JP2011007114A - Oil temperature estimating device for internal combustion engine - Google Patents

Oil temperature estimating device for internal combustion engine Download PDF

Info

Publication number
JP2011007114A
JP2011007114A JP2009151755A JP2009151755A JP2011007114A JP 2011007114 A JP2011007114 A JP 2011007114A JP 2009151755 A JP2009151755 A JP 2009151755A JP 2009151755 A JP2009151755 A JP 2009151755A JP 2011007114 A JP2011007114 A JP 2011007114A
Authority
JP
Japan
Prior art keywords
oil temperature
temperature
internal combustion
cooling water
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009151755A
Other languages
Japanese (ja)
Inventor
Minoru Wada
実 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009151755A priority Critical patent/JP2011007114A/en
Publication of JP2011007114A publication Critical patent/JP2011007114A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately calculate estimated oil temperature of working fluid of a variable valve timing device.SOLUTION: An average value of start cooling water temperature THWst detected by a cooling water temperature sensor 26 and start intake air temperature THAst detected by an intake air temperature sensor 27 is corrected according to difference between the start cooling water temperature THWst and the start intake air temperature THAst at engine start, and start estimated oil temperature THOst (initial value of estimated oil temperature THO) is accurately calculated. Engine rotation speed is integrated after engine start (during engine operation), estimated oil temperature rise quantity ΔTHO is accurately calculated according to the integrated value of engine rotation speed, and estimated oil temperature THO is accurately determined by adding the estimated oil temperature rise quantity ΔTHO to the start estimated oil temperature THOst. If the estimated oil temperature THO gets higher than cooling water temperature THW (cooling water temperature detected by the cooling water temperature sensor 26), it is determined that actual oil temperature rises to temperature roughly same as cooling water temperature and the cooling water temperature THW is defined as the estimated oil temperature THO.

Description

本発明は、内燃機関又はその周辺装置に使用される作動油や潤滑油等の油温を推定する内燃機関の油温推定装置に関する発明である。   The present invention relates to an oil temperature estimation device for an internal combustion engine that estimates the oil temperature of hydraulic oil or lubricating oil used in the internal combustion engine or its peripheral devices.

近年、車両に搭載される内燃機関においては、出力向上、燃費節減、エミッション低減等を目的として、内燃機関の吸気バルブや排気バルブのバルブタイミング(開閉タイミング)を変化させる油圧駆動式の可変バルブタイミング装置を搭載したものが増加しつつある。この油圧駆動式の可変バルブタイミング装置は、内燃機関の始動直後等で作動油(エンジンオイル)の油温が低いときには、作動油の粘性が高くなって流動性が低下して、バルブタイミング制御の応答性(可変バルブタイミング装置の応答速度)が低下するという特性(図2参照)がある。   Recently, in an internal combustion engine mounted on a vehicle, a hydraulically driven variable valve timing that changes the valve timing (opening / closing timing) of an intake valve and an exhaust valve of the internal combustion engine for the purpose of improving output, reducing fuel consumption, and reducing emissions. The number of devices equipped with equipment is increasing. This hydraulically driven variable valve timing device has a high viscosity of hydraulic oil and a decrease in fluidity when the oil temperature of the hydraulic oil (engine oil) is low immediately after the start of the internal combustion engine. There is a characteristic (see FIG. 2) that the responsiveness (response speed of the variable valve timing device) is lowered.

そこで、特許文献1(特開平10−227235号公報)に記載されているように、可変バルブタイミング装置の作動油の油温を推定し、その推定油温が所定範囲外のときにバルブタイミングの調整範囲(可変バルブタイミング装置の作動範囲)を制限したり、推定油温が所定温度以下のときにバルブタイミング制御(可変バルブタイミング装置の作動)を禁止するようにしたものがある。このものでは、内燃機関の始動時に冷却水温センサで検出した冷却水温を推定油温の初期値として設定し、内燃機関の始動後(運転中)は、この推定油温の初期値と内燃機関の運転状態(回転速度、負荷等)とに基づいて推定油温を算出するようにしている。   Therefore, as described in Patent Document 1 (Japanese Patent Laid-Open No. 10-227235), the oil temperature of the hydraulic oil of the variable valve timing device is estimated, and when the estimated oil temperature is outside the predetermined range, the valve timing is There are some which limit the adjustment range (operation range of the variable valve timing device) or prohibit valve timing control (operation of the variable valve timing device) when the estimated oil temperature is lower than a predetermined temperature. In this system, the coolant temperature detected by the coolant temperature sensor when the internal combustion engine is started is set as the initial value of the estimated oil temperature. After the internal combustion engine is started (during operation), the initial value of the estimated oil temperature and the internal combustion engine The estimated oil temperature is calculated based on the operating state (rotation speed, load, etc.).

更に、推定油温の初期値を算出する技術として、特許文献2(特開2005−207297号公報)に記載されているように、内燃機関の始動時に、前回の機関停止時の検出水温と推定油温との差と、機関停止時間に応じた補正係数と、今回の機関始動時の検出水温とを用いて推定油温初期値を算出するようにしたものがある。   Furthermore, as a technique for calculating the initial value of the estimated oil temperature, as described in Patent Document 2 (Japanese Patent Laid-Open No. 2005-207297), when the internal combustion engine is started, it is estimated as the detected water temperature at the previous engine stop. There is one in which an estimated oil temperature initial value is calculated using a difference from the oil temperature, a correction coefficient corresponding to the engine stop time, and a detected water temperature at the time of the current engine start.

特開平10−227235号公報(第2頁等)Japanese Patent Laid-Open No. 10-227235 (second page, etc.) 特開2005−207297号公報(第2頁等)JP-A-2005-207297 (second page, etc.)

ところで、将来、益々厳しくなると予想される燃費節減やエミッション低減等の要求に対応するためには、推定油温の算出精度を向上させて、推定油温を利用する各種の制御(例えばバルブタイミング制御等の油温の影響を受けやすい制御)の制御性を向上させることが必要である。しかし、従来の油温の推定方法では、推定油温の算出精度を十分に向上させることができず、推定油温を利用した各種の制御の制御性を十分に向上させることができない。   By the way, in order to meet demands for fuel economy and emission reductions that are expected to become increasingly severe in the future, various calculations (for example, valve timing control) using the estimated oil temperature by improving the calculation accuracy of the estimated oil temperature are improved. It is necessary to improve the controllability of the control which is easily affected by the oil temperature. However, the conventional oil temperature estimation method cannot sufficiently improve the calculation accuracy of the estimated oil temperature, and cannot sufficiently improve the controllability of various controls using the estimated oil temperature.

また、油温を検出する油温センサを設けて、油温センサで実油温を精度良く検出することも考えられるが、この場合、油温センサを新たに設ける必要があり、近年の重要な技術的課題である低コスト化の要求を満たすことができない。   It is also possible to provide an oil temperature sensor that detects the oil temperature and to detect the actual oil temperature with high accuracy using the oil temperature sensor. However, in this case, it is necessary to provide a new oil temperature sensor. The demand for cost reduction, which is a technical issue, cannot be met.

そこで、本発明が解決しようとする課題は、推定油温の算出精度を向上させることができると共に、低コスト化の要求を満たすことができる内燃機関の油温推定装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide an oil temperature estimation device for an internal combustion engine that can improve the calculation accuracy of the estimated oil temperature and satisfy the demand for cost reduction.

上記課題を解決するために、請求項1に係る発明は、内燃機関又はその周辺装置に使用される油の推定油温を算出する内燃機関の油温推定装置において、内燃機関の回転速度を検出する回転速度検出手段と、この回転速度検出手段で検出した回転速度の積算値に基づいて推定油温を算出する油温推定手段とを備えた構成としたものである。   In order to solve the above-mentioned problem, the invention according to claim 1 is a device for estimating an oil temperature of an internal combustion engine that calculates an estimated oil temperature of oil used in the internal combustion engine or its peripheral device, and detects the rotational speed of the internal combustion engine. The rotational speed detecting means for detecting the oil temperature and the oil temperature estimating means for calculating the estimated oil temperature based on the integrated value of the rotational speeds detected by the rotational speed detecting means.

本発明者の研究によると、図4に示すように、内燃機関の回転速度の積算値と油温上昇量との間には相関関係があり、内燃機関の回転速度の積算値が大きくなるほど内燃機関から油に伝達される熱量が増加して油温上昇量が大きくなるという特性があることが判明した。この特性に着目して、本発明は、内燃機関の回転速度の積算値に基づいて推定油温を算出するようにしたので、内燃機関の回転速度の積算値と油温上昇量との関係を用いて、内燃機関の回転速度の積算値から推定油温を精度良く算出することができる。これにより、推定油温を利用した各種の制御(例えばバルブタイミング制御等の油温の影響を受けやすい制御)の制御性を向上させることができる。しかも、油温を検出する油温センサを新たに設ける必要がないため、近年の重要な技術的課題である低コスト化の要求を満たすことができる。   According to the research of the present inventor, as shown in FIG. 4, there is a correlation between the integrated value of the rotational speed of the internal combustion engine and the oil temperature increase amount, and the internal combustion engine increases as the integrated value of the rotational speed of the internal combustion engine increases. It has been found that there is a characteristic that the amount of heat transferred from the engine to the oil increases and the oil temperature rise increases. Focusing on this characteristic, the present invention calculates the estimated oil temperature based on the integrated value of the rotational speed of the internal combustion engine. Therefore, the relationship between the integrated value of the rotational speed of the internal combustion engine and the amount of increase in the oil temperature is obtained. By using this, the estimated oil temperature can be accurately calculated from the integrated value of the rotational speed of the internal combustion engine. Thereby, the controllability of various controls using the estimated oil temperature (for example, control that is easily influenced by the oil temperature such as valve timing control) can be improved. Moreover, since it is not necessary to newly provide an oil temperature sensor for detecting the oil temperature, it is possible to satisfy the demand for cost reduction, which is an important technical problem in recent years.

図3に示すように、内燃機関の始動後は、冷却水温と油温が徐々に上昇するが、冷却水温が油温よりも早く上昇して冷却水温が油温よりも高くなる傾向があり、その後、最終的に油温が冷却水温とほぼ同じ温度まで上昇して、内燃機関の暖機後は、冷却水温と油温がほぼ同じ温度になる。そして、内燃機関の停止後は、冷却水温と油温が徐々に低下して、最終的にソーク後(内燃機関の停止から所定時間以上が経過した後)は、冷却水温と油温と吸気温がほぼ同じ温度(ほぼ外気温)になる。   As shown in FIG. 3, after the internal combustion engine is started, the cooling water temperature and the oil temperature gradually rise, but the cooling water temperature tends to rise earlier than the oil temperature and the cooling water temperature tends to be higher than the oil temperature. Thereafter, the oil temperature finally rises to substantially the same temperature as the cooling water temperature, and after the internal combustion engine is warmed up, the cooling water temperature and the oil temperature become substantially the same temperature. Then, after the internal combustion engine is stopped, the cooling water temperature and the oil temperature gradually decrease, and finally after the soak (after a predetermined time or more has passed since the internal combustion engine stopped), the cooling water temperature, the oil temperature, and the intake air temperature. Become almost the same temperature (almost outside temperature).

このような冷却水温と油温と吸気温の関係を考慮して、請求項2のように、内燃機関の冷却水温を検出する冷却水温検出手段と、内燃機関の吸気温を検出する吸気温検出手段とを備え、内燃機関の始動時に冷却水温検出手段で検出した冷却水温と吸気温検出手段で検出した吸気温とに基づいて始動時推定油温(推定油温の初期値)を算出するようにしても良い。このようにすれば、冷却水温と油温と吸気温との関係を用いて、始動時の冷却水温と始動時の吸気温から始動時推定油温を精度良く算出することができる。   In consideration of the relationship between the cooling water temperature, the oil temperature, and the intake air temperature, the cooling water temperature detecting means for detecting the cooling water temperature of the internal combustion engine and the intake air temperature detection for detecting the intake air temperature of the internal combustion engine as in claim 2. Means for calculating an estimated starting oil temperature (initial value of the estimated oil temperature) based on the cooling water temperature detected by the cooling water temperature detecting means and the intake air temperature detected by the intake air temperature detecting means when the internal combustion engine is started Anyway. In this way, the estimated estimated oil temperature can be accurately calculated from the coolant temperature at the start and the intake air temperature at the start using the relationship between the coolant temperature, the oil temperature, and the intake air temperature.

具体的には、請求項3のように、内燃機関の始動時に冷却水温と吸気温との平均値を冷却水温と吸気温との偏差に応じて補正して始動時推定油温を求めるようにすると良い。本発明者の研究によると、内燃機関の始動時に冷却水温と吸気温との平均値を、冷却水温と吸気温との偏差に応じて補正することで、始動時推定油温を精度良く算出できることが判明した。   Specifically, as described in claim 3, when starting the internal combustion engine, the average value of the cooling water temperature and the intake air temperature is corrected according to the deviation between the cooling water temperature and the intake air temperature to obtain the estimated oil temperature at the time of starting. Good. According to the research of the present inventor, it is possible to accurately calculate the estimated oil temperature at the time of starting by correcting the average value of the cooling water temperature and the intake air temperature according to the deviation between the cooling water temperature and the intake air temperature when starting the internal combustion engine. There was found.

更に、請求項4のように、内燃機関の始動後に回転速度の積算値に基づいて推定油温上昇量を算出し、該推定油温上昇量を始動時推定油温に加算して推定油温を求めるようにすると良い。このようにすれば、精度良く算出した始動時推定油温に、精度良く算出した推定油温上昇量を加算して、推定油温を精度良く求めることができる。   Further, as in claim 4, after the internal combustion engine is started, an estimated oil temperature increase amount is calculated based on the integrated value of the rotational speed, and the estimated oil temperature increase amount is added to the estimated oil temperature at the start time to estimate the oil temperature. It is better to ask. In this manner, the estimated oil temperature can be obtained with high accuracy by adding the estimated oil temperature increase amount calculated with high accuracy to the estimated oil temperature at start-up with high accuracy.

前述したように、内燃機関の始動後は、冷却水温と油温が徐々に上昇するが、冷却水温が油温よりも早く上昇して冷却水温が油温よりも高くなる傾向があり、その後、最終的に油温が冷却水温とほぼ同じ温度まで上昇するという挙動を示す。   As described above, after starting the internal combustion engine, the cooling water temperature and the oil temperature gradually increase, but the cooling water temperature tends to rise earlier than the oil temperature and the cooling water temperature tends to be higher than the oil temperature. Eventually, the oil temperature rises to almost the same temperature as the cooling water temperature.

このような冷却水温と油温の挙動を考慮して、請求項5のように、推定油温が冷却水温よりも高くなったときに冷却水温を推定油温とするようにしても良い。このようにすれば、推定油温が冷却水温よりも高くなったときに、実油温が冷却水温とほぼ同じ温度まで上昇したと判断して、冷却水温を推定油温とすることができる。これにより、推定油温が冷却水温よりも高くなる誤推定を未然に防止できる。   In consideration of such behavior of the cooling water temperature and the oil temperature, the cooling water temperature may be set to the estimated oil temperature when the estimated oil temperature becomes higher than the cooling water temperature as in the fifth aspect. In this way, when the estimated oil temperature becomes higher than the cooling water temperature, it is determined that the actual oil temperature has risen to substantially the same temperature as the cooling water temperature, and the cooling water temperature can be made the estimated oil temperature. Thereby, it is possible to prevent an erroneous estimation that the estimated oil temperature is higher than the cooling water temperature.

ところで、内燃機関の燃料カット時には、通常運転時(燃料噴射時)に比べて、内燃機関の発熱量が減少するため、内燃機関の回転速度の積算値と油温上昇量との関係が変化する。   By the way, at the time of fuel cut of the internal combustion engine, the amount of heat generated by the internal combustion engine is reduced compared to that at the time of normal operation (fuel injection), so the relationship between the integrated value of the rotational speed of the internal combustion engine and the oil temperature increase amount changes. .

そこで、請求項6のように、内燃機関の燃料カット時に推定油温を算出する際に回転速度の積算値を補正するようにしても良い。このようにすれば、内燃機関の燃料カット時に、内燃機関の回転速度の積算値と油温上昇量との関係が変化するのに対応して、回転速度の積算値を補正することができ、回転速度の積算値と油温上昇量との関係が変化しても、補正後の回転速度の積算値から推定油温上昇量を精度良く求めることができ、燃料カット時の推定油温の算出精度を向上させることができる。   Therefore, as in claim 6, when the estimated oil temperature is calculated at the time of fuel cut of the internal combustion engine, the integrated value of the rotational speed may be corrected. In this way, when the fuel of the internal combustion engine is cut, the cumulative value of the rotational speed can be corrected in response to the change in the relationship between the cumulative value of the rotational speed of the internal combustion engine and the oil temperature increase amount. Even if the relationship between the rotational speed integrated value and the oil temperature increase changes, the estimated oil temperature increase can be obtained accurately from the corrected integrated value of the rotational speed, and the estimated oil temperature at the time of fuel cut is calculated. Accuracy can be improved.

或は、請求項7のように、内燃機関の燃料カット時に推定油温を算出する際に回転速度の積算値から求める推定油温上昇量を補正するようにしても良い。このようにすれば、内燃機関の燃料カット時に、内燃機関の回転速度の積算値と油温上昇量との関係が変化するのに対応して、回転速度の積算値から求める油温上昇量を補正することができ、回転速度の積算値と油温上昇量との関係が変化しても、油温上昇量を精度良く求めることができ、燃料カット時の推定油温の算出精度を向上させることができる。   Or you may make it correct | amend the estimated oil temperature rise amount calculated | required from the integrated value of rotational speed when calculating an estimated oil temperature at the time of the fuel cut of an internal combustion engine like Claim 7. In this way, when the fuel of the internal combustion engine is cut, the oil temperature increase amount obtained from the rotational speed integrated value is calculated in response to the change in the relationship between the integrated value of the rotational speed of the internal combustion engine and the oil temperature increase amount. Even if the relationship between the accumulated value of the rotation speed and the oil temperature increase amount can be changed, the oil temperature increase amount can be obtained accurately, and the calculation accuracy of the estimated oil temperature at the time of fuel cut is improved. be able to.

図1は本発明の実施例1における可変バルブタイミング制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a variable valve timing control system in Embodiment 1 of the present invention. 図2は可変バルブタイミング装置の応答速度特性を示す図である。FIG. 2 is a diagram showing response speed characteristics of the variable valve timing device. 図3は冷却水温と油温と吸気温の挙動を示すタイムチャートである。FIG. 3 is a time chart showing the behavior of the cooling water temperature, the oil temperature, and the intake air temperature. 図4はエンジン回転速度の積算値と油温上昇量との関係を示す図である。FIG. 4 is a graph showing the relationship between the integrated value of the engine rotation speed and the oil temperature increase amount. 図5は補正係数のマップの一例を概念的に示す図である。FIG. 5 is a diagram conceptually illustrating an example of a correction coefficient map. 図6は実施例1の油温推定ルーチンの処理の流れを説明するフローチャートである。FIG. 6 is a flowchart for explaining the processing flow of the oil temperature estimation routine according to the first embodiment. 図7は実施例2の油温推定ルーチンの処理の流れを説明するフローチャートである。FIG. 7 is a flowchart for explaining the flow of processing of the oil temperature estimation routine of the second embodiment.

以下、本発明を実施するための形態を可変バルブタイミング装置の作動油の推定油温の算出に適用して具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments will be described which are embodied by applying the mode for carrying out the present invention to the calculation of the estimated oil temperature of the hydraulic oil of the variable valve timing device.

本発明の実施例1を図1乃至図6に基づいて説明する。
まず、図1に基づいて可変バルブタイミング制御システムの概略構成を説明する。
内燃機関であるエンジン11は、クランク軸12からの動力がタイミングチェーン13により各スプロケット14,15を介して吸気側カム軸16と排気側カム軸17とに伝達されるようになっている。吸気側カム軸16には、油圧駆動式の可変バルブタイミング装置18(VCT)が設けられ、この油圧駆動式の可変バルブタイミング装置18によってクランク軸12に対する吸気側カム軸16の回転位相(VCT位相)を変化させることで、吸気側カム軸16によって開閉駆動される吸気バルブ(図示せず)のバルブタイミングを変化させるようになっている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the variable valve timing control system will be described with reference to FIG.
In the engine 11 which is an internal combustion engine, the power from the crankshaft 12 is transmitted to the intake side camshaft 16 and the exhaust side camshaft 17 via the sprockets 14 and 15 by the timing chain 13. The intake side camshaft 16 is provided with a hydraulically driven variable valve timing device 18 (VCT), and the hydraulically driven variable valve timing device 18 rotates the intake side camshaft 16 relative to the crankshaft 12 (VCT phase). ) Is changed to change the valve timing of an intake valve (not shown) driven to open and close by the intake camshaft 16.

また、エンジン11の動力によって駆動されるオイルポンプ19により、オイルパン20内の作動油(オイル)が汲み上げられて油圧制御弁21に供給され、この油圧制御弁21によって可変バルブタイミング装置18の進角ポートや遅角ポートに供給する油圧(オイル量)が制御される。油圧制御弁21の入口ポート側には、オイルの逆流を防止する逆止弁22が設けられている。   Also, hydraulic oil (oil) in the oil pan 20 is pumped up and supplied to the hydraulic control valve 21 by the oil pump 19 driven by the power of the engine 11, and the variable valve timing device 18 is advanced by the hydraulic control valve 21. The oil pressure (oil amount) supplied to the angle port and the retard port is controlled. A check valve 22 is provided on the inlet port side of the hydraulic control valve 21 to prevent backflow of oil.

吸気側カム軸16の外周側には、気筒判別のために特定のカム角でカム角信号パルスを出力するカム角センサ23が設置され、一方、クランク軸12の外周側には、所定クランク角毎にクランク角信号パルスを出力するクランク角センサ24(回転速度検出手段)が設置されている。これらカム角センサ23及びクランク角センサ24の出力信号は、エンジン制御回路(以下「ECU」と表記する)25に入力され、このECU25によって吸気バルブの実バルブタイミング(実VCT位相)が演算されると共に、クランク角センサ24の出力パルスの周波数(パルス間隔)に基づいてエンジン回転速度が演算される。   A cam angle sensor 23 that outputs a cam angle signal pulse at a specific cam angle for cylinder discrimination is installed on the outer peripheral side of the intake side cam shaft 16, while a predetermined crank angle is provided on the outer peripheral side of the crank shaft 12. A crank angle sensor 24 (rotation speed detecting means) is provided for outputting a crank angle signal pulse every time. Output signals of the cam angle sensor 23 and the crank angle sensor 24 are input to an engine control circuit (hereinafter referred to as “ECU”) 25, and the ECU 25 calculates the actual valve timing (actual VCT phase) of the intake valve. At the same time, the engine speed is calculated based on the frequency (pulse interval) of the output pulses of the crank angle sensor 24.

また、エンジン11の冷却水温を検出する冷却水温センサ26(冷却水温検出手段)、エンジン11の吸気温を検出する吸気温センサ27(吸気温検出手段)等のエンジン運転状態を検出する各種センサの出力信号がECU25に入力される。このECU25は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射制御や点火制御を行う。   Further, various sensors for detecting the engine operating state, such as a cooling water temperature sensor 26 (cooling water temperature detecting means) for detecting the cooling water temperature of the engine 11, an intake air temperature sensor 27 (intake air temperature detecting means) for detecting the intake air temperature of the engine 11, etc. An output signal is input to the ECU 25. The ECU 25 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), thereby performing fuel injection control and ignition control according to the engine operating state.

また、ECU25は、図示しないバルブタイミング制御ルーチンを実行することで、エンジン運転状態に応じて目標バルブタイミング(目標VCT位相)を演算して、実バルブタイミング(実VCT位相)を目標バルブタイミング(目標VCT位相)に一致させるように油圧制御弁21の制御デューティを例えばPD制御等によりフィードバック制御して可変バルブタイミング装置18の進角ポートや遅角ポートに供給する油圧をフィードバック制御する。   Further, the ECU 25 executes a valve timing control routine (not shown) to calculate a target valve timing (target VCT phase) according to the engine operating state, and to calculate the actual valve timing (actual VCT phase) as the target valve timing (target VCT phase). The control duty of the hydraulic control valve 21 is feedback-controlled by, for example, PD control so as to coincide with the (VCT phase), and the hydraulic pressure supplied to the advance port and the retard port of the variable valve timing device 18 is feedback-controlled.

油圧駆動式の可変バルブタイミング装置18は、エンジン始動直後等で作動油(オイル)の油温が低いときには、作動油の粘性が高くなって流動性が低下して、バルブタイミング制御の応答性(VCT応答速度)が低下するという特性(図2参照)がある。   When the oil temperature of the hydraulic oil (oil) is low, such as immediately after the engine is started, the hydraulically driven variable valve timing device 18 increases the viscosity of the hydraulic oil and lowers the fluidity, and the responsiveness of the valve timing control ( There is a characteristic (see FIG. 2) that the VCT response speed is reduced.

そこで、本実施例1では、ECU25により後述する図6の油温推定ルーチンを実行することで、作動油の推定油温を次のようにして算出する。
図3に示すように、エンジン始動後は、冷却水温と油温が徐々に上昇するが、冷却水温が油温よりも早く上昇して冷却水温が油温よりも高くなる傾向があり、その後、最終的に油温が冷却水温とほぼ同じ温度まで上昇して、エンジン暖機後は、冷却水温と油温がほぼ同じ温度になる。そして、エンジン停止後は、冷却水温と油温が徐々に低下して、最終的にソーク後(エンジン停止から所定時間以上が経過した後)は、冷却水温と油温と吸気温がほぼ同じ温度(ほぼ外気温)になる。
Thus, in the first embodiment, the ECU 25 calculates the estimated oil temperature of the hydraulic oil as follows by executing an oil temperature estimation routine of FIG.
As shown in FIG. 3, after the engine is started, the cooling water temperature and the oil temperature gradually rise, but the cooling water temperature tends to rise earlier than the oil temperature and the cooling water temperature becomes higher than the oil temperature. Finally, the oil temperature rises to substantially the same temperature as the cooling water temperature, and after the engine is warmed up, the cooling water temperature and the oil temperature become substantially the same temperature. After the engine stops, the cooling water temperature and the oil temperature gradually decrease, and finally after soaking (after a predetermined time has elapsed since the engine stopped), the cooling water temperature, the oil temperature, and the intake air temperature are substantially the same temperature. (Almost outside temperature).

このような冷却水温と油温と吸気温の関係を考慮して、まず、エンジン始動時に、冷却水温センサ26で検出した始動時冷却水温THWstと吸気温センサ27で検出した始動時吸気温THAstとに基づいて始動時推定油温THOst(推定油温THOの初期値)を算出する。本発明者の研究によると、始動時冷却水温THWstと始動時吸気温THAstとの平均値を、始動時冷却水温THWstと始動時吸気温THAstとの偏差に応じて補正することで、始動時推定油温THOstを精度良く算出できることが判明した。   In consideration of the relationship between the cooling water temperature, the oil temperature, and the intake air temperature, first, when starting the engine, the starting cooling water temperature THWst detected by the cooling water temperature sensor 26 and the starting intake air temperature THAst detected by the intake air temperature sensor 27 Based on the equation, the estimated starting oil temperature THOst (initial value of the estimated oil temperature THO) is calculated. According to the study by the present inventor, the average value of the starting coolant temperature THWst and the starting intake air temperature THAst is corrected according to the deviation between the starting coolant temperature THWst and the starting intake air temperature THAst, thereby estimating the starting time. It was found that the oil temperature THOst can be calculated with high accuracy.

具体的には、図5に示す補正係数Kのマップを参照して、始動時冷却水温THWstに応じた補正係数Kを算出する。この補正係数Kのマップは、予め試験データや設計データ等に基づいて作成され、ECU25のROMに記憶されている。   Specifically, the correction coefficient K corresponding to the starting coolant temperature THWst is calculated with reference to the correction coefficient K map shown in FIG. The map of the correction coefficient K is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 25.

この後、始動時冷却水温THWstと始動時吸気温THAstと補正係数Kとを用いて次式により始動時推定油温THOstを求める。
THOst=(THWst+THAst)/2+(THWst−THAst)×K/2
Thereafter, the estimated starting oil temperature THOst is obtained by the following equation using the starting coolant temperature THWst, the starting intake air temperature THAst, and the correction coefficient K.
THOst = (THWst + THAst) / 2 + (THWst−THAst) × K / 2

これにより、始動時冷却水温THWstと始動時吸気温THAstとの平均値を、始動時冷却水温THWstと始動時吸気温THAstとの偏差に応じて補正して、始動時推定油温THOstを精度良く算出する。   Thus, the average value of the starting coolant temperature THWst and the starting intake air temperature THAst is corrected according to the deviation between the starting coolant temperature THWst and the starting intake air temperature THAst, and the estimated starting oil temperature THOst is accurately obtained. calculate.

そして、エンジン始動後(エンジン運転中)に、エンジン回転速度を積算して、そのエンジン回転速度の積算値に基づいて推定油温上昇量ΔTHOを算出する。本発明者の研究によると、図4に示すように、エンジン回転速度の積算値と油温上昇量との間には相関関係があり、エンジン回転速度の積算値が大きくなるほどエンジン11から作動油に伝達される熱量が増加して油温上昇量が大きくなるという特性があることが判明した。この特性に着目して、推定油温上昇量ΔTHOのマップ(図4に示すエンジン回転速度の積算値と油温上昇量との関係をマップ化したもの)を参照して、エンジン回転速度の積算値に応じた推定油温上昇量ΔTHOを精度良く算出する。この推定油温上昇量ΔTHOのマップは、予め試験データや設計データ等に基づいて作成され、ECU25のROMに記憶されている。   Then, after the engine is started (during engine operation), the engine rotational speed is integrated, and an estimated oil temperature increase amount ΔTHO is calculated based on the integrated value of the engine rotational speed. According to the research of the present inventor, as shown in FIG. 4, there is a correlation between the integrated value of the engine rotational speed and the oil temperature increase amount, and the hydraulic oil from the engine 11 increases as the integrated value of the engine rotational speed increases. It has been found that there is a characteristic that the amount of heat transferred to the oil increases and the oil temperature rise increases. Focusing on this characteristic, referring to a map of the estimated oil temperature increase ΔTHO (a map of the relationship between the integrated value of the engine rotation speed and the oil temperature increase shown in FIG. 4), the integration of the engine rotation speed The estimated oil temperature rise amount ΔTHO corresponding to the value is accurately calculated. The map of the estimated oil temperature increase ΔTHO is created in advance based on test data, design data, and the like, and is stored in the ROM of the ECU 25.

この後、始動時推定油温THOstに推定油温上昇量ΔTHOを加算して推定油温THOを求める。
THO=THOst+ΔTHO
これにより、精度良く算出した始動時推定油温THOstに、精度良く算出した推定油温上昇量ΔTHOを加算して、推定油温THOを精度良く求める。
Thereafter, the estimated oil temperature THO is obtained by adding the estimated oil temperature increase ΔTHO to the estimated estimated oil temperature THOst.
THO = THOst + ΔTHO
Thus, the estimated oil temperature increase THOst calculated accurately is added to the estimated oil temperature increase THOst calculated accurately to obtain the estimated oil temperature THO accurately.

前述したように、エンジン始動後は、冷却水温と油温が徐々に上昇するが、冷却水温が油温よりも早く上昇して冷却水温が油温よりも高くなる傾向があり、その後、最終的に油温が冷却水温とほぼ同じ温度まで上昇するという挙動を示す。このような冷却水温と油温の挙動を考慮して、推定油温THOが冷却水温THW(冷却水温センサ26で検出した冷却水温)よりも高くなったときには、実油温が冷却水温とほぼ同じ温度まで上昇したと判断して、冷却水温THWを推定油温THOとする。   As described above, after starting the engine, the cooling water temperature and the oil temperature gradually rise, but the cooling water temperature tends to rise earlier than the oil temperature and the cooling water temperature tends to be higher than the oil temperature. The oil temperature rises to almost the same temperature as the cooling water temperature. Considering the behavior of the cooling water temperature and the oil temperature, when the estimated oil temperature THO is higher than the cooling water temperature THW (the cooling water temperature detected by the cooling water temperature sensor 26), the actual oil temperature is almost the same as the cooling water temperature. It is determined that the temperature has risen, and the coolant temperature THW is set to the estimated oil temperature THO.

ECU25は、以上のようにして求めた推定油温THOを各種の制御に利用する。
例えば、バルブタイミング制御において、実バルブタイミングを目標バルブタイミングに一致させるように油圧制御弁21の制御デューティをフィードバック制御して可変バルブタイミング装置18に供給する油圧をフィードバック制御する際に、推定油温THOに応じて油圧制御弁21の制御デューティを補正する。或は、推定油温THOが所定範囲外のときにバルブタイミングの調整範囲(可変バルブタイミング装置18の作動範囲)を制限したり、推定油温THOが所定温度以下のときにバルブタイミング制御(可変バルブタイミング装置18の作動)を禁止するようにしても良い。
The ECU 25 uses the estimated oil temperature THO obtained as described above for various controls.
For example, in the valve timing control, when the control duty of the hydraulic control valve 21 is feedback-controlled so that the actual valve timing matches the target valve timing and the hydraulic pressure supplied to the variable valve timing device 18 is feedback-controlled, the estimated oil temperature The control duty of the hydraulic control valve 21 is corrected according to THO. Alternatively, when the estimated oil temperature THO is outside the predetermined range, the valve timing adjustment range (operation range of the variable valve timing device 18) is limited, or when the estimated oil temperature THO is equal to or lower than the predetermined temperature, the valve timing control (variable). The operation of the valve timing device 18 may be prohibited.

また、トルク制御において、要求軸トルクに、内部損失トルク、フリクションロス(機械摩擦損失)、ポンピング損失等を加算して要求図示トルクを算出し、この要求図示トルクを実現するように燃料噴射量、点火時期、スロットル開度等を制御する際に、油温に応じてフリクションロスが変化するため、推定油温THO等に基づいてフリクションロスを算出する。   In the torque control, the required indicated torque is calculated by adding the internal loss torque, friction loss (mechanical friction loss), pumping loss, etc. to the required shaft torque, and the fuel injection amount to realize the required indicated torque, When controlling the ignition timing, the throttle opening, etc., the friction loss changes according to the oil temperature, so the friction loss is calculated based on the estimated oil temperature THO.

以下、ECU25が実行する図6の油温推定ルーチンの処理内容を説明する。
図6に示す油温推定ルーチンは、ECU25の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう油温推定手段手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、IGスイッチ(イグニッションスイッチ)がオフからオンに切り換えられた直後であるか否かによって、エンジン始動時であるか否かを判定する。
Hereinafter, the processing content of the oil temperature estimation routine of FIG. 6 executed by the ECU 25 will be described.
The oil temperature estimation routine shown in FIG. 6 is repeatedly executed at a predetermined cycle while the ECU 25 is turned on, and serves as oil temperature estimation means in the claims. When this routine is started, first, at step 101, it is determined whether or not the engine is being started based on whether or not the IG switch (ignition switch) has just been switched from OFF to ON.

このステップ101で、エンジン始動時である(IGスイッチがオフからオンに切り換えられた直後である)と判定されれば、ステップ102に進み、冷却水温センサ26で検出した始動時冷却水温THWstを読み込んだ後、ステップ103に進み、吸気温センサ27で検出した始動時吸気温THAstを読み込む。   If it is determined in step 101 that the engine is being started (immediately after the IG switch is switched from OFF to ON), the process proceeds to step 102, and the starting coolant temperature THWst detected by the coolant temperature sensor 26 is read. Thereafter, the routine proceeds to step 103, where the start-time intake air temperature THAst detected by the intake air temperature sensor 27 is read.

この後、ステップ104に進み、図5に示す補正係数Kのマップを参照して、始動時冷却水温THWstに応じた補正係数Kを算出した後、ステップ105に進み、始動時冷却水温THWstと始動時吸気温THAstと補正係数Kとを用いて次式により始動時推定油温THOst(推定油温THOの初期値)を求める。
THOst=(THWst+THAst)/2+(THWst−THAst)×K/2
Thereafter, the process proceeds to step 104, and the correction coefficient K corresponding to the starting coolant temperature THWst is calculated with reference to the correction coefficient K map shown in FIG. 5, and then the process proceeds to step 105, where the starting coolant temperature THWst and the starting coolant temperature are started. The estimated starting oil temperature THOst (initial value of the estimated oil temperature THO) is obtained by the following equation using the hour intake temperature THAst and the correction coefficient K.
THOst = (THWst + THAst) / 2 + (THWst−THAst) × K / 2

これにより、始動時冷却水温THWstと始動時吸気温THAstとの平均値を、始動時冷却水温THWstと始動時吸気温THAstとの偏差に応じて補正して、始動時推定油温THOstを精度良く算出する。   Thus, the average value of the starting coolant temperature THWst and the starting intake air temperature THAst is corrected according to the deviation between the starting coolant temperature THWst and the starting intake air temperature THAst, and the estimated starting oil temperature THOst is accurately obtained. calculate.

一方、上記ステップ101で、エンジン始動時ではない(IGスイッチがオフからオンに切り換えられた直後ではない)と判定された場合には、ステップ106に進み、エンジン始動後(エンジン始動完了後)であるか否かを判定し、エンジン始動前(エンジン始動完了前)であると判定されれば、ステップ107に進み、エンジン回転速度の積算値を「0」にリセットした後、ステップ108に進み、推定油温上昇量ΔTHOを「0」にリセットする。   On the other hand, if it is determined in step 101 that the engine is not started (not immediately after the IG switch is switched from OFF to ON), the process proceeds to step 106 and after the engine is started (after completion of the engine start). If it is determined whether or not the engine has been started (before engine start is completed), the process proceeds to step 107, the integrated value of the engine speed is reset to “0”, and then the process proceeds to step 108. The estimated oil temperature rise amount ΔTHO is reset to “0”.

その後、上記ステップ106で、エンジン始動後(エンジン始動完了後)であると判定された場合には、ステップ109に進み、現在のエンジン回転速度を読み込んだ後、ステップ110に進み、前回までのエンジン回転速度の積算値に今回のエンジン回転速度を加算してエンジン回転速度の積算値を更新する。   Thereafter, if it is determined in step 106 that the engine has been started (after completion of engine start), the process proceeds to step 109, the current engine speed is read, the process proceeds to step 110, and the engine up to the previous time is read. The current engine rotational speed is added to the rotational speed integrated value to update the engine rotational speed integrated value.

この後、ステップ111に進み、推定油温上昇量ΔTHOのマップ(図4に示すエンジン回転速度の積算値と油温上昇量との関係をマップ化したもの)を参照して、エンジン回転速度の積算値に応じた推定油温上昇量ΔTHOを算出する。   Thereafter, the process proceeds to step 111, and a map of the estimated oil temperature rise amount ΔTHO (a map of the relationship between the integrated value of the engine speed and the oil temperature rise amount shown in FIG. 4) is referred to. An estimated oil temperature increase amount ΔTHO corresponding to the integrated value is calculated.

この後、ステップ112に進み、始動時推定油温THOstに推定油温上昇量ΔTHOを加算して推定油温THOを求める。
THO=THOst+ΔTHO
これにより、精度良く算出した始動時推定油温THOstに、精度良く算出した推定油温上昇量ΔTHOを加算して、推定油温THOを精度良く求める。
After this, the routine proceeds to step 112, where the estimated oil temperature THO is obtained by adding the estimated oil temperature increase ΔTHO to the starting estimated oil temperature THOst.
THO = THOst + ΔTHO
Thus, the estimated oil temperature increase THOst calculated accurately is added to the estimated oil temperature increase THOst calculated accurately to obtain the estimated oil temperature THO accurately.

この後、ステップ113に進み、推定油温THOが現在の冷却水温THW(冷却水温センサ26で検出した冷却水温)以下であるか否かを判定し、推定油温THOが冷却水温THW以下であると判定されれば、そのまま本ルーチンを終了する。   Thereafter, the routine proceeds to step 113, where it is determined whether or not the estimated oil temperature THO is equal to or lower than the current cooling water temperature THW (cooling water temperature detected by the cooling water temperature sensor 26), and the estimated oil temperature THO is equal to or lower than the cooling water temperature THW. If it is determined, the routine is terminated as it is.

一方、上記ステップ113で、推定油温THOが冷却水温THWよりも高いと判定された場合には、実油温が冷却水温とほぼ同じ温度まで上昇したと判断して、ステップ114に進み、現在の冷却水温THWを推定油温THOとする。   On the other hand, if it is determined in step 113 that the estimated oil temperature THO is higher than the cooling water temperature THW, it is determined that the actual oil temperature has risen to substantially the same temperature as the cooling water temperature, and the process proceeds to step 114. The cooling water temperature THW is assumed to be the estimated oil temperature THO.

以上説明した本実施例1では、エンジン始動時に、始動時冷却水温THWstと始動時吸気温THAstとの平均値を、始動時冷却水温THWstと始動時吸気温THAstとの偏差に応じて補正して、始動時推定油温THOstを精度良く算出し、エンジン始動後に、エンジン回転速度の積算値に応じて推定油温上昇量ΔTHOを精度良く算出し、この推定油温上昇量ΔTHOを始動時推定油温THOstに加算して推定油温THOを求めるようにしたので、推定油温THOを精度良く算出することができる。これにより、推定油温THOを利用した各種の制御(例えばバルブタイミング制御等の油温の影響を受けやすい制御)の制御性を向上させることができる。しかも、油温を検出する油温センサを新たに設ける必要がないため、近年の重要な技術的課題である低コスト化の要求を満たすことができる。   In the first embodiment described above, when the engine is started, the average value of the starting coolant temperature THWst and the starting intake air temperature THAst is corrected according to the deviation between the starting coolant temperature THWst and the starting intake air temperature THAst. Then, the estimated oil temperature THOst at the start is accurately calculated, and after the engine is started, the estimated oil temperature increase ΔTHO is accurately calculated according to the integrated value of the engine rotation speed, and this estimated oil temperature increase ΔTHO is calculated as the estimated oil temperature at the start Since the estimated oil temperature THO is obtained by adding to the temperature THOst, the estimated oil temperature THO can be calculated with high accuracy. Thereby, the controllability of various controls using the estimated oil temperature THO (for example, control that is easily influenced by the oil temperature such as valve timing control) can be improved. Moreover, since it is not necessary to newly provide an oil temperature sensor for detecting the oil temperature, it is possible to satisfy the demand for cost reduction, which is an important technical problem in recent years.

また、本実施例1では、推定油温THOが冷却水温THWよりも高くなったときには、実油温が冷却水温とほぼ同じ温度まで上昇したと判断して、冷却水温THWを推定油温THOとするようにしたので、推定油温THOが冷却水温THWよりも高くなる誤推定を未然に防止できる。   In the first embodiment, when the estimated oil temperature THO is higher than the cooling water temperature THW, it is determined that the actual oil temperature has risen to substantially the same temperature as the cooling water temperature, and the cooling water temperature THW is set to the estimated oil temperature THO. Thus, it is possible to prevent an erroneous estimation that the estimated oil temperature THO is higher than the coolant temperature THW.

次に、図7を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

エンジン11の燃料カット時には、通常運転時(燃料噴射時)に比べて、エンジン11の発熱量が減少するため、エンジン回転速度の積算値と油温上昇量ΔTHOとの関係が変化する。   When the fuel of the engine 11 is cut, the amount of heat generated by the engine 11 is reduced as compared with that during normal operation (during fuel injection), so the relationship between the integrated value of the engine speed and the oil temperature increase ΔTHO changes.

そこで、本実施例2では、ECU25により後述する図7の油温推定ルーチンを実行することで、エンジン11の燃料カット時に推定油温THOを算出する際に、エンジン回転速度の積算値を補正するようにしている。これにより、燃料カット時に、エンジン回転速度の積算値と油温上昇量との関係が変化するのに対応して、エンジン回転速度の積算値を補正する。   Therefore, in the second embodiment, the ECU 25 executes an oil temperature estimation routine shown in FIG. 7 to be described later, thereby correcting the integrated value of the engine speed when calculating the estimated oil temperature THO when the fuel of the engine 11 is cut. I am doing so. As a result, at the time of fuel cut, the integrated value of the engine rotational speed is corrected in response to a change in the relationship between the integrated value of the engine rotational speed and the oil temperature increase amount.

図7のルーチンは、前記実施例1で説明した図6のルーチンのステップ110の処理を、ステップ110a〜110cの処理に変更したものであり、それ以外の各ステップの処理は図6と同じである。   The routine of FIG. 7 is obtained by changing the processing of step 110 of the routine of FIG. 6 described in the first embodiment to the processing of steps 110a to 110c, and the processing of each other step is the same as that of FIG. is there.

図7の油温推定ルーチンでは、ステップ106で、エンジン始動後(エンジン始動完了後)であると判定された場合に、ステップ109に進み、現在のエンジン回転速度を読み込んだ後、ステップ110aに進み、燃料カット中であるか否かを判定する。   In the oil temperature estimation routine of FIG. 7, if it is determined in step 106 that the engine has been started (after completion of the engine start), the process proceeds to step 109, the current engine speed is read, and then the process proceeds to step 110a. Then, it is determined whether or not the fuel is being cut.

このステップ110aで、燃料カット中ではないと判定された場合には、ステップ110bに進み、通常運転時の方法(図6のステップ110と同じ方法)で、エンジン回転速度の積算値を算出する。この場合、前回までのエンジン回転速度の積算値に今回のエンジン回転速度を加算してエンジン回転速度の積算値を更新する。   If it is determined in step 110a that the fuel cut is not in progress, the process proceeds to step 110b, and the integrated value of the engine speed is calculated by the method during normal operation (the same method as step 110 in FIG. 6). In this case, the current engine rotational speed is added to the previous integrated value of the engine rotational speed to update the integrated value of the engine rotational speed.

一方、上記ステップ110aで、燃料カット中であると判定された場合には、ステップ110cに進み、燃料カット時の方法で、エンジン回転速度の積算値を算出する。この場合、例えば、今回のエンジン回転速度を減少方向に補正し、この補正後のエンジン回転速度を前回までのエンジン回転速度の積算値に加算してエンジン回転速度の積算値を更新することで、エンジン回転速度の積算値を減少方向に補正する。或は、前回までのエンジン回転速度の積算値に今回のエンジン回転速度を加算してエンジン回転速度の積算値を求めた後、このエンジン回転速度の積算値を減少方向に補正するようにしても良い。これにより、燃料カット時は、通常運転時(燃料噴射時)に比べて、エンジン回転速度を積算する際の積算割合を減少させる。   On the other hand, if it is determined in step 110a that the fuel is being cut, the process proceeds to step 110c, and an integrated value of the engine speed is calculated by the method at the time of fuel cut. In this case, for example, by correcting the current engine rotational speed in a decreasing direction, adding the corrected engine rotational speed to the previous accumulated engine rotational speed, and updating the accumulated engine rotational speed, Correct the integrated value of the engine speed in the decreasing direction. Alternatively, after adding the current engine rotational speed to the previous integrated value of the engine rotational speed to obtain the integrated value of the engine rotational speed, the integrated value of the engine rotational speed may be corrected in the decreasing direction. good. Thereby, at the time of fuel cut, compared with the time of normal operation (at the time of fuel injection), the integration rate at the time of integrating the engine speed is reduced.

この後、ステップ111に進み、推定油温上昇量ΔTHOのマップ(図4に示すエンジン回転速度の積算値と油温上昇量との関係をマップ化したもの)を参照して、エンジン回転速度の積算値に応じた推定油温上昇量ΔTHOを算出する。   Thereafter, the process proceeds to step 111, and a map of the estimated oil temperature rise amount ΔTHO (a map of the relationship between the integrated value of the engine speed and the oil temperature rise amount shown in FIG. 4) is referred to. An estimated oil temperature increase amount ΔTHO corresponding to the integrated value is calculated.

以上説明した本実施例2では、燃料カット時に推定油温を算出する際に、エンジン回転速度の積算値を補正するようにしたので、燃料カット時に、エンジン回転速度の積算値と油温上昇量との関係が変化するのに対応して、エンジン回転速度の積算値を補正することができ、エンジン回転速度の積算値と油温上昇量との関係が変化しても、補正後のエンジン回転速度の積算値から推定油温上昇量ΔTHOを精度良く求めることができ、燃料カット時の推定油温THOの算出精度を向上させることができる。   In the above-described second embodiment, when the estimated oil temperature is calculated when the fuel is cut, the integrated value of the engine speed is corrected. Therefore, the integrated value of the engine speed and the oil temperature increase amount are calculated when the fuel is cut. The integrated value of the engine speed can be corrected in response to the change in the relationship between the engine speed and the corrected engine The estimated oil temperature rise amount ΔTHO can be accurately obtained from the integrated value of the speed, and the calculation accuracy of the estimated oil temperature THO at the time of fuel cut can be improved.

尚、上記実施例2では、燃料カット時に推定油温THOを算出する際に、エンジン回転速度の積算値を補正するようにしたが、燃料カット時に推定油温THOを算出する際に、エンジン回転速度の積算値から求める推定油温上昇量ΔTHOを補正するようにしても良い。このようにすれば、燃料カット時に、エンジン回転速度の積算値と油温上昇量との関係が変化するのに対応して、エンジン回転速度の積算値から求める推定油温上昇量ΔTHOを補正することができ、エンジン回転速度の積算値と油温上昇量との関係が変化しても、推定油温上昇量ΔTHOを精度良く求めることができ、燃料カット時の推定油温THOの算出精度を向上させることができる。   In the second embodiment, when the estimated oil temperature THO is calculated when the fuel is cut, the integrated value of the engine rotation speed is corrected. However, when the estimated oil temperature THO is calculated when the fuel is cut, the engine rotation is corrected. You may make it correct | amend estimated oil temperature rise amount (DELTA) THO calculated | required from the integrated value of speed. In this way, when the fuel is cut, the estimated oil temperature increase ΔTHO obtained from the engine rotation speed integrated value is corrected in response to a change in the relationship between the engine rotation speed integrated value and the oil temperature increase amount. Even if the relationship between the integrated value of the engine speed and the oil temperature increase amount changes, the estimated oil temperature increase amount ΔTHO can be obtained accurately, and the calculation accuracy of the estimated oil temperature THO at the time of fuel cut can be obtained. Can be improved.

或は、燃料カット時用の推定油温上昇量ΔTHOのマップ(燃料カット中のエンジン回転速度の積算値と推定油温上昇量ΔTHOとの関係を規定したマップ)を作成しておき、燃料カット時は、燃料カット時用の推定油温上昇量ΔTHOのマップを参照して、エンジン回転速度の積算値に応じた推定油温上昇量ΔTHOを算出するようにしても良い。   Alternatively, a map of the estimated oil temperature increase ΔTHO for fuel cut (a map that defines the relationship between the integrated value of the engine speed during fuel cut and the estimated oil temperature increase ΔTHO) is prepared in advance. In some cases, the estimated oil temperature increase ΔTHO corresponding to the integrated value of the engine speed may be calculated with reference to a map of the estimated oil temperature increase ΔTHO for fuel cut.

また、本発明は、吸気側の可変バルブタイミング装置の作動油の推定油温の算出に限定されず、エンジン又はその周辺装置(例えば、排気側の可変バルブタイミング装置、吸気側又は排気側の可変バルブリフト装置、パワーステアリング装置等)に使用される潤滑油や作動油の推定油温の算出に広く適用して実施できる。   Further, the present invention is not limited to the calculation of the estimated oil temperature of the hydraulic fluid of the variable valve timing device on the intake side, but the engine or its peripheral devices (for example, the variable valve timing device on the exhaust side, the variable on the intake side or the exhaust side). The present invention can be widely applied to the calculation of the estimated oil temperature of lubricating oil and hydraulic oil used in valve lift devices, power steering devices, and the like.

11…エンジン(内燃機関)、12…クランク軸、16…吸気側カム軸、17…排気側カム軸、18…可変バルブタイミング装置、19…オイルポンプ、21…油圧制御弁、23…カム角センサ、24…クランク角センサ(回転速度検出手段)、25…ECU(油温推定手段)、26…冷却水温センサ(冷却水温検出手段)、27…吸気温センサ(吸気温検出手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Crankshaft, 16 ... Intake side camshaft, 17 ... Exhaust side camshaft, 18 ... Variable valve timing device, 19 ... Oil pump, 21 ... Hydraulic control valve, 23 ... Cam angle sensor 24 ... Crank angle sensor (rotational speed detection means) 25 ... ECU (oil temperature estimation means) 26 ... Cooling water temperature sensor (cooling water temperature detection means) 27 ... Intake air temperature sensor (intake air temperature detection means)

Claims (7)

内燃機関又はその周辺装置に使用される油の推定油温を算出する内燃機関の油温推定装置において、
内燃機関の回転速度を検出する回転速度検出手段と、
前記回転速度検出手段で検出した回転速度の積算値に基づいて前記推定油温を算出する油温推定手段と
を備えていることを特徴とする内燃機関の油温推定装置。
In an oil temperature estimation device for an internal combustion engine that calculates an estimated oil temperature of oil used in the internal combustion engine or its peripheral device,
Rotation speed detection means for detecting the rotation speed of the internal combustion engine;
An oil temperature estimation device for an internal combustion engine, comprising: an oil temperature estimation unit that calculates the estimated oil temperature based on an integrated value of the rotation speed detected by the rotation speed detection unit.
内燃機関の冷却水温を検出する冷却水温検出手段と、
内燃機関の吸気温を検出する吸気温検出手段とを備え、
前記油温推定手段は、内燃機関の始動時に前記冷却水温検出手段で検出した冷却水温と前記吸気温検出手段で検出した吸気温とに基づいて始動時推定油温を算出する手段を有することを特徴とする請求項1に記載の内燃機関の油温推定装置。
Cooling water temperature detecting means for detecting the cooling water temperature of the internal combustion engine;
An intake air temperature detecting means for detecting the intake air temperature of the internal combustion engine,
The oil temperature estimating means includes means for calculating an estimated starting oil temperature based on the cooling water temperature detected by the cooling water temperature detecting means and the intake air temperature detected by the intake air temperature detecting means when the internal combustion engine is started. 2. The oil temperature estimating device for an internal combustion engine according to claim 1, wherein the oil temperature estimating device is an internal combustion engine.
前記油温推定手段は、内燃機関の始動時に前記冷却水温と前記吸気温との平均値を前記冷却水温と前記吸気温との偏差に応じて補正して前記始動時推定油温を求める手段を有することを特徴とする請求項2に記載の内燃機関の油温推定装置。   The oil temperature estimating means corrects an average value of the cooling water temperature and the intake air temperature according to a deviation between the cooling water temperature and the intake air temperature when starting the internal combustion engine, and obtains the estimated oil temperature at the start time. The oil temperature estimating device for an internal combustion engine according to claim 2, comprising: 前記油温推定手段は、内燃機関の始動後に前記回転速度の積算値に基づいて推定油温上昇量を算出し、該推定油温上昇量を前記始動時推定油温に加算して前記推定油温を求める手段を有することを特徴とする請求項2又は3に記載の内燃機関の油温推定装置。   The oil temperature estimating means calculates an estimated oil temperature increase amount based on an integrated value of the rotational speed after starting the internal combustion engine, and adds the estimated oil temperature increase amount to the estimated oil temperature at the time of starting to estimate the estimated oil temperature. 4. The oil temperature estimating apparatus for an internal combustion engine according to claim 2, further comprising means for obtaining a temperature. 前記油温推定手段は、前記推定油温が前記冷却水温よりも高くなったときに前記冷却水温を前記推定油温とする手段を有することを特徴とする請求項1乃至4のいずれかに記載の内燃機関の油温推定装置。   The said oil temperature estimation means has a means to make the said cooling water temperature into the said estimated oil temperature when the said estimated oil temperature becomes higher than the said cooling water temperature, The any one of Claim 1 thru | or 4 characterized by the above-mentioned. Oil temperature estimation device for internal combustion engine of 前記油温推定手段は、内燃機関の燃料カット時に前記推定油温を算出する際に前記回転速度の積算値を補正する手段を有することを特徴とする請求項1乃至5のいずれかに記載の内燃機関の油温推定装置。   The said oil temperature estimation means has a means to correct | amend the integrated value of the said rotational speed, when calculating the said estimated oil temperature at the time of the fuel cut of an internal combustion engine, The Claim 1 thru | or 5 characterized by the above-mentioned. An oil temperature estimating device for an internal combustion engine. 前記油温推定手段は、内燃機関の燃料カット時に前記推定油温を算出する際に前記回転速度の積算値から求める推定油温上昇量を補正する手段を有することを特徴とする請求項1乃至5のいずれかに記載の内燃機関の油温推定装置。   The said oil temperature estimation means has a means to correct | amend the estimated oil temperature rise amount calculated | required from the integrated value of the said rotational speed when calculating the said estimated oil temperature at the time of the fuel cut of an internal combustion engine. The oil temperature estimation device for an internal combustion engine according to any one of claims 5 to 6.
JP2009151755A 2009-06-26 2009-06-26 Oil temperature estimating device for internal combustion engine Pending JP2011007114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009151755A JP2011007114A (en) 2009-06-26 2009-06-26 Oil temperature estimating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009151755A JP2011007114A (en) 2009-06-26 2009-06-26 Oil temperature estimating device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011007114A true JP2011007114A (en) 2011-01-13

Family

ID=43564044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009151755A Pending JP2011007114A (en) 2009-06-26 2009-06-26 Oil temperature estimating device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011007114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194511A (en) * 2012-03-15 2013-09-30 Toyota Motor Corp Oil temperature estimating device for engine and vapor generation state estimating device for engine
JP2020084794A (en) * 2018-11-16 2020-06-04 株式会社やまびこ Portable engine work machine
JP7315117B1 (en) 2023-02-24 2023-07-26 スズキ株式会社 vehicle controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194511A (en) * 2012-03-15 2013-09-30 Toyota Motor Corp Oil temperature estimating device for engine and vapor generation state estimating device for engine
JP2020084794A (en) * 2018-11-16 2020-06-04 株式会社やまびこ Portable engine work machine
JP7315117B1 (en) 2023-02-24 2023-07-26 スズキ株式会社 vehicle controller

Similar Documents

Publication Publication Date Title
KR101028132B1 (en) Stop position control apparatus for internal combustion engine
US7470211B2 (en) Variable valve system of internal combustion engine and control method thereof
JP2008031973A (en) Variable valve timing control device for internal combustion engine
JP2009257198A (en) Diagnosis apparatus for internal combustion engine
JP2009138650A (en) Variable valve timing control device for internal combustion engine
JP2007009807A (en) Control device for internal combustion engine
JP4605512B2 (en) Control device for internal combustion engine
EP2093402B1 (en) Valve performance controller for internal combustion engine
JP4003187B2 (en) Variable valve timing control device for internal combustion engine
JP2002349300A (en) Valve timing control device of engine
JP2005188293A (en) Fuel injection control device of internal combustion engine
JPH10227235A (en) Valve timing controller for internal combustion engine
JP2006057524A (en) Engine revolution stopping control device
JP2016109116A (en) Method and system for controlling continuously variable valve timing
JP2005330856A (en) Control device for automobile
JP4304468B2 (en) Oil temperature estimation device for internal combustion engine
JP2011007114A (en) Oil temperature estimating device for internal combustion engine
JP5761572B2 (en) Control device for electric variable valve timing device
KR100779843B1 (en) Method for controlling pulse width modulation of variable valve timing apparatus
JP2010185433A (en) Catalyst warming-up control device for internal combustion engine
JP2018100599A (en) Control device for internal combustion engine and combustion chamber wall temperature estimation method
JP2007231861A (en) Oil temperature estimation device for internal combustion engine
JP2011202541A (en) Control device of internal combustion engine
JP2011252450A (en) Variable valve timing control device
JP2010255497A (en) Variable valve timing control device for internal combustion engine