inner resin layer in the sealing portion, the sealing portion can be reliably sealed.

本発明によれば、素体に接続されたリード部材が封止部を介して外装体の外部に延在する場合に、その封止部を確実に封止することができる。   According to the present invention, when the lead member connected to the element body extends to the outside of the exterior body via the sealing portion, the sealing portion can be reliably sealed.

本発明に係る電子部品の製造方法の一実施形態によって製造された積層型電解コンデンサの斜視図である。It is a perspective view of the multilayer electrolytic capacitor manufactured by one Embodiment of the manufacturing method of the electronic component which concerns on this invention. 図1の積層型電解コンデンサの積層体の斜視図である。It is a perspective view of the laminated body of the multilayer electrolytic capacitor of FIG. 図1の積層型電解コンデンサの積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the multilayer electrolytic capacitor of FIG. 図2,3の積層体の陽極箔の一部断面図である。It is a partial cross section figure of the anode foil of the laminated body of FIG. 図1のV−V線に沿っての断面図である。It is sectional drawing along the VV line of FIG. 図1の積層型電解コンデンサの製造工程を説明するための斜視図である。It is a perspective view for demonstrating the manufacturing process of the multilayer electrolytic capacitor of FIG.

以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.

図1は、本発明に係る電子部品の製造方法の一実施形態によって製造された積層型電解コンデンサの斜視図である。図1に示されるように、積層型電解コンデンサ(電子部品)1は、いわゆるラミネート外装体である外装体2と、外装体2内に収容された略直方体形状の積層体(素体)3と、を備えている。外装体2は、略直方体箱形状の本体部4、及び本体部4の開口部4aを覆う略長方形形状の蓋部5を有している。蓋部5は、本体部4の開口部4aに一体的に形成されたフランジ部4bに液密に接合されている。外装体2においては、本体部4のフランジ部4bと蓋部5とが当接する部分が封止部6となっている。   FIG. 1 is a perspective view of a multilayer electrolytic capacitor manufactured by an embodiment of a method for manufacturing an electronic component according to the present invention. As shown in FIG. 1, a multilayer electrolytic capacitor (electronic component) 1 includes an exterior body 2 that is a so-called laminate exterior body, and a substantially rectangular parallelepiped multilayer body (element body) 3 housed in the exterior body 2. It is equipped with. The exterior body 2 includes a substantially rectangular parallelepiped box-shaped main body 4 and a substantially rectangular lid 5 that covers the opening 4 a of the main body 4. The lid part 5 is liquid-tightly joined to a flange part 4 b formed integrally with the opening part 4 a of the main body part 4. In the exterior body 2, a portion where the flange portion 4 b of the main body portion 4 and the lid portion 5 abut is a sealing portion 6.

更に、積層型電解コンデンサ1は、積層体3に接続されたリード部材40,50を備えている。各リード部材40,50は、積層体3から封止部6を介して外装体2の外部に延在している。各リード部材40,50は、積層体3に対して同一の側に位置しており、リード部材40とリード部材50とは、それらが延在する方向と略直交する方向に沿って並設されている。   Furthermore, the multilayer electrolytic capacitor 1 includes lead members 40 and 50 connected to the multilayer body 3. Each lead member 40, 50 extends from the laminate 3 to the outside of the exterior body 2 via the sealing portion 6. Each lead member 40, 50 is located on the same side with respect to the laminate 3, and the lead member 40 and the lead member 50 are juxtaposed along a direction substantially perpendicular to the direction in which they extend. ing.

図2は、図1の積層型電解コンデンサの積層体の斜視図であり、図3は、図1の積層型電解コンデンサの積層体の分解斜視図である。図2,3に示されるように、積層体3は、複数の陽極箔10と複数の陰極箔20とがセパレータ30を介して交互に積層されることにより構成される。   2 is a perspective view of the multilayer body of the multilayer electrolytic capacitor of FIG. 1, and FIG. 3 is an exploded perspective view of the multilayer body of the multilayer electrolytic capacitor of FIG. As shown in FIGS. 2 and 3, the laminate 3 is configured by alternately laminating a plurality of anode foils 10 and a plurality of cathode foils 20 with separators 30 interposed therebetween.

陽極箔10は、箔状の弁作用金属からなる。ここでは、陽極箔10としてアルミニウム箔(例えば、厚さ50〜150μm)が用いられている。陽極箔10は、図4に示されるように、エッチング処理により形成されたエッチング層11、及びエッチング層11上に形成された酸化皮膜層12を有している。陰極箔20は、金属プレーン箔にエッチング層が形成された金属エッチング箔からなる。ここでは、陰極箔20としてアルミニウムエッチング箔(例えば、厚さ10〜100μm)が用いられている。セパレータ30は、絶縁紙や繊維不織布等からなり、略長方形形状を呈している。セパレータ30は、陽極箔10と陰極箔20とを電気的に絶縁すると共に、電解液を保持する機能を有している。   The anode foil 10 is made of a foil-like valve metal. Here, an aluminum foil (for example, a thickness of 50 to 150 μm) is used as the anode foil 10. As shown in FIG. 4, the anode foil 10 includes an etching layer 11 formed by an etching process, and an oxide film layer 12 formed on the etching layer 11. The cathode foil 20 is made of a metal etching foil in which an etching layer is formed on a metal plain foil. Here, an aluminum etching foil (for example, a thickness of 10 to 100 μm) is used as the cathode foil 20. The separator 30 is made of insulating paper, fiber nonwoven fabric, or the like, and has a substantially rectangular shape. The separator 30 has a function of electrically insulating the anode foil 10 and the cathode foil 20 and holding an electrolytic solution.

陽極箔10は、略長方形形状の主電極部13、及び主電極部13の一辺の一部に一体的に形成された略長方形形状の引出し部14を有している。陰極箔20は、略長方形形状の主電極部23、及び主電極部23の一辺の一部に一体的に形成された略長方形形状の引出し部24を有している。主電極部13,23は、積層体3の積層方向において、セパレータ30を介して対向している。引出し部14,24は、積層体3に対して同一の側に引き出されており、引出し部14と引出し部24とは、それらが引き出される方向と略直交する方向に沿って並設されている。   The anode foil 10 includes a substantially rectangular main electrode portion 13 and a substantially rectangular lead portion 14 formed integrally with a part of one side of the main electrode portion 13. The cathode foil 20 has a substantially rectangular main electrode portion 23 and a substantially rectangular lead portion 24 formed integrally with a part of one side of the main electrode portion 23. The main electrode portions 13 and 23 are opposed to each other via the separator 30 in the stacking direction of the stacked body 3. The lead-out portions 14 and 24 are drawn to the same side with respect to the laminate 3, and the lead-out portion 14 and the lead-out portion 24 are juxtaposed along a direction substantially orthogonal to the direction in which they are drawn out. .

リード部材40,50は、金属プレーン箔からなる。ここでは、リード部材40,50してアルミニウム箔が用いられている。リード部材40は、各陽極箔10に接続されており、リード部材50は、各陰極箔20に接続されている。   The lead members 40 and 50 are made of a metal plain foil. Here, aluminum foil is used as the lead members 40 and 50. The lead member 40 is connected to each anode foil 10, and the lead member 50 is connected to each cathode foil 20.

リード部材40は、各陽極箔10の引出し部14に固定された複数の接続部41、隣り合う接続部41同士を連結する複数の連結部42、及び封止部6を介して外装体2の外部に延在する延在部43を有している。各接続部41は、各陽極箔10の引出し部14の表面に当接した状態で、かしめ接合や超音波溶接等によって引出し部14の表面に固定されている。これにより、引出し部14と接続部41とが電気的且つ物理的に接続されることになる。   The lead member 40 includes a plurality of connection portions 41 fixed to the lead-out portion 14 of each anode foil 10, a plurality of connection portions 42 that connect adjacent connection portions 41 to each other, and a sealing portion 6. It has the extension part 43 extended outside. Each connecting portion 41 is fixed to the surface of the drawing portion 14 by caulking joining, ultrasonic welding, or the like in a state where it is in contact with the surface of the drawing portion 14 of each anode foil 10. Thereby, the drawer | drawing-out part 14 and the connection part 41 are electrically and physically connected.

リード部材50は、各陰極箔20の引出し部24に固定された複数の接続部51、隣り合う接続部51同士を連結する複数の連結部52、及び封止部6を介して外装体2の外部に延在する延在部53を有している。各接続部51は、各陰極箔20の引出し部24の表面に当接した状態で、かしめ接合や超音波溶接等によって引出し部24の表面に固定されている。これにより、引出し部24と接続部51とが電気的且つ物理的に接続されることになる。   The lead member 50 includes a plurality of connection portions 51 fixed to the drawing portion 24 of each cathode foil 20, a plurality of connection portions 52 that connect adjacent connection portions 51 to each other, and a sealing portion 6. It has the extension part 53 extended outside. Each connection portion 51 is fixed to the surface of the drawing portion 24 by caulking bonding, ultrasonic welding, or the like in a state where the connection portion 51 is in contact with the surface of the drawing portion 24 of each cathode foil 20. Thereby, the drawer | drawing-out part 24 and the connection part 51 are electrically and physically connected.

リード部材40は、隣り合う接続部41同士の間の2箇所(ここでは、接続部41と連結部42との境界)で折り曲げられたつづら折り形状を呈している。換言すれば、リード部材40は、各陽極箔10の引出し部14を接続部41と連結部42とで挟むように折り畳まれている。同様に、リード部材50は、隣り合う接続部51同士の間の2箇所(ここでは、接続部51と連結部52との境界)で折り曲げられたつづら折り形状を呈している。換言すれば、リード部材50は、各陰極箔20の引出し部24を接続部51と連結部52とで挟むように折り畳まれている。   The lead member 40 has a zigzag folded shape that is bent at two locations between adjacent connection portions 41 (here, the boundary between the connection portion 41 and the coupling portion 42). In other words, the lead member 40 is folded so that the drawn portion 14 of each anode foil 10 is sandwiched between the connecting portion 41 and the connecting portion 42. Similarly, the lead member 50 has a zigzag folded shape that is bent at two locations between adjacent connecting portions 51 (here, the boundary between the connecting portion 51 and the connecting portion 52). In other words, the lead member 50 is folded so that the drawn portion 24 of each cathode foil 20 is sandwiched between the connecting portion 51 and the connecting portion 52.

図5は、図1のV−V線に沿っての断面図である。図5に示されるように、本体部4及び蓋部5のそれぞれは、内側樹脂層7、内側樹脂層7の外側に形成された金属層8、及び金属層8の外側に形成された外側樹脂層9を有している。内側樹脂層7は、例えば、ポリプロピレンからなり、接着層としての機能を有している。金属層8は、例えば、アルミニウム箔からなり、芯材としての機能を有している。外側樹脂層9は、例えば、ナイロン、PET等、機械的強度に優れた材料からなり、保護層としての機能を有している。   FIG. 5 is a cross-sectional view taken along line VV in FIG. As shown in FIG. 5, each of the main body portion 4 and the lid portion 5 includes an inner resin layer 7, a metal layer 8 formed outside the inner resin layer 7, and an outer resin formed outside the metal layer 8. It has a layer 9. The inner resin layer 7 is made of polypropylene, for example, and has a function as an adhesive layer. The metal layer 8 is made of, for example, an aluminum foil and has a function as a core material. The outer resin layer 9 is made of a material having excellent mechanical strength, such as nylon or PET, and has a function as a protective layer.

封止部6においては、本体部4の内側樹脂層7と蓋部5の内側樹脂層7とが向かい合わされ、ヒートシール(熱融着)によって本体部4の内側樹脂層7と蓋部5の内側樹脂層7とが溶着されている。更に、少なくともリード部材40の延在部43と内側樹脂層7との間、及びリード部材50の延在部53と内側樹脂層7との隙間には、熱硬化された熱硬化性樹脂材15が入り込んでいる。熱硬化性樹脂材15は、エポキシ樹脂、アクリル樹脂又はシリコーン等からなる。   In the sealing portion 6, the inner resin layer 7 of the main body portion 4 and the inner resin layer 7 of the lid portion 5 face each other, and the inner resin layer 7 of the main body portion 4 and the lid portion 5 are bonded by heat sealing (thermal fusion). The inner resin layer 7 is welded. Further, at least in the gap between the extended portion 43 of the lead member 40 and the inner resin layer 7 and in the gap between the extended portion 53 of the lead member 50 and the inner resin layer 7, the thermosetting resin material 15 that has been thermoset. Has entered. The thermosetting resin material 15 is made of epoxy resin, acrylic resin, silicone, or the like.

次に、積層型電解コンデンサ1の製造方法について説明する。図6は、図1の積層型電解コンデンサの製造工程を説明するための斜視図である。   Next, a method for manufacturing the multilayer electrolytic capacitor 1 will be described. FIG. 6 is a perspective view for explaining a manufacturing process of the multilayer electrolytic capacitor of FIG.

まず、陽極箔母材を型で打ち抜くことにより複数の陽極箔10を形成し、陰極箔母材を型で打ち抜くことにより複数の陰極箔20を形成する。陽極箔母材及び陰極箔母材は、大判のアルミニウム箔からなる。陽極箔母材の両面には、予めエッチング及び陽極酸化処理(化成処理)によりエッチング層及び酸化皮膜層が形成されている。続いて、かしめ接合や超音波溶接等によって、陽極箔10とリード部材40とを接続すると共に、陰極箔20とリード部材50とを接続しつつ、主電極部13,23が対向するように陽極箔10と陰極箔20とをセパレータ30を介して交互に積層していく。   First, a plurality of anode foils 10 are formed by punching the anode foil base material with a mold, and a plurality of cathode foils 20 are formed by punching the cathode foil base material with a mold. The anode foil base material and the cathode foil base material are made of large-sized aluminum foil. On both surfaces of the anode foil base material, an etching layer and an oxide film layer are formed in advance by etching and anodizing treatment (chemical conversion treatment). Subsequently, the anode foil 10 and the lead member 40 are connected by caulking joining, ultrasonic welding, or the like, and the anode electrode 10 and the lead member 50 are connected to each other so that the main electrode portions 13 and 23 face each other. The foil 10 and the cathode foil 20 are alternately laminated via the separator 30.

このようにして、リード部材40,50が接続された積層体3を準備し、その一方で、外装体2を準備する。外装体2は、上述したように、封止部6において内側樹脂層7同士を向かい合わせて溶着することができるものである。   In this way, the laminate 3 to which the lead members 40 and 50 are connected is prepared, while the exterior body 2 is prepared. As described above, the outer package 2 can be welded with the inner resin layers 7 facing each other in the sealing portion 6.

続いて、積層体3から封止部6を介して外装体2の外部にリード部材40,50が延在するように、外装体2内に積層体3を収容する。具体的には、リード部材40,50がフランジ部4bの一辺を横切るように、開口部4aを介して本体部4内に積層体3を収め、開口部4aを覆うようにフランジ部4bに蓋部5を当接させる。   Subsequently, the laminate 3 is accommodated in the exterior body 2 such that the lead members 40 and 50 extend from the laminate 3 to the outside of the exterior body 2 through the sealing portion 6. Specifically, the laminated body 3 is accommodated in the main body 4 through the opening 4a so that the lead members 40 and 50 cross one side of the flange 4b, and the flange 4b is covered with the lid 4b so as to cover the opening 4a. The part 5 is brought into contact.

続いて、封止部6において、本体部4の内側樹脂層7と蓋部5の内側樹脂層7とが向かい合わされた状態で、ヒートシールによって本体部4の内側樹脂層7と蓋部5の内側樹脂層7とを溶着する。ここで、電解液の注入は、矩形環状の封止部6の3辺を封止した後、残る1辺から行うが、予め積層体3に電解液を含浸させおいても良い。なお、リード部材40,50と内側樹脂層7との密着性を向上させるために、リード部材40,50に対し、陽極箔10及び陰極箔20への接続前にプラズマ洗浄処理を施しておくことが好ましい。   Subsequently, in the sealing portion 6, the inner resin layer 7 of the main body portion 4 and the inner resin layer 7 of the lid portion 5 face each other. The inner resin layer 7 is welded. Here, the injection of the electrolytic solution is performed from the remaining one side after the three sides of the rectangular annular sealing portion 6 are sealed, but the laminate 3 may be impregnated with the electrolytic solution in advance. In order to improve the adhesion between the lead members 40 and 50 and the inner resin layer 7, the lead members 40 and 50 are subjected to plasma cleaning treatment before connection to the anode foil 10 and the cathode foil 20. Is preferred.

続いて、エージング処理を行う。ここでは、リード部材40を直流電源の陽極に接続すると共に、リード部材50を直流電源の陰極に接続して、陽極箔10と陰極箔20との間に直流電圧を印加する。これにより、陽極箔10の酸化皮膜層12における破損した部分の修復と、陽極箔10の打抜きによる切断面に対する酸化皮膜層の形成が行なわれることになる。   Subsequently, an aging process is performed. Here, the lead member 40 is connected to the anode of the DC power source, and the lead member 50 is connected to the cathode of the DC power source, and a DC voltage is applied between the anode foil 10 and the cathode foil 20. As a result, the damaged portion of the oxide film layer 12 of the anode foil 10 is repaired, and the oxide film layer is formed on the cut surface by punching the anode foil 10.

続いて、図6に示されるように、封止部6においてリード部材40,50が通る部分に、熱硬化前の熱硬化性樹脂材15を注入する。これにより、リード部材40,50と内側樹脂層7との隙間に、熱硬化前の熱硬化性樹脂材15が入り込む。そして、乾燥炉内において、熱硬化性樹脂材15を硬化させ、積層型電解コンデンサ1を完成させる。なお、熱硬化性樹脂材15の熱硬化温度は、電解液の沸点よりも低い温度(例えば、100℃以下の温度)である。また、熱硬化前の熱硬化性樹脂材15の粘度は、100mPa・s以下である。また、熱硬化性樹脂材15の注入は、矩形環状の封止部6に沿って行っても良い。   Subsequently, as shown in FIG. 6, the thermosetting resin material 15 before thermosetting is injected into a portion where the lead members 40 and 50 pass in the sealing portion 6. Thereby, the thermosetting resin material 15 before thermosetting enters the gap between the lead members 40 and 50 and the inner resin layer 7. Then, in the drying furnace, the thermosetting resin material 15 is cured to complete the multilayer electrolytic capacitor 1. The thermosetting temperature of the thermosetting resin material 15 is a temperature lower than the boiling point of the electrolytic solution (for example, a temperature of 100 ° C. or lower). Moreover, the viscosity of the thermosetting resin material 15 before thermosetting is 100 mPa · s or less. The injection of the thermosetting resin material 15 may be performed along the rectangular annular sealing portion 6.

以上説明したように、積層型電解コンデンサ1の製造方法では、外装体2の封止部6においてリード部材40,50と内側樹脂層7との間に、熱硬化前の熱硬化性樹脂材15を注入する。このとき、リード部材40,50と内側樹脂層7との間の隙間に熱硬化前の熱硬化性樹脂材15が入り込むため、積層体3に接続されたリード部材40,50が封止部6を介して外装体2の外部に延在していても、その封止部6を確実に封止することができる。すなわち、積層型電解コンデンサ1では、封止部6においてリード部材40,50と内側樹脂層7との間に熱硬化後の熱硬化性樹脂材15が配置されているので、その封止部6が確実に封止されている。   As described above, in the method for manufacturing the multilayer electrolytic capacitor 1, the thermosetting resin material 15 before thermosetting is provided between the lead members 40 and 50 and the inner resin layer 7 in the sealing portion 6 of the outer package 2. Inject. At this time, since the thermosetting resin material 15 before thermosetting enters the gap between the lead members 40 and 50 and the inner resin layer 7, the lead members 40 and 50 connected to the laminate 3 are sealed portions 6. Even if it extends to the outside of the exterior body 2 via the seal, the sealing portion 6 can be reliably sealed. That is, in the multilayer electrolytic capacitor 1, since the thermosetting resin material 15 after thermosetting is disposed between the lead members 40, 50 and the inner resin layer 7 in the sealing portion 6, the sealing portion 6 Is securely sealed.

また、熱硬化温度が電解液の沸点よりも低い熱硬化性樹脂材15を使用するので、熱硬化性樹脂材15を熱硬化させるときに、電解液が気化するのを防止することができる。   Further, since the thermosetting resin material 15 having a thermosetting temperature lower than the boiling point of the electrolytic solution is used, it is possible to prevent the electrolytic solution from vaporizing when the thermosetting resin material 15 is thermoset.

また、熱硬化前の粘度が100mPa・s以下である熱硬化性樹脂材15を使用するので、リード部材40,50と内側樹脂層7との間の隙間に熱硬化前の熱硬化性樹脂材15が入り込み易くなる。   Further, since the thermosetting resin material 15 having a viscosity before thermosetting of 100 mPa · s or less is used, the thermosetting resin material before thermosetting is provided in the gap between the lead members 40 and 50 and the inner resin layer 7. 15 becomes easy to enter.

本発明は、上述した実施形態に限定されるものではない。   The present invention is not limited to the embodiment described above.

例えば、外装体2内に積層体3を収容した後、本体部4の内側樹脂層7と蓋部5の内側樹脂層7とを溶着する前に、少なくとも封止部6においてリード部材40,50が通る部分に、熱硬化前の熱硬化性樹脂材15を注入しても良い。そして、この場合には、内側樹脂層7の溶融温度及び熱硬化性樹脂材15の熱硬化温度のうち高い方の温度以上の温度で、本体部4の内側樹脂層7と蓋部5の内側樹脂層7とを溶着することが好ましい。これによれば、内側樹脂層7の溶着と熱硬化性樹脂材15の熱硬化とを同じ工程で効率良く行うことができる。   For example, after housing the laminate 3 in the exterior body 2 and before welding the inner resin layer 7 of the main body 4 and the inner resin layer 7 of the lid 5, at least the lead members 40 and 50 in the sealing portion 6. You may inject | pour the thermosetting resin material 15 before thermosetting into the part which passes. In this case, the inner resin layer 7 of the main body 4 and the inner side of the lid 5 at a temperature equal to or higher than the higher one of the melting temperature of the inner resin layer 7 and the thermosetting temperature of the thermosetting resin material 15. It is preferable to weld the resin layer 7. According to this, the welding of the inner resin layer 7 and the thermosetting of the thermosetting resin material 15 can be efficiently performed in the same process.

また、本発明は、素体の収容に、いわゆるラミネート外装体が用いられた電子部品(例えば、リチウムイオン二次電池、電気二重層キャパシタ等)であれば、適用可能である。ただし、電解コンデンサは、使用温度及び使用圧力が比較的高いため、電解コンデンサにおいては、電解液の液漏れを防止する観点から、本発明は極めて有効である。
[実施例]
Further, the present invention is applicable to any electronic component (for example, a lithium ion secondary battery, an electric double layer capacitor, etc.) in which a so-called laminate outer package is used for housing the element body. However, since the use temperature and the use pressure of the electrolytic capacitor are relatively high, the present invention is extremely effective for the electrolytic capacitor from the viewpoint of preventing leakage of the electrolytic solution.
[Example]

最後に、実施例及び比較例について説明する。   Finally, examples and comparative examples will be described.

(実施例1)次の手順で積層型電解コンデンサを製造した。陽極箔として皮膜を有するアルミニウム化成箔を17mm×32mmに打ち抜き、陰極箔を同様のサイズに打ち抜いた後、リード部材を接続すると共に、5枚の陽極箔と6枚の陰極箔とを12枚のセパレータを介して交互に積層した。続いて、リード部材が接続された積層体を外装体内に収め、矩形環状の封止部の3辺を封止した。そして、残る封止部材の1辺を介して電解液を注液し、その封止部材の1辺を封止した。続いて、エージング処理を行った。更に、封止部においてリード部材が通る部分に、熱硬化前の熱硬化性樹脂材を注入し、熱硬化させて積層型電解コンデンサを完成させた。熱硬化樹脂材としては、熱硬化前の粘度が70mPa・sであるエポキシ樹脂を用いた。   Example 1 A multilayer electrolytic capacitor was produced by the following procedure. An aluminum conversion foil having a film as an anode foil was punched out to 17 mm × 32 mm, and the cathode foil was punched out to the same size. Then, lead members were connected, and 5 anode foils and 6 cathode foils were bonded to 12 sheets. It laminated | stacked alternately via the separator. Subsequently, the laminate to which the lead member was connected was housed in the exterior body, and the three sides of the rectangular annular sealing portion were sealed. And electrolyte solution was inject | poured through 1 side of the remaining sealing member, and 1 side of the sealing member was sealed. Subsequently, an aging process was performed. Furthermore, a thermosetting resin material before thermosetting was injected into a portion where the lead member passes in the sealing portion, and was thermoset to complete a multilayer electrolytic capacitor. As the thermosetting resin material, an epoxy resin having a viscosity before thermosetting of 70 mPa · s was used.

(実施例2)熱硬化樹脂材として、熱硬化前の粘度が45mPa・sであるアクリル樹脂を用い、実施例1と同様の手順で積層型電解コンデンサを製造した。   (Example 2) As the thermosetting resin material, an acrylic resin having a viscosity before thermosetting of 45 mPa · s was used to manufacture a multilayer electrolytic capacitor in the same procedure as in Example 1.

(実施例3)熱硬化樹脂材として、熱硬化前の粘度が90mPa・sであるシリコーン樹脂を用い、実施例1と同様の手順で積層型電解コンデンサを製造した。   (Example 3) A multilayer electrolytic capacitor was produced in the same procedure as in Example 1, using a silicone resin having a viscosity before thermosetting of 90 mPa · s as the thermosetting resin material.

(実施例4)熱硬化樹脂材として、熱硬化前の粘度が130mPa・sであるエポキシ樹脂を用い、実施例1と同様の手順で積層型電解コンデンサを製造した。   (Example 4) As the thermosetting resin material, an epoxy resin having a viscosity before thermosetting of 130 mPa · s was used to manufacture a multilayer electrolytic capacitor in the same procedure as in Example 1.

(実施例5)熱硬化樹脂材として、熱硬化前の粘度が200mPa・sであるアクリル樹脂を用い、実施例1と同様の手順で積層型電解コンデンサを製造した。   (Example 5) A multilayer electrolytic capacitor was produced in the same procedure as in Example 1, using an acrylic resin having a viscosity before thermosetting of 200 mPa · s as the thermosetting resin material.

(比較例1)熱硬化性樹脂材を注入せず、その他は実施例1と同様の手順で積層型電解コンデンサを製造した。   (Comparative Example 1) A multilayer electrolytic capacitor was manufactured in the same manner as in Example 1 except that no thermosetting resin material was injected.

以上の実施例1〜5及び比較例1の積層型電解コンデンサについて、105℃の温度で電圧印加試験を行い、500時間経過後の重量変化を計測することにより、液漏れの確認を行った。その結果は、実施例1:−3%、実施例2:−2%、実施例3:−6%、実施例4:−13%、実施例5:−22%、比較例1:−68%となった。   For the multilayer electrolytic capacitors of Examples 1 to 5 and Comparative Example 1 described above, a voltage application test was performed at a temperature of 105 ° C., and the change in weight after the lapse of 500 hours was measured, thereby confirming liquid leakage. The results are as follows: Example 1: -3%, Example 2: -2%, Example 3: -6%, Example 4: -13%, Example 5: -22%, Comparative Example 1: -68 %.

このように、熱硬化性樹脂材を注入したもの(実施例1〜5)は、熱硬化性樹脂材を注入しなかったもの(比較例1)に比べ、重量変化を小さく抑えることができた。特に、熱硬化前の粘度が100mPa・s以下である熱硬化性樹脂材を注入したもの(実施例1〜3)は、重量変化を6%以下に抑えることができた。これは、封止部においてリード部材が通る部分に形成された隙間に、熱硬化前の熱硬化性樹脂材が入り込み易くなるからである。   Thus, what inject | poured the thermosetting resin material (Examples 1-5) was able to suppress a weight change small compared with the thing (comparative example 1) which did not inject | pour a thermosetting resin material. . Especially the thing (Examples 1-3) which inject | poured the thermosetting resin material whose viscosity before thermosetting is 100 mPa * s or less was able to suppress a weight change to 6% or less. This is because the thermosetting resin material before thermosetting can easily enter the gap formed in the portion where the lead member passes in the sealing portion.

1…積層型電解コンデンサ(電子部品)、2…外装体、3…積層体(素体)、6…封止部、7…内側樹脂層、8…金属層、9…外側樹脂層、15…熱硬化性樹脂材、40,50…リード部材。   DESCRIPTION OF SYMBOLS 1 ... Multilayer type electrolytic capacitor (electronic component), 2 ... Exterior body, 3 ... Laminated body (element body), 6 ... Sealing part, 7 ... Inner resin layer, 8 ... Metal layer, 9 ... Outer resin layer, 15 ... Thermosetting resin material, 40, 50 ... lead member.

Claims (5)

内側樹脂層、前記内側樹脂層の外側に形成された金属層、及び前記金属層の外側に形成された外側樹脂層を有し、封止部において前記内側樹脂層同士を向かい合わせて溶着することができる外装体と、リード部材が接続された素体と、を準備する準備工程と、
前記準備工程の後に、前記素体から前記封止部を介して前記外装体の外部に前記リード部材が延在するように、前記外装体内に前記素体を収容する収容工程と、
前記収容工程の後に、前記封止部において前記内側樹脂層同士を向かい合わせて溶着する溶着工程と、
前記収容工程の後且つ前記溶着工程の前に、又は前記溶着工程の後に、少なくとも前記封止部において前記リード部材と前記内側樹脂層との間に、熱硬化前の熱硬化性樹脂材を配置する配置工程と、を含むことを特徴とする電子部品の製造方法。
It has an inner resin layer, a metal layer formed on the outer side of the inner resin layer, and an outer resin layer formed on the outer side of the metal layer. A preparatory process for preparing an exterior body that can be connected and an element body to which a lead member is connected;
An accommodating step of accommodating the element body in the exterior body such that the lead member extends from the element body to the outside of the exterior body through the sealing portion after the preparation step;
After the housing step, a welding step of welding the inner resin layers facing each other in the sealing portion;
A thermosetting resin material before thermosetting is disposed between the lead member and the inner resin layer at least in the sealing portion after the housing step and before the welding step or after the welding step. An electronic component manufacturing method comprising: an arranging step for performing electronic components.
前記収容工程の後且つ前記溶着工程の前に前記配置工程を実施する場合には、前記内側樹脂層の溶融温度及び前記熱硬化性樹脂材の熱硬化温度のうち高い方の温度以上の温度で前記溶着工程を実施することを特徴とする請求項1記載の電子部品の製造方法。   When the placement step is performed after the housing step and before the welding step, the melting temperature of the inner resin layer and the thermosetting temperature of the thermosetting resin material are higher than the higher temperature. The method of manufacturing an electronic component according to claim 1, wherein the welding step is performed. 前記素体が液体を含む場合には、熱硬化温度が前記液体の沸点よりも低い前記熱硬化性樹脂材を使用することを特徴とする請求項1又は2記載の電子部品の製造方法。   3. The method of manufacturing an electronic component according to claim 1, wherein, when the element body includes a liquid, the thermosetting resin material having a thermosetting temperature lower than a boiling point of the liquid is used. 熱硬化前の粘度が100mPa・s以下である前記熱硬化性樹脂材を使用することを特徴とする請求項1〜3のいずれか一項記載の電子部品の製造方法。   The method for producing an electronic component according to claim 1, wherein the thermosetting resin material having a viscosity before thermosetting of 100 mPa · s or less is used. 内側樹脂層、前記内側樹脂層の外側に形成された金属層、及び前記金属層の外側に形成された外側樹脂層を有し、封止部において前記内側樹脂層同士が向かい合わされて溶着された外装体と、
前記外装体内に収容された素体と、
前記素体に接続され、前記素体から前記封止部を介して前記外装体の外部に延在するリード部材と、を備え、
少なくとも前記封止部において前記リード部材と前記内側樹脂層との間には、熱硬化後の熱硬化性樹脂材が配置されていることを特徴とする電子部品。
It has an inner resin layer, a metal layer formed on the outer side of the inner resin layer, and an outer resin layer formed on the outer side of the metal layer. An exterior body,
An element body contained in the exterior body;
A lead member connected to the element body and extending from the element body to the outside of the exterior body via the sealing portion,
An electronic component, wherein a thermosetting resin material after thermosetting is disposed between the lead member and the inner resin layer at least in the sealing portion.
JP2009152268A 2009-06-26 2009-06-26 Method of manufacturing electronic component, and electronic component Withdrawn JP2011009516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009152268A JP2011009516A (en) 2009-06-26 2009-06-26 Method of manufacturing electronic component, and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152268A JP2011009516A (en) 2009-06-26 2009-06-26 Method of manufacturing electronic component, and electronic component

Publications (1)

Publication Number Publication Date
JP2011009516A true JP2011009516A (en) 2011-01-13

Family

ID=43565822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152268A Withdrawn JP2011009516A (en) 2009-06-26 2009-06-26 Method of manufacturing electronic component, and electronic component

Country Status (1)

Country Link
JP (1) JP2011009516A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203645A (en) * 2013-04-04 2014-10-27 協立化学産業株式会社 Liquid composition for tab lead sealing of battery and method of manufacturing battery
WO2017203731A1 (en) * 2016-05-26 2017-11-30 ヤマハ発動機株式会社 Power storage module
KR20190084888A (en) * 2018-01-09 2019-07-17 리나타 에이지 (리나타 에스에이) Cell and method for manufacturing such a cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203645A (en) * 2013-04-04 2014-10-27 協立化学産業株式会社 Liquid composition for tab lead sealing of battery and method of manufacturing battery
WO2017203731A1 (en) * 2016-05-26 2017-11-30 ヤマハ発動機株式会社 Power storage module
KR20190084888A (en) * 2018-01-09 2019-07-17 리나타 에이지 (리나타 에스에이) Cell and method for manufacturing such a cell
KR102192963B1 (en) * 2018-01-09 2020-12-21 리나타 에이지 (리나타 에스에이) Cell and method for manufacturing such a cell

Similar Documents

Publication Publication Date Title
JP6721053B2 (en) Power storage device and method of manufacturing power storage device
US10879573B2 (en) Energy storage apparatus and method of manufacturing energy storage apparatus
JP2011086623A (en) Secondary battery
WO2018016653A1 (en) Electrochemical device
WO2018123503A1 (en) Electricity storage module, and method for manufacturing electricity storage module
JP2011238412A (en) Secondary battery
EP2017862A1 (en) Electric double layer capacitor
JP2014235990A (en) All solid state battery and method for manufacturing all solid state battery
JP2014022224A (en) Electricity storage element
US9023510B2 (en) Electrochemical device
JP2011009516A (en) Method of manufacturing electronic component, and electronic component
JP2006164784A (en) Film-armored electric device
JP2014232765A (en) Power storage device
WO2018123502A1 (en) Power storage module and manufacturing method for power storage module
KR101051958B1 (en) Lead Tab Assembly for Secondary Battery Using Insert Injection and Secondary Battery Using the Same
KR101546002B1 (en) electrochemical energy storage device
JP2012119505A (en) Power storage device
JP2007273606A (en) Electronic component packaged with laminating film
JP5717193B2 (en) battery
JP2019009076A (en) Power storage device and manufacturing method of power storage device
JP2010177514A (en) Multilayer electrolytic capacitor and method for manufacturing the same
JP6402525B2 (en) Method for manufacturing electrode assembly
JP2018073508A (en) Power storage device and manufacturing method of power storage device
JP2016126898A (en) Power storage element
JP2010211944A (en) Power storage device and power storage module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904