JP2011007590A - Light measuring instrument - Google Patents

Light measuring instrument Download PDF

Info

Publication number
JP2011007590A
JP2011007590A JP2009150541A JP2009150541A JP2011007590A JP 2011007590 A JP2011007590 A JP 2011007590A JP 2009150541 A JP2009150541 A JP 2009150541A JP 2009150541 A JP2009150541 A JP 2009150541A JP 2011007590 A JP2011007590 A JP 2011007590A
Authority
JP
Japan
Prior art keywords
light pulse
time
measurement
signal output
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009150541A
Other languages
Japanese (ja)
Other versions
JP5461079B2 (en
Inventor
Tomotake Yamashita
友勇 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2009150541A priority Critical patent/JP5461079B2/en
Publication of JP2011007590A publication Critical patent/JP2011007590A/en
Application granted granted Critical
Publication of JP5461079B2 publication Critical patent/JP5461079B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To inhibit jitter caused in measurement results of light such as terahertz light after passing through a measurement target.SOLUTION: A time elapsed from output of a detection target light pulse from a detection target light pulse output part 24 to supply thereof to a trigger signal output device 23 is defined as a time T1. A time elapsed from output of a probe light pulse from a probe light source 11 to supply thereof to a measurement signal output device 22 is defined as a time T2. A time elapsed from output of the detection target light pulse from the detection target light pulse output part 24 to supply thereof as a measurement light pulse to the measurement signal output device 22 after passing through a measurement target 2 is defined as a time T3. A time elapsed from output of the probe light pulse from the probe light source 11 to supply thereof to the trigger signal output device 23 is defined as a time T4. A light measuring instrument 1 includes a light delay part 15 for adjusting the time T2 so that the difference between the time T1 and the time T4 and the difference between the time T3 and the time T2 become the same.

Description

本発明は、光の測定に関する。   The present invention relates to light measurement.

従来より、テラヘルツエミッターから被測定物に与えられたテラヘルツ光A(パルスである)が被測定物を透過したものと、テラヘルツ光Aのパルス周期とわずかに異なるパルス周期の光Bとをテラヘルツディテクターで受けて、被測定物を測定する方法が知られている(例えば、特許文献1の要約を参照)。   Conventionally, the terahertz light A (which is a pulse) applied to the object to be measured from the terahertz emitter is transmitted through the object to be measured, and the light B having a pulse period slightly different from the pulse period of the terahertz light A is a terahertz detector. And a method for measuring an object to be measured is known (for example, see the summary of Patent Document 1).

上記のような従来技術においては、テラヘルツディテクターの検出結果と、時間の原点を示すトリガ信号とをデジタルオシロスコープに与えて、被測定物を測定する。ただし、トリガ信号は、第一のフェムト秒レーザーから出力される光パルス(テラヘルツディテクターに与えられるプローブ光)の一部と、第二のフェムト秒レーザーから出力される光パルス(テラヘルツエミッターに与えられるポンプ光)の一部とのSFG(Sum Frequency Generation)相互相関をとることにより得られる(例えば、特許文献1の図20を参照)。   In the prior art as described above, a measurement result is measured by applying a detection result of the terahertz detector and a trigger signal indicating the origin of time to a digital oscilloscope. However, the trigger signal is applied to a part of the optical pulse output from the first femtosecond laser (probe light supplied to the terahertz detector) and the optical pulse output from the second femtosecond laser (applied to the terahertz emitter). It is obtained by taking an SFG (Sum Frequency Generation) cross-correlation with a part of the pump light (see, for example, FIG. 20 of Patent Document 1).

なお、トリガ信号については、非特許文献1〜6にも記載がある。   The trigger signal is also described in Non-Patent Documents 1-6.

国際公開第2006/092874号パンフレットInternational Publication No. 2006/092874 Pamphlet Bartels et al, “Ultrafast time-domain spectroscopy based on high-speedasynchronous optical sampling”, Rev. Sci. Instrum., vol.78, pp.035107 (2007)Bartels et al, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling”, Rev. Sci. Instrum., Vol.78, pp.035107 (2007) T. Yasui et al, “Asynchronous optical sampling terahertz time-domainspectroscopy for ultrahigh spectral resolution and rapid data acquisition”,Appl. Phys. Lett., vol.87, pp.061101 (2005)T. Yasui et al, “Asynchronous optical sampling terahertz time-domainspectroscopy for ultrahigh spectral resolution and rapid data acquisition”, Appl. Phys. Lett., Vol.87, pp.061101 (2005) A. Bartels et al, “High-resolution THz spectrometer with kHzscan rates”, Optics express, vol.14, pp.430 (2006)A. Bartels et al, “High-resolution THz spectrometer with kHzscan rates”, Optics express, vol.14, pp.430 (2006) A. Bartels et al, “Femtosecond time-resolved optical pump-probespectroscopy at kilohertz-scan-rates iver nanosecond-time-delays withoutmechanical delay line”, Appl. Phys. Lett., vol.88, pp.041117 (2006)A. Bartels et al, “Femtosecond time-resolved optical pump-probespectroscopy at kilohertz-scan-rates iver nanosecond-time-delays withoutmechanical delay line”, Appl. Phys. Lett., Vol.88, pp.041117 (2006) C. Janke et al, “Asynchronous optical sampling for high-speedcharacterization of integrated resonant terahertz sensors”, Optics Letters,vol.30, pp.1405 (2005)C. Janke et al, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors”, Optics Letters, vol. 30, pp. 1405 (2005) Y. Takagi et al, “Subpicosecond optical sampling spectrometer usingasynchronous tunable mode-locked lasers”, Rev. Sci. Instrum., vol.70, pp.2218(1999)Y. Takagi et al, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers”, Rev. Sci. Instrum., Vol.70, pp.2218 (1999)

しかしながら、プローブ光の一部と、ポンプ光の一部とのSFG相互相関をとる場合、テラヘルツディテクターに与えられるプローブ光のパワーが小さくなってしまう。テラヘルツエミッターに与えられるポンプ光のパワーもまた小さくなってしまう。   However, when the SFG cross-correlation between part of the probe light and part of the pump light is taken, the power of the probe light given to the terahertz detector becomes small. The power of the pump light given to the terahertz emitter is also reduced.

ただし、相互相関をとる対象のプローブ光の一部とポンプ光の一部とのパワーを小さくすれば、テラヘルツディテクターに与えられるプローブ光およびテラヘルツエミッターに与えられるポンプ光のパワーを大きくできる。しかし、この場合は、相互相関光の検出が困難になる。   However, if the power of part of the probe light to be cross-correlated and part of the pump light is reduced, the power of the probe light given to the terahertz detector and the pump light given to the terahertz emitter can be increased. However, in this case, it becomes difficult to detect cross-correlation light.

ここで、プローブ光の一部とポンプ光の一部とを光電変換し、所望のパワーになるまで増幅してから、ミキサにより混合してトリガ信号を得ることも考えられる。   Here, it is also conceivable that a part of the probe light and a part of the pump light are photoelectrically converted and amplified to a desired power and then mixed by a mixer to obtain a trigger signal.

しかし、ミキサによる混合を利用してトリガ信号を得た場合、テラヘルツ光が被測定物を透過したものにおいて生ずるジッタと、トリガ信号において生ずるジッタとは異なる。よって、テラヘルツ光が被測定物を透過したものの測定結果にジッタが生じてしまう。   However, when the trigger signal is obtained by using mixing by the mixer, the jitter generated when the terahertz light is transmitted through the object to be measured is different from the jitter generated in the trigger signal. Therefore, jitter occurs in the measurement result of the terahertz light transmitted through the object to be measured.

そこで、本発明は、テラヘルツ光などの光が被測定物を透過したものの測定結果に生ずるジッタを抑制することを課題とする。   Therefore, an object of the present invention is to suppress jitter that occurs in a measurement result of light that is transmitted through a device under test, such as terahertz light.

本発明にかかる光測定装置は、ポンプ光源からポンプ光パルスを受け、前記ポンプ光パルスの繰り返し周波数と同じ繰り返し周波数を有する被検出光パルスを出力する被検出光パルス出力部と、前記被検出光パルスを被測定物に照射して得られた測定用光パルスを受け、プローブ光源からプローブ光パルスを受け、前記プローブ光パルスを受けた時点で、前記測定用光パルスのパワーに応じた信号を出力する測定用信号出力器と、前記被検出光パルスを受け、前記プローブ光源からプローブ光パルスを受け、前記プローブ光パルスを受けた時点で、前記被検出光パルスのパワーに応じたトリガ信号を出力するトリガ信号出力器と、前記測定用信号出力器の出力を、前記トリガ信号を受けてから次の前記トリガ信号を受けるまでの間に検出することにより、前記測定用信号出力器の出力の波形を測定する波形測定部と、時間T1と時間T4との差と、時間T3と時間T2との差とが等しくなるように、時間T1、T2、T3およびT4のいずれか一つ以上を調整する時間調整部とを備え、前記被検出光パルスの繰り返し周波数と前記プローブ光パルスの繰り返し周波数とが異なり、前記被検出光パルスが、前記被検出光パルス出力部から出力されてから前記トリガ信号出力器に与えられるまでの時間をT1とし、前記プローブ光パルスが、前記プローブ光源から出力されてから前記測定用信号出力器に与えられるまでの時間をT2とし、前記被検出光パルスが前記被検出光パルス出力部から出力されてから、前記測定用光パルスとして前記測定用信号出力器に与えられるまでの時間をT3とし、前記プローブ光パルスが、前記プローブ光源から出力されてから前記トリガ信号出力器に与えられるまでの時間をT4とするように構成される。   An optical measurement device according to the present invention includes a detected light pulse output unit that receives a pump light pulse from a pump light source and outputs a detected light pulse having the same repetition frequency as the repetition frequency of the pump light pulse, and the detected light Upon receiving the measurement light pulse obtained by irradiating the measurement object with the pulse, receiving the probe light pulse from the probe light source, and receiving the probe light pulse, a signal corresponding to the power of the measurement light pulse is received. A measurement signal output device for outputting, a trigger signal corresponding to the power of the detected light pulse when receiving the detected light pulse, receiving the probe light pulse from the probe light source, and receiving the probe light pulse The output of the trigger signal output device to be output and the output of the measurement signal output device is detected between the time when the trigger signal is received and the time when the next trigger signal is received. And the time T1, T2 so that the difference between the time T1 and the time T4 and the difference between the time T3 and the time T2 are equal to each other. , T3, and a time adjustment unit for adjusting at least one of T4, a repetition frequency of the detected light pulse is different from a repetition frequency of the probe light pulse, and the detected light pulse is detected by the detected light pulse. The time from the output from the optical pulse output unit to the trigger signal output unit is T1, and the time from the probe light pulse output from the probe light source to the measurement signal output unit T2 and the time from when the detected light pulse is output from the detected light pulse output unit to when it is given to the measurement signal output device as the measurement light pulse. 3 and then, the probe light pulses, and the time from the output from the probe light source to be applied to said trigger signal output unit so as to T4.

上記のように構成された光測定装置によれば、被検出光パルス出力部が、ポンプ光源からポンプ光パルスを受け、前記ポンプ光パルスの繰り返し周波数と同じ繰り返し周波数を有する被検出光パルスを出力する。測定用信号出力器が、前記被検出光パルスを被測定物に照射して得られた測定用光パルスを受け、プローブ光源からプローブ光パルスを受け、前記プローブ光パルスを受けた時点で、前記測定用光パルスのパワーに応じた信号を出力する。トリガ信号出力器が、前記被検出光パルスを受け、前記プローブ光源からプローブ光パルスを受け、前記プローブ光パルスを受けた時点で、前記被検出光パルスのパワーに応じたトリガ信号を出力する。波形測定部が、前記測定用信号出力器の出力を、前記トリガ信号を受けてから次の前記トリガ信号を受けるまでの間に検出することにより、前記測定用信号出力器の出力の波形を測定する。時間調整部が、時間T1と時間T4との差と、時間T3と時間T2との差とが等しくなるように、時間T1、T2、T3およびT4のいずれか一つ以上を調整する。しかも、前記被検出光パルスの繰り返し周波数と前記プローブ光パルスの繰り返し周波数とが異なる。なお、前記被検出光パルスが、前記被検出光パルス出力部から出力されてから前記トリガ信号出力器に与えられるまでの時間をT1とする。前記プローブ光パルスが、前記プローブ光源から出力されてから前記測定用信号出力器に与えられるまでの時間をT2とする。前記被検出光パルスが前記被検出光パルス出力部から出力されてから、前記測定用光パルスとして前記測定用信号出力器に与えられるまでの時間をT3とする。前記プローブ光パルスが、前記プローブ光源から出力されてから前記トリガ信号出力器に与えられるまでの時間をT4とする。   According to the light measuring apparatus configured as described above, the detected light pulse output unit receives the pump light pulse from the pump light source, and outputs the detected light pulse having the same repetition frequency as the repetition frequency of the pump light pulse. To do. When the measurement signal output device receives the measurement light pulse obtained by irradiating the object to be measured with the detected light pulse, receives the probe light pulse from the probe light source, and receives the probe light pulse, A signal corresponding to the power of the optical pulse for measurement is output. A trigger signal output unit receives the detected light pulse, receives a probe light pulse from the probe light source, and outputs a trigger signal corresponding to the power of the detected light pulse when the probe light pulse is received. The waveform measurement unit measures the output waveform of the measurement signal output device by detecting the output of the measurement signal output device between the time when the trigger signal is received and the time when the next trigger signal is received. To do. The time adjustment unit adjusts one or more of the times T1, T2, T3, and T4 so that the difference between the time T1 and the time T4 is equal to the difference between the time T3 and the time T2. Moreover, the repetition frequency of the detected light pulse is different from the repetition frequency of the probe light pulse. Note that the time from when the detected light pulse is output from the detected light pulse output unit to when it is given to the trigger signal output device is T1. The time from when the probe light pulse is output from the probe light source to when the probe light pulse is applied to the measurement signal output device is defined as T2. Let T3 be the time from when the detected light pulse is output from the detected light pulse output unit to when it is supplied to the measurement signal output device as the measurement light pulse. The time from when the probe light pulse is output from the probe light source to when it is given to the trigger signal output device is defined as T4.

なお、本発明にかかる光測定装置は、前記測定用光パルスが、前記被検出光パルスが前記被測定物を透過したものであるようにしてもよい。   In the light measurement device according to the present invention, the measurement light pulse may be such that the detection light pulse is transmitted through the measurement object.

なお、本発明にかかる光測定装置は、前記時間調整部が、時間T4が時間T2に等しくなり、時間T3が時間T1に等しくなるようにするようにしてもよい。   In the light measurement device according to the present invention, the time adjustment unit may make the time T4 equal to the time T2 and the time T3 equal to the time T1.

本発明の第一の実施形態にかかる光測定装置1の構成を示す図である。It is a figure which shows the structure of the optical measurement apparatus 1 concerning 1st embodiment of this invention. 被検出光パルス(図2(a))、プローブ光パルス(図2(b))、トリガ信号(図2(c))、測定用光パルス(図2(d))のタイムチャートである。3 is a time chart of a detected light pulse (FIG. 2A), a probe light pulse (FIG. 2B), a trigger signal (FIG. 2C), and a measurement light pulse (FIG. 2D).

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

第一の実施形態
図1は、本発明の第一の実施形態にかかる光測定装置1の構成を示す図である。第一の実施形態にかかる光測定装置1は、プローブ光源11、ポンプ光源12、光分波器13、光遅延部(時間調整部)15、ビームスプリッタ17、測定用信号出力器22、トリガ信号出力器23、被検出光パルス出力部24、第一電流電圧変換アンプ52、第二電流電圧変換アンプ53、波形測定器54、ミラーM1、M2、M3、M4、M5を備える。なお、光測定装置1は被測定物2を透過したテラヘルツ波を測定するものである。
First Embodiment FIG. 1 is a diagram showing a configuration of an optical measurement device 1 according to a first embodiment of the present invention. The optical measurement apparatus 1 according to the first embodiment includes a probe light source 11, a pump light source 12, an optical demultiplexer 13, an optical delay unit (time adjustment unit) 15, a beam splitter 17, a measurement signal output unit 22, a trigger signal. An output device 23, a detected light pulse output unit 24, a first current-voltage conversion amplifier 52, a second current-voltage conversion amplifier 53, a waveform measuring device 54, and mirrors M1, M2, M3, M4, and M5 are provided. The light measuring device 1 measures a terahertz wave that has passed through the device under test 2.

プローブ光源11は、数十フェムト秒のパルス幅を有する近赤外領域波長のレーザーパルス光(プローブ光パルス)を出力する。なお、プローブ光パルスの繰り返し周波数はfrep−Δfである(ただし、Δf>0)。Δfは、例えば、5Hz程度である。 The probe light source 11 outputs laser pulse light (probe light pulse) having a near-infrared wavelength having a pulse width of several tens of femtoseconds. The repetition frequency of the probe light pulse is f rep −Δf (where Δf> 0). Δf is, for example, about 5 Hz.

ポンプ光源12は、数十フェムト秒のパルス幅を有する近赤外領域波長のレーザーパルス光(ポンプ光パルス)を出力する。なお、ポンプ光パルスの繰り返し周波数はfrepである。 The pump light source 12 outputs laser pulse light (pump light pulse) having a near infrared wavelength having a pulse width of several tens of femtoseconds. The repetition frequency of the pump light pulse is f rep .

光分波器13は、プローブ光パルスをプローブ光源11から受け、光遅延部15およびトリガ信号出力器23に与える。光分波器13は、例えば、ワイヤグリッドポラライザ、ペリクルビームスプリッタ、Siウエハなどである。   The optical demultiplexer 13 receives the probe light pulse from the probe light source 11 and supplies it to the optical delay unit 15 and the trigger signal output unit 23. The optical demultiplexer 13 is, for example, a wire grid polarizer, a pellicle beam splitter, a Si wafer, or the like.

なお、光分波器13から出力されるプローブ光パルスのうちの一方は、ミラーM4、M5により反射されて、トリガ信号出力器23に入射する。   One of the probe light pulses output from the optical demultiplexer 13 is reflected by the mirrors M4 and M5 and enters the trigger signal output unit 23.

光遅延部(時間調整部)15は、プローブ光パルスを受け、遅延させてから、測定用信号出力器22に与える。   The optical delay unit (time adjustment unit) 15 receives the probe light pulse, delays it, and supplies it to the measurement signal output unit 22.

被検出光パルス出力部24は、ポンプ光源12からポンプ光パルスを受け、ポンプ光パルスの繰り返し周波数と同じ繰り返し周波数を有する被検出光パルス(繰り返し周波数frep)を出力する。被検出光パルス出力部24は、例えば光伝導スイッチである。光伝導スイッチにポンプ光パルスを与えると、光伝導スイッチからテラヘルツ光(被検出光パルス)が出力される。なお、光伝導スイッチの構成は周知であり、説明を省略する。また、被検出光パルス出力部24は非線形光学結晶であってもよい。 The detected light pulse output unit 24 receives the pump light pulse from the pump light source 12 and outputs a detected light pulse (repetition frequency f rep ) having the same repetition frequency as the repetition frequency of the pump light pulse. The detected light pulse output unit 24 is, for example, a photoconductive switch. When a pump light pulse is applied to the photoconductive switch, terahertz light (detected light pulse) is output from the photoconductive switch. Note that the configuration of the photoconductive switch is well known and will not be described. Further, the detected light pulse output unit 24 may be a nonlinear optical crystal.

なお、被検出光パルスの繰り返し周波数frepと、プローブ光パルスの繰り返し周波数frep−Δfとは異なる。 Note that the repetition frequency f rep of the detected light pulse is different from the repetition frequency f rep −Δf of the probe light pulse.

被検出光パルスは、ミラーM1により反射されてから、ビームスプリッタ17に向かう。   The detected light pulse is reflected by the mirror M <b> 1 and then travels toward the beam splitter 17.

ビームスプリッタ17は、被検出光パルスを受け、被測定物2およびトリガ信号出力器23に与える。ビームスプリッタ17は、例えば、ワイヤグリッドポラライザ、ペリクルビームスプリッタ、Siウエハなどである。   The beam splitter 17 receives the light pulse to be detected and supplies it to the device under test 2 and the trigger signal output device 23. The beam splitter 17 is, for example, a wire grid polarizer, a pellicle beam splitter, a Si wafer, or the like.

なお、ビームスプリッタ17から出力される被検出光パルスのうちの一方は、被測定物2を透過した後に、ミラーM2により反射されて、測定用信号出力器22に入射する。ここで、被検出光パルスを被測定物2に照射して得られた光パルスを測定用光パルス(例えば、被検出光パルスが被測定物2を透過したもの)という。   One of the detected light pulses output from the beam splitter 17 passes through the device under test 2, is reflected by the mirror M 2, and enters the measurement signal output device 22. Here, the light pulse obtained by irradiating the object to be measured 2 with the light pulse to be detected is referred to as a measurement light pulse (for example, the light pulse to be detected transmitted through the object to be measured 2).

また、ビームスプリッタ17から出力される被検出光パルスのうちの他方は、ミラーM3により反射されて、トリガ信号出力器23に入射する。   The other of the detected light pulses output from the beam splitter 17 is reflected by the mirror M3 and enters the trigger signal output unit 23.

測定用信号出力器22は、測定用光パルス(例えば、テラヘルツ光)を受け、プローブ光源11から、光分波器13および光遅延部15を介して、プローブ光パルスを受ける。しかも、測定用信号出力器22は、プローブ光パルスを受けた時点で、測定用光パルスのパワーに応じた信号を出力する。測定用信号出力器22は、例えば光伝導スイッチである。光伝導スイッチが出力する信号は、電流である。なお、光伝導スイッチの構成は周知であり、説明を省略する。また、測定用信号出力器22は非線形光学結晶であってもよい。   The measurement signal output unit 22 receives a measurement light pulse (for example, terahertz light) and receives a probe light pulse from the probe light source 11 via the optical demultiplexer 13 and the optical delay unit 15. In addition, the measurement signal output unit 22 outputs a signal corresponding to the power of the measurement optical pulse when the probe optical pulse is received. The measurement signal output device 22 is, for example, a photoconductive switch. The signal output from the photoconductive switch is a current. Note that the configuration of the photoconductive switch is well known and will not be described. Further, the measurement signal output device 22 may be a nonlinear optical crystal.

トリガ信号出力器23は、被検出光パルス(例えば、テラヘルツ光)を受け、プローブ光源11からプローブ光パルスを受ける。しかも、トリガ信号出力器23は、プローブ光パルスを受けた時点で、被検出光パルスのパワーに応じたトリガ信号を出力する。トリガ信号出力器23は、例えば光伝導スイッチである。光伝導スイッチが出力する信号は、電流である。なお、光伝導スイッチの構成は周知であり、説明を省略する。また、トリガ信号出力器23は非線形光学結晶であってもよい。   The trigger signal output unit 23 receives a detected light pulse (for example, terahertz light) and receives a probe light pulse from the probe light source 11. Moreover, the trigger signal output unit 23 outputs a trigger signal corresponding to the power of the detected light pulse when the probe light pulse is received. The trigger signal output device 23 is, for example, a photoconductive switch. The signal output from the photoconductive switch is a current. Note that the configuration of the photoconductive switch is well known and will not be described. The trigger signal output unit 23 may be a nonlinear optical crystal.

図2は、被検出光パルス(図2(a))、プローブ光パルス(図2(b))、トリガ信号(図2(c))、測定用光パルス(図2(d))のタイムチャートである。   FIG. 2 shows the time of the detected light pulse (FIG. 2A), the probe light pulse (FIG. 2B), the trigger signal (FIG. 2C), and the measurement light pulse (FIG. 2D). It is a chart.

図2(a)〜(c)を参照して、トリガ信号出力器23は、プローブ光パルスの光パワーが最大になった時点における被検出光パルスのパワーに応じた電流を出力する。例えば、時間t = 0, 1/f1, 2/f1, …における被検出光パルスのパワーに応じた電流を出力する(ただし、f1 = frep−Δf)。すなわち、トリガ信号出力器23は、被検出光パルスのパワーが最大になった時点からΔt1( = 1/f1−1/frep)づつずれた時点(0, Δt1, 2Δt1,…)の被検出光パルスのパワーに応じた電流を出力することになる。ここで、被検出光パルスの幅が狭いため、被検出光パルスのパワーが最大になった時点からΔt1, 2Δt1,…ずつずれた時点においては、トリガ信号出力器23の出力が0になる。トリガ信号出力器23は、やがて、被検出光パルスのパワーが最大になった時点からのずれが1/frepになった時(t = Δt = 1/Δf)の被検出光パルスのパワーに応じた電流を出力する(図2(a)の右端のパルスを参照)。この時点(t = Δt)のトリガ信号出力器23の出力は、t = 0の時点のトリガ信号出力器23の出力と同じである。よって、トリガ信号出力器23は、周波数Δfのトリガ信号を出力することになる。 2A to 2C, the trigger signal output unit 23 outputs a current corresponding to the power of the detected optical pulse at the time when the optical power of the probe optical pulse becomes maximum. For example, a current corresponding to the power of the detected optical pulse at time t = 0, 1 / f 1 , 2 / f 1, ... Is output (where f 1 = f rep −Δf). In other words, the trigger signal output device 23, Delta] t 1 from when the power of the detected light pulse is maximized (= 1 / f 1 -1 / f rep) at a time shifted time (0, Δt 1, 2Δt 1 , ... ) Is output in accordance with the power of the detected light pulse. Here, since the width of the detected light pulse is narrow, the output of the trigger signal output unit 23 becomes 0 at the time when Δt 1 , 2Δt 1 ,... Deviates from the time when the power of the detected light pulse becomes maximum. Become. The trigger signal output unit 23 eventually adjusts the power of the detected light pulse when the deviation from the time when the power of the detected light pulse becomes maximum becomes 1 / f rep (t = Δt = 1 / Δf). A corresponding current is output (see the rightmost pulse in FIG. 2A). The output of the trigger signal output device 23 at this time (t = Δt) is the same as the output of the trigger signal output device 23 at the time t = 0. Therefore, the trigger signal output unit 23 outputs a trigger signal having a frequency Δf.

図2(b)〜(d)を参照して、測定用信号出力器22は、プローブ光パルスの光パワーが最大になった時点における測定用光パルスのパワーに応じた電流を出力する。例えば、時間t = 0, 1/f1, 2/f1, …における測定用光パルスのパワーに応じた電流を出力する。すなわち、測定用信号出力器22は、測定用光パルスのパワーが最大になった時点からΔt1( = 1/f1−1/f2)づつずれた時点(0, Δt1, 2Δt1,…)の測定用光パルスのパワーに応じた電流を出力することになる。測定用信号出力器22は、やがて、測定用光パルスのパワーが最大になった時点からのずれが1/frepになったときの測定用光パルスのパワーに応じた電流を出力する(図2(d)の右端のパルスを参照)。この時点で、測定用光パルスの一周期分の測定が完了する。測定用光パルスの一周期分の測定が完了するのにかかる時間はΔtとなる。 2B to 2D, the measurement signal output unit 22 outputs a current corresponding to the power of the measurement optical pulse at the time when the optical power of the probe light pulse becomes maximum. For example, a current corresponding to the power of the optical pulse for measurement at time t = 0, 1 / f 1 , 2 / f 1 ,. In other words, the measurement signal output unit 22 is shifted by Δt 1 (= 1 / f 1 −1 / f 2 ) from the time when the power of the measurement optical pulse becomes maximum (0, Δt 1 , 2Δt 1 , ...) current corresponding to the power of the optical pulse for measurement is output. Eventually, the measurement signal output unit 22 outputs a current corresponding to the power of the measurement optical pulse when the deviation from the time when the power of the measurement optical pulse becomes maximum becomes 1 / f rep (FIG. (See the rightmost pulse at 2 (d)). At this point, measurement for one cycle of the measurement light pulse is completed. The time required to complete the measurement for one cycle of the measurement light pulse is Δt.

よって、測定用信号出力器22の出力を、トリガ信号を受けて(t=0)から次のトリガ信号を受ける(t=Δt)までの間に検出することにより、測定用信号出力器22の出力の一周期分の波形が測定できる。この測定は、波形測定器54により行われる。   Therefore, by detecting the output of the measurement signal output unit 22 between the time when the trigger signal is received (t = 0) and the time when the next trigger signal is received (t = Δt), the measurement signal output unit 22 The waveform for one cycle of output can be measured. This measurement is performed by the waveform measuring instrument 54.

第一電流電圧変換アンプ52は、測定用信号出力器22の出力した電流を電圧に変換し、その電圧を増幅して、波形測定器54に出力する。   The first current-voltage conversion amplifier 52 converts the current output from the measurement signal output unit 22 into a voltage, amplifies the voltage, and outputs the voltage to the waveform measurement unit 54.

第二電流電圧変換アンプ53は、トリガ信号出力器23の出力した電流を電圧に変換し、その電圧を増幅して、波形測定器54に出力する。   The second current / voltage conversion amplifier 53 converts the current output from the trigger signal output unit 23 into a voltage, amplifies the voltage, and outputs the amplified voltage to the waveform measuring device 54.

波形測定器54は、測定用信号出力器22の出力を、トリガ信号を受けてから次のトリガ信号を受けるまでの間に検出することにより、測定用信号出力器22の出力の波形を測定する。波形測定器54は、例えば、デジタルオシロスコープである。   The waveform measuring device 54 measures the waveform of the output of the measurement signal output device 22 by detecting the output of the measurement signal output device 22 between the time when the trigger signal is received and the time when the next trigger signal is received. . The waveform measuring instrument 54 is a digital oscilloscope, for example.

ここで、時間T1、時間T2、時間T3および時間T4を以下のように定義する。   Here, time T1, time T2, time T3, and time T4 are defined as follows.

時間T1を、被検出光パルスが、被検出光パルス出力部24から出力されてから、ビームスプリッタ17を通過し、ミラーM3に反射されて、トリガ信号出力器23に与えられるまでの時間とする。   The time T1 is a time from when the detected light pulse is output from the detected light pulse output unit 24 until it passes through the beam splitter 17, is reflected by the mirror M3, and is given to the trigger signal output unit 23. .

時間T2を、プローブ光パルスが、プローブ光源11から出力されてから、光分波器13を通過し、測定用信号出力器22に与えられるまでの時間とする。   The time T2 is a time from when the probe light pulse is output from the probe light source 11 until it passes through the optical demultiplexer 13 and is given to the measurement signal output device 22.

時間T3を、被検出光パルスが被検出光パルス出力部24から出力されてから、ビームスプリッタ17を通過し、被測定物2を透過し、測定用光パルスとして測定用信号出力器22に与えられるまでの時間とする。   At time T 3, the detected light pulse is output from the detected light pulse output unit 24, passes through the beam splitter 17, passes through the measured object 2, and is given to the measurement signal output device 22 as a measurement light pulse. Time until

時間T4を、プローブ光パルスが、プローブ光源11から出力されてから、光分波器13を通過し、ミラーM4、M5に反射されて、トリガ信号出力器23に与えられるまでの時間とする。   The time T4 is a time from when the probe light pulse is output from the probe light source 11 until it passes through the optical demultiplexer 13, is reflected by the mirrors M4 and M5, and is given to the trigger signal output unit 23.

ここで、光遅延部(時間調整部)15は、時間T1と時間T4との差と、時間T3と時間T2との差とが等しくなるように(例えば、T1−T4=T3−T2)、時間T2を調整する。なお、光遅延部15による光の遅延時間は可変であってもよい。   Here, the optical delay unit (time adjustment unit) 15 makes the difference between the time T1 and the time T4 equal to the difference between the time T3 and the time T2 (for example, T1-T4 = T3-T2). Adjust time T2. The light delay time by the light delay unit 15 may be variable.

なお、本発明の実施形態においては、光遅延部15が、プローブ光源11と測定用信号出力器22との間に配置されているので、時間T2を調整することになる。   In the embodiment of the present invention, since the optical delay unit 15 is disposed between the probe light source 11 and the measurement signal output device 22, the time T2 is adjusted.

しかし、光遅延部(時間調整部)15は、時間T1、T2、T3およびT4のいずれか一つ以上を調整するようにすればよい。   However, the optical delay unit (time adjustment unit) 15 may adjust any one or more of the times T1, T2, T3, and T4.

例えば、ミラーM3とトリガ信号出力器23との間に光遅延部15を配置して、時間T1を調整するようにしてもよい。ミラーM2と測定用信号出力器22との間に光遅延部15を配置して、時間T3を調整するようにしてもよい。ミラーM4とミラーM5との間に光遅延部15を配置して、時間T4を調整するようにしてもよい。   For example, the optical delay unit 15 may be disposed between the mirror M3 and the trigger signal output unit 23 to adjust the time T1. The optical delay unit 15 may be disposed between the mirror M2 and the measurement signal output unit 22 to adjust the time T3. The optical delay unit 15 may be disposed between the mirror M4 and the mirror M5 to adjust the time T4.

また、光遅延部(時間調整部)15は、時間T4が時間T2に等しくなり、時間T3が時間T1に等しくなるようにしてもよい。例えば、光遅延部15をプローブ光源11と測定用信号出力器22との間に配置して、時間T2を時間T4と等しくなるように調整し、しかも、他の光遅延部15をミラーM3とトリガ信号出力器23との間に配置して、時間T1を時間T3と等しくなるように調整するようにしてもよい。   Further, the optical delay unit (time adjustment unit) 15 may make the time T4 equal to the time T2 and the time T3 equal to the time T1. For example, the optical delay unit 15 is arranged between the probe light source 11 and the measurement signal output unit 22 so that the time T2 is adjusted to be equal to the time T4, and the other optical delay unit 15 is connected to the mirror M3. It may be arranged between the trigger signal output unit 23 and the time T1 may be adjusted to be equal to the time T3.

次に、第一の実施形態の動作を説明する。   Next, the operation of the first embodiment will be described.

ポンプ光源12からポンプ光パルス(繰り返し周波数frep)が出力され、被検出光パルス出力部24に与えられる。被検出光パルス出力部24からは被検出光パルス(繰り返し周波数frep)(例えば、テラヘルツ光)が出力される。 A pump light pulse (repetition frequency f rep ) is output from the pump light source 12 and applied to the detected light pulse output unit 24. A detected light pulse (repetition frequency f rep ) (for example, terahertz light) is output from the detected light pulse output unit 24.

被検出光パルスは、ミラーM1により反射されてから、ビームスプリッタ17に向かう。ビームスプリッタ17は、被検出光パルスを分けて、被測定物2およびトリガ信号出力器23に与える。   The detected light pulse is reflected by the mirror M <b> 1 and then travels toward the beam splitter 17. The beam splitter 17 divides the detected light pulse and supplies it to the DUT 2 and the trigger signal output unit 23.

被測定物2に与えられた被検出光パルスは、被測定物2を透過し、測定用光パルスとなる。測定用光パルスは、ミラーM2により反射されて、測定用信号出力器22に入射する。   The detected light pulse applied to the device under test 2 passes through the device under test 2 and becomes a measurement light pulse. The measurement light pulse is reflected by the mirror M 2 and enters the measurement signal output unit 22.

プローブ光源11からは、プローブ光パルス(繰り返し周波数frep−Δf)が出力される。光分波器13は、プローブ光パルスを分けて、光遅延部15およびトリガ信号出力器23に与える。 A probe light pulse (repetition frequency f rep -Δf) is output from the probe light source 11. The optical demultiplexer 13 divides the probe light pulse and provides it to the optical delay unit 15 and the trigger signal output unit 23.

プローブ光パルスは、光遅延部15により遅延されて、測定用信号出力器22に入射する。   The probe light pulse is delayed by the optical delay unit 15 and enters the measurement signal output unit 22.

測定用信号出力器22は、プローブ光パルスを受けた時点で、測定用光パルスのパワーに応じた信号(例えば、電流)を出力する(図2(b)、(d)参照)。この電流は、第一電流電圧変換アンプ52により電圧に変換されてから増幅されて、波形測定器54に出力される。   When receiving the probe light pulse, the measurement signal output unit 22 outputs a signal (for example, a current) corresponding to the power of the measurement light pulse (see FIGS. 2B and 2D). This current is converted into a voltage by the first current / voltage conversion amplifier 52 and then amplified and output to the waveform measuring instrument 54.

被検出光パルスであって、ビームスプリッタ17からミラーM3に向かうものは、ミラーM3により反射されて、トリガ信号出力器23に入射する。   The detected light pulse that travels from the beam splitter 17 toward the mirror M3 is reflected by the mirror M3 and enters the trigger signal output unit 23.

プローブ光パルスであって、光分波器13から出力されミラーM4に向かうものは、ミラーM4、M5により反射されて、トリガ信号出力器23に入射する。   The probe light pulse that is output from the optical demultiplexer 13 and directed to the mirror M4 is reflected by the mirrors M4 and M5 and enters the trigger signal output unit 23.

トリガ信号出力器23は、プローブ光パルスを受けた時点で、被検出光パルスのパワーに応じたトリガ信号(例えば、電流)を出力する(図2(a)〜(c)参照)。この電流は、第二電流電圧変換アンプ53により電圧に変換されてから増幅されて、波形測定器54に出力される。   When receiving the probe light pulse, the trigger signal output unit 23 outputs a trigger signal (for example, a current) corresponding to the power of the detected light pulse (see FIGS. 2A to 2C). This current is converted into a voltage by the second current / voltage conversion amplifier 53 and then amplified and output to the waveform measuring instrument 54.

波形測定器54は、測定用信号出力器22の出力を、トリガ信号を受けてから次のトリガ信号を受けるまでの間に検出することにより、測定用信号出力器22の出力の波形を測定する。   The waveform measuring device 54 measures the waveform of the output of the measurement signal output device 22 by detecting the output of the measurement signal output device 22 between the time when the trigger signal is received and the time when the next trigger signal is received. .

ここで、光遅延部15は、時間T1と時間T4との差と、時間T3と時間T2との差とが等しくなるように(例えば、T1−T4=T3−T2)、時間T2を調整する。なお、T1=T3であれば、時間T2が時間T4と等しくなるようにする。   Here, the optical delay unit 15 adjusts the time T2 so that the difference between the time T1 and the time T4 is equal to the difference between the time T3 and the time T2 (for example, T1-T4 = T3-T2). . If T1 = T3, the time T2 is made equal to the time T4.

第一の実施形態によれば、T1=T3であれば、光遅延部15は、時間T2が時間T4と等しくなるようにする。すると、T1=T3なので、ジッタは時間の関数であることから、トリガ信号出力器23に入射する被検出光パルスの(タイミング)ジッタと、測定用信号出力器22に入射するに測定用光パルスの(タイミング)ジッタとは同じものとなる。また、T2=T4なので、測定用信号出力器22に入射するプローブ光パルスの(タイミング)ジッタと、トリガ信号出力器23に入射するプローブ光パルスの(タイミング)ジッタとは同じものとなる。   According to the first embodiment, if T1 = T3, the optical delay unit 15 causes the time T2 to be equal to the time T4. Then, since T1 = T3, the jitter is a function of time. Therefore, the (timing) jitter of the detected optical pulse incident on the trigger signal output unit 23 and the measurement optical pulse incident on the measurement signal output unit 22 This (timing) jitter is the same. Since T2 = T4, the (timing) jitter of the probe light pulse incident on the measurement signal output unit 22 and the (timing) jitter of the probe light pulse incident on the trigger signal output unit 23 are the same.

よって、トリガ信号出力器23の出力に含まれるジッタと、測定用信号出力器22の出力に含まれるジッタとの差が小さくなり、テラヘルツ光などの光が被測定物2を透過したもの(測定用光パルス)の測定結果に生ずるジッタを抑制することができる。   Therefore, the difference between the jitter included in the output of the trigger signal output unit 23 and the jitter included in the output of the measurement signal output unit 22 is reduced, and light such as terahertz light has passed through the DUT 2 (measurement). Jitter occurring in the measurement result of the optical pulse) can be suppressed.

なお、光遅延部15が、時間T1と時間T4との差と、時間T3と時間T2との差とが等しくなるようにしても、同様な効果が得られる。   The same effect can be obtained even if the optical delay unit 15 makes the difference between the time T1 and the time T4 equal to the difference between the time T3 and the time T2.

また、トリガ信号を、トリガ信号出力器23(例えば、光伝導スイッチ)から得るので、被検出光パルスとプローブ光パルスとの相関をとってから光電変換を行ってトリガ信号を得る場合に比べて、部品の個数を少なくすることができる。   Further, since the trigger signal is obtained from the trigger signal output device 23 (for example, a photoconductive switch), the trigger signal is obtained by performing photoelectric conversion after obtaining the correlation between the detected light pulse and the probe light pulse. The number of parts can be reduced.

1 光測定装置
2 被測定物
11 プローブ光源
12 ポンプ光源
13 光分波器
15 光遅延部(時間調整部)
17 ビームスプリッタ
22 測定用信号出力器
23 トリガ信号出力器
24 被検出光パルス出力部
52 第一電流電圧変換アンプ
53 第二電流電圧変換アンプ
54 波形測定器
M1、M2、M3、M4、M5 ミラー
T1、T2、T3、T4 時間
DESCRIPTION OF SYMBOLS 1 Optical measuring apparatus 2 Measured object 11 Probe light source 12 Pump light source 13 Optical demultiplexer 15 Optical delay part (time adjustment part)
Reference Signs List 17 Beam splitter 22 Measurement signal output device 23 Trigger signal output device 24 Detected light pulse output unit 52 First current voltage conversion amplifier 53 Second current voltage conversion amplifier 54 Waveform measurement device M1, M2, M3, M4, M5 Mirror T1 , T2, T3, T4 hours

Claims (3)

ポンプ光源からポンプ光パルスを受け、前記ポンプ光パルスの繰り返し周波数と同じ繰り返し周波数を有する被検出光パルスを出力する被検出光パルス出力部と、
前記被検出光パルスを被測定物に照射して得られた測定用光パルスを受け、プローブ光源からプローブ光パルスを受け、前記プローブ光パルスを受けた時点で、前記測定用光パルスのパワーに応じた信号を出力する測定用信号出力器と、
前記被検出光パルスを受け、前記プローブ光源からプローブ光パルスを受け、前記プローブ光パルスを受けた時点で、前記被検出光パルスのパワーに応じたトリガ信号を出力するトリガ信号出力器と、
前記測定用信号出力器の出力を、前記トリガ信号を受けてから次の前記トリガ信号を受けるまでの間に検出することにより、前記測定用信号出力器の出力の波形を測定する波形測定部と、
時間T1と時間T4との差と、時間T3と時間T2との差とが等しくなるように、時間T1、T2、T3およびT4のいずれか一つ以上を調整する時間調整部と、
を備え、
前記被検出光パルスの繰り返し周波数と前記プローブ光パルスの繰り返し周波数とが異なり、
前記被検出光パルスが、前記被検出光パルス出力部から出力されてから前記トリガ信号出力器に与えられるまでの時間をT1とし、
前記プローブ光パルスが、前記プローブ光源から出力されてから前記測定用信号出力器に与えられるまでの時間をT2とし、
前記被検出光パルスが前記被検出光パルス出力部から出力されてから、前記測定用光パルスとして前記測定用信号出力器に与えられるまでの時間をT3とし、
前記プローブ光パルスが、前記プローブ光源から出力されてから前記トリガ信号出力器に与えられるまでの時間をT4とする、
光測定装置。
A detected light pulse output unit that receives a pump light pulse from a pump light source and outputs a detected light pulse having the same repetition frequency as the repetition frequency of the pump light pulse;
Upon receiving the measurement light pulse obtained by irradiating the object to be measured with the detection light pulse, receiving the probe light pulse from the probe light source, and receiving the probe light pulse, the power of the measurement light pulse is set. A measurement signal output device that outputs a corresponding signal;
A trigger signal output unit that receives the detected light pulse, receives a probe light pulse from the probe light source, and outputs a trigger signal corresponding to the power of the detected light pulse when the probe light pulse is received;
A waveform measuring unit that measures the waveform of the output of the measurement signal output device by detecting the output of the measurement signal output device after receiving the trigger signal and before receiving the next trigger signal; ,
A time adjusting unit that adjusts one or more of the times T1, T2, T3, and T4 so that the difference between the time T1 and the time T4 and the difference between the time T3 and the time T2 are equal;
With
The repetition frequency of the detected light pulse is different from the repetition frequency of the probe light pulse,
The time from when the detected light pulse is output from the detected light pulse output unit to when it is given to the trigger signal output device is T1,
The time from when the probe light pulse is output from the probe light source to when it is given to the measurement signal output device is T2,
The time from when the detected light pulse is output from the detected light pulse output unit to when it is given to the measurement signal output device as the measurement light pulse is T3,
The time from when the probe light pulse is output from the probe light source to when the probe light pulse is given to the trigger signal output device is T4,
Light measuring device.
請求項1に記載の光測定装置であって、
前記測定用光パルスは、前記被検出光パルスが前記被測定物を透過したものである、
光測定装置。
The light measurement device according to claim 1,
The measurement light pulse is one in which the detected light pulse is transmitted through the object to be measured.
Light measuring device.
請求項1に記載の光測定装置であって、
前記時間調整部は、時間T4が時間T2に等しくなり、時間T3が時間T1に等しくなるようにする、
光測定装置。
The light measurement device according to claim 1,
The time adjustment unit causes time T4 to be equal to time T2 and time T3 to be equal to time T1.
Light measuring device.
JP2009150541A 2009-06-25 2009-06-25 Light measuring device Expired - Fee Related JP5461079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009150541A JP5461079B2 (en) 2009-06-25 2009-06-25 Light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009150541A JP5461079B2 (en) 2009-06-25 2009-06-25 Light measuring device

Publications (2)

Publication Number Publication Date
JP2011007590A true JP2011007590A (en) 2011-01-13
JP5461079B2 JP5461079B2 (en) 2014-04-02

Family

ID=43564440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009150541A Expired - Fee Related JP5461079B2 (en) 2009-06-25 2009-06-25 Light measuring device

Country Status (1)

Country Link
JP (1) JP5461079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045820A1 (en) * 2012-09-24 2014-03-27 株式会社アドバンテスト Optical measuring device, method, program, and recording medium
WO2021260752A1 (en) * 2020-06-22 2021-12-30 株式会社日立ハイテク Far-infrared spectroscopy device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096610A (en) * 1996-02-16 1998-04-14 Imra America Inc Comparison method for laser pulse, scanning method for high speed laser, high speed scanning laser device, short pulse laser device, distance measuring device, electric optical sampling/oscilloscope, short pulse laser stable control method
JP2002043664A (en) * 2000-07-24 2002-02-08 Sumitomo Heavy Ind Ltd Pulsed laser beam generator and x-ray generator utilizing the same
JP2003518617A (en) * 1999-12-28 2003-06-10 ピコメトリックス インコーポレイテッド System and method for monitoring changes in the state of matter by terahertz radiation
WO2006092874A1 (en) * 2005-03-01 2006-09-08 Osaka University High-resolution high-speed terahertz spectrometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096610A (en) * 1996-02-16 1998-04-14 Imra America Inc Comparison method for laser pulse, scanning method for high speed laser, high speed scanning laser device, short pulse laser device, distance measuring device, electric optical sampling/oscilloscope, short pulse laser stable control method
JP2003518617A (en) * 1999-12-28 2003-06-10 ピコメトリックス インコーポレイテッド System and method for monitoring changes in the state of matter by terahertz radiation
JP2002043664A (en) * 2000-07-24 2002-02-08 Sumitomo Heavy Ind Ltd Pulsed laser beam generator and x-ray generator utilizing the same
WO2006092874A1 (en) * 2005-03-01 2006-09-08 Osaka University High-resolution high-speed terahertz spectrometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. YASUI, 他: ""Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers"", REVIEW OF SCIENTIFIC INSTRUMENTS, vol. 70, no. 5, JPN6010022004, May 1999 (1999-05-01), pages 2218 - 2224, ISSN: 0002558777 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045820A1 (en) * 2012-09-24 2014-03-27 株式会社アドバンテスト Optical measuring device, method, program, and recording medium
JPWO2014045820A1 (en) * 2012-09-24 2016-08-18 株式会社アドバンテスト Optical measuring device, method, program, recording medium
US9846120B2 (en) 2012-09-24 2017-12-19 Advantest Corporation Light measurement apparatus, method, program and recording medium
KR101912671B1 (en) * 2012-09-24 2018-10-29 가부시키가이샤 아드반테스트 Optical measuring device, method, program, and recording medium
DE112013004646B4 (en) 2012-09-24 2021-09-16 Advantest Corporation Light measuring device, method, program and recording medium
WO2021260752A1 (en) * 2020-06-22 2021-12-30 株式会社日立ハイテク Far-infrared spectroscopy device
JP7361920B2 (en) 2020-06-22 2023-10-16 株式会社日立ハイテク far infrared spectrometer

Also Published As

Publication number Publication date
JP5461079B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
Gebs et al. High-speed asynchronous optical sampling with sub-50fs time resolution
US7675037B2 (en) Method and apparatus for measuring terahertz time-domain spectroscopy
JP6386655B2 (en) Terahertz wave generator and spectroscopic device using the same
JP6470343B2 (en) Pulse management device in pump-probe spectroscopy
JP5455721B2 (en) Terahertz wave measuring apparatus and measuring method
Hébert et al. Real-time dynamic atomic spectroscopy using electro-optic frequency combs
CN108287132B (en) Terahertz asynchronous high-speed scanning system trigger signal generation device and method
US8279438B2 (en) Optical measuring apparatus
JP5386582B2 (en) Optical measuring device and trigger signal generating device
JP5461079B2 (en) Light measuring device
JP5836479B2 (en) Time domain spectroscopic device and time domain spectroscopic analysis system
JP2007101370A (en) Terahertz spectral device
Sahoo et al. Ultrafast pump-probe signal detection using a data acquisition card
KR20100043463A (en) Terahertz frequency comb fourier transformation spectrometer and spectroscopic method
US10921290B2 (en) Laser ultrasonic testing
Struszewski et al. Asynchronous optical sampling for laser-based vector network analysis on coplanar waveguides
Granados et al. Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses
RU2743109C1 (en) Method for pumping-sensing spectroscopy (versions)
Yan et al. Application of electro-optic sampling in FEL diagnostics
JP2000258299A (en) Characteristic evaluating system for optical device
Martín-Mateos et al. Optical communication components characterization using electro-optic dual-combs
Fuchs et al. High resolution FROG system for the characterization of ps laser pulses
Yang et al. Time-wavelength optical sampling based on laser cavity tuning
Gaal et al. Frequency counter for optical frequencies up to 40 THz
Michaud-Belleau et al. Self-heterodyne interference spectroscopy using pseudo-noise modulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140115

R150 Certificate of patent or registration of utility model

Ref document number: 5461079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees