JP2011003744A - Surface treatment device - Google Patents

Surface treatment device Download PDF

Info

Publication number
JP2011003744A
JP2011003744A JP2009145796A JP2009145796A JP2011003744A JP 2011003744 A JP2011003744 A JP 2011003744A JP 2009145796 A JP2009145796 A JP 2009145796A JP 2009145796 A JP2009145796 A JP 2009145796A JP 2011003744 A JP2011003744 A JP 2011003744A
Authority
JP
Japan
Prior art keywords
gas
pressure
introduction
gas supply
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009145796A
Other languages
Japanese (ja)
Other versions
JP5126167B2 (en
Inventor
Yuta Hasebe
雄太 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009145796A priority Critical patent/JP5126167B2/en
Publication of JP2011003744A publication Critical patent/JP2011003744A/en
Application granted granted Critical
Publication of JP5126167B2 publication Critical patent/JP5126167B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device for performing surface treatment to a surface of a workpiece having a groove or hole of a high aspect ratio.SOLUTION: The surface treatment device includes: a treatment chamber 3 for making a reactant gas chemically react with a surface of a workpiece 1; a reactant gas-supplying part 6 for supplying the reactant gas to the treatment chamber through an introduction passage of the reactant gas; and a pressure variation part 8 for varying the pressure of the treatment chamber by supplying an introduction gas to the treatment chamber separately from the introduction passage of the reactant gas. The surface treatment device is structured such that the introduction gas is supplied to the treatment chamber from the pressure variation part 8 through an introduction gas-supplying part 7 by periodically varying the pressure of the introduction gas to high pressure and low pressure in the range of 6,666-101,325 Pa, and thereby the pressure in the treatment chamber is varied to run the reactant gas into/from the hole or groove 2.

Description

本発明は、高アスペクト比の溝又は穴を有するワーク表面に表面処理する装置に関する。   The present invention relates to an apparatus for surface-treating a workpiece surface having a high aspect ratio groove or hole.

近年、MEMS(Micro Electro Mechanical Systems)と呼ばれる1mm以下の開口で高アスペクト比の溝又は穴を有する構造物を化学反応により形成した製品が実用化されている。半導体素子の微細化が進むにつれ、高アスペクト比の穴を形成し導電性材料を埋め込む素子構造が実用化されている。このような構造を実現するための共通の加工技術として、高アスペクト比の穴、溝の加工、成膜が必要となっている。   In recent years, a product called MEMS (Micro Electro Mechanical Systems) in which a structure having a groove or a hole having a high aspect ratio with an opening of 1 mm or less is formed by a chemical reaction has been put into practical use. As miniaturization of semiconductor elements progresses, element structures in which holes having a high aspect ratio are formed and a conductive material is embedded have been put into practical use. As a common processing technique for realizing such a structure, processing of high aspect ratio holes and grooves and film formation are required.

図1は、ワーク表面近傍の速度境界層と高アスペクト比(縦横比、縦l/横・径d)の穴又は溝を説明する説明図である。一般に、連続流れの下で、気相反応により表面処理する場合、ワーク表面近傍は速度境界層(速度境界層とは、層流・乱流関係なく、物体壁面から主流まで間で速度変化がある領域層h)が形成され、ワーク表面ではガス流速が0となる。速度境界層寸法に比して小さい溝、穴(静圧差無し)の中へはガス流れは生じず、反応原料は濃度差による拡散(図1中A)によってのみ溝、穴内のワーク表面に到達する。
拡散による反応原料の輸送はガス流による場合に比べ非常に小さいため、高アスペクト比の穴、溝の内部へは原料到達量が少なくなってしまい、表面処理に長時間が必要になってしまうことになる。
FIG. 1 is an explanatory diagram for explaining a velocity boundary layer in the vicinity of a workpiece surface and a hole or groove having a high aspect ratio (aspect ratio, length 1 / width / diameter d). Generally, when surface treatment is performed by gas phase reaction under continuous flow, the velocity boundary layer is near the workpiece surface (the velocity boundary layer has a velocity change from the object wall surface to the main flow regardless of laminar flow / turbulent flow. A region layer h) is formed, and the gas flow velocity becomes zero on the workpiece surface. Gas flow does not occur in grooves and holes smaller than the velocity boundary layer size (no static pressure difference), and the reaction raw material reaches the workpiece surface in the grooves and holes only by diffusion due to the concentration difference (A in FIG. 1). To do.
Since the transport of reaction raw materials by diffusion is much smaller than that by gas flow, the amount of raw materials that reach the inside of holes and grooves with a high aspect ratio is reduced, requiring a long time for surface treatment. become.

また、PVD、プラズマエッチングといった反応原料粒子を物理的にワーク表面に衝突させて表面処理する場合は、高アスペクト比の溝、穴内部に反応原料粒子が到達できる飛来角度が狭くなり、原料到達量が減るため、表面処理が長時間になってしまう。   In addition, when reactive material particles such as PVD and plasma etching are physically impacted against the workpiece surface for surface treatment, the flying angle at which the reactive material particles can reach the inside of the grooves and holes with a high aspect ratio is narrowed, and the amount of material reached Therefore, the surface treatment takes a long time.

アスペクト比が高い穴が設けられた基板の成膜技術として、従来、特許文献1の方法が知られている。成膜の核となる材料を堆積するプロセスと成膜反応プロセスとを分けて実施することで、高アスペクト比の穴内へ高い被覆率で成膜させる方法が示されている。この方法は、高アスペクト比の穴内の表面反応を改善させる方法であって、反応ガスが到達し難いことを改善させるものではないため、反応材料、下地等が特定されて制約が生じ、任意の気相の表面処理はできない。   Conventionally, the method of Patent Document 1 is known as a film forming technique for a substrate provided with a hole having a high aspect ratio. A method of forming a film at a high coverage in a hole having a high aspect ratio by performing a process of depositing a material that is a core of film formation and a film formation reaction process separately is shown. This method is a method for improving the surface reaction in a hole with a high aspect ratio, and does not improve that the reaction gas is difficult to reach. Vapor phase surface treatment is not possible.

特許文献2の方法にみられるように、真空槽内の反応ガスを電離させて生成するプラズマを介して真空槽内の被処理物体を加工処理するに際し、被処理物体の加工処理プロセスの進行中に真空槽内の反応ガスの圧力を、0.1Pa超過の高圧値と、プラズマの維持が不可能な低圧値との間で、周期的に変動させて、プラズマ中の活性種の存在比率を制御することを特徴とする物体の加工処理方法が知られている。   As seen in the method of Patent Document 2, when processing the object to be processed in the vacuum chamber via the plasma generated by ionizing the reaction gas in the vacuum chamber, the processing process of the object to be processed is in progress. In addition, the pressure of the reaction gas in the vacuum chamber is periodically changed between a high pressure value exceeding 0.1 Pa and a low pressure value at which plasma cannot be maintained, so that the abundance ratio of active species in the plasma is increased. An object processing method characterized by controlling is known.

この従来技術は、真空槽内の反応ガスの圧力を、高圧値と低圧値との間で周期的に変動させて、圧力が一定の条件ではプラズマを維持できないような低圧値における活性種の存在比率に近い、平均の存在比率を安定的に実現させるものである。この技術の圧力の変動の狙いは、新しい知見に基づいて、あくまでも真空槽内のプラズマ中の活性種の存在比率を制御すること目的としている。また、圧力が高いほど活性種同士の衝突回数が増え、活性度合いが失活してしまうので、この従来技術の場合できる限り低い圧力でプロセスを構成しようとしている。その際、ネックになるプラズマ生成圧力限界を下回る圧力でプロセスを組むことを狙ったものである。   In this conventional technique, the presence of active species at a low pressure value in which the plasma cannot be maintained under a constant pressure condition by periodically changing the pressure of the reaction gas in the vacuum chamber between the high pressure value and the low pressure value. An average existence ratio close to the ratio is stably realized. The purpose of the pressure fluctuation of this technology is to control the abundance ratio of active species in the plasma in the vacuum chamber based on new knowledge. In addition, since the number of collisions between active species increases and the degree of activity is deactivated as the pressure is higher, this conventional technique attempts to configure the process at the lowest possible pressure. At that time, the aim is to set up the process at a pressure below the plasma generation pressure limit that becomes a bottleneck.

この従来技術では、ガス流れ(連続流)ではなく、活性種(ラジカル、イオン)の自由運動、衝突の現象を対象としていると考えられ、ガス流れの流入出を対象とした装置となっていない。そして、高圧側が0.1Pa超過(高々、10Pa)程度であり、分子の平均自由工程(散乱で妨害されること無く進むことの出来る距離の平均値)は1〜100mmである。一般に、シリコンウエハの厚みは0.5〜1mmなので、高アスペクト比(5以上)の微細穴の穴寸法は、最大で200μm程度(代表長さ)となる。
したがって、この従来技術では、クヌーセン数(平均自由工程/代表長さ)が、5〜500程度となるため、微細穴周りは連続流でなく自由分子流(高度に希薄化された状態)の領域と考えられる(連続流となるためには、クヌーセン数<0.1が必要)。
In this prior art, it is considered that the target is not the gas flow (continuous flow), but the free movement of the active species (radicals and ions) and the phenomenon of collision, and the device is not intended for the inflow and outflow of the gas flow. . The high pressure side is over 0.1 Pa (at most 10 Pa), and the mean free path of the molecule (the average value of the distance that can travel without being disturbed by scattering) is 1 to 100 mm. In general, since the thickness of a silicon wafer is 0.5 to 1 mm, the hole size of a fine hole having a high aspect ratio (5 or more) is about 200 μm (representative length) at the maximum.
Therefore, in this prior art, the Knudsen number (average free process / representative length) is about 5 to 500, so the area around the microhole is not a continuous flow but a free molecular flow (highly diluted state). (Knusen number <0.1 is necessary for continuous flow).

自由分子流の状況では、流れの物質輸送に作用する影響は僅かで、活性種は、自由運動(熱運動)で、微細穴の出入りをするので、圧力が変動しても、流れによる物質の輸送現象は殆ど無いと言えるものである。
したがって、この従来技術でも、拡散による反応原料の輸送はガス流による場合に比べ非常に小さいため、高アスペクト比の穴、溝の内部へは原料到達量が少なくなってしまい、表面処理に長時間が必要になってしまうことになる。
In the situation of free molecular flow, there is little effect on the mass transport of the flow, and the active species move in and out of the microhole by free motion (thermal motion), so even if the pressure fluctuates, It can be said that there is almost no transport phenomenon.
Therefore, even in this conventional technology, since the transport of the reaction raw material by diffusion is very small compared to the case of using a gas flow, the amount of the raw material that reaches the inside of the holes and grooves having a high aspect ratio is reduced, and the surface treatment takes a long time. Will be needed.

特許文献3では、基板処理室の排気量の制御によらずに、圧力調整ガスにより、処理室の圧力を予め設定された一定圧力になるように制御する技術が開示されているに過ぎず、反応ガスの圧力を高圧値と低圧値との間で周期的に変動させるものではない。   Patent Document 3 merely discloses a technique for controlling the pressure of the processing chamber so as to become a predetermined constant pressure by using a pressure adjusting gas, without controlling the exhaust amount of the substrate processing chamber. The pressure of the reaction gas is not periodically changed between the high pressure value and the low pressure value.

特開2002−146531号公報JP 2002-146531 A 特許第3646292号公報Japanese Patent No. 3646292 特開2006−120822号公報JP 2006-120822 A

本発明は、上記問題に鑑み、高アスペクト比の溝又は穴を有するワーク表面に表面処理する装置を提供するものである。   In view of the above problems, the present invention provides an apparatus for surface-treating a workpiece surface having a high aspect ratio groove or hole.

上記課題を解決するために、請求項1の発明は、ワーク(1)の表面に形成された、2以上の高アスペクト比の穴又は溝(2)に、絶縁物又はシリコンに導電性を付与するための微小量の不純物をドープした材料を、埋め込むために、反応ガスを化学反応させる表面処理装置であって、該表面処理装置が、前記ワーク(1)の表面に前記反応ガスを化学反応させる処理室(3)と、前記反応ガスの導入経路を通じて前記処理室に前記反応ガスを供給する反応ガス供給部(6)と、前記反応ガスの導入経路とは別に、前記処理室に導入ガスを供給することにより前記処理室の圧力を変動させる圧力変動部(8)とを具備する表面処理装置において、6666Pa〜101325Paの範囲内で高圧と低圧に周期的に前記導入ガスの圧力を変動させて、前記導入ガスを、前記圧力変動部(8)から導入ガス供給部(7)を経由して前記処理室に供給することにより、前記処理室内の圧力を変動させて前記反応ガスを前記穴又は溝(2)に流入出させるようにした表面処理装置である。   In order to solve the above problems, the invention of claim 1 provides conductivity to an insulator or silicon in a hole or groove (2) having a high aspect ratio of 2 or more formed on the surface of the workpiece (1). A surface treatment device that chemically reacts a reaction gas to embed a material doped with a minute amount of impurities for performing a chemical reaction on the surface of the workpiece (1). In addition to the processing chamber (3) to be supplied, the reaction gas supply unit (6) for supplying the reaction gas to the processing chamber through the reaction gas introduction path, and the reaction gas introduction path, the introduction gas to the treatment chamber In the surface treatment apparatus having a pressure fluctuation section (8) that varies the pressure of the processing chamber by supplying the pressure, the pressure of the introduced gas is periodically fluctuated between high pressure and low pressure within a range of 6666 Pa to 101325 Pa. Then, by supplying the introduced gas from the pressure fluctuation section (8) to the processing chamber via the introduction gas supply section (7), the pressure in the processing chamber is varied to allow the reaction gas to flow into the hole. Or it is a surface treatment apparatus made to flow in and out of a groove | channel (2).

これにより、処理室内の圧力を周期的に変動させることで、ワーク表面の微小な溝、穴内へ強制的に反応ガスを導入、排出することで、ワーク表面全体を高速、高均一で表面処理できる。ガス流(連続流)発生下での表面処理であるので、処理室に導入ガスを供給することにより処理室の圧力を変動させることにより、高アスペクト比の穴、溝の内部に対しても、積極的に原料を到達させることができる。   As a result, by periodically changing the pressure in the processing chamber, the reactive gas is forcibly introduced and discharged into the minute grooves and holes on the workpiece surface, so that the entire workpiece surface can be surface-treated at high speed and with high uniformity. . Since it is a surface treatment under the occurrence of gas flow (continuous flow), by changing the pressure of the processing chamber by supplying the introduction gas to the processing chamber, even inside the holes and grooves with a high aspect ratio, The raw material can be positively reached.

請求項2の発明は、請求項1の発明において、前記導入ガスの圧力を、0.1〜100Hzの周期で変動させることを特徴とする。   The invention of claim 2 is characterized in that, in the invention of claim 1, the pressure of the introduced gas is varied in a cycle of 0.1 to 100 Hz.

請求項3の発明は、請求項1の発明において、前記処理室(3)が上面部(3’)、側面部(3’’)、下面部(3’’’)から構成され、前記上面部(3’)には、前記反応ガス供給部(6)と、前記反応ガス供給部(6)を取り囲むように設置された前記導入ガス供給部(7)とが設けられ、前記下面部(3’’’)には、前記ワーク(1)が配置される支持台(4)が設けられていることを特徴とする。
これにより、圧力変動用の導入ガスが表面処理するワーク表面に到達しないようにすることができる。
According to a third aspect of the invention, in the first aspect of the invention, the processing chamber (3) includes an upper surface portion (3 ′), a side surface portion (3 ″), and a lower surface portion (3 ′ ″). The part (3 ′) is provided with the reaction gas supply part (6) and the introduction gas supply part (7) installed so as to surround the reaction gas supply part (6). 3 ′ ″) is provided with a support base (4) on which the workpiece (1) is arranged.
Thereby, it is possible to prevent the introduced gas for pressure fluctuation from reaching the workpiece surface to be surface-treated.

請求項4の発明は、請求項3の発明において、さらに、前記側面部(3’’)にも前記導入ガス供給部(7)が設けられており、前記導入ガス供給部(7)が前記側面部(3’’)に設けられた複数個の導入穴を具備し、前記側面部(3’’)全体から前記導入ガスが前記処理室に供給されることを特徴とする。
これにより、処理室の側面から、ワークの表面処理に不適当な不純物の放出をより抑止することができる。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the introduction gas supply unit (7) is further provided in the side surface portion (3 ''), and the introduction gas supply unit (7) A plurality of introduction holes provided in the side surface (3 ″) are provided, and the introduced gas is supplied to the processing chamber from the entire side surface (3 ″).
Thereby, it is possible to further suppress the release of impurities inappropriate for the surface treatment of the workpiece from the side surface of the processing chamber.

請求項5の発明は、請求項3又は4の発明において、前記圧力変動部(8)が、前記導入ガスのガス供給源(20)と、前記導入ガスの供給又は停止を周期的に制御するバルブ(21)とを具備することを特徴とする。これにより、ワーク表面の微小な溝又は穴内へ強制的に反応ガスを導入、排出することで、ワーク表面全体を高速、高均一で表面処理できる。   The invention according to claim 5 is the invention according to claim 3 or 4, wherein the pressure fluctuation section (8) periodically controls the gas supply source (20) of the introduced gas and the supply or stop of the introduced gas. And a valve (21). Thereby, the entire work surface can be surface-treated at high speed and with high uniformity by forcibly introducing and discharging the reaction gas into the minute grooves or holes on the work surface.

請求項6の発明は、請求項3又は4の発明において、前記圧力変動部(8)が、前記導入ガス供給部(7)に連結するシリンダ(22)と、該シリンダ(22)内を摺動するピストン(23)と、該ピストン(23)を周期的に伸縮駆動させるアクチュエータとを具備することを特徴とする。   According to a sixth aspect of the present invention, in the third or fourth aspect of the present invention, the pressure fluctuation section (8) slides in the cylinder (22) connected to the introduced gas supply section (7) and the cylinder (22). It comprises a moving piston (23) and an actuator for periodically extending and contracting the piston (23).

請求項7の発明は、請求項3又は4の発明において、前記圧力変動部(8)が、前記導入ガス供給部(7)に連結する可変容量部(24)と、該可変容量部(24)を周期的に伸縮駆動させるアクチュエータを具備することを特徴とする。   According to a seventh aspect of the present invention, in the third or fourth aspect of the invention, the pressure fluctuation section (8) is connected to the introduction gas supply section (7), and the variable capacity section (24) ) Is periodically expanded and contracted.

なお、上記に付した符号は、後述する実施形態に記載の具体的実施態様との対応関係を示す一例である。   In addition, the code | symbol attached | subjected above is an example which shows a corresponding relationship with the specific embodiment as described in embodiment mentioned later.

ワーク表面近傍の速度境界層と高アスペクト比の穴又は溝を説明する説明図である。It is explanatory drawing explaining the speed boundary layer near the workpiece | work surface, and the hole or groove | channel of a high aspect ratio. ワーク1の表面に形成された溝又は穴2に、絶縁物又はシリコンに導電性を付与するための微小量の不純物をドープした材料2’が、埋め込まれた状態を説明する説明図である。It is explanatory drawing explaining the state by which the material 2 'which doped the micro amount impurity for providing electroconductivity to an insulator or silicon | silicone was embedded in the groove | channel or hole 2 formed in the surface of the workpiece | work 1. FIG. 本発明の一実施形態である表面処理装置にワーク1を搬入、搬出する説明図である。It is explanatory drawing which carries in and carries out the workpiece | work 1 in the surface treatment apparatus which is one Embodiment of this invention. 本発明の一実施形態である表面処理装置を示す概略図である。It is the schematic which shows the surface treatment apparatus which is one Embodiment of this invention. 本発明の一実施形態における圧力変動装置8を示す概略図である。It is the schematic which shows the pressure fluctuation apparatus 8 in one Embodiment of this invention. 本発明の他の一実施形態における導入ガス供給部7を示す概略図である。It is the schematic which shows the introduction gas supply part 7 in other one Embodiment of this invention. 本発明の他の一実施形態における圧力変動装置8を示す概略図である。It is the schematic which shows the pressure fluctuation apparatus 8 in other one Embodiment of this invention. 本発明の他の一実施形態における圧力変動装置8を示す概略図である。It is the schematic which shows the pressure fluctuation apparatus 8 in other one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態を説明する。各実施態様について、同一構成の部分には、同一の符号を付してその説明を省略する。
図2は、ワーク1の表面に形成された溝又は穴2に、絶縁物又はシリコンに導電性を付与するための微小量の不純物をドープした材料2’が、埋め込まれた状態を説明する説明図である。図3は、本発明の一実施形態である表面処理装置にワーク1を搬入、搬出する説明図である。図4は、本発明の一実施形態である表面処理装置を示す概略図である。図5は、本発明の一実施形態における圧力変動装置8を示す概略図である。
ワーク1としては、シリコンウエハ、基板、半導体デバイスなどが挙げられる。表面処理としては、例示として、CVD、プラズマCVDなどが挙げられる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. About each embodiment, the same code | symbol is attached | subjected to the part of the same structure, and the description is abbreviate | omitted.
FIG. 2 is a diagram for explaining a state in which a groove 2 or a hole 2 formed on the surface of the workpiece 1 is filled with a material 2 ′ doped with a minute amount of impurities for imparting conductivity to an insulator or silicon. FIG. FIG. 3 is an explanatory diagram for loading and unloading the workpiece 1 into and from the surface treatment apparatus according to the embodiment of the present invention. FIG. 4 is a schematic view showing a surface treatment apparatus according to an embodiment of the present invention. FIG. 5 is a schematic view showing the pressure fluctuation device 8 in one embodiment of the present invention.
Examples of the work 1 include a silicon wafer, a substrate, and a semiconductor device. Examples of the surface treatment include CVD and plasma CVD.

シリコンウエハ1上に形成した、幅1〜200μm、アスペクト比2以上の深溝又は穴2内に、シリコンに導電性を付与するための微小量の不純物をドープした材料2’を、熱CVD法、プラズマCVDなどで成膜して埋め込む一実施形態を以下に説明する。図2に示すように、材料2’を埋め込む場合について説明するが、溝又は穴に成膜する場合でも本発明が同様に適用できることは明らかである。シリコン高アスペクト比加工は、一般には開口部が数〜数十μm、深さは100μm以下のものが代表的である。   In a deep groove or hole 2 formed on the silicon wafer 1 and having a width of 1 to 200 μm and an aspect ratio of 2 or more, a material 2 ′ doped with a minute amount of impurities for imparting conductivity to silicon is formed by a thermal CVD method, One embodiment of forming and embedding by plasma CVD or the like will be described below. As shown in FIG. 2, the case where the material 2 ′ is embedded will be described. However, it is apparent that the present invention can be similarly applied even when the film is formed in the groove or the hole. In general, the silicon high aspect ratio processing typically has an opening of several to several tens of μm and a depth of 100 μm or less.

本実施形態の表面処理装置は、図3、4に示すように、上面部3’、側面部3’’、 下面部3’’’から構成された処理室3、ワークを載置する支持台4、加熱装置5、上面部3’において複数穴で連結した反応ガス供給部6、圧力変動装置8、圧力変動装置8からの圧力変動用の導入ガスを処理室3に導入する導入ガス供給部7、排気口9、排気ポンプ15、表面処理した装置を冷却する保持室11、排気ガスの除外装置12、搬送台13、及び、搬送装置14で構成される。
図3に示すように、ワークとしてのシリコンウエハ1は、処理室3に、表面処理するシリコンウエハ1が搬入、搬出される。他の搬送装置により、シリコンウエハ1は、搬送台13に載置された後、搬送装置14により、開閉機構のある扉10を通して処理室3に搬入され、シリコンウエハ1を保持する支持台4に載置される。
As shown in FIGS. 3 and 4, the surface treatment apparatus of this embodiment includes a treatment chamber 3 composed of an upper surface portion 3 ′, a side surface portion 3 ″, and a lower surface portion 3 ′ ″, and a support base on which a workpiece is placed. 4, heating device 5, reaction gas supply unit 6 connected by a plurality of holes in the upper surface part 3 ′, pressure fluctuation device 8, and an introduction gas supply unit for introducing the introduced gas for pressure fluctuation from the pressure fluctuation device 8 into the processing chamber 3. 7, an exhaust port 9, an exhaust pump 15, a holding chamber 11 for cooling the surface-treated device, an exhaust gas exclusion device 12, a transport table 13, and a transport device 14.
As shown in FIG. 3, the silicon wafer 1 as a work is carried into and out of the processing chamber 3. After the silicon wafer 1 is placed on the transfer table 13 by another transfer device, it is carried into the processing chamber 3 through the door 10 having an opening / closing mechanism by the transfer device 14, and is placed on the support table 4 that holds the silicon wafer 1. Placed.

表面処理するシリコンウエハ1は台13上に載置されると、搬送装置14により処理室内に搬入される。搬送後、処理室の扉2を閉じ、処理室内はH2ガスで置換される。次にワーク加熱装置5にて表面処理する装置を処理温度(一例として約1000℃)まで加熱する。加熱後、反応ガスを反応ガス供給部6から供給する。反応ガスとしては、一例として、SiH4、SiH2Cl2、SiHCl3を成膜主原料とし、B26、PH3、AsH3などを適当量混合し、H2で希釈したものなどを用いる。 When the silicon wafer 1 to be surface-treated is placed on the table 13, it is carried into the processing chamber by the transfer device 14. After the transfer, the processing chamber door 2 is closed, and the processing chamber is replaced with H 2 gas. Next, an apparatus for surface treatment with the work heating device 5 is heated to a treatment temperature (about 1000 ° C. as an example). After the heating, the reaction gas is supplied from the reaction gas supply unit 6. As an example of the reaction gas, SiH 4 , SiH 2 Cl 2 , SiHCl 3 is used as a main film forming material, B 2 H 6 , PH 3 , AsH 3, etc. are mixed in an appropriate amount and diluted with H 2. Use.

図5に示す圧力変動装置8として、ガス供給源20、バルブ21から構成され、バルブ21は、ガス供給源20と処理室3との間に設置されている。ガス供給源20は、処理室3より高い圧力を供給する。一例としては、処理室内の2倍以上の圧力ガス(H2,N2,Ar等)を処理室3に供給する。表面処理を実施している間、バルブ21は、0.01〜1000Hz程度で開閉することで、0.01〜1000Hz程度の圧力変動を処理室に発生させる。 The pressure fluctuation device 8 shown in FIG. 5 includes a gas supply source 20 and a valve 21, and the valve 21 is installed between the gas supply source 20 and the processing chamber 3. The gas supply source 20 supplies a higher pressure than the processing chamber 3. As an example, a pressure gas (H 2 , N 2 , Ar, etc.) twice or more in the processing chamber is supplied to the processing chamber 3. While performing the surface treatment, the valve 21 opens and closes at about 0.01 to 1000 Hz, thereby generating a pressure fluctuation of about 0.01 to 1000 Hz in the processing chamber.

反応ガスは、反応ガス供給部6により、反応ガスの導入経路を通じて処理室3に供給される。また、反応ガスの導入経路とは別に、導入ガス供給部7により、処理室3に導入ガスが供給される。図4に示すように、導入ガス供給部7は、処理室3の上面部3’において、反応ガス供給部6を取り囲むように設置されている。処理室3の下面部3’’’には、ワークであるシリコンウエハ1が配置される支持台4が設けられている。圧力変動用の導入ガスが表面処理するワーク表面に到達しないように、処理室内に設置する導入ガス供給部7が、処理室3の上面部3’においてワーク位置以外の位置に設置されている。排気口9は、本実施形態では、導入ガス供給部7の噴出しに対応した処理室3の下面部3’’’であって、支持台4の外周に設けられている。
処理室壁面に沿う方向にガスを導入し、排気口まで到達させる処理室構造にすることで、ワークには圧力変動のための供給ガスを到達させずに表面処理をすることができる。このような、圧力調整用の導入ガス供給部7が、ワーク位置より外側に設置されて、不活性ガスを供給する仕組みにより、圧力変動付与と同時に、装置壁面を保護する機能を有している。導入ガスは壁面全体に沿って供給される。
The reaction gas is supplied to the processing chamber 3 by the reaction gas supply unit 6 through the reaction gas introduction path. Separately from the reaction gas introduction path, the introduction gas is supplied to the processing chamber 3 by the introduction gas supply unit 7. As shown in FIG. 4, the introduction gas supply unit 7 is installed on the upper surface portion 3 ′ of the processing chamber 3 so as to surround the reaction gas supply unit 6. A support table 4 on which the silicon wafer 1 as a work is disposed is provided on the lower surface 3 ′ ″ of the processing chamber 3. An introduction gas supply unit 7 installed in the processing chamber is installed at a position other than the workpiece position in the upper surface portion 3 ′ of the processing chamber 3 so that the introduced gas for pressure fluctuation does not reach the workpiece surface to be surface-treated. In the present embodiment, the exhaust port 9 is provided on the outer periphery of the support base 4, which is the lower surface portion 3 ′ ″ of the processing chamber 3 corresponding to the ejection of the introduction gas supply unit 7.
By adopting a processing chamber structure in which gas is introduced in a direction along the processing chamber wall surface and reaches the exhaust port, the workpiece can be surface-treated without reaching the supply gas for pressure fluctuation. By such a mechanism that the introduction gas supply unit 7 for pressure adjustment is installed outside the work position and supplies an inert gas, it has a function of protecting the apparatus wall surface simultaneously with the application of pressure fluctuation. . The introduced gas is supplied along the entire wall surface.

処理室内でワークであるシリコンウエハ1を表面処理反応させている時に、処理室内の圧力を周期的に変動させることで、ワーク表面の微小な溝又は穴内へ強制的に反応ガスを導入、排出することで、ワーク表面全体を高速、高均一で表面処理できる。圧力が変化する過程でワーク上の穴又は溝内へ原料ガスの流入、流出を起こし、原料を溝又は穴に供給する。1000Hz以上では圧力変動を発生させる設備構造が難しくなり、0.01Hz以下ではガス流を起こさせる圧力変動頻度が少なく、ガス流による原料供給作用が拡散に対して小さくなってしまう。導入ガスの圧力を、0.1〜100Hzの周期で変動させ、0.1〜100Hz程度の圧力変動を処理室に発生させることが好ましい。   When the silicon wafer 1 that is a workpiece is subjected to a surface treatment reaction in the processing chamber, the reaction gas is forcibly introduced and discharged into minute grooves or holes on the surface of the workpiece by periodically changing the pressure in the processing chamber. As a result, the entire workpiece surface can be surface-treated at high speed and with high uniformity. In the process of changing the pressure, the source gas flows into and out of the hole or groove on the workpiece, and the raw material is supplied to the groove or hole. When the frequency is 1000 Hz or higher, the equipment structure that generates pressure fluctuation becomes difficult. When the frequency is 0.01 Hz or lower, the frequency of pressure fluctuation that causes a gas flow is small, and the raw material supply action by the gas flow becomes small against diffusion. It is preferable that the pressure of the introduced gas is changed at a period of 0.1 to 100 Hz and a pressure fluctuation of about 0.1 to 100 Hz is generated in the processing chamber.

圧力変動の際は、処理室が低圧時は、溝、穴内からガスが排出され、高圧時に穴、溝内へ原料ガスが流入する。そのため、圧力変動幅(振幅)と変動周期が同じ場合、1周期において、より多くの原料を穴、溝内へ流入させるためには、低圧時間を短く、高圧の時間を長くすると良い。このため、低圧時間を1秒以下にできる排気能力がある設備が好ましい。圧力変動させれば、変動させない場合より深穴、溝内への原料ガス流入出を増加させることができる。矩形波、正弦波、三角波、のこぎり波、又は、これらの組み合わせで形成したカーブを用いることが出来る。   When the pressure fluctuates, the gas is discharged from the grooves and holes when the processing chamber is at a low pressure, and the raw material gas flows into the holes and grooves when the pressure is high. Therefore, when the pressure fluctuation width (amplitude) and the fluctuation cycle are the same, in order to allow more raw materials to flow into the holes and grooves in one cycle, it is preferable to shorten the low pressure time and lengthen the high pressure time. For this reason, the installation which has the exhaust capability which can make low pressure time 1 second or less is preferable. If the pressure is changed, the inflow and outflow of the raw material gas into the deep hole and the groove can be increased as compared with the case where the pressure is not changed. A curve formed by a rectangular wave, a sine wave, a triangular wave, a sawtooth wave, or a combination thereof can be used.

所定の反応が得られたら、原料ガス供給、表面処理されたシリコンウエハ1(ワーク)の加熱を止め、不活性ガス(Ar、N2)を供給しながら搬送可能温度に到達するまで冷却する。搬送可能温度に到達したら、処理室の扉2を開き、搬送装置14にて処理室3から保持室(冷却室)11に搬送する。保持室(冷却室)11に搬送されたワークを取り出し温度に到達するまで冷却する。ワーク温度が取り出し温度まで到達したら、保持室11からワークを取り出す。 When a predetermined reaction is obtained, the supply of the raw material gas and the heating of the surface-treated silicon wafer 1 (workpiece) are stopped, and the inert gas (Ar, N 2 ) is supplied and cooled until the transportable temperature is reached. When the transferable temperature is reached, the door 2 of the processing chamber is opened, and the transfer device 14 transfers the processing chamber 3 to the holding chamber (cooling chamber) 11. The work conveyed to the holding chamber (cooling chamber) 11 is taken out and cooled until the temperature is reached. When the workpiece temperature reaches the removal temperature, the workpiece is removed from the holding chamber 11.

本実施形態の表面処理装置では、50〜760Torr(6666〜101325Pa)と高圧で、穴・溝幅1mm以下、好ましくは、微小穴・溝幅1〜200μmの製品を対象としており、クヌーセン数<0.1の領域でプロセスが構築される。
このため、ワーク1の表面に形成された、2以上の高アスペクト比の穴又は溝2に、絶縁物又はシリコンに導電性を付与するための微小量の不純物をドープした材料を、埋め込む場合、希薄気体力学(機械工学便覧基礎編α4等参照)でいうところの連続流が発生する。
The surface treatment apparatus of the present embodiment is intended for products having a high pressure of 50 to 760 Torr (6666 to 101325 Pa) and a hole / groove width of 1 mm or less, and preferably a microhole / groove width of 1 to 200 μm, and the Knudsen number <0. The process is built in the area of .1.
For this reason, when a hole or groove 2 having a high aspect ratio of 2 or more formed on the surface of the work 1 is embedded with an insulator or a material doped with a minute amount of impurities for imparting conductivity to silicon, A continuous flow as described in lean gas dynamics (see Mechanical Engineering Handbook Basic α4 etc.) is generated.

一方、特許文献2の自由分子流の状況下では、拡散による反応原料の輸送はガス流による場合に比べ非常に小さい。このため、流れの物質輸送に作用する影響は僅かで、自由運動(熱運動)で、微細穴の出入りをするので、圧力が変動しても、流れによる物質の輸送現象は殆ど無いと言えるものである。
これに対して、本実施形態の表面処理装置は、ガス流(連続流)発生下での表面処理であるので、処理室3に導入ガスを供給することにより処理室の圧力を変動させることにより、高アスペクト比の穴、溝の内部に対しても、積極的に原料を到達させることができる。このため、表面処理に長時間かけずに、反応ガスを化学反応させ埋め込むことが出来るのである。
On the other hand, in the situation of the free molecular flow of Patent Document 2, the transport of the reaction raw material by diffusion is very small as compared with the case of the gas flow. For this reason, there is little influence on the mass transport of the flow, and it can be said that there is almost no transport phenomenon of the material due to the flow even if the pressure fluctuates because it moves in and out of the fine hole by free motion (thermal motion). It is.
On the other hand, since the surface treatment apparatus of the present embodiment is a surface treatment under the generation of a gas flow (continuous flow), by supplying the introduction gas to the treatment chamber 3, the pressure in the treatment chamber is changed. Moreover, the raw material can be made to reach the inside of the hole and groove having a high aspect ratio positively. For this reason, the reactive gas can be chemically reacted and embedded without taking a long time for the surface treatment.

次に、圧力変動装置8と導入ガス供給部7について、本発明の別の実施態様を説明する。図6は、本発明の他の一実施形態における導入ガス供給部7を示す概略図である。図7は、本発明の他の一実施形態における圧力変動装置8を示す概略図である。図8は、本発明の他の一実施形態における圧力変動装置8を示す概略図である。   Next, another embodiment of the present invention will be described for the pressure fluctuation device 8 and the introduced gas supply unit 7. FIG. 6 is a schematic view showing an introduction gas supply unit 7 in another embodiment of the present invention. FIG. 7 is a schematic diagram showing a pressure fluctuation device 8 according to another embodiment of the present invention. FIG. 8 is a schematic diagram showing a pressure fluctuation device 8 according to another embodiment of the present invention.

図6に示す本発明の他の一実施形態においては、処理室3の側面部3’’に、一箇所又は複数箇所、導入ガス供給部7が設けられている。この場合、導入ガス供給部7は、処理室3の上面部3’において設置しなくても良いが、処理室3の上面部3’にも導入ガス供給部7を設置したほうが、より好ましい。処理室3の上面部3’と、側面部3’’全面とから同時に導入ガスを供給すれば、処理室の側面から、ワークの表面処理に不適当な不純物の放出をより抑止することができる。   In another embodiment of the present invention shown in FIG. 6, one or more introduction gas supply units 7 are provided on the side surface 3 ″ of the processing chamber 3. In this case, the introduction gas supply unit 7 may not be installed on the upper surface portion 3 ′ of the processing chamber 3, but it is more preferable that the introduction gas supply unit 7 is also installed on the upper surface portion 3 ′ of the processing chamber 3. If the introduction gas is supplied simultaneously from the upper surface portion 3 ′ and the entire side surface 3 ″ of the processing chamber 3, it is possible to further suppress the release of impurities inappropriate for the surface treatment of the workpiece from the side surface of the processing chamber. .

処理室3の側面部3’’全面から導入ガスを供給するには、処理室の側面部3’’に複数の導入穴を全体的に設置すると良い。導入ガス供給部7から導入ガスを導入穴に供給するには、導管で連結してもよいが、処理室の側面部3’’を外周から取り囲むようにして空間を設けて供給しても良い。処理室3の側面部3’’から導入ガスを供給する場合、処理室3の側面部3’’から供給する導入ガスの圧力を、処理室3の上面部3’から供給する導入ガスの圧力に比較して、導入ガスが表面処理を行うワーク表面に達しないように適宜調整すると良い。   In order to supply the introduction gas from the entire side surface 3 ″ of the processing chamber 3, a plurality of introduction holes may be installed in the side surface 3 ″ of the processing chamber as a whole. In order to supply the introduction gas from the introduction gas supply unit 7 to the introduction hole, it may be connected by a conduit, or may be supplied by providing a space so as to surround the side surface portion 3 '' of the processing chamber from the outer periphery. . When the introduced gas is supplied from the side surface portion 3 ″ of the processing chamber 3, the pressure of the introduced gas supplied from the side surface portion 3 ″ of the processing chamber 3 is set to the pressure of the introduced gas supplied from the upper surface portion 3 ′ of the processing chamber 3. Compared to the above, it is preferable to adjust appropriately so that the introduced gas does not reach the surface of the workpiece to be surface-treated.

圧力変動装置8の別の実施態様としては、図7に示すように、圧力変動部8が、導入ガス供給部7に導入穴で連結するシリンダ22と、シリンダ22内を摺動するピストン23と、ピストン23を周期的に伸縮駆動させるアクチュエータ(図示せず)とを具備するものであってもよい。さらに、図8に示すように、圧力変動部8が、導入ガス供給部7に連結する可変容量部24と、可変容量部24を周期的に伸縮駆動させるアクチュエータ(図示せず)を具備するものであってもよい。可変容量部24は、図8に示す蛇腹状の容量部やその他弾性体で構成されたものであっても良い。上記2つの別の実施態様において、導入ガス供給部7から導入ガスを導入穴に供給するには、導管で連結してもよいが、処理室の側面部3’’を、外周全体で取り囲むようにした空間を設けて供給しても良い。   As another embodiment of the pressure fluctuation device 8, as shown in FIG. 7, the pressure fluctuation unit 8 includes a cylinder 22 connected to the introduction gas supply unit 7 through an introduction hole, and a piston 23 that slides in the cylinder 22. And an actuator (not shown) that periodically drives the piston 23 to extend and contract. Further, as shown in FIG. 8, the pressure fluctuation unit 8 includes a variable capacity unit 24 connected to the introduction gas supply unit 7 and an actuator (not shown) that periodically drives the variable capacity unit 24 to extend and contract. It may be. The variable capacity part 24 may be constituted by a bellows-like capacity part shown in FIG. 8 or other elastic body. In the two other embodiments described above, in order to supply the introduction gas from the introduction gas supply unit 7 to the introduction hole, it may be connected by a conduit, but the side surface portion 3 '' of the processing chamber is surrounded by the entire outer periphery. It is also possible to provide the space provided in the above manner.

したがって、内部でピストンが往復する閉空間が表面処理室と連結しており、またピストンが処理室の反対側から往復動作させる装置を備えているので、ピストンにより処理室内に高圧ガスが周期的に導入され、処理室内に圧力周期が生じる。また、容積変化する圧力変動発生用の閉空間が表面処理室と連結しており、また圧力変動発生用の閉空間が外側から周期的に容積変化させる装置を備えているので、容積変化により、処理室内に高圧ガスが周期的に導入され、処理室内に圧力周期が生じる。   Therefore, the closed space in which the piston reciprocates is connected to the surface treatment chamber, and the piston is provided with a device that reciprocates from the opposite side of the treatment chamber. As a result, a pressure cycle is generated in the processing chamber. In addition, since the closed space for generating pressure fluctuation that changes in volume is connected to the surface treatment chamber, and the closed space for generating pressure fluctuation includes a device that periodically changes the volume from the outside, A high-pressure gas is periodically introduced into the processing chamber, and a pressure cycle is generated in the processing chamber.

1 ワーク、シリコンウエハ
2 穴又は溝
3 処理室
4 支持台
5 加熱装置
6 反応ガス供給部
7 導入ガス供給部
8 圧力変動部
9 排気口
10 扉
20 ガス供給源
21 バルブ
22 シリンダ
23 ピストン
24 可変容量部
DESCRIPTION OF SYMBOLS 1 Work, silicon wafer 2 Hole or groove 3 Processing chamber 4 Support stand 5 Heating device 6 Reaction gas supply part 7 Introduced gas supply part 8 Pressure fluctuation part 9 Exhaust port 10 Door 20 Gas supply source 21 Valve 22 Cylinder 23 Piston 24 Variable capacity Part

Claims (7)

ワーク(1)の表面に形成された、2以上の高アスペクト比の穴又は溝(2)に、絶縁物又はシリコンに導電性を付与するための微小量の不純物をドープした材料を、埋め込むために、反応ガスを化学反応させる表面処理装置であって、
該表面処理装置が、前記ワーク(1)の表面に前記反応ガスを化学反応させる処理室(3)と、前記反応ガスの導入経路を通じて前記処理室に前記反応ガスを供給する反応ガス供給部(6)と、前記反応ガスの導入経路とは別に、前記処理室に導入ガスを供給することにより前記処理室の圧力を変動させる圧力変動部(8)とを具備する表面処理装置において、
6666Pa〜101325Paの範囲内で高圧と低圧に周期的に前記導入ガスの圧力を変動させて、前記導入ガスを、前記圧力変動部(8)から導入ガス供給部(7)を経由して前記処理室に供給することにより、前記処理室内の圧力を変動させて前記反応ガスを前記穴又は溝(2)に流入出させるようにした表面処理装置。
In order to embed an insulator or a material doped with a minute amount of impurities for imparting conductivity to silicon in a hole or groove (2) having a high aspect ratio of 2 or more formed on the surface of the work (1) And a surface treatment apparatus for chemically reacting the reaction gas,
The surface treatment apparatus has a treatment chamber (3) that chemically reacts the reaction gas with the surface of the workpiece (1), and a reaction gas supply unit that supplies the reaction gas to the treatment chamber through the reaction gas introduction path ( 6) and a surface treatment apparatus comprising a pressure fluctuation section (8) for varying the pressure of the processing chamber by supplying the introduction gas to the processing chamber separately from the reaction gas introduction path,
The pressure of the introduced gas is periodically fluctuated between high pressure and low pressure within a range of 6666 Pa to 101325 Pa, and the treatment of the introduced gas from the pressure fluctuation section (8) through the introduction gas supply section (7). A surface treatment apparatus in which the reaction gas is caused to flow into and out of the hole or groove (2) by changing the pressure in the treatment chamber by supplying to the chamber.
前記導入ガスの圧力を、0.1〜100Hzの周期で変動させることを特徴とする請求項1に記載の表面処理装置。   The surface treatment apparatus according to claim 1, wherein the pressure of the introduced gas is changed in a cycle of 0.1 to 100 Hz. 前記処理室(3)が上面部(3’)、側面部(3’’)、下面部(3’’’)から構成され、前記上面部(3’)には、前記反応ガス供給部(6)と、前記反応ガス供給部(6)を取り囲むように設置された前記導入ガス供給部(7)とが設けられ、前記下面部(3’’’)には、前記ワーク(1)が配置される支持台(4)が設けられていることを特徴とする請求項1に記載の表面処理装置。   The processing chamber (3) includes an upper surface portion (3 ′), a side surface portion (3 ″), and a lower surface portion (3 ′ ″). The upper surface portion (3 ′) includes the reaction gas supply unit ( 6) and the introduction gas supply part (7) installed so as to surround the reaction gas supply part (6), and the work (1) is provided on the lower surface part (3 ′ ″). The surface treatment apparatus according to claim 1, wherein a support base (4) to be arranged is provided. さらに、前記側面部(3’’)にも前記導入ガス供給部(7)が設けられており、前記導入ガス供給部(7)が前記側面部(3’’)に設けられた複数個の導入穴を具備し、前記側面部(3’’)全体から前記導入ガスが前記処理室に供給されることを特徴とする請求項3に記載の表面処理装置。   Further, the side gas (3 ″) is also provided with the introduction gas supply unit (7), and the introduction gas supply unit (7) is provided in the plurality of side surfaces (3 ″). The surface treatment apparatus according to claim 3, further comprising an introduction hole, wherein the introduction gas is supplied to the treatment chamber from the entire side surface portion (3 ″). 前記圧力変動部(8)が、前記導入ガスのガス供給源(20)と、前記導入ガスの供給又は停止を周期的に制御するバルブ(21)とを具備することを特徴とする請求項3又は4に記載の表面処理装置。   The said pressure fluctuation | variation part (8) is equipped with the gas supply source (20) of the said introduction gas, and the valve | bulb (21) which controls the supply or stop of the said introduction gas periodically. Or the surface treatment apparatus of 4. 前記圧力変動部(8)が、前記導入ガス供給部(7)に連結するシリンダ(22)と、該シリンダ(22)内を摺動するピストン(23)と、該ピストン(23)を周期的に伸縮駆動させるアクチュエータとを具備することを特徴とする請求項3又は4に記載の表面処理装置。   The pressure fluctuation section (8) is configured to periodically connect a cylinder (22) connected to the introduction gas supply section (7), a piston (23) sliding in the cylinder (22), and the piston (23). The surface treatment apparatus according to claim 3, further comprising an actuator that is driven to extend and contract. 前記圧力変動部(8)が、前記導入ガス供給部(7)に連結する可変容量部(24)と、該可変容量部(24)を周期的に伸縮駆動させるアクチュエータを具備することを特徴とする請求項3又は4に記載の表面処理装置。   The pressure fluctuation section (8) includes a variable capacity section (24) connected to the introduction gas supply section (7) and an actuator that periodically expands and contracts the variable capacity section (24). The surface treatment apparatus according to claim 3 or 4.
JP2009145796A 2009-06-18 2009-06-18 Surface treatment equipment Expired - Fee Related JP5126167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145796A JP5126167B2 (en) 2009-06-18 2009-06-18 Surface treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145796A JP5126167B2 (en) 2009-06-18 2009-06-18 Surface treatment equipment

Publications (2)

Publication Number Publication Date
JP2011003744A true JP2011003744A (en) 2011-01-06
JP5126167B2 JP5126167B2 (en) 2013-01-23

Family

ID=43561460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145796A Expired - Fee Related JP5126167B2 (en) 2009-06-18 2009-06-18 Surface treatment equipment

Country Status (1)

Country Link
JP (1) JP5126167B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125328U (en) * 1989-03-23 1990-10-16
JPH04251932A (en) * 1990-06-25 1992-09-08 Toshiba Corp Method and apparatus for vapor growth
JPH0977593A (en) * 1995-09-14 1997-03-25 Nissan Motor Co Ltd Chemical vapor phase growing method and chemical vapor phase growing device
JP2000058527A (en) * 1998-08-05 2000-02-25 Toshiba Mach Co Ltd Rotary device and method for vapor phase growth
JP2002217281A (en) * 2000-12-27 2002-08-02 Internatl Business Mach Corp <Ibm> Method and device for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125328U (en) * 1989-03-23 1990-10-16
JPH04251932A (en) * 1990-06-25 1992-09-08 Toshiba Corp Method and apparatus for vapor growth
JPH0977593A (en) * 1995-09-14 1997-03-25 Nissan Motor Co Ltd Chemical vapor phase growing method and chemical vapor phase growing device
JP2000058527A (en) * 1998-08-05 2000-02-25 Toshiba Mach Co Ltd Rotary device and method for vapor phase growth
JP2002217281A (en) * 2000-12-27 2002-08-02 Internatl Business Mach Corp <Ibm> Method and device for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP5126167B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
KR102224889B1 (en) Chemical deposition apparatus having conductance control
KR102269469B1 (en) Apparatus and methods for injector to substrate gap control
JP7451601B2 (en) Single wafer processing environment with spatial separation
US10287687B2 (en) Substrate processing device
JP6877133B2 (en) Plasma processing equipment and plasma processing method
US20080280453A1 (en) Apparatus and method for supporting, positioning and rotating a substrate in a processing chamber
JP2014508221A (en) Equipment for atomic layer deposition
WO2004007800A9 (en) Thermal processing apparatus and method for evacuating a process chamber
KR20120118429A (en) Heat treatment apparatus
KR102036462B1 (en) Film forming apparatus
US20170278730A1 (en) Plasma processing apparatus and plasma processing method
US20170317188A1 (en) Film forming apparatus having an injector
JP2014510834A (en) Apparatus and method for atomic layer deposition
JP7018882B2 (en) High temperature heater for processing chamber
JP5126167B2 (en) Surface treatment equipment
KR102374532B1 (en) Integrated two-axis lift-rotation motor center pedestal in multi-wafer carousel ald
KR102223824B1 (en) Apparatus and methods for wafer chucking on a susceptor for ald
US20200066572A1 (en) Methods Of Operating A Spatial Deposition Tool
US20060134345A1 (en) Systems and methods for depositing material onto microfeature workpieces
CN111108585B (en) Shower head and substrate processing apparatus
CN110890260B (en) Device for dynamically controlling gas flow mode and wafer processing method and equipment
CN113166938A (en) Method of operating a spatial deposition tool
KR20150120423A (en) Apparatus and methods for differential pressure chucking of substrates
US11713508B2 (en) Apparatus and methods for improving chemical utilization rate in deposition process
KR20040082177A (en) Apparatus for depositing an atomic layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees