JP2011006749A - Method for separating and collecting element coexisting in iron scrap - Google Patents

Method for separating and collecting element coexisting in iron scrap Download PDF

Info

Publication number
JP2011006749A
JP2011006749A JP2009152515A JP2009152515A JP2011006749A JP 2011006749 A JP2011006749 A JP 2011006749A JP 2009152515 A JP2009152515 A JP 2009152515A JP 2009152515 A JP2009152515 A JP 2009152515A JP 2011006749 A JP2011006749 A JP 2011006749A
Authority
JP
Japan
Prior art keywords
molten
iron scrap
phase
melt
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009152515A
Other languages
Japanese (ja)
Other versions
JP5481966B2 (en
Inventor
Hideki Ono
英樹 小野
Takaiku Yamamoto
高郁 山本
Masashi Nakamoto
将嗣 中本
Takeo Usui
建夫 碓井
Katsuhiro Yamaguchi
勝弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Osaka University NUC
Original Assignee
Osaka University NUC
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Sumitomo Metal Industries Ltd filed Critical Osaka University NUC
Priority to JP2009152515A priority Critical patent/JP5481966B2/en
Priority to PCT/JP2010/060840 priority patent/WO2010150873A1/en
Priority to CN2010800286193A priority patent/CN102803525A/en
Priority to KR1020117030749A priority patent/KR101368575B1/en
Publication of JP2011006749A publication Critical patent/JP2011006749A/en
Application granted granted Critical
Publication of JP5481966B2 publication Critical patent/JP5481966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/003Dry processes only remelting, e.g. of chips, borings, turnings; apparatus used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0056Scrap treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for effectively and economically separating and collecting elements such as copper which coexists in iron scrap.SOLUTION: This separation and collection method includes: melting the iron scrap; bringing the obtained melt of the iron scrap into contact with molten Ag to migrate the elements coexisting in the iron scrap to the molten Ag, on the basis of distribution equilibrium between the melt of the iron scrap and the molten Ag; and oxidizing the elements which have migrated to the molten Ag and removing the elements from the molten Ag. The melt of the iron scrap preferably contains C, and further preferably the C is dissolved and saturated in the melt.

Description

本発明は鉄スクラップにおいて鉄と共存する元素、特にトランプエレメントなどの金属元素の分離・回収方法に関する。   The present invention relates to a method for separating and recovering an element coexisting with iron in iron scrap, particularly a metal element such as a playing card element.

日本国内での鉄スクラップの蓄積は年々増加しており、2020年には約18億トンに達し、年5,000万トンの鉄スクラップが発生すると予想されている。市中鉄スクラップ中には、鉄からの除去が困難であり、また、鋼材の品質あるいは製造過程に悪影響を及ぼすトランプエレメントと称される微少な鉄以外の不純物成分(Cu,Ni,Cr,Sn,Znなど)が含まれるものが多く、我が国製鉄業が得意とする高級鋼材の原料としての使用が制約されている。   The accumulation of iron scrap in Japan is increasing year by year, reaching about 1.8 billion tons in 2020, and 50 million tons of iron scrap is expected to be generated annually. In commercial iron scrap, it is difficult to remove from iron, and impurity components other than small iron (Cu, Ni, Cr, Sn) called trump elements that adversely affect the quality or manufacturing process of steel materials. , Zn, etc.) are often contained, and the use as a raw material for high-grade steel materials that the Japanese steel industry is good at is restricted.

また、昨今、鉄資源以外にも有用稀少金属の高騰および枯渇の問題が現出しており、この観点から見た場合でも、鉄スクラップには上記の銅やクロムに加えて有用な金属(W,Mo,Co,Ni,V,Nb等)が含まれており、鉄スクラップに含まれている微少な鉄以外の成分を効率的に分離させ、これを回収することが可能となれば、国内で発生する鉄スクラップを輸出せず、国内での活用を拡大することが可能となる。   Recently, problems of soaring and depletion of useful rare metals have emerged in addition to iron resources, and even from this point of view, in addition to the above copper and chromium, useful metals (W, Mo, Co, Ni, V, Nb, etc.), and if it becomes possible to efficiently separate and recover the components other than the minute iron contained in the iron scrap, It is possible to expand domestic use without exporting the generated iron scrap.

鉄スクラップより銅を除去する方法としては、鉄−アルカリ金属およびアルカリ土類金属系の硫化物と炭素飽和鉄間の銅の分配を利用して、溶鉄から銅を除去する技術がある(非特許文献1)。   As a method for removing copper from iron scrap, there is a technique for removing copper from molten iron by utilizing copper distribution between iron-alkali metal and alkaline earth metal sulfides and carbon-saturated iron (non-patent). Reference 1).

この方法では100kg/t−metalのフラックス原単位で65〜75%の脱銅率を達成できるが、脱銅効率は十分ではなく、さらに脱銅率を向上するためにはフラックスの量を増加させる必要があり、経済的観点から問題がある。   In this method, a copper removal rate of 65 to 75% can be achieved with a flux unit of 100 kg / t-metal, but the copper removal efficiency is not sufficient, and in order to further improve the copper removal rate, the amount of flux is increased. There is a problem from an economic point of view.

また、多量のアルカリ金属を含む硫化物フラックスを利用することからフラックスの処理も問題となる。
特許文献1には、塩素ガスを用いて鉄に対して銅を選択的に反応させ、これを気体として除去する方法が報告されているが、塩素ガスを用いるので反応容器を完全密閉型にする必要があるとともに、塩素と反応しない反応容器の材質が問題となる。
Further, since a sulfide flux containing a large amount of alkali metal is used, the flux processing also becomes a problem.
Patent Document 1 reports a method of selectively reacting copper with iron using chlorine gas and removing it as a gas. However, since chlorine gas is used, the reaction vessel is made completely sealed. In addition to the necessity, the material of the reaction vessel that does not react with chlorine becomes a problem.

真空下での銅を選択的に蒸発させる蒸発精錬法も提案されているが、蒸発速度を高めるためには1873K以上の高温および少なくとも100Paの高真空が必要である。また、蒸発速度から試算した実用化に足る反応界面積は多大であり、実プロセスへの展開は困難である(非特許文献2)。   An evaporative refining method for selectively evaporating copper under vacuum has also been proposed, but in order to increase the evaporation rate, a high temperature of 1873 K or higher and a high vacuum of at least 100 Pa are required. Moreover, the reaction interface area sufficient for practical use calculated from the evaporation rate is enormous, and development to an actual process is difficult (Non-Patent Document 2).

特許文献2には鉄スクラップ中の銅を一旦鉛合金へ移行した後、鉛合金中の銅をアルミニウムを含む金属融体へ移行させることにより銅を除去する技術が考案されている。
しかし、この従来技術では溶融鉄に対して鉄スクラップ中から鉛合金への銅の移行と鉛合金中からアルミニウムを含む金属融体への銅の移行を別々に実施する必要があり、連続的に進行させることができない。
Patent Document 2 devises a technique for removing copper by once transferring copper in iron scrap to a lead alloy and then transferring copper in the lead alloy to a metal melt containing aluminum.
However, in this prior art, it is necessary to separately carry out the transfer of copper from iron scrap to lead alloy and the transfer of copper from lead alloy to a metal melt containing aluminum with respect to molten iron. Can't progress.

また、鉄スクラップからの鉛合金への銅の移行において、鉄に対する鉛合金への銅の分配(銅の平衡分配比=[質量%Cu]in Pb / [質量%Cu]in Fe−C、ここで、[質量%Cu]in Pbは鉛中の銅濃度を、[質量%Cu]in Fe−Cは鉄中の銅濃度を意味する。)は2:1程度と小さく、鉄中から銅を除去するためには多量の鉛合金が必要という問題がある。 Also, in the transfer of copper from iron scrap to lead alloy, the distribution of copper to the lead alloy relative to iron (equilibrium distribution ratio of copper = [mass% Cu] in Pb / [mass% Cu] in Fe-C , here [Mass% Cu] in Pb means the copper concentration in lead, and [mass% Cu] in Fe-C means the copper concentration in iron.) Is as small as about 2: 1. There is a problem that a large amount of lead alloy is required for removal.

以上のように、従来提案されてきた鉄スクラップからの銅の除去方法は、その効率や経済的観点から問題があり、実用化には至っていない。   As described above, the conventionally proposed methods for removing copper from iron scrap have problems from the viewpoint of efficiency and economy, and have not been put into practical use.

特開平6−248364JP-A-6-248364 特開平10−110224JP-A-10-110224

王潮、長坂徹也、日野光、萬谷志郎:鉄と鋼、77(1991)、644−651.Oshio, Tetsuya Nagasaka, Hikaru Hino, Shiro Sugaya: Iron and Steel, 77 (1991), 644-651. H.Ono−Nakazato,K.Taguchi,Y.Seike and T.Usui: ISIJ International,43(2003),1691−1697.H. Ono-Nakazato, K .; Taguchi, Y .; Seike and T.W. Usui: ISIJ International, 43 (2003), 1691-1697.

本発明は、鉄スクラップに共存する銅などの元素を効率的にかつ経済的に分離・回収する方法を提案し、鉄スクラップの利用を拡大することを目的とする。   The present invention proposes a method for efficiently and economically separating and recovering elements such as copper coexisting in iron scrap, and an object thereof is to expand the use of iron scrap.

本発明者らが検討した結果、鉄スクラップに共存する元素のうち、通常の酸化精錬では溶鉄から分離することが困難な元素であっても、鉄スクラップの溶融物に対する溶解度が特に低い溶融Agを媒体として間接的に酸化除去することにより、上記課題を解決することが可能であるとの知見を得た。   As a result of investigations by the present inventors, among the elements coexisting in iron scrap, even if it is difficult to separate from molten iron by ordinary oxidation refining, molten Ag having a particularly low solubility in the molten iron scrap is obtained. The inventor obtained the knowledge that the above-mentioned problems can be solved by indirect oxidation removal as a medium.

Feよりも酸化しにくく従来の酸化製錬では溶鉄から分離することが困難な元素の例としてCuを用いて、この知見を具体的に説明する。鉄スクラップの溶融物に対する溶解度が特に低い溶融Agを介し、鉄スクラップの溶融物と接していない溶融Ag表面に酸素を吹き付けることで、Cuを酸化除去して回収することが可能となる。   This knowledge will be described in detail using Cu as an example of an element that is harder to oxidize than Fe and difficult to separate from molten iron by conventional oxidation smelting. By blowing oxygen onto the surface of the molten Ag that is not in contact with the molten iron scrap through the molten Ag having a particularly low solubility in the molten iron scrap, Cu can be removed by oxidation and recovered.

Fe相にCuが含有している場合には、FeはCuに対して優先的に酸化されてしまう。このため、下記式(2)の反応を通常は進めることができない。   When Cu is contained in the Fe phase, Fe is preferentially oxidized with respect to Cu. For this reason, reaction of following formula (2) cannot be advanced normally.

Figure 2011006749
Figure 2011006749

そこで鉄スクラップの溶融物と溶解度をもたないAgを用いて、鉄スクラップの溶融物と溶融Ag間のCuの分配(下記式(3))と溶融Ag中のCuの酸化(下記式(4))を連続的に進めることにより、式(3)+式(4)=式(2)の反応、つまり、鉄スクラップの溶融物中のCuの酸化精錬を実現可能とする。   Therefore, by using the iron scrap melt and Ag having no solubility, the distribution of Cu between the iron scrap melt and the molten Ag (the following formula (3)) and the oxidation of Cu in the molten Ag (the following formula (4) )) Is continuously carried out, the reaction of the formula (3) + the formula (4) = the formula (2), that is, the oxidative refining of Cu in the iron scrap melt can be realized.

Figure 2011006749
Figure 2011006749

上記の原理で分離しうる元素は、Agよりも酸化しやすい元素であって、鉄スクラップの溶融物および溶融Agに対して溶解しうる、すなわち鉄スクラップの溶融物と溶融Agとの界面において分配される元素である。   The element that can be separated by the above principle is more easily oxidized than Ag and can be dissolved in the iron scrap melt and the molten Ag, that is, distributed at the interface between the iron scrap melt and the molten Ag. Element.

また、鉄スクラップの溶融物がCを含有していると、より効率的に上記の元素を回収することが可能となる。
以上の知見に基づき完成された本発明は次のとおりである。
Moreover, when the iron scrap melt contains C, the above-described elements can be recovered more efficiently.
The present invention completed based on the above knowledge is as follows.

(1)鉄スクラップに共存する元素の分離・回収方法であって、鉄スクラップを溶融させ、得られた鉄スクラップの溶融物と溶融Agとを接触させることで前記鉄スクラップに共存する元素を溶融Agに移行させ、この溶融Agに移行した元素を溶融Agから酸化除去することを特徴とする分離・回収方法。   (1) A method for separating and recovering elements coexisting in iron scrap, melting the iron scrap, and melting the element coexisting in the iron scrap by bringing the obtained iron scrap melt into contact with molten Ag A separation / recovery method characterized in that the element transferred to Ag is oxidized and removed from the molten Ag.

ここで、鉄スクラップを溶融させ、得られた鉄スクラップの溶融物と溶融Agとを接触させると、鉄スクラップの溶融物と溶融Agとの間における分配平衡に基づいて、鉄スクラップの溶融物から溶融Agへと、鉄スクラップにおいて鉄と共存する元素(以下、「共存元素」ともいう。)が移行する。
また、「酸化除去」とは、酸素を吹付けるなどの手段により溶融Agの表面近傍の雰囲気を強酸化性雰囲気とすることにより、溶融Agに含まれる元素のうちAgよりも酸化されやすい元素を酸化し、溶融Agに不溶な酸化物として溶融Ag相から除去することをいう。
Here, when the iron scrap is melted and the obtained iron scrap melt is brought into contact with the molten Ag, from the iron scrap melt based on the distribution equilibrium between the iron scrap melt and the molten Ag. An element coexisting with iron in iron scrap (hereinafter also referred to as “coexisting element”) is transferred to molten Ag.
“Oxidation removal” refers to an element that is more easily oxidized than Ag among the elements contained in molten Ag by making the atmosphere near the surface of molten Ag a strong oxidizing atmosphere by means such as blowing oxygen. Oxidation refers to removal from the molten Ag phase as an oxide insoluble in molten Ag.

(2)鉄スクラップの溶融および鉄スクラップの溶融物と溶融Agとの接触を非酸化性雰囲気で行う上記(1)記載の分離・回収方法。   (2) The separation / recovery method according to (1), wherein the iron scrap is melted and the iron scrap melt and the molten Ag are contacted in a non-oxidizing atmosphere.

(3)鉄スクラップの溶融物がCを含有し、その濃度N(単位:質量%)が下記式(1)を満たす上記(1)または(2)記載の分離・回収方法:
≦ 1012.728 / T + 0.7271 × log T − 3.049 (1)
ここで、Tは鉄スクラップの溶融物の温度であり、1426<T<1873Kを満たす。
(3) Separation / recovery method according to (1) or (2) above, wherein the iron scrap melt contains C and the concentration N c (unit: mass%) satisfies the following formula (1):
N C ≦ 10 12.728 / T + 0.7271 × log T−3.049 (1)
Here, T is the temperature of the iron scrap melt, and satisfies 1426 <T <1873K.

(4)鉄スクラップを炭素源とともに溶融させることで、Cを含有する鉄スクラップの溶融物を得る上記(3)記載の分離・回収方法。   (4) The separation / recovery method according to the above (3), wherein the iron scrap is melted together with the carbon source to obtain an iron scrap melt containing C.

(5)鉄スクラップの溶融および鉄スクラップの溶融物と溶融Agとの接触を黒鉛坩堝内で行い、鉄スクラップの溶融物にCが飽和溶解している上記(4)記載の分離・回収方法。   (5) The separation / recovery method according to (4), wherein the melting of iron scrap and the contact between the iron scrap melt and molten Ag are performed in a graphite crucible, and C is saturated and dissolved in the iron scrap melt.

(6)分離・回収される元素がトランプエレメントを含む上記(1)から(5)のいずれかに記載の分離・回収方法。   (6) The separation / recovery method according to any one of (1) to (5), wherein the element to be separated / recovered includes a trump element.

(7)分離・回収される元素がW,Mo,Co,VおよびNbからなる群から選ばれる一種または二種以上である上記(1)から(6)のいずれかに記載の分離・回収方法。   (7) The separation / recovery method according to any one of (1) to (6), wherein the element to be separated / recovered is one or more elements selected from the group consisting of W, Mo, Co, V and Nb. .

本発明では、鉄スクラップに共存する元素を、鉄スクラップの溶融物と溶解度を持たない溶融Agを媒体とすることで酸化除去可能する。このため、鉄スクラップからトランプエレメントや有用な希少元素を効率的に回収することが実現される。したがって、本発明に係る方法を採用することで鉄スクラップの利用拡大を実現できる。   In the present invention, elements coexisting in iron scrap can be oxidized and removed by using a melt of iron scrap and molten Ag having no solubility as a medium. For this reason, it is implement | achieved that a trump element and a useful rare element are efficiently collect | recovered from iron scrap. Accordingly, the use of iron scrap can be expanded by employing the method according to the present invention.

本発明に係る共存元素の分離・回収方法を実施するための反応容器の一例の構造を概念的に示す図である。It is a figure which shows notionally the structure of an example of the reaction container for enforcing the separation / recovery method of the coexisting element which concerns on this invention. 本実施例において使用した共存元素の分離・回収装置を概念的に示す図である。It is a figure which shows notionally the separation / recovery apparatus of the coexisting element used in the present Example. 本実施例の試験終了後の固体Ag相における回収領域側の表面の一部をX線回折(XRD)測定した結果である。It is the result of having carried out X-ray diffraction (XRD) measurement of a part of surface of the collection | recovery area | region side in the solid Ag phase after completion | finish of the test of a present Example.

以下に、本発明に係る鉄スクラップにおいて鉄と共存する元素(共存元素)の分離・回収方法について詳しく説明する。
1.分離・回収原理
本発明におけるAgを利用した鉄スクラップ中の共存元素の分離・回収方法は、鉄スクラップが溶融して得られる溶融物からなる溶融Fe相と溶融Ag相とが2液相分離し、互いにほとんど溶解度をもたず溶け合わない性質、および媒体相である溶融Ag相が貴金属であるため酸素と反応しにくい性質を利用する。
Hereinafter, a method for separating and recovering an element (coexisting element) coexisting with iron in the iron scrap according to the present invention will be described in detail.
1. Separation / Recovery Principle The separation / recovery method of coexisting elements in iron scrap using Ag in the present invention is a two-liquid phase separation between a molten Fe phase and a molten Ag phase made of a melt obtained by melting iron scrap. In addition, it utilizes the property that they have almost no solubility and do not dissolve each other, and the property that the molten Ag phase, which is the medium phase, is a noble metal and thus does not easily react with oxygen.

図1は、本発明に係る共存元素の分離・回収方法を実施するための反応容器の一例の構造を概念的に示す図である。
溶融Ag相は溶融Fe相よりも比重が大きいため、本発明に係る方法を実施する反応容器として、図1に示されるように、溶融Ag相が下層に存在し、一部溶融Ag相に浸入するかたちで仕切りがあり、仕切りで区切られた一方の領域において溶融Fe相と溶融Ag相とが接触し、他方の領域において溶融Agの表面に酸素が供給されるような構造が考えられる。以下、上記の一方の領域を「分離領域」、上記の他方の領域を「回収領域」という。
FIG. 1 is a diagram conceptually showing an example of the structure of a reaction vessel for carrying out the coexisting element separation / recovery method according to the present invention.
Since the molten Ag phase has a higher specific gravity than the molten Fe phase, as shown in FIG. 1, the molten Ag phase is present in the lower layer as a reaction vessel for carrying out the method according to the present invention, and partially enters the molten Ag phase. There is a structure in which the molten Fe phase and the molten Ag phase are in contact with each other in one region partitioned by the partition, and oxygen is supplied to the surface of the molten Ag in the other region. Hereinafter, the one area is referred to as a “separation area”, and the other area is referred to as a “collection area”.

FeとAgとはお互いに溶解度をほとんどもたないため、分離領域において溶融Fe相と溶融Ag相とが2液相分離する。このため、鉄スクラップ中の共存元素は2液相分離した溶融Fe相と溶融Ag相とに分配される。   Since Fe and Ag have little solubility to each other, the two-phase separation of the molten Fe phase and the molten Ag phase occurs in the separation region. For this reason, the coexisting elements in the iron scrap are distributed into a molten Fe phase and a molten Ag phase separated into two liquid phases.

溶融Ag相内に分配された共存元素は、仕切りを越えて回収領域へと拡散し、この領域の溶融Agの表面近傍に到達する。回収領域の溶融Agの表面には酸素が供給されているため、回収領域は強酸化性雰囲気となっている。このため、回収領域の溶融Agの表面近傍に到達した共存元素は速やかに酸化される。ここで、媒体である溶融Agは貴金属であるために酸化されにくい。したがって、共存元素は優先的に酸化され、酸化物となって溶融Ag相から除去される。   The coexisting elements distributed in the molten Ag phase diffuse into the recovery region beyond the partition and reach the vicinity of the surface of the molten Ag in this region. Since oxygen is supplied to the surface of the molten Ag in the recovery region, the recovery region has a strong oxidizing atmosphere. For this reason, the coexisting elements that have reached the vicinity of the surface of the molten Ag in the recovery region are rapidly oxidized. Here, the molten Ag that is a medium is a noble metal and thus is not easily oxidized. Therefore, the coexisting elements are preferentially oxidized and become oxides and removed from the molten Ag phase.

こうして溶融Ag相中の共存元素が酸化除去されると、溶融Ag相の回収領域における共存元素の濃度が低下し、この影響により分離領域から回収領域へと共存元素の拡散が促進される。このため、分離領域における共存元素の濃度も低下する。すると、溶融Fe相と溶融Ag相との間の共存元素の分配平衡に基づき、分離領域において溶融Fe相から溶融Ag相へ共存元素が移動する。この共存元素の移動が生じている間も回収領域では共存元素の濃度低下が生じているため、分離領域において溶融Ag相中へ移動した共存元素は拡散により回収領域へとさらに移動し、回収領域の強酸化性雰囲気で酸化除去される。
このような原理で、鉄スクラップの溶融物からなる溶融Fe相に含まれる共存元素が連続的に減少し、この共存元素は溶融Ag相側において酸化物として回収される。
When the coexisting elements in the molten Ag phase are oxidized and removed in this manner, the concentration of the coexisting elements in the recovery region of the molten Ag phase is lowered, and this influence promotes the diffusion of the coexisting elements from the separation region to the recovery region. For this reason, the concentration of the coexisting elements in the separation region also decreases. Then, based on the distribution equilibrium of the coexisting elements between the molten Fe phase and the molten Ag phase, the coexisting elements move from the molten Fe phase to the molten Ag phase in the separation region. Even during the movement of the coexisting element, the concentration of the coexisting element is lowered in the recovery region. Therefore, the coexisting element that has moved into the molten Ag phase in the separation region further moves to the recovery region by diffusion, and the recovery region. Oxidation is removed in a strong oxidizing atmosphere.
Based on such a principle, the coexisting elements contained in the molten Fe phase made of the iron scrap melt are continuously reduced, and the coexisting elements are recovered as oxides on the molten Ag phase side.

2.対象元素
以上の原理(以下、「本原理」という。)に基づき元素の分離・回収を行うため、本発明において分離・回収される元素は、媒体であるAgよりも酸化されやすい元素となる。これらの元素には、Cu,Ni,Cr,Sn,Znなどのいわゆるトランプエレメントが含まれ、また、W,Mo,Co,Ni,V,Nb等の有用な希少金属も含まれる。特に、鉄よりも酸化されにくい元素(Cuなど)は、従来の酸化精錬では除去されないが、本原理に基づく本発明の方法では、効率的に分離・回収されることになる。つまり、鉄スクラップに含有される非鉄金属元素のうち、Agよりも酸化されやすくFeよりも酸化されにくい元素を対象とする場合に、本発明の分離・回収方法による利益を最も享受できる。
2. Target element Since elements are separated and recovered based on the above principle (hereinafter referred to as “the present principle”), the element separated and recovered in the present invention is an element that is more easily oxidized than Ag as a medium. These elements include so-called trump elements such as Cu, Ni, Cr, Sn, and Zn, and useful rare metals such as W, Mo, Co, Ni, V, and Nb. In particular, elements that are less likely to be oxidized than iron (such as Cu) are not removed by conventional oxidative refining, but are efficiently separated and recovered by the method of the present invention based on this principle. In other words, among the non-ferrous metal elements contained in iron scrap, when the target is an element that is more easily oxidized than Ag and less oxidized than Fe, the benefit of the separation / recovery method of the present invention can be most enjoyed.

もちろん、鉄よりも酸化されやすい、すなわち従来の酸化精錬によっても除去されうる金属(例えばSmなどのREM)も本原理により回収領域において回収可能である。ただし、そのような元素を回収領域において効率的に回収されるようにするためには、分離領域において従来の酸化精錬が進行しないように、分離領域の雰囲気を非酸化性雰囲気とすることが好ましい。   Of course, metals (for example, REM such as Sm) that are more easily oxidized than iron, that is, can also be removed by conventional oxidative refining, can be recovered in the recovery region according to this principle. However, in order to efficiently recover such elements in the recovery region, it is preferable that the atmosphere of the separation region is a non-oxidizing atmosphere so that conventional oxidation refining does not proceed in the separation region. .

なお、後述するように、C,Si,BなどのFeに対して熱力学的親和力が働く元素は、鉄スクラップの溶融物から溶融Agに移動しにくいため、本原理によって効率的に分離することは困難である。   As will be described later, elements such as C, Si, B and the like that have a thermodynamic affinity for Fe are difficult to move from the iron scrap melt to the molten Ag. It is difficult.

3.分離領域の雰囲気
溶融Fe相と溶融Ag相とが接触する分離領域における雰囲気は非酸化性雰囲気であることが好ましい。溶融Fe相と溶融Ag相との間で元素の分配が行われることを利用して溶融Fe相から溶融Ag相へと共存元素を移動させるため、本原理に基づく分離・回収方法の対象元素が溶融Fe相に溶解していることが求められる。したがって、分離領域の雰囲気、すなわち溶融Fe相と溶融Ag相との界面近傍の雰囲気の酸素分圧が高いと、溶融Fe相に溶解する元素には酸化物となってしまうものもあり、そのように溶融Fe相内で酸化物になってしまうと、溶融Fe相と溶融Ag相との界面を通じて溶融Ag相に移動することが困難となり、回収領域においてその元素が回収されにくくなってしまう。
3. The atmosphere in the separation region The atmosphere in the separation region where the molten Fe phase and the molten Ag phase are in contact is preferably a non-oxidizing atmosphere. In order to move the coexisting elements from the molten Fe phase to the molten Ag phase by utilizing the distribution of elements between the molten Fe phase and the molten Ag phase, the target element of the separation / recovery method based on this principle is It is required to be dissolved in the molten Fe phase. Therefore, when the oxygen partial pressure in the atmosphere of the separation region, that is, the atmosphere in the vicinity of the interface between the molten Fe phase and the molten Ag phase is high, some elements dissolved in the molten Fe phase may become oxides. If it becomes an oxide in the molten Fe phase, it becomes difficult to move to the molten Ag phase through the interface between the molten Fe phase and the molten Ag phase, and it becomes difficult to recover the element in the recovery region.

4.鉄スクラップの溶融物の組成
上記のように、鉄スクラップの溶融物が溶融Fe相である場合には、溶融Ag相と2液相分離させることが実現されるが、次に説明するように、鉄スクラップの溶融物は溶融Fe−C相であることが好ましく、この溶融Fe−C相に含有されるCは飽和溶解していることが特に好ましい。
4). Composition of iron scrap melt As described above, when the iron scrap melt is a molten Fe phase, it is possible to separate the molten Ag phase and the two liquid phases, as described below, The molten iron scrap is preferably a molten Fe-C phase, and it is particularly preferable that C contained in the molten Fe-C phase is saturated and dissolved.

炭素を含まないFe−Ag系で2液相に分離する場合には、共存元素の種類や濃度にも依存するが鉄の融点近傍の温度、すなわち1800K程度は必要とされる。しかしながら、系全体の温度を高めると、溶融Fe相に対するAgの溶解度が増加する。このため本発明に係る分離・回収方法を実施したあとの鉄スクラップにおけるAg濃度が、系全体の温度を高めない場合に比べて相対的に高くなりやすい。また、このことは、本発明の実施後における媒体であるAgが相対的に多く減少することを意味し、プロセスロスの増加を招く。   When the Fe-Ag system containing no carbon is separated into two liquid phases, a temperature in the vicinity of the melting point of iron, that is, about 1800 K is required, depending on the type and concentration of the coexisting elements. However, increasing the temperature of the entire system increases the solubility of Ag in the molten Fe phase. For this reason, the Ag concentration in the iron scrap after carrying out the separation / recovery method according to the present invention tends to be relatively high as compared with the case where the temperature of the entire system is not increased. This also means that Ag, which is a medium after the implementation of the present invention, is relatively reduced, and causes an increase in process loss.

これに対し、鉄スクラップを溶融させるにあたり炭素源を存在させると、CはFeと熱力学的親和力が働くため、鉄スクラップの溶融物は溶融Fe相から溶融Fe−C相になる。このため、溶融物の融点は、共存元素の種類や濃度にも依存するが1500K以下程度に低下し、相対的に低温での2液相分離が可能となる。このことがプロセス後の鉄スクラップの品質向上およびプロセスロスの低下をもたらすことは上記のとおりである。また、Cが含まれていることにより、鉄スクラップの溶融物中へのAgの溶解度がさらに減少する。このため、単に融点が低下したこと以上に、プロセス後の鉄スクラップの品質向上およびプロセスロスの低下がもたらされる。さらに、溶融Fe−C相中の共存元素の活量係数が大きくなるため、共存元素の溶融Fe−C相および溶融Ag相間の分配において、溶融Ag相へと分配される共存元素の濃度が高くなることが熱力学的に期待される、つまり、溶融Fe−C相中から融Ag相中への共存元素の移動が促進される。そのうえ、Cが含まれていることで、鉄スクラップの溶融物におけるFeと酸素との反応が抑制される。   On the other hand, when a carbon source is present in melting iron scrap, since C has a thermodynamic affinity with Fe, the iron scrap melt changes from a molten Fe phase to a molten Fe-C phase. For this reason, although the melting point of the melt depends on the type and concentration of the coexisting elements, it decreases to about 1500 K or less, and two-liquid phase separation at a relatively low temperature becomes possible. As described above, this leads to an improvement in the quality of post-process iron scrap and a reduction in process loss. In addition, the inclusion of C further reduces the solubility of Ag in the iron scrap melt. For this reason, the quality of the scrap iron after the process is improved and the process loss is reduced more than the melting point is simply lowered. Furthermore, since the activity coefficient of the coexisting elements in the molten Fe—C phase is increased, the concentration of the coexisting elements distributed to the molten Ag phase is high in the distribution of the coexisting elements between the molten Fe—C phase and the molten Ag phase. This is thermodynamically expected, that is, the movement of coexisting elements from the molten Fe—C phase into the molten Ag phase is promoted. In addition, since C is contained, the reaction between Fe and oxygen in the iron scrap melt is suppressed.

鉄スクラップの溶融物を溶融Fe−C相とした場合における上記式(2)から(4)に対応する反応は、次の式(2)’から(4)’に示されるとおりである。   Reactions corresponding to the above formulas (2) to (4) when the iron scrap melt is a molten Fe-C phase are as shown in the following formulas (2) 'to (4)'.

Figure 2011006749
Figure 2011006749

表1はPO2=1atm制御下において溶融Ag相と接触させた場合の溶融Fe−C相(C濃度は4.4質量%)中の共存元素濃度の低減限界値の計算結果を示している。 Table 1 shows the calculation result of the reduction limit value of the coexisting element concentration in the molten Fe-C phase (C concentration is 4.4% by mass) when it is brought into contact with the molten Ag phase under P O2 = 1 atm control. .

Figure 2011006749
Figure 2011006749

表1は、Cu,Niなどのトランプエレメントの溶融Fe−C相中濃度を低減させることが可能であることを示している。また、W,Mo,Co,V,Nbなどの金属元素は溶融Fe−C相中に残留する量は極めて少なくなる可能性があることも表1は示している。このように、本原理に基づくことにより、効率的に溶融Fe−C相中から共存元素を抽出し、分離・回収できることを、表1は示している。   Table 1 shows that it is possible to reduce the concentration in the molten Fe-C phase of trump elements such as Cu and Ni. Table 1 also shows that the amount of metal elements such as W, Mo, Co, V, and Nb can be very small in the molten Fe-C phase. Thus, based on this principle, Table 1 shows that a coexisting element can be efficiently extracted from the molten Fe-C phase and separated and recovered.

溶融Fe−C相中のC濃度N(単位:質量%)は特に限定されないが、溶融Fe−C相の温度によって飽和溶解モル分率が決定されるため、下記式(1)に示される範囲となる。
≦ 1012.728 / T + 0.7271 × log T − 3.049 (1)
The C concentration N c (unit: mass%) in the molten Fe—C phase is not particularly limited, but the saturated dissolution molar fraction is determined by the temperature of the molten Fe—C phase, and is expressed by the following formula (1). It becomes a range.
N C ≦ 10 12.728 / T + 0.7271 × log T−3.049 (1)

ここで、Tは鉄スクラップの溶融物の温度であり、1426K<T<1873Kを満たす。鉄スクラップ溶融物の温度Tが1426K以下の場合には、Fe−C相は液相として存在することが困難となるため、本原理に基づく分離・回収方法を実施することが実質的に不可能となる。鉄スクラップ溶融物の温度Tが1873K以上の場合には、本原理に基づく分離・回収方法を実施するために投入するエネルギーが過大となり、この方法を実施する利益が実質的になくなってしまう。   Here, T is the temperature of the iron scrap melt, and satisfies 1426K <T <1873K. When the temperature T of the iron scrap melt is 1426K or less, it becomes difficult for the Fe-C phase to exist as a liquid phase, so it is practically impossible to carry out the separation / recovery method based on this principle. It becomes. When the temperature T of the iron scrap melt is 1873 K or higher, the energy input to carry out the separation / recovery method based on the present principle becomes excessive, and the benefits of carrying out this method are substantially lost.

C濃度Nが高いほど溶融Fe−C相にAgは移動しにくくなり、共存元素は溶融Ag相側に移動しやすくなるため、溶融Fe−C相においてCは飽和していることが好ましい。また、C濃度Nが高いと、回収領域から溶融Ag相に供給された酸素が拡散などの理由により分離領域に到達しても、溶融Ag相と接触する溶融Fe−C相に含有されるCによって速やかに系外に除去される。このため、分離領域を非酸化性雰囲気に維持することが安定的にかつ容易に実現される。炭素を含有させたことの利益が明確になるC濃度Nは、鉄スクラップ溶融物の組成などにより変化する。 As the C concentration Nc is higher, Ag is less likely to move to the molten Fe—C phase, and coexisting elements are more likely to move to the molten Ag phase. Therefore, C is preferably saturated in the molten Fe—C phase. Further, when the C concentration Nc is high, even if oxygen supplied from the recovery region to the molten Ag phase reaches the separation region due to diffusion or the like, it is contained in the molten Fe-C phase that contacts the molten Ag phase. It is quickly removed from the system by C. For this reason, maintaining the isolation region in a non-oxidizing atmosphere is realized stably and easily. The C concentration Nc at which the benefit of containing carbon becomes clear varies depending on the composition of the iron scrap melt.

鉄スクラップの溶融物へのCの供給方法は特に限定されない。図1に示されるように、石炭などの炭素源を鉄スクラップと共存させた状態で溶融させてもよい。図2に示されるように、鉄スクラップを溶融させる坩堝を黒鉛坩堝とすれば、黒鉛坩堝から炭素が供給されるとともに、鉄スクラップの溶融物の近傍の雰囲気を非酸化性雰囲気とすることが容易に実現されるため、好ましい。   The method for supplying C to the iron scrap melt is not particularly limited. As shown in FIG. 1, a carbon source such as coal may be melted in the state of coexisting with iron scrap. As shown in FIG. 2, if the crucible for melting iron scrap is a graphite crucible, carbon is supplied from the graphite crucible and the atmosphere in the vicinity of the iron scrap melt can be easily changed to a non-oxidizing atmosphere. Therefore, it is preferable.

以上鉄スクラップの溶融物にCを含有させることの利点について説明したが、Cと同様にFeと熱力学的親和力が働く元素、例えばBやSiを鉄スクラップの溶融物に含有させた場合も、Cの場合と同様の効果が得られる。このことを別の観点から説明すれば、共存元素としてBやSiが鉄スクラップに含まれている場合には、これらの元素を本原理によって分離・回収することは困難である。   As described above, the advantage of including C in the iron scrap melt has been described, but also when Fe and the element having a thermodynamic affinity, such as B or Si, are contained in the iron scrap melt as in C, The same effect as in the case of C can be obtained. If this is demonstrated from another viewpoint, when B and Si are contained in iron scrap as coexisting elements, it is difficult to separate and collect these elements according to the present principle.

5.媒体相の材料
本発明においては、鉄スクラップに含まれる共存元素の移動媒体相として溶融Ag相を使用する。溶融Ag相は鉄スクラップの溶融物と酸素を含む気相との間に介在する媒体相であって、それ自体は酸素と反応しない。このように溶融Ag相を介在させることで、鉄スクラップの溶融物における溶鉄が直接酸化反応を起こすことが抑制される。また、媒体である溶融Ag相を通じて鉄スクラップの溶融物から回収領域に移動してきたCuなどの共存元素は、回収領域の酸化性雰囲気において酸化し、溶融Ag相に不溶なものとなって回収可能となる。このため、溶融Ag相は継続的に使用することが可能である。
5. Medium Phase Material In the present invention, a molten Ag phase is used as a moving medium phase for coexisting elements contained in iron scrap. The molten Ag phase is a medium phase interposed between the iron scrap melt and the oxygen-containing gas phase, and itself does not react with oxygen. By interposing the molten Ag phase in this way, the molten iron in the iron scrap melt is suppressed from directly causing an oxidation reaction. In addition, coexisting elements such as Cu that have moved from the iron scrap melt to the recovery zone through the molten Ag phase, which is the medium, are oxidized in the oxidizing atmosphere of the recovery zone and can be recovered as insoluble in the molten Ag phase. It becomes. For this reason, the molten Ag phase can be used continuously.

なお、Ag以外の他の貴金属も原理的には媒体相として使用可能であるが、Ag以外の貴金属(Au,Ptなど)はきわめて高価であるから、いかに継続的に利用可能とはいえ、共存元素を移動させる媒体相の材料としてこれらを使用することは現実的でない。また、Cuは回収対象元素となる場合が多いため、媒体相の材料として使用しないことが好ましい。   In addition, other noble metals other than Ag can be used as the medium phase in principle, but noble metals other than Ag (Au, Pt, etc.) are extremely expensive, so they can coexist even though they can be used continuously. It is impractical to use them as media phase materials to move elements. Further, since Cu is often an element to be collected, it is preferable not to use it as a medium phase material.

鉄スクラップに含まれる共存元素を分離領域において分配・分離する観点のみからはPbを使用することが可能であるが、回収領域における酸化精錬で媒体自らが揮発したり酸化されたりしてしまう。しかも、Pbは環境負荷の大きな金属である。こうした理由により、Pbを使用することはできない。   Although it is possible to use Pb only from the viewpoint of distributing and separating coexisting elements contained in iron scrap in the separation region, the medium itself is volatilized or oxidized by oxidation refining in the recovery region. Moreover, Pb is a metal with a large environmental load. For these reasons, Pb cannot be used.

6.分離領域と回収領域とが一体化している場合について
以上の説明では、本原理の理解を促進するために分離領域と回収領域とを仕切りにより分けた場合について説明したが、この構成は本原理において必須ではない。
6). About the case where the separation area and the collection area are integrated In the above description, the case where the separation area and the collection area are separated by a partition has been described in order to facilitate the understanding of this principle. Not required.

雰囲気全体を酸化性雰囲気として、鉄スクラップの溶融物と溶融Agとを接触させてもよい。この場合には、FeおよびFeよりも酸化されやすい元素は、鉄スクラップの溶融物の表面において酸化が進行することで鉄スクラップの溶融物から除去される。また、Feよりも酸化されにくくAgよりも酸化されやすい元素は、溶融Agの表面において酸化が進行して、結果的に鉄スクラップの溶融物から除去されることになる。   The entire atmosphere may be an oxidizing atmosphere, and the molten iron scrap and the molten Ag may be brought into contact with each other. In this case, Fe and an element that is more easily oxidized than Fe are removed from the iron scrap melt as oxidation proceeds on the surface of the iron scrap melt. In addition, an element that is less likely to be oxidized than Fe and more likely to be oxidized than Ag is oxidized on the surface of the molten Ag, and is consequently removed from the molten iron scrap.

このような構成において、鉄スクラップの溶融物がCを含有し、溶融Fe−C相となっている場合には、Cを含有させない場合には鉄スクラップの溶融物の表面で酸化していた元素のうちその雰囲気においてCよりも酸化されにくい元素は、鉄スクラップの溶融物から溶融Agへと移動することが可能となり、その結果、溶融Agの表面において酸化されることとなる。もちろん、本発明に係る分離・回収方法がより効率的に実施されることは上記のとおりであり、さらに、鉄スクラップの溶融物における溶鉄の酸化が含有Cにより抑制されるため、共存元素の含有量が低下したFe−C相をより高収率で回収することが実現される。   In such a configuration, when the iron scrap melt contains C and is in the form of a molten Fe-C phase, the element that has been oxidized on the surface of the iron scrap melt when C is not contained Among them, an element that is less oxidized than C in the atmosphere can move from the molten iron scrap to the molten Ag, and as a result, is oxidized on the surface of the molten Ag. Of course, it is as described above that the separation / recovery method according to the present invention is more efficiently carried out, and furthermore, the oxidation of the molten iron in the iron scrap melt is suppressed by the contained C. It is realized to recover the Fe—C phase having a reduced amount in a higher yield.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例により制限されるものではない。
Feに共存元素として含有させたCuを、Agを媒体として酸化除去した実施例を示す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
An example in which Cu contained as a coexisting element in Fe is oxidized and removed using Ag as a medium will be described.

図2に示されるように、切り欠きをいれたアルミナ管(外径17mm,内径12mm,高さ55mm)をアルミナるつぼ(外径30mm,内径24mm,高さ50mm)内に設置し、アルミナ管内にCu濃度が1.8質量%になるように調製したAgおよびCu計約30gを入れ、Ar(純度99.99%)をガス吹付け管から100cm/min(標準状態換算)供給してなる雰囲気で1時間予備溶解し、アルミナるつぼ、アルミナ管内をAg−Cu合金で満たして冷却した。 As shown in FIG. 2, a cut-out alumina tube (outer diameter 17 mm, inner diameter 12 mm, height 55 mm) is placed in an alumina crucible (outer diameter 30 mm, inner diameter 24 mm, height 50 mm). About 30 g of Ag and Cu were prepared so that the Cu concentration was 1.8% by mass, and Ar (purity 99.99%) was supplied at 100 cm 3 / min (standard condition conversion) from the gas spray tube. Pre-melting was performed for 1 hour in an atmosphere, and the alumina crucible and the alumina tube were filled with an Ag—Cu alloy and cooled.

なお、媒体であるAgにあらかじめCuを含有させた理由は次のとおりである。
Cuを含有する溶融Fe相にAgのみからなる溶融相を接触させると、次の2つの現象が発生する。
The reason why Cu was previously contained in the medium Ag is as follows.
When a molten phase composed only of Ag is brought into contact with a molten Fe phase containing Cu, the following two phenomena occur.

(1)分配により溶融Fe相中からCuが溶融Ag相中に移動し、溶融Fe相中のCu濃度が減少する(分配による分離)。
(2)溶融Ag相に酸素を吹き付けると溶融Fe相中のCu濃度がさらに減少する(酸化による回収)。
このように、分離・回収の両方の現象により、溶融Fe相中のCu濃度が減少するため、両方の現象を独立に評価することができない。
(1) Due to the distribution, Cu moves from the molten Fe phase to the molten Ag phase, and the Cu concentration in the molten Fe phase decreases (separation by distribution).
(2) When oxygen is blown to the molten Ag phase, the Cu concentration in the molten Fe phase further decreases (recovery by oxidation).
As described above, the Cu concentration in the molten Fe phase decreases due to both the separation and recovery phenomena, and thus both phenomena cannot be evaluated independently.

これに対し、一方、Cuを含有する溶融Fe相に、あらかじめ溶融Fe相と溶融Ag相との分配で決定される濃度でCuを含有する溶融Ag−Cu相を接触させると、上記の(1)で示される分離現象は生じない。このため、(2)で示される回収現象のみが生じ、本発明の原理をより明確に確認することが可能となる。   On the other hand, when the molten Ag phase containing Cu is brought into contact with the molten Fe phase containing Cu at a concentration determined in advance by the distribution of the molten Fe phase and the molten Ag phase, ) Does not occur. For this reason, only the recovery phenomenon shown in (2) occurs, and the principle of the present invention can be confirmed more clearly.

上記のようにアルミナるつぼ、アルミナ管内をAg−Cu合金で満たした後、予備溶解しておいたFe−4質量%Cu−C(飽和)合金4gをアルミナ管内のAg−Cu合金上に配し、上記のFe−Cu−C合金の周囲を黒鉛管、黒鉛蓋で覆った。   After the alumina crucible and the alumina tube are filled with the Ag—Cu alloy as described above, 4 g of a pre-dissolved Fe-4 mass% Cu—C (saturated) alloy is placed on the Ag—Cu alloy in the alumina tube. The periphery of the Fe-Cu-C alloy was covered with a graphite tube and a graphite lid.

この黒鉛管、黒鉛蓋はFe−Cu−C合金の周囲を還元雰囲気に保持するとともに、Fe中への炭素の供給の役割を果たす。
この状態で、温度を1523Kとし、Arを100cm/min(標準状態換算)でガス吹付け管から供給する雰囲気中で1時間保持した後、ガス吹付け管からの供給をO(純度99.5%)を100cm/min(標準状態換算)に切り替えて、3あるいは7時間保持して空冷した。
The graphite tube and the graphite lid hold the periphery of the Fe—Cu—C alloy in a reducing atmosphere and play a role of supplying carbon into Fe.
In this state, the temperature was set to 1523 K and Ar was maintained in an atmosphere supplied from the gas spray tube at 100 cm 3 / min (converted to the standard state) for 1 hour, and then the supply from the gas spray tube was O 2 (purity 99 0.5%) was switched to 100 cm 3 / min (converted to the standard state), and held for 3 or 7 hours for air cooling.

室温まで空冷して得られた試料の固体Fe相中のCu,AgおよびC濃度、ならびに固体Ag相中のCu濃度の分析を行った。表2にその結果を示す。   Analysis of the Cu, Ag and C concentrations in the solid Fe phase of the sample obtained by air cooling to room temperature and the Cu concentration in the solid Ag phase were performed. Table 2 shows the results.

Figure 2011006749
Figure 2011006749

Fe中のCuは初期濃度から減少して熱力学平衡計算により得られるCu濃度(0.26質量%)に近い値となっており、本発明に係る分離・回収方法を用いればFe相中からCuを熱力学平衡計算で予測される濃度まで選択的に酸化除去できることが確認された。   Cu in Fe decreases from the initial concentration to a value close to the Cu concentration (0.26% by mass) obtained by thermodynamic equilibrium calculation, and from the Fe phase by using the separation / recovery method according to the present invention. It was confirmed that Cu could be selectively oxidized and removed to a concentration predicted by thermodynamic equilibrium calculation.

なお、試験終了後の固体Ag相における回収領域側の表面の一部をX線回折(XRD)で測定すると、図3に示されるようにCuOのピークが観察され、Cuが酸化除去されたことが確認された。 When a part of the surface on the recovery region side in the solid Ag phase after the test was measured by X-ray diffraction (XRD), a peak of Cu 2 O was observed as shown in FIG. 3, and Cu was oxidized and removed. It was confirmed that

Claims (7)

鉄スクラップに共存する元素の分離・回収方法であって、
鉄スクラップを溶融させ、
得られた鉄スクラップの溶融物と溶融Agとを接触させることで前記鉄スクラップに共存する元素を溶融Agに移行させ、
この溶融Agに移行した元素を溶融Agから酸化除去すること
を特徴とする分離・回収方法。
A method for separating and recovering elements that coexist in iron scrap,
Melting iron scrap,
By bringing the obtained iron scrap melt into contact with molten Ag, the elements coexisting in the iron scrap are transferred to molten Ag,
A separation / recovery method characterized by oxidizing and removing elements transferred to molten Ag from molten Ag.
鉄スクラップの溶融および鉄スクラップの溶融物と溶融Agとの接触を非酸化性雰囲気で行う請求項1記載の分離・回収方法。   The separation / recovery method according to claim 1, wherein the melting of the iron scrap and the contact between the iron scrap melt and the molten Ag are performed in a non-oxidizing atmosphere. 鉄スクラップの溶融物がCを含有し、その濃度N(単位:質量%)が下記式(1)を満たす請求項1または2記載の分離・回収方法:
≦ 1012.728 / T + 0.7271 × log T − 3.049 (1)
ここで、Tは鉄スクラップの溶融物の温度であり、1426K<T<1873Kを満たす。
The separation / recovery method according to claim 1 or 2, wherein the melt of iron scrap contains C and the concentration N c (unit: mass%) satisfies the following formula (1):
N C ≦ 10 12.728 / T + 0.7271 × log T−3.049 (1)
Here, T is the temperature of the iron scrap melt, and satisfies 1426K <T <1873K.
鉄スクラップを炭素源とともに溶融させることで、前記Cを含有する鉄スクラップの溶融物を得る請求項3記載の分離・回収方法。   The separation / recovery method according to claim 3, wherein the iron scrap is melted together with a carbon source to obtain a melt of the iron scrap containing C. 鉄スクラップの溶融および鉄スクラップの溶融物と溶融Agとの接触を黒鉛坩堝内で行い、鉄スクラップの溶融物にCが飽和溶解している請求項4記載の分離・回収方法。   The separation / recovery method according to claim 4, wherein the iron scrap is melted and the iron scrap melt and the molten Ag are contacted in a graphite crucible, and C is saturated and dissolved in the iron scrap melt. 分離・回収される元素がトランプエレメントを含む請求項1から5のいずれかに記載の分離・回収方法。   The separation / recovery method according to claim 1, wherein the element to be separated / recovered includes a trump element. 分離・回収される元素がW,Mo,Co,VおよびNbからなる群から選ばれる一種または二種以上を含む請求項1から6のいずれかに記載の分離・回収方法。   The separation / recovery method according to claim 1, wherein the element to be separated / recovered includes one or more elements selected from the group consisting of W, Mo, Co, V and Nb.
JP2009152515A 2009-06-26 2009-06-26 Methods for separating and recovering elements that coexist in iron scrap Expired - Fee Related JP5481966B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009152515A JP5481966B2 (en) 2009-06-26 2009-06-26 Methods for separating and recovering elements that coexist in iron scrap
PCT/JP2010/060840 WO2010150873A1 (en) 2009-06-26 2010-06-25 Method for separating and recovering elements coexisting in scrap iron
CN2010800286193A CN102803525A (en) 2009-06-26 2010-06-25 Method for separating and recovering elements coexisting in scrap iron
KR1020117030749A KR101368575B1 (en) 2009-06-26 2010-06-25 Method for separating and recovering elements coexisting in scrap iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009152515A JP5481966B2 (en) 2009-06-26 2009-06-26 Methods for separating and recovering elements that coexist in iron scrap

Publications (2)

Publication Number Publication Date
JP2011006749A true JP2011006749A (en) 2011-01-13
JP5481966B2 JP5481966B2 (en) 2014-04-23

Family

ID=43386642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009152515A Expired - Fee Related JP5481966B2 (en) 2009-06-26 2009-06-26 Methods for separating and recovering elements that coexist in iron scrap

Country Status (4)

Country Link
JP (1) JP5481966B2 (en)
KR (1) KR101368575B1 (en)
CN (1) CN102803525A (en)
WO (1) WO2010150873A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119666A (en) * 2011-12-09 2013-06-17 Nippon Steel & Sumitomo Metal Corp Method of sulphurizing and removing copper from iron scrap

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462168B1 (en) * 2012-12-26 2014-11-14 주식회사 포스코 Treatment apparatus for molten metal and the method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224720A (en) * 1984-04-23 1985-11-09 Nippon Mining Co Ltd Method for recovering high-purity silver from copper electrolytic precipitate
JPH0734147A (en) * 1993-07-21 1995-02-03 Sumitomo Metal Mining Co Ltd Method for removing copper from crude silver
JP2000144270A (en) * 1998-11-17 2000-05-26 Nippon Steel Corp Method for melting and removing impurity element in iron
JP2001279339A (en) * 2000-03-30 2001-10-10 Nippon Steel Corp Method for melting and removing impurity element in iron
JP2006022387A (en) * 2004-07-09 2006-01-26 Dowa Mining Co Ltd Method for recovering metal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1270235A (en) * 2000-04-21 2000-10-18 沈阳冶炼厂 Process for treating low-grade anode mud
JP3827547B2 (en) * 2001-09-28 2006-09-27 独立行政法人科学技術振興機構 Method for separating and removing copper from scrap iron
JP3730606B2 (en) 2002-08-26 2006-01-05 独立行政法人科学技術振興機構 Separation and recovery method of copper and iron from copper iron mixed scrap
JP4323477B2 (en) 2005-09-29 2009-09-02 日鉱金属株式会社 Method of processing scrap and / or sludge containing copper and noble metals
JP4426613B2 (en) * 2007-06-25 2010-03-03 日鉱金属株式会社 Method for processing raw materials containing copper
CN101403040B (en) * 2008-11-17 2010-12-22 河南豫光金铅股份有限公司 High lead-antimony slag type for anode slime smelting process and its use method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224720A (en) * 1984-04-23 1985-11-09 Nippon Mining Co Ltd Method for recovering high-purity silver from copper electrolytic precipitate
JPH0734147A (en) * 1993-07-21 1995-02-03 Sumitomo Metal Mining Co Ltd Method for removing copper from crude silver
JP2000144270A (en) * 1998-11-17 2000-05-26 Nippon Steel Corp Method for melting and removing impurity element in iron
JP2001279339A (en) * 2000-03-30 2001-10-10 Nippon Steel Corp Method for melting and removing impurity element in iron
JP2006022387A (en) * 2004-07-09 2006-01-26 Dowa Mining Co Ltd Method for recovering metal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010054534; 阿川真吾, 山口勝弘, 小野英樹, 碓井建夫: 'Fe-B合金とAgの2液相分離による鉄中銅の除去' 高温学会誌 第35巻第3号, 20090520, 16, 社団法人高温学会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119666A (en) * 2011-12-09 2013-06-17 Nippon Steel & Sumitomo Metal Corp Method of sulphurizing and removing copper from iron scrap

Also Published As

Publication number Publication date
CN102803525A (en) 2012-11-28
JP5481966B2 (en) 2014-04-23
KR101368575B1 (en) 2014-02-27
KR20120023126A (en) 2012-03-12
WO2010150873A1 (en) 2010-12-29

Similar Documents

Publication Publication Date Title
JP7273819B2 (en) Improved pyrometallurgical process
JP7273818B2 (en) Improved pyrometallurgical process
JP7466446B2 (en) Improved copper/tin/lead manufacturing
JP2014507564A (en) Method for refining platinum group metal concentrates
KR102459098B1 (en) Improved copper manufacturing process
CA3036075A1 (en) Process for the production of a pgm-enriched alloy
US4451290A (en) Recovery of platinum group metals from scrap and residues
Guo et al. Element distribution in oxygen-enriched bottom-blown smelting of high-arsenic copper dross
JP5481966B2 (en) Methods for separating and recovering elements that coexist in iron scrap
KR101189182B1 (en) Method for separating vanadium from vanadium-containing melt
KR20200091443A (en) Improved solder manufacturing process
JP2020516765A (en) Improved manufacturing method for coarse solder
Anderson et al. Carbothermic reduction of refractory metals
JPH0665657A (en) Production of high-purity nickel mat and metallized sulfide mat
JP5724861B2 (en) Method for removing sulfur from copper scrap
JP6542560B2 (en) Method of treating non-ferrous smelting slag
NO300334B1 (en) Process for the preparation of slightly volatile metals, such as zinc, lead and cadmium from sulphidic raw materials
KR102566654B1 (en) Methods for recovering metals from cobalt containing materials
Lindblom et al. Fine-particle characterization—an important recycling tool
JP2006307267A (en) Slag-fuming method
JP2000144270A (en) Method for melting and removing impurity element in iron
RU2354710C2 (en) Method for complex reprocessing of metal iron concentrate, containing nonferrous and precious metals
RU2799370C2 (en) Improved pyrocleaning method
JP4274067B2 (en) Method for removing impurity metal from copper alloy and slag fuming method using the same
US2265219A (en) Process for recovering values from metal bearing materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R151 Written notification of patent or utility model registration

Ref document number: 5481966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees