JP2011009292A - Ultraviolet sensor and method of manufacturing the same - Google Patents

Ultraviolet sensor and method of manufacturing the same Download PDF

Info

Publication number
JP2011009292A
JP2011009292A JP2009148940A JP2009148940A JP2011009292A JP 2011009292 A JP2011009292 A JP 2011009292A JP 2009148940 A JP2009148940 A JP 2009148940A JP 2009148940 A JP2009148940 A JP 2009148940A JP 2011009292 A JP2011009292 A JP 2011009292A
Authority
JP
Japan
Prior art keywords
zinc oxide
ultraviolet sensor
film
ultraviolet
response speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009148940A
Other languages
Japanese (ja)
Inventor
Manabu Tamura
学 田村
Takashi Hatauchi
隆史 畑内
Satoshi Odajima
聡 小田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2009148940A priority Critical patent/JP2011009292A/en
Publication of JP2011009292A publication Critical patent/JP2011009292A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultraviolet sensor low in cost, stable in characteristic and high in response speed.SOLUTION: The ultraviolet sensor is of the type utilizing photoconductive effect of zinc oxide and is characterized in that the zinc oxide is additive-free zinc oxide and the half bandwidth of a diffraction peak in a (002) surface is not more than 0.5 degrees in an X-ray diffraction pattern of the zinc oxide. Thus, the low-cost and high-response-speed ultraviolet sensor can be achieved.

Description

本発明は、感応膜に紫外線が照射されることにより発生するキャリアを利用する紫外線センサに関する。   The present invention relates to an ultraviolet sensor using a carrier generated by irradiating a sensitive film with ultraviolet rays.

従来、酸化亜鉛を主成分として、焼結体により光感知部が構成された紫外線センサがある。例えば、特許文献1では、酸化亜鉛を主成分とした単結晶または多結晶であり、酸化亜鉛のa面を光感知部とした紫外線センサが開示されている。   2. Description of the Related Art Conventionally, there is an ultraviolet sensor in which zinc oxide is a main component and a light sensing unit is configured by a sintered body. For example, Patent Document 1 discloses an ultraviolet sensor that is a single crystal or polycrystal having zinc oxide as a main component and uses the a-plane of zinc oxide as a light sensing portion.

一方、酸化亜鉛薄膜を光感知部に利用した紫外線センサがある。例えば、特許文献2では、酸化亜鉛に不純物をドーピングした薄膜を用いた紫外線センサが開示されている。   On the other hand, there is an ultraviolet sensor using a zinc oxide thin film as a light sensing part. For example, Patent Document 2 discloses an ultraviolet sensor using a thin film in which zinc oxide is doped with impurities.

特開平10−182290号公報Japanese Patent Laid-Open No. 10-182290 特開2008−039665号公報JP 2008-039665 A

近年、オゾン層の破壊等により、地表へ到達する太陽光の紫外線の量が増加する傾向が見られ、人体への影響が懸念されている。このような紫外線は日焼けだけではなく、皮膚癌や白内障など人体の健康に対してきわめて深刻な影響を及ぼすものであり、そのような紫外線量を身近で手軽に計測し、対策することが今後望まれている。   In recent years, due to the destruction of the ozone layer and the like, there has been a tendency for the amount of ultraviolet rays of sunlight reaching the surface of the earth to increase, and there is concern about the impact on the human body. Such ultraviolet rays have a very serious impact on human health, such as skin cancer and cataracts, as well as sunburn, and it is hoped that such ultraviolet rays will be easily measured and taken measures. It is rare.

従来の紫外線センサは、光フィルターを用いるものや窒化ガリウムのエピタキシャル(単結晶)成長膜を使うなど高価なものであった。また、近年においては比較的安価であり、紫外線のみに吸収波長を有する酸化亜鉛を用いる紫外線センサが、特許文献1や特許文献2などで提案されている。しかしながら、これらの紫外線センサは、焼結体で結晶制御が不十分なため特性が安定しない。また、薄膜を用いた場合でもドーパントでキャリアを高濃度にドープしていることから欠陥が発生し、非常に応答速度が遅い。そのため、手軽に瞬時に紫外線量を計測することが困難であった。   Conventional ultraviolet sensors are expensive, such as those using an optical filter or an epitaxial (single crystal) growth film of gallium nitride. In recent years, an ultraviolet sensor using zinc oxide which is relatively inexpensive and has an absorption wavelength only for ultraviolet rays has been proposed in Patent Document 1, Patent Document 2, and the like. However, the characteristics of these ultraviolet sensors are not stable because the sintered body has insufficient crystal control. Even when a thin film is used, defects are generated due to the high concentration of carriers doped with dopants, and the response speed is very slow. Therefore, it is difficult to measure the amount of ultraviolet rays easily and instantaneously.

本発明はかかる点に鑑みてなされたものであり、安価で特性が安定し、応答速度の速い紫外線センサを提供することを目的とする。   The present invention has been made in view of the above points, and an object thereof is to provide an ultraviolet sensor that is inexpensive, has stable characteristics, and has a high response speed.

本発明の紫外線センサは、酸化亜鉛の光導電効果を利用した紫外線センサであって、前記酸化亜鉛が無添加の酸化亜鉛からなり、前記酸化亜鉛のX線回折パターンにおいて(002)面における回折ピークの半値幅が0.5度以下であることを特徴とする。   The ultraviolet sensor of the present invention is an ultraviolet sensor utilizing the photoconductive effect of zinc oxide, wherein the zinc oxide is made of additive-free zinc oxide, and the diffraction peak at the (002) plane in the X-ray diffraction pattern of the zinc oxide. The full width at half maximum is 0.5 degrees or less.

この構成によれば、紫外線のみに感度を有し、応答速度が速く、比較的安価な紫外線センサを得ることが可能となる。   According to this configuration, it is possible to obtain an ultraviolet sensor that is sensitive only to ultraviolet rays, has a high response speed, and is relatively inexpensive.

本発明の紫外線センサにおいては、前記酸化亜鉛の比抵抗が1Ω・cm以上であり、膜厚が100nm以上であることが好ましい。   In the ultraviolet sensor of the present invention, the zinc oxide preferably has a specific resistance of 1 Ω · cm or more and a film thickness of 100 nm or more.

本発明の紫外線センサにおいては、前記酸化亜鉛の上に前記酸化亜鉛よりバンドギャップの広い絶縁性の保護膜を有することが好ましい。   In the ultraviolet sensor of the present invention, it is preferable that an insulating protective film having a wider band gap than the zinc oxide is provided on the zinc oxide.

本発明の紫外線センサにおいては、前記保護膜がシリコン、アルミニウムのうち、どちらか一方の酸化膜または窒化膜であることが好ましい。   In the ultraviolet sensor of the present invention, the protective film is preferably one of silicon oxide and aluminum oxide film or nitride film.

これらの構成によれば、紫外線を検知する前記酸化亜鉛膜へ到達する紫外線を遮断することなく、前記酸化亜鉛を湿度等の環境から保護することができる。   According to these structures, the said zinc oxide can be protected from environments, such as humidity, without interrupting | blocking the ultraviolet-ray which reaches | attains the said zinc oxide film | membrane which detects an ultraviolet-ray.

本発明の紫外線センサの製造方法においては、酸化亜鉛の成膜過程において、不活性ガスであるキャリアガスに3%以上の酸素を添加していることが好ましい。   In the method for producing an ultraviolet sensor of the present invention, it is preferable that 3% or more of oxygen is added to a carrier gas that is an inert gas during the film formation of zinc oxide.

この成膜方法によれば、無添加の酸化亜鉛において、X線回折パターンの(002)面における回折ピークの半値幅が0.5度以下であり、比抵抗が1Ω・cm以上の膜を得ることができる。   According to this film formation method, in the additive-free zinc oxide, a film having a half-value width of the diffraction peak on the (002) plane of the X-ray diffraction pattern of 0.5 degrees or less and a specific resistance of 1 Ω · cm or more is obtained. be able to.

本発明による紫外線センサは、酸化亜鉛の光導電効果を利用した紫外線センサであって、前記酸化亜鉛が無添加の酸化亜鉛からなり、配向性が高く、結晶欠陥の少ない酸化亜鉛であることから、安価でありつつ、応答速度の速い紫外線検出を可能とする。   The ultraviolet sensor according to the present invention is an ultraviolet sensor using the photoconductive effect of zinc oxide, and the zinc oxide is made of additive-free zinc oxide, and has high orientation and low crystal defects. While being inexpensive, it enables ultraviolet detection with a fast response speed.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施の形態に係る紫外線センサの断面図であり、図2は本発明の形態の紫外線センサの平面図である。図1及び図2において、本実施の形態の紫外線センサ1は、ガラス、シリコン又はプラスチックなどで構成された基板2を備える。基板2上には、紫外線を感知する感応膜(紫外線感知部)3が形成されている。また、感応膜3上の感知領域には、酸化シリコン、窒化シリコン、酸化アルミニウム、窒化アルミニウムなどで構成された保護膜4が形成されている。さらに、感応膜3上の感知領域以外の領域には、アルミニウム、金、白金などで構成された1対の電極5が形成されている。   FIG. 1 is a sectional view of an ultraviolet sensor according to an embodiment of the present invention, and FIG. 2 is a plan view of the ultraviolet sensor according to the embodiment of the present invention. 1 and 2, the ultraviolet sensor 1 of the present embodiment includes a substrate 2 made of glass, silicon, plastic, or the like. On the substrate 2, a sensitive film (ultraviolet ray sensing unit) 3 for sensing ultraviolet rays is formed. Further, a protective film 4 made of silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, or the like is formed in the sensing region on the sensitive film 3. Furthermore, a pair of electrodes 5 made of aluminum, gold, platinum, or the like is formed in a region other than the sensing region on the sensitive film 3.

感応膜3は、X線回折パターンの(002)面における回折ピークの半値幅が0.5度以下であり、比抵抗が1Ω・cm以上で膜厚が200nm程度の無添加の酸化亜鉛膜で形成されている。   The sensitive film 3 is an additive-free zinc oxide film having a half value width of a diffraction peak on the (002) plane of the X-ray diffraction pattern of 0.5 degrees or less, a specific resistance of 1 Ω · cm or more and a film thickness of about 200 nm. Is formed.

図3は、酸化亜鉛のX線回折パターンの(002)面における回折ピークの半値幅と紫外線検出時の応答速度の関係を示すグラフであり、横軸が応答速度を示し、縦軸がX線回折パターンの(002)面における回折ピークの半値幅を示す。図3に示すように、(002)面における回折ピークの半値幅が狭くなるにしたがって応答速度が速くなる。この傾向から酸化亜鉛の(002)面における回折ピークの半値幅を狭くすることにより、応答速度を速くすることができる。   FIG. 3 is a graph showing the relationship between the half-value width of the diffraction peak on the (002) plane of the X-ray diffraction pattern of zinc oxide and the response speed at the time of detecting ultraviolet rays, where the horizontal axis indicates the response speed and the vertical axis indicates the X-ray. The half-value width of the diffraction peak in the (002) plane of the diffraction pattern is shown. As shown in FIG. 3, the response speed increases as the half-value width of the diffraction peak on the (002) plane becomes narrower. From this tendency, the response speed can be increased by narrowing the half width of the diffraction peak on the (002) plane of zinc oxide.

図4は、酸化亜鉛の比抵抗と紫外線検出時の応答速度の関係を示すグラフであり、横軸が応答速度を示し、縦軸が酸化亜鉛の比抵抗を示す。図4に示すように、酸化亜鉛の比抵抗が高くなるにしたがって応答速度が速くなる。この傾向から酸化亜鉛の比抵抗を高くすることにより、応答速度を速くすることができる。   FIG. 4 is a graph showing the relationship between the specific resistance of zinc oxide and the response speed at the time of detecting ultraviolet rays. The horizontal axis shows the response speed, and the vertical axis shows the specific resistance of zinc oxide. As shown in FIG. 4, the response speed increases as the specific resistance of zinc oxide increases. From this tendency, the response speed can be increased by increasing the specific resistance of zinc oxide.

図5は、基板上に成膜した酸化亜鉛結晶の断面写真である。図5に示すように、酸化亜鉛膜の基板側は微結晶状態で成長しており50から100nm程度まで小さな結晶粒となる。それ以上の厚さにおいては、配向性の高い結晶となることから200nm程度の膜厚とすることで応答速度の良い紫外線センサを得ることができる。   FIG. 5 is a cross-sectional photograph of a zinc oxide crystal formed on a substrate. As shown in FIG. 5, the substrate side of the zinc oxide film grows in a microcrystalline state and becomes small crystal grains from about 50 to about 100 nm. If the thickness is greater than that, a crystal with high orientation is obtained, and therefore an ultraviolet sensor having a good response speed can be obtained by setting the film thickness to about 200 nm.

図6は、無添加の酸化亜鉛を感応膜3とした時の紫外線応答特性を示すグラフであり、横軸が時間を示し、縦軸が出力電流を示す。横軸の10秒の時に紫外線の照射を開始し、40秒の時に紫外線の照射を終了している。また、図7は、ドーパントとしてガリウムを添加した酸化亜鉛を感応膜3とした時の紫外線応答特性を示すグラフであり、横軸が時間を示し、縦軸が出力電流を示す。横軸の10秒の時に紫外線の照射を開始し、40秒の時に紫外線の照射を終了している。これらより、無添加の酸化亜鉛を感応膜3とすることにより、応答速度が速くなることが確認できる。   FIG. 6 is a graph showing the ultraviolet response characteristics when additive-free zinc oxide is used as the sensitive film 3, and the horizontal axis indicates time and the vertical axis indicates output current. Irradiation of ultraviolet rays is started at 10 seconds on the horizontal axis, and irradiation of ultraviolet rays is terminated at 40 seconds. FIG. 7 is a graph showing ultraviolet response characteristics when zinc oxide doped with gallium as a dopant is used as the sensitive film 3, the horizontal axis indicates time, and the vertical axis indicates output current. Irradiation of ultraviolet rays is started at 10 seconds on the horizontal axis, and irradiation of ultraviolet rays is terminated at 40 seconds. From these, it can be confirmed that the response speed is increased by using the additive-free zinc oxide as the sensitive film 3.

上記構成を有する紫外線センサにおいては、感応膜3に紫外線が照射されることで光電子が放出され、1対の電極5の間に流れる電流量又は1対の電極5の間の抵抗が変化する。この電流量又は抵抗の変化を検知することにより紫外線量を求めることができる。   In the ultraviolet sensor having the above structure, photoelectrons are emitted by irradiating the sensitive film 3 with ultraviolet rays, and the amount of current flowing between the pair of electrodes 5 or the resistance between the pair of electrodes 5 changes. The amount of ultraviolet rays can be determined by detecting the change in the amount of current or resistance.

図8及び図9は、本発明の実施の形態に係る紫外線センサの製造工程を示す断面図である。図8(a)に示すように、基板上に酸化亜鉛膜をスパッタや蒸着などにより成膜し、感応膜3を形成する。この成膜時にキャリアガスに例えばアルゴンを用い、それに酸素を3%以上混合して成膜を行う。   8 and 9 are cross-sectional views showing manufacturing steps of the ultraviolet sensor according to the embodiment of the present invention. As shown in FIG. 8A, a sensitive film 3 is formed by forming a zinc oxide film on the substrate by sputtering or vapor deposition. At the time of film formation, for example, argon is used as a carrier gas, and oxygen is mixed with 3% or more for film formation.

図10は、酸化亜鉛成膜時の酸素添加量と成膜された酸化亜鉛のX線回折パターンの(002)面における回折ピークの半値幅の関係を示すグラフであり、横軸が成膜時の酸素添加量を示し、縦軸がX線回折パターンの(002)面における回折ピークの半値幅を示す。図10に示すように、成膜時の酸素添加量を増やすことにより、X線回折パターンの(002)面における回折ピークの半値幅の狭い酸化亜鉛を得ることができる。   FIG. 10 is a graph showing the relationship between the amount of oxygen added during zinc oxide film formation and the half width of the diffraction peak on the (002) plane of the X-ray diffraction pattern of the zinc oxide film formed. And the vertical axis represents the half-value width of the diffraction peak on the (002) plane of the X-ray diffraction pattern. As shown in FIG. 10, by increasing the amount of oxygen added during film formation, zinc oxide having a narrow half-value width of the diffraction peak on the (002) plane of the X-ray diffraction pattern can be obtained.

図11は、酸化亜鉛成膜時の酸素添加量と成膜された酸化亜鉛の比抵抗の関係を示すグラフであり、横軸が成膜時の酸素添加量を示し、縦軸が比抵抗を示す。図11に示すように、成膜時の酸素添加量を増やすことにより、比抵抗の高い酸化亜鉛を得ることができる。   FIG. 11 is a graph showing the relationship between the amount of oxygen added during film formation of zinc oxide and the specific resistance of the formed zinc oxide, where the horizontal axis represents the amount of oxygen added during film formation, and the vertical axis represents the specific resistance. Show. As shown in FIG. 11, zinc oxide with high specific resistance can be obtained by increasing the amount of oxygen added during film formation.

感応膜3を形成後、図8(b)に示すように、例えば酸化シリコンをスパッタなどにより感応膜3上に成膜し、保護膜4を形成する。次いで、図8(c)に示すように、保護膜4上にレジストを塗布・乾燥してレジスト膜6を形成し、レジスト膜6にフォトリソグラフィを行って紫外線感知部に対応する領域にレジスト膜6が残存するようにパターニングする。   After the formation of the sensitive film 3, as shown in FIG. 8B, for example, silicon oxide is formed on the sensitive film 3 by sputtering or the like, and the protective film 4 is formed. Next, as shown in FIG. 8C, a resist is applied and dried on the protective film 4 to form a resist film 6, and the resist film 6 is subjected to photolithography to form a resist film in a region corresponding to the ultraviolet light sensing portion. Patterning is performed so that 6 remains.

次いで、図9(d)に示すように、レジスト6をマスクとして酸化シリコンをエッチングする。この時エッチングは、ウェットまたはドライエッチングのどちらでも良い。次いで、図9(e)に示すように、全面に電極材料5および51をスパッタなどにより成膜する。次いで、レジスト6を溶解する材料でレジスト6を除去することにより(リフトオフ)、図1に示すような、紫外線センサを作製する。なお、電極5は、レジスト6を除去後に、銀ペーストや金ペーストを用いて印刷などにより形成しても良い。   Next, as shown in FIG. 9D, the silicon oxide is etched using the resist 6 as a mask. At this time, the etching may be either wet or dry etching. Next, as shown in FIG. 9E, electrode materials 5 and 51 are formed on the entire surface by sputtering or the like. Next, by removing the resist 6 with a material that dissolves the resist 6 (lift-off), an ultraviolet sensor as shown in FIG. 1 is produced. The electrode 5 may be formed by printing using a silver paste or a gold paste after removing the resist 6.

このように、本実施の形態の紫外線センサ1においては、感応膜3に、X線回折パターンの(002)面における回折ピークの半値幅が0.5度以下であり、比抵抗が1Ω・cm以上で膜厚が200nm程度の無添加の酸化亜鉛膜を用いることで、応答速度の速い紫外線検知が可能となる。   Thus, in the ultraviolet sensor 1 of the present embodiment, the half-width of the diffraction peak on the (002) plane of the X-ray diffraction pattern is 0.5 ° or less and the specific resistance is 1 Ω · cm. By using an additive-free zinc oxide film having a thickness of about 200 nm as described above, it is possible to detect ultraviolet rays with a fast response speed.

本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。例えば、上記実施の形態では、電極を酸化亜鉛の片面に形成しているが、電極で酸化亜鉛膜を挟み込む形で形成しても良い。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更することが可能である。   The present invention is not limited to the embodiment described above, and can be implemented with various modifications. For example, in the above embodiment, the electrode is formed on one surface of zinc oxide, but the electrode may be formed by sandwiching a zinc oxide film between the electrodes. Other modifications may be made as appropriate without departing from the scope of the object of the present invention.

本発明は、太陽からの紫外線や工業用途に用いられる殺菌灯などからの紫外線を検出する計測機器に適用可能である。   The present invention can be applied to measuring instruments that detect ultraviolet rays from the sun or ultraviolet rays from germicidal lamps used in industrial applications.

本発明の実施の形態に係る紫外線センサの断面図である。It is sectional drawing of the ultraviolet sensor which concerns on embodiment of this invention. 図1の紫外線センサの平面図である。It is a top view of the ultraviolet sensor of FIG. 酸化亜鉛のX線回折パターンの(002)面における回折ピークの半値幅と紫外線検出時の応答速度の関係を示すグラフである。It is a graph which shows the relationship between the half value width of the diffraction peak in the (002) plane of the X-ray diffraction pattern of zinc oxide, and the response speed at the time of an ultraviolet-ray detection. 酸化亜鉛の比抵抗と紫外線検出時の応答速度の関係を示すグラフである。It is a graph which shows the relationship between the specific resistance of zinc oxide, and the response speed at the time of ultraviolet-ray detection. 酸化亜鉛結晶の断面写真である。It is a cross-sectional photograph of a zinc oxide crystal. 無添加の酸化亜鉛を感応膜3とした時の紫外線応答特性を示すグラフである。It is a graph which shows an ultraviolet-ray response characteristic when additive-free zinc oxide is used as the sensitive film | membrane 3. ドーパントとしてガリウムを添加した酸化亜鉛を感応膜3とした時の紫外線応答特性を示すグラフである。It is a graph which shows the ultraviolet-ray response characteristic when the zinc oxide which added the gallium as a dopant is used as the sensitive film | membrane 3. FIG. (a)〜(c)は、本発明の実施の形態に係る紫外線センサの製造方法を説明するための図である。(A)-(c) is a figure for demonstrating the manufacturing method of the ultraviolet sensor which concerns on embodiment of this invention. (d)〜(e)は、図8(c)に続く、本発明の実施の形態に係る紫外線センサの製造方法を説明するための図である。(D)-(e) is a figure for demonstrating the manufacturing method of the ultraviolet sensor which concerns on embodiment of this invention following FIG.8 (c). 酸化亜鉛成膜時の酸素添加量と成膜された酸化亜鉛のX線回折パターンの(002)面における回折ピークの半値幅の関係を示すグラフである。It is a graph which shows the relationship between the oxygen addition amount at the time of zinc oxide film-forming, and the half value width of the diffraction peak in the (002) plane of the X-ray diffraction pattern of the zinc oxide formed into a film. 酸化亜鉛成膜時の酸素添加量と成膜された酸化亜鉛の比抵抗の関係を示すグラフである。It is a graph which shows the relationship between the oxygen addition amount at the time of zinc oxide film-forming, and the specific resistance of the zinc oxide formed into a film.

1 紫外線センサ
2 基板
3 感応膜
4 保護膜
5 電極
6 レジスト膜
51 電極材料
1 UV sensor 2 Substrate 3 Sensitive film 4 Protective film 5 Electrode 6 Resist film 51 Electrode material

Claims (5)

酸化亜鉛の光導電効果を利用した紫外線センサであって、前記酸化亜鉛が無添加の酸化亜鉛からなり、前記酸化亜鉛のX線回折パターンにおいて(002)面における回折ピークの半値幅が0.5度以下であることを特徴とする紫外線センサ。   An ultraviolet sensor using the photoconductive effect of zinc oxide, wherein the zinc oxide is made of additive-free zinc oxide, and the half width of the diffraction peak at the (002) plane in the X-ray diffraction pattern of the zinc oxide is 0.5. An ultraviolet sensor characterized by being less than or equal to a degree. 前記酸化亜鉛の比抵抗が1Ω・cm以上であり、膜厚が100nm以上であることを特徴とする請求項1に記載の紫外線センサ。   2. The ultraviolet sensor according to claim 1, wherein the zinc oxide has a specific resistance of 1 Ω · cm or more and a film thickness of 100 nm or more. 前記酸化亜鉛の上に前記酸化亜鉛よりバンドギャップの広い絶縁性の保護膜を有することを特徴とする請求項1から請求項2に記載の紫外線センサ。   The ultraviolet sensor according to claim 1, further comprising an insulating protective film having a wider band gap than the zinc oxide on the zinc oxide. 前記保護膜が、シリコン、アルミニウムのうち、どちらか一方の酸化膜または窒化膜であることを特徴とする請求項3記載の紫外線センサ。   4. The ultraviolet sensor according to claim 3, wherein the protective film is one of silicon oxide and aluminum oxide film or nitride film. 不活性ガスであるキャリアガスに3%以上の酸素を添加しながら、スパッタ法または蒸着法により酸化亜鉛を基板上に成膜することを特徴とする酸化亜鉛の光導電効果を利用した紫外線センサの製造方法。   An ultraviolet sensor using the photoconductive effect of zinc oxide, characterized in that zinc oxide is deposited on a substrate by sputtering or vapor deposition while adding 3% or more of oxygen to an inert gas carrier gas. Production method.
JP2009148940A 2009-06-23 2009-06-23 Ultraviolet sensor and method of manufacturing the same Withdrawn JP2011009292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009148940A JP2011009292A (en) 2009-06-23 2009-06-23 Ultraviolet sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009148940A JP2011009292A (en) 2009-06-23 2009-06-23 Ultraviolet sensor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2011009292A true JP2011009292A (en) 2011-01-13

Family

ID=43565646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009148940A Withdrawn JP2011009292A (en) 2009-06-23 2009-06-23 Ultraviolet sensor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2011009292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160141935A (en) * 2015-06-01 2016-12-12 서울바이오시스 주식회사 Apparatus for measuring uv and portable terminal comprising the same
US9627568B2 (en) 2013-05-17 2017-04-18 Ngk Insulators, Ltd. Photovoltaic element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241777A (en) * 1989-11-15 1991-10-28 Mitsui Toatsu Chem Inc Photoconductive ultraviolet sensor
JPH10182290A (en) * 1996-12-20 1998-07-07 Sekisui Plastics Co Ltd Ultraviolet-ray detecting element and detection of ultraviolet rays, using the same
JP2007056351A (en) * 2005-08-26 2007-03-08 Hakusui Tech Co Ltd Target for ion plating used for manufacturing of zinc oxide-based electroconductive film, its manufacturing method, and method for manufacturing zinc oxide-based electroconductive film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241777A (en) * 1989-11-15 1991-10-28 Mitsui Toatsu Chem Inc Photoconductive ultraviolet sensor
JPH10182290A (en) * 1996-12-20 1998-07-07 Sekisui Plastics Co Ltd Ultraviolet-ray detecting element and detection of ultraviolet rays, using the same
JP2007056351A (en) * 2005-08-26 2007-03-08 Hakusui Tech Co Ltd Target for ion plating used for manufacturing of zinc oxide-based electroconductive film, its manufacturing method, and method for manufacturing zinc oxide-based electroconductive film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010009321; Bachari E M, Baud G, Amor S B, Jacquet M: 'Structual and optical properties of sputtered ZnO films' Thin Solid Films Vol.348, 1999, PP.165-172 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9627568B2 (en) 2013-05-17 2017-04-18 Ngk Insulators, Ltd. Photovoltaic element
KR20160141935A (en) * 2015-06-01 2016-12-12 서울바이오시스 주식회사 Apparatus for measuring uv and portable terminal comprising the same
KR102399941B1 (en) * 2015-06-01 2022-05-23 서울바이오시스 주식회사 Apparatus for measuring uv and portable terminal comprising the same

Similar Documents

Publication Publication Date Title
TWI263777B (en) Ultraviolet sensor and method for manufacturing the same
TW201101523A (en) Flat display panel, UV sensor and fabrication method thereof
JP2006308559A (en) Method for manufacturing nanowire chemfet sensor device utilizing selective deposition of nanowire
KR101498522B1 (en) Fabrication method of high quality oxide thin films for micribolometer
TWI669498B (en) Gas sensor and manufacturing method thereof
JP2011009292A (en) Ultraviolet sensor and method of manufacturing the same
WO2010013748A1 (en) Ultraviolet light receiving element and method for measuring amount of ultraviolet light
JP5779005B2 (en) Ultraviolet light receiving element and manufacturing method thereof
CN107393253A (en) Long distance electric fire hazard monitoring system based on hetero-junction thin-film and preparation method thereof
US20060001029A1 (en) Diamond sensor
JP2009044019A (en) Method of manufacturing gallium oxide-indium oxide mixed crystal, and light-sensitive element using manufactured mixed crystal
KR20130009364A (en) Substance detection device using the oxide semiconductor nano rod and manufacturing method of the same
KR101924541B1 (en) Semiconductor sensor with metal oxide nanorod structure and menufacturing method teherof
JP2013033839A (en) Ultraviolet ray sensor element and ultraviolet ray sensor
JP2011009293A (en) Wide gap oxide semiconductor and ultraviolet sensor using the same
KR102064270B1 (en) High performance ultraviolet sensor based on nanorod with transistor structure and method
WO2012046479A1 (en) Photodetection element, and method of producing the photodetection element
KR101299079B1 (en) V-type trench nanowire sensor
JP2007225596A (en) Method for manufacturing metal oxide sensor with selectivity operated
JP2008039665A (en) Ultraviolet detection device
JP2010027748A (en) Ultraviolet sensor
KR101301983B1 (en) Trimethylamine Gas sensor and manufacturing method of the same
KR100350063B1 (en) ultraviolet sensing device and the manufacturing method and ultraviolet sensing system
TWI392857B (en) Transparent photodetector with multilayer structure
CN112941488B (en) Temperature sensor based on doped transition metal nitride and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130121