JP2011003071A - Proximity detection device and proximity detection method - Google Patents

Proximity detection device and proximity detection method Download PDF

Info

Publication number
JP2011003071A
JP2011003071A JP2009146561A JP2009146561A JP2011003071A JP 2011003071 A JP2011003071 A JP 2011003071A JP 2009146561 A JP2009146561 A JP 2009146561A JP 2009146561 A JP2009146561 A JP 2009146561A JP 2011003071 A JP2011003071 A JP 2011003071A
Authority
JP
Japan
Prior art keywords
transmission
current
electrode
proximity
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009146561A
Other languages
Japanese (ja)
Inventor
Kenichi Matsushima
健一 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009146561A priority Critical patent/JP2011003071A/en
Publication of JP2011003071A publication Critical patent/JP2011003071A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To present a proximity detection device and a proximity detection method, allowing low-voltage drive and drive with low power consumption.SOLUTION: The proximity detection device includes: a transmission electrode 3 and a reception electrode 4 installed in a detection area 2 on a support board 1; a multi-line drive means 5 for simultaneously applying periodic AC voltage to two or more electrodes of the transmission electrode 3; a current measurement means 6 for measuring current or a charge amount from the reception electrode 4 in synchronization with drive to the transmission electrode 3; an arithmetic means 10 for obtaining a proximity position or proximity of an object to the detection area 2; and a control means 9a for managing a sequence and status of the whole. The control means 9a includes: a timing signal generation means 40; and a current measurement switch control means 43 for controlling supply of power.

Description

本発明は、2次元座標に対応して配置された複数の電極の各交点の静電容量の変化により、人の指などの物体の接近や位置を検出する近接検出装置に関する。   The present invention relates to a proximity detection device that detects the approach and position of an object such as a human finger by a change in electrostatic capacitance at each intersection of a plurality of electrodes arranged corresponding to two-dimensional coordinates.

従来の近接検出装置は、近傍に配置される2つの電極間に人の指などの物体が接近すると、電極間の静電容量が変化することが知られている。この原理を検出領域の2次元座標に対応して配置された複数の電極の各交点の静電容量の検出に応用した静電タッチセンサであり、かつ複数点同時検出が可能な近接検出装置が開示されている(例えば、特許文献1参照。)。   It is known that a conventional proximity detection device changes the capacitance between electrodes when an object such as a human finger approaches between two electrodes arranged in the vicinity. An electrostatic touch sensor that applies this principle to detection of capacitance at each intersection of a plurality of electrodes arranged corresponding to the two-dimensional coordinates of a detection region, and a proximity detection device capable of simultaneous detection of a plurality of points (For example, refer to Patent Document 1).

従来の近接検出装置の一例について、図2を基に説明する。   An example of a conventional proximity detection device will be described with reference to FIG.

図2の例では、支持基板1の検出領域2に縦方向の座標に対応する送信電極3と横方向の座標に対応する受信電極4が互いに直交して配置されている。送信電極3には、マルチライン駆動手段5から同時に複数の電極に周期的な交流電圧が印加される。この交流電圧は、送信電極3と受信電極4との交点の静電結合により、受信電極4に伝達される。電流測定手段6では、仮想接地された受信電極4に流れる電流から対応する各交点の静電結合に応じた値を検出して、検出した値を演算手段10に出力する。ここで、演算手段10では各交点の検出位置を特定するため、電流測定手段6により得られた測定値を線形演算手段7で線形演算することにより各交点の静電結合に対応した値に変換した値、あるいはその推移から近接演算手段8で検出領域への物体の近接の判定と接近位置をもとめる演算手段10とにより従来の近接検出装置が構成されている。   In the example of FIG. 2, the transmission electrode 3 corresponding to the vertical coordinate and the reception electrode 4 corresponding to the horizontal coordinate are arranged orthogonal to each other in the detection region 2 of the support substrate 1. A periodic AC voltage is applied to the plurality of electrodes simultaneously from the multiline driving means 5 to the transmission electrode 3. This AC voltage is transmitted to the reception electrode 4 by electrostatic coupling at the intersection of the transmission electrode 3 and the reception electrode 4. The current measuring means 6 detects a value corresponding to the electrostatic coupling at each corresponding intersection from the current flowing through the virtually grounded receiving electrode 4 and outputs the detected value to the computing means 10. Here, in order to identify the detection position of each intersection, the calculation means 10 converts the measurement value obtained by the current measurement means 6 into a value corresponding to the electrostatic coupling at each intersection by performing a linear calculation with the linear calculation means 7. A conventional proximity detector is constituted by the proximity calculation means 8 that determines the proximity of the object to the detection region and the calculation means 10 that obtains the proximity position based on the calculated value or its transition.

米国特許出願公開第2009/009483号明細書US Patent Application Publication No. 2009/009483

以上に示した従来の近接検出装置では、マルチライン駆動により複数の電極を同時に駆動していた。しかし、従来の近接検出装置では消費電力が多く、特に携帯機器などに採用される場合、消費電力が多いことによりバッテリの持ちが悪くなり、携帯機器として十分な電力を供給するために大きなバッテリを用意しなければならないという課題があった。   In the conventional proximity detection apparatus described above, a plurality of electrodes are simultaneously driven by multiline driving. However, conventional proximity detectors consume a lot of power, especially when used in portable devices, etc., because of the large amount of power consumed, the battery will not last long, and a large battery is required to supply sufficient power as a portable device. There was a problem that had to be prepared.

そこで本発明では、これらの課題を解決するために以下の装置及び方法を提供する。   Therefore, the present invention provides the following apparatus and method in order to solve these problems.

制御手段において受信電極からの信号を受け取る時にのみ電流測定手段に電源を供給し、送信電極から信号を受け取らない時には電流測定手段に電源を供給しないように電流測定スイッチを制御する電流測定スイッチ制御手段を設ける。また、電流測定方法においても同様に電流測定工程において、受信電極からの検出電流を測定するタイミングで電流測定スイッチをオンにする電流測定スイッチオン工程と、検出電流を測定終了後に電流測定スイッチをオフにする電流測定スイッチオフ工程を有することにより不必要な電力消費を抑え、上記課題を解決する。   Current measurement switch control means for controlling the current measurement switch so as to supply power to the current measurement means only when receiving a signal from the reception electrode in the control means and not to supply power to the current measurement means when no signal is received from the transmission electrode. Is provided. Similarly, in the current measurement method, in the current measurement process, the current measurement switch is turned on at the timing of measuring the detected current from the receiving electrode, and the current measurement switch is turned off after the measurement of the detected current is completed. By having a current measurement switch-off step, the unnecessary power consumption is suppressed and the above-described problems are solved.

本発明による近接検出装置は以下の構成により成り立つ。   The proximity detection apparatus according to the present invention has the following configuration.

支持基板上の検出領域における1つの次元に対応する複数の送信電極と、他の1つの次元に対応する受信電極とを電気的に絶縁させるための絶縁層を介して設ける。送信電極の少なくとも二つ以上の電極に同時に周期的な交流電圧を印加するマルチライン駆動手段。受信電極からの電流あるいは電荷量を送信電極への駆動に同期して測定する電流測定手段。電流測定手段で測定した電流値あるいは電荷量を送信電極と受信電極の各交点の静電容量に対応した値に変換し検出領域への物体の近接或いは近接位置を求める演算手段。全体のステータス及びシーケンスを管理する制御手段。   A plurality of transmission electrodes corresponding to one dimension in the detection region on the support substrate are provided via an insulating layer for electrically insulating the reception electrodes corresponding to the other dimension. Multi-line driving means for applying a periodic alternating voltage simultaneously to at least two electrodes of the transmission electrode. Current measuring means for measuring the current or charge amount from the receiving electrode in synchronization with the driving to the transmitting electrode. Calculation means for converting the current value or the charge amount measured by the current measurement means into a value corresponding to the electrostatic capacitance at each intersection of the transmission electrode and the reception electrode, and obtaining the proximity or proximity position of the object to the detection region. Control means for managing the overall status and sequence.

制御手段にはタイミング信号発生手段と、電流測定手段に電源の供給を制御する電流測定スイッチ制御手段とにより構成される。また、演算手段は電流測定手段で測定した電流値あるいは電荷量を線形演算し送信電極と受信電極の各交点の静電容量に対応した値に変換する線形演算手段と、線形演算手段の出力から検出領域への物体の接近判定或いは接近位置を求める近接演算手段とにより構成される。電流測定スイッチ制御手段は、受信電極からの電流あるいは電荷量を測定する時だけオンにして電流測定手段に電源の供給し、受信電極からの電流あるいは電荷量を測定しない時にはオフにして電流測定手段に電源を供給しないようスイッチを制御する。   The control means includes timing signal generation means and current measurement switch control means for controlling supply of power to the current measurement means. The calculating means linearly calculates the current value or the amount of charge measured by the current measuring means and converts it into a value corresponding to the capacitance at each intersection of the transmitting electrode and the receiving electrode, and from the output of the linear calculating means It is comprised by the proximity calculation means which calculates | requires the approach determination of an object to a detection area, or an approach position. The current measurement switch control means is turned on only when measuring the current or charge amount from the receiving electrode to supply power to the current measuring means, and is turned off when not measuring the current or charge amount from the receiving electrode. The switch is controlled so as not to supply power.

以下の遅延時間調整手段とパワーセーブモード切り替え手段は必須のものではなく、任意の構成である。   The following delay time adjusting means and power save mode switching means are not indispensable and have arbitrary configurations.

マルチライン駆動手段には、送信電極により異なる受信電極までの遅延時間を各測定位置に応じて生じる遅延時間を補正するための遅延時間調整手段を備える。   The multi-line driving means includes a delay time adjusting means for correcting a delay time that occurs in accordance with each measurement position.

制御手段には、マルチライン駆動手段が複数回送信電極を駆動する際、送信電極に対応した電流を複数回測定する間に任意のインターバルを設けるインターバル発生手段と、近接検出を行なう通常のモードのほかに、少なくとも送信電極の数より少ない回数でマルチライン駆動手段が駆動するモードとを切り替えるパワーセーブモード切り替え手段を備える。   The control means includes an interval generating means for providing an arbitrary interval during the measurement of the current corresponding to the transmission electrode a plurality of times when the multi-line driving means drives the transmission electrode a plurality of times, and a normal mode for performing proximity detection. In addition, power save mode switching means for switching between modes in which the multiline driving means is driven at least less than the number of transmission electrodes is provided.

また、本発明による近接検出方法は以下の構成により成り立つ。   Further, the proximity detection method according to the present invention has the following configuration.

物体の接近を検出する検出領域における1つの次元に対応する複数の送信電極に同時に周期的な交流電圧を印加するマルチライン駆動工程と、他の1つの次元に対応する受信電極からの電流あるいは電荷量を送信電極への駆動に同期して測定する電流測定工程とから成る駆動測定工程。駆動測定工程で得られた電流値あるいは電荷量を送信電極と受信電極の各交点の静電容量に対応した値に変換し検出領域への物体の近接判定或いは近接位置を求める演算工程。   A multi-line driving process in which a periodic AC voltage is simultaneously applied to a plurality of transmission electrodes corresponding to one dimension in a detection region for detecting the approach of an object, and a current or charge from a reception electrode corresponding to the other dimension A drive measurement process comprising a current measurement process for measuring the amount in synchronization with the drive to the transmission electrode. A calculation step of converting the current value or the charge amount obtained in the drive measurement step into a value corresponding to the capacitance at each intersection of the transmission electrode and the reception electrode to determine the proximity of the object to the detection region or the proximity position.

演算工程は、駆動測定工程で得られた電流値あるいは電荷量を線形演算し送信電極と受信電極の各交点の静電容量に対応した値に変換する線形演算工程と、線形演算工程の出力から検出領域への物体の近接判定或いは近接位置を求める近接演算工程とにより成り立つ。   The calculation process includes a linear calculation process for linearly calculating the current value or charge amount obtained in the drive measurement process and converting the value into a value corresponding to the capacitance at each intersection of the transmission electrode and the reception electrode, and from the output of the linear calculation process. It consists of a proximity calculation step for determining the proximity of an object to the detection region or obtaining a proximity position.

電流測定工程は、受信電極からの電流あるいは電荷量を測定する時だけ電流測定工程に係る装置の電源をオンにする電流測定スイッチオン工程と、受信電極からの電流或いは電荷量を測定する検出電流測定工程、検出電流測定工程の後に電流測定工程に係る装置の電源をオフにする電流測定スイッチオフ工程の3つの工程から成り立つ。   The current measurement step includes a current measurement switch-on step for turning on the power supply of the apparatus related to the current measurement step only when measuring the current or charge amount from the reception electrode, and a detection current for measuring the current or charge amount from the reception electrode. After the measurement process and the detected current measurement process, the process is composed of three processes: a current measurement switch-off process for turning off the power supply of the apparatus related to the current measurement process.

以下の近接検出方法の構成または特徴は必須のものではなく、任意の構成である。   The following configurations or features of the proximity detection method are not essential and are arbitrary configurations.

マルチライン駆動工程は、物体の接近を検出する検出領域における1つの次元に対応する複数の送信電極に同時に周期的な交流電圧を印加するための波形を発生させるマルチライン波形発生工程と、受信電極で発生する遅延時間のばらつきを解消するように遅延を生じる遅延時間調整工程を備える。   The multi-line driving process includes a multi-line waveform generating process for generating a waveform for applying a periodic AC voltage to a plurality of transmitting electrodes corresponding to one dimension in a detection region for detecting the approach of an object, and a receiving electrode. The delay time adjustment process which produces a delay is provided so that the dispersion | variation in the delay time which generate | occur | produces may be eliminated.

駆動測定工程は、マルチライン駆動工程が複数回送信電極を駆動する際、受信電極に対応した電流を複数回測定する間にランダムなインターバルを設ける。さらに駆動測定工程は、送信電極の数より少ない回数で送信電極を駆動するモードと送信電極の数以上の回数で送信電極を駆動するモードを切り替える。   In the drive measurement process, when the multi-line drive process drives the transmission electrode a plurality of times, a random interval is provided during the measurement of the current corresponding to the reception electrode a plurality of times. Furthermore, the drive measurement step switches between a mode in which the transmission electrodes are driven less than the number of transmission electrodes and a mode in which the transmission electrodes are driven at a number greater than or equal to the number of transmission electrodes.

本発明によれば定電圧駆動で高速かつ高ダイナミックレンジで駆動する他に、電流測定手段制御スイッチにより電流測定が不要な時はオフに設定することにより、低消費電力で駆動することが出来る。   According to the present invention, in addition to driving with constant voltage driving at a high speed and a high dynamic range, it is possible to drive with low power consumption by setting the current measuring means control switch to OFF when current measurement is not required.

本発明に係る近接検出装置の好適な一実施例を示すブロック図1 is a block diagram showing a preferred embodiment of a proximity detection apparatus according to the present invention. 従来の近接検出装置のブロック図Block diagram of a conventional proximity detector 本発明に係るマルチライン駆動手段の実施例を示すブロック図The block diagram which shows the Example of the multi-line drive means based on this invention 本発明に係る駆動測定工程のタイミング図Timing chart of drive measurement process according to the present invention 本発明に係る近接検出方法の工程フロー図Process flow diagram of proximity detection method according to the present invention 本発明に係る近接検出方法の他の工程フロー図Another process flow diagram of the proximity detection method according to the present invention 本発明に係る電流測定手段とスイッチに関する図The figure regarding the current measurement means and switch concerning this invention

本発明を説明するにあたり、以下に示す実施例を基にして説明を行なう。   In describing the present invention, description will be made based on the following examples.

本発明による近接検出装置は図1において、支持基板1上の検出領域2における2次元座標の一方の次元に対応する複数の送信電極3ともう一方の次元に対応する受信電極4を互いに導通しないように絶縁層を介して設け、送信電極3の複数の電極に同時に周期的な交流電圧を印加するマルチライン駆動手段5と、送信電極3と受信電極4の交点の静電結合に対応して変化する受信電極4からの電流あるいは電荷量の大きさを送信電極3への駆動に同期して測定する電流測定手段6と、電流測定手段6で測定した電流値から送信電極3と受信電極4の各交点の静電結合に対応した値に変換する線形演算手段7と、線形演算手段7からの各交点の静電結合に対応した値あるいはその推移により検出領域2への物体の接近判定と接近位置を求める近接演算手段8と、全体のステータス及びシーケンスを管理する制御手段9aとにより構成した。制御手段9aには特筆すべき具体的な構成として、タイミング信号発生手段40と電流測定スイッチ制御手段43、インターバル発生手段41、パワーセーブモード切替手段42がある。また、線形演算手段7と近接演算手段8をあわせて演算手段10と呼ぶ。   In FIG. 1, the proximity detection device according to the present invention does not conduct a plurality of transmission electrodes 3 corresponding to one dimension of two-dimensional coordinates in the detection region 2 on the support substrate 1 and reception electrodes 4 corresponding to the other dimension. Corresponding to the electrostatic coupling of the intersection of the transmission electrode 3 and the reception electrode 4 with the multi-line driving means 5 that is provided via the insulating layer and applies a periodic AC voltage to the plurality of electrodes of the transmission electrode 3 simultaneously. Current measuring means 6 that measures the magnitude of the current or charge amount from the receiving electrode 4 that changes in synchronization with the driving of the transmitting electrode 3, and the transmitting electrode 3 and the receiving electrode 4 from the current value measured by the current measuring means 6. Linear computing means 7 for converting the values to the electrostatic couplings at the respective intersections, and values corresponding to the electrostatic couplings at the respective intersecting points from the linear computing means 7 or the transition thereof, Find approach position A contact operation means 8, was constructed by the control unit 9a that manages the overall status and sequence. The control means 9a includes a timing signal generation means 40, a current measurement switch control means 43, an interval generation means 41, and a power save mode switching means 42 as specific configurations to be noted. The linear calculation means 7 and the proximity calculation means 8 are collectively referred to as calculation means 10.

本発明の近接検出装置の特徴を、従来例との違いを基にして説明する。
(1)電流測定スイッチ制御手段43の追加。本発明では、消費電力を低減するために、受信電極4の電流あるいは電荷量を測定する時だけオンにして電流測定手段6に電源の供給し、受信電極4の電流あるいは電荷量を測定しない時にはオフにして電流測定手段6に電源を供給しないようスイッチを制御する。これにより大幅な消費電力の低減が期待できる。
(2)制御手段9aにランダムなインターバルを加えるインターバル発生手段41の追加。本発明では、ノイズの影響をランダムにすることでノイズが低減され、必要とされる駆動電圧が低くなり、結果として消費電力を低減させることができる。具体的には、送信電極3より出力するタイミングにランダムなインターバルを必要に応じて挿入する。それにより一定周期で発生する液晶のノイズなどの影響をランダムにすることができ、ノイズの影響を低減することができる。よって、ノイズの影響を回避するために高い電圧で駆動する必要がなくなり、消費電力の低減に貢献できる。
(3)制御手段9aにパワーセーブモード切替手段42の追加。指の近接位置を正確に求めるためには1周期の測定として送信電極3の数と同じ回数各送信電極3を駆動する必要がある。しかし、検出領域2上に人体の指などの検出対象が近接していない状態等正確な近接位置を知る必要がない場合には1周期の測定として送信電極3の数より少ない回数で各送信電極3を駆動することで電力消費を抑えることが実現できる。そのため、近接演算手段8により指などの検出対象の近接の有無を判断(近接判定)し、パワーセーブモード切替手段42で指などの検出対象が近接していない場合には1周期の測定で送信電極3の数より少ない回数で各送信電極3を駆動するモード(パワーセーブモード)に切り替え、指などの検出対象が近接している場合には1周期の測定で送信電極3の数だけ各送信電極3を駆動するモードに切り替える。前述のパワーセーブモードでは各送信電極3の数より少ない回数で駆動するのであれば電力消費を抑えることが期待できるが、1回のみの駆動である場合がもっとも好ましい。この場合では検出領域2の検出位置は特定できないが全ての検出領域2での検出の有無の情報を得ることができる。パワーセーブモードにおいて指などの検出対象が検出された場合にはパワーセーブモードから1周期の測定で送信電極3の数だけ各送信電極3を駆動するモードに切り替えることで消費電力を抑えられる。
(4)マルチライン駆動手段5に遅延時間調整手段7の追加。
The features of the proximity detector of the present invention will be described based on the difference from the conventional example.
(1) Addition of current measurement switch control means 43. In the present invention, in order to reduce power consumption, the power is supplied to the current measuring means 6 only when the current or charge amount of the receiving electrode 4 is measured, and when the current or charge amount of the receiving electrode 4 is not measured. The switch is controlled so that the power is not supplied to the current measuring means 6 by turning it off. As a result, a significant reduction in power consumption can be expected.
(2) Addition of an interval generating means 41 for adding a random interval to the control means 9a. In the present invention, noise is reduced by randomizing the influence of noise, the required drive voltage is reduced, and as a result, power consumption can be reduced. Specifically, a random interval is inserted as necessary at the timing of output from the transmission electrode 3. Thereby, the influence of the liquid crystal noise or the like generated at a constant cycle can be randomized, and the influence of the noise can be reduced. Therefore, it is not necessary to drive at a high voltage in order to avoid the influence of noise, which can contribute to reduction of power consumption.
(3) Addition of power save mode switching means 42 to the control means 9a. In order to accurately determine the proximity position of the finger, it is necessary to drive each transmission electrode 3 as many times as the number of transmission electrodes 3 as one cycle of measurement. However, when there is no need to know an exact proximity position such as a state where a detection target such as a human finger is not in proximity on the detection region 2, each transmission electrode is performed with a number of times less than the number of transmission electrodes 3 as one cycle measurement. Driving 3 can reduce power consumption. Therefore, the proximity calculation means 8 determines whether or not a detection target such as a finger is close (proximity determination), and when the detection target such as a finger is not close by the power save mode switching means 42, transmission is performed in one cycle. The mode is switched to a mode (power save mode) in which each transmission electrode 3 is driven less than the number of electrodes 3 and when the detection target such as a finger is in proximity, each transmission is performed by the number of transmission electrodes 3 in one cycle measurement. The mode is switched to driving the electrode 3. In the power save mode described above, power consumption can be expected to be reduced if the number of times of driving is less than the number of each transmission electrode 3, but it is most preferable to drive only once. In this case, the detection position of the detection region 2 cannot be specified, but information on the presence or absence of detection in all the detection regions 2 can be obtained. When a detection target such as a finger is detected in the power save mode, power consumption can be suppressed by switching from the power save mode to a mode in which each transmission electrode 3 is driven by the number of transmission electrodes 3 in one cycle of measurement.
(4) Addition of delay time adjusting means 7 to the multiline driving means 5.

同様に、本発明の近接検出工程の特徴を、従来例との違いを基にして説明する。詳細については近接検出装置の特徴と同様であるため省略する。
(1)電流測定工程21において、電流測定スイッチオン工程27及び電流測定スイッチオフ工程29の追加。
(2)駆動測定工程20においてランダムなインターバルを加える特徴。
(3)駆動測定工程20において、送信電極3の数より少ない回数で送信電極4を駆動するモードと送信電極3の数以上の回数で送信電極4を駆動するモードを切り替える特徴。
(4)マルチライン駆動工程26において、各送信電極3から電流測定手段6までの距離に応じて生じる遅延を補正するための遅延時間調整工程25の追加。
Similarly, the features of the proximity detection process of the present invention will be described based on the difference from the conventional example. The details are the same as the features of the proximity detection device, and thus will be omitted.
(1) In the current measurement step 21, a current measurement switch-on step 27 and a current measurement switch-off step 29 are added.
(2) A feature of adding a random interval in the drive measurement step 20.
(3) The drive measurement step 20 is characterized in that the mode for driving the transmission electrode 4 with a smaller number of times than the number of the transmission electrodes 3 and the mode for driving the transmission electrode 4 with a number of times greater than or equal to the number of the transmission electrodes 3 are switched.
(4) Addition of a delay time adjustment step 25 for correcting a delay caused in accordance with the distance from each transmission electrode 3 to the current measuring means 6 in the multiline driving step 26.

これより本発明による近接検出装置およびその方法を構成する各手段および各工程について、詳細に説明する。   Hereafter, each means and each process which comprise the proximity detection apparatus and its method by this invention are demonstrated in detail.

支持基板1の検出領域2には、例えば縦方向の座標に対応する送信電極3と横方向の座標に対応する受信電極4を互いに直交して配置した。しかし、送信電極3と受信電極4の配置はこの限りでなく、斜交座標や角度と原点からの距離からなる円座標など2次元座標に対応するものであればどのように配置しても良い。これらの電極は導電性であり、送信電極3と受信電極4の交点では絶縁層により両電極が直流的に絶縁されて電気的に静電結合している。   In the detection region 2 of the support substrate 1, for example, a transmission electrode 3 corresponding to the vertical coordinate and a reception electrode 4 corresponding to the horizontal coordinate are arranged orthogonal to each other. However, the arrangement of the transmission electrode 3 and the reception electrode 4 is not limited to this, and any arrangement may be used as long as it corresponds to a two-dimensional coordinate such as an oblique coordinate or a circle coordinate composed of an angle and a distance from the origin. . These electrodes are conductive, and at the intersection of the transmission electrode 3 and the reception electrode 4, both electrodes are galvanically insulated and electrically electrostatically coupled by an insulating layer.

ここで、説明の便宜上、送信電極3は対応する座標値が1からNまでの自然数で表される位置ごとに存在し、対応する送信電極3は添え字nによって区別されるものとする。同様に、受信電極4は対応する座標値が1からMまでの自然数で表される位置ごとに存在し、対応する受信電極4は添え字mによって区別されるものとする。   Here, for convenience of explanation, it is assumed that the transmission electrode 3 exists at each position where the corresponding coordinate value is represented by a natural number from 1 to N, and the corresponding transmission electrode 3 is distinguished by the subscript n. Similarly, the receiving electrode 4 is present at each position where the corresponding coordinate value is represented by a natural number from 1 to M, and the corresponding receiving electrode 4 is distinguished by the subscript m.

マルチライン駆動手段5は、送信電圧行列T(t,n)に対応した周期的な交流電圧を複数の送信電極3に印加する。送信電圧行列Tの添え字tは行列の行番号でt回目の駆動であることに対応し、添え字nは列番号でn番目の送信電極3に対応する。つまり、2回目の駆動で3番目の送信電極3に印加する交流電圧は、T(2,3)に対応する。   The multiline driving means 5 applies a periodic AC voltage corresponding to the transmission voltage matrix T (t, n) to the plurality of transmission electrodes 3. The subscript t of the transmission voltage matrix T corresponds to the t-th driving with the row number of the matrix, and the subscript n corresponds to the nth transmission electrode 3 with the column number. That is, the AC voltage applied to the third transmission electrode 3 in the second drive corresponds to T (2, 3).

同時に印加される複数の交流電圧波形は、ある同一の交流電圧波形に送信電圧行列の対応する要素T(t,n)をそれぞれ係数として掛けた交流電圧波形になるようにした。従って、送信電圧行列の要素がマイナスの場合は逆相の交流電圧波形を印加することを意味する。この際、直流成分が重畳していても、影響はない。   A plurality of AC voltage waveforms applied simultaneously are AC voltage waveforms obtained by multiplying a certain AC voltage waveform by a corresponding element T (t, n) of the transmission voltage matrix as a coefficient. Therefore, when the element of the transmission voltage matrix is negative, it means that an AC voltage waveform having a reverse phase is applied. At this time, even if the DC component is superimposed, there is no influence.

ここで、送信電圧行列T(t,n)は、逆行列が存在する正方行列である正則行列とする。そのため添え字tは1から送信電極数Nまでの自然数となる。従来の線順次駆動の場合には、送信電圧行列T(t,n)は、単位行列I(t,n)に一致する。   Here, the transmission voltage matrix T (t, n) is a regular matrix that is a square matrix having an inverse matrix. Therefore, the subscript t is a natural number from 1 to the number N of transmission electrodes. In the case of conventional line sequential driving, the transmission voltage matrix T (t, n) matches the unit matrix I (t, n).

また、周期的な交流電圧とは、例えば矩形波や正弦波や三角波などである。ただし、各電極はそれ自体に抵抗値と静電容量をもっているために高い周波数は減衰し、交点は直列の静電容量のために低い周波数が減衰する。これらを勘案して、送信電極3に印加する電圧の周波数は、減衰の小さい周波数にすることが望ましい。   The periodic AC voltage is, for example, a rectangular wave, a sine wave, a triangular wave, or the like. However, each electrode has its own resistance value and capacitance, so that the high frequency is attenuated, and the intersection is attenuated at low frequency because of the series capacitance. Considering these, it is desirable that the frequency of the voltage applied to the transmission electrode 3 is a frequency with small attenuation.

さらに構成を簡単にするために、例えば送信電圧行列T(t,n)の各要素を、例えば1か0か−1のいずれかにするなど、0を除く各要素の絶対値が同じ値になるような正則行列にして、周期的な交流電圧を矩形波にすると、例えば図3に示すような簡単な論理回路でマルチライン駆動手段5を構成することが出来る。
ここで図3の構成の説明をする。図1の制御手段9a内にあるタイミング信号発生手段40より送信電圧行列の行番号tに対応したタイミング信号を図3の送信電圧行列参照手段12に出力するとともに、同期して矩形波を発生するためのタイミング信号を矩形波発生手段11に出力する。矩形波発生手段11は前述のタイミング信号を元に複数サイクルの矩形波を生成し、インバータ16を経由する配線とインバータ16を経由しない配線の二種をもってN個存在する選択手段13へ接続される。選択手段13は、送信電圧行列参照手段12からの入力の値が1の場合はインバータ16を経由しない配線を選択し、送信電圧行列の対応する要素の値が−1の場合はインバータ16を経由する配線を選択し、送信電圧行列の対応する要素の値が0の場合には0Vの配線を選択するようにした。選択手段16で選択された信号は、必要に応じて遅延時間調整手段14を経由し、駆動波形として出力される。遅延時間調整手段14は複数の送信電極3ごとに直列に抵抗が接続され、抵抗を介した後に定電圧電源に接続されたコンデンサの他方の端子が接続されている。遅延時間調整手段14の出力には、インピーダンスを下げるために必要に応じてバッファを設けても良い。
In order to further simplify the configuration, for example, each element of the transmission voltage matrix T (t, n) is set to one, 0, or −1, for example, the absolute value of each element except 0 is the same value. If the periodic AC voltage is a rectangular wave, the multiline driving means 5 can be configured with a simple logic circuit as shown in FIG. 3, for example.
Here, the configuration of FIG. 3 will be described. A timing signal corresponding to the row number t of the transmission voltage matrix is output from the timing signal generation means 40 in the control means 9a of FIG. 1 to the transmission voltage matrix reference means 12 of FIG. 3, and a rectangular wave is generated in synchronization. The timing signal is output to the rectangular wave generating means 11. The rectangular wave generating means 11 generates a plurality of cycles of rectangular waves based on the timing signal described above, and is connected to N selection means 13 having two types of wirings that pass through the inverter 16 and wirings that do not pass through the inverter 16. . The selection means 13 selects a wiring that does not pass through the inverter 16 when the value of the input from the transmission voltage matrix reference means 12 is 1, and passes through the inverter 16 when the value of the corresponding element of the transmission voltage matrix is -1. The wiring to be selected is selected, and when the value of the corresponding element of the transmission voltage matrix is 0, the wiring of 0V is selected. The signal selected by the selection unit 16 is output as a drive waveform via the delay time adjustment unit 14 as necessary. The delay time adjusting means 14 is connected to a resistor in series for each of the plurality of transmission electrodes 3, and is connected to the other terminal of a capacitor that is connected to a constant voltage power source via the resistor. A buffer may be provided at the output of the delay time adjusting means 14 as necessary in order to lower the impedance.

送信電圧行列参照手段12への送信電圧行列T(t,n)のある要素が0の場合には、その要素に対応する交流電圧波形を0Vにするために例えば選択手段13により0Vを送信電極3に接続する。送信電圧行列T(t,n)の要素が1の場合には短形波発生手段11でインバータ16を経由しない配線を選択手段13により選択する。送信電圧行列T(t,n)の要素が−1の場合には短形波発生手段11でインバータ16を経由する配線を選択手段13により選択する。このように、送信電圧行列T(t,n)の要素により、動作させればよい。   When a certain element of the transmission voltage matrix T (t, n) to the transmission voltage matrix reference means 12 is 0, for example, the selection means 13 sets 0V to the transmission electrode in order to set the AC voltage waveform corresponding to that element to 0V. Connect to 3. When the element of the transmission voltage matrix T (t, n) is 1, the short wave generating means 11 selects the wiring that does not go through the inverter 16 by the selecting means 13. When the element of the transmission voltage matrix T (t, n) is −1, the short wave generating means 11 selects the wiring passing through the inverter 16 by the selecting means 13. In this way, the operation may be performed by the elements of the transmission voltage matrix T (t, n).

なお、図1における受信電極4は、それ自体に抵抗値と静電容量をもっているために交流の伝達に遅延時間を生じる。図3において選択手段13の後ろにある遅延時間調整手段14は、これを微調整するためのもので、必要に応じて設ける。これは各送信電極3から電流測定手段6までの距離に応じて生じる遅延を補正するためのものである。つまり、電流測定手段6に遠い送信電極3に合わせるために、近い送信電極3の遅延時間を長く設定するというものである。それにより、受信電極4までに発生する遅延時間のばらつきが解消され、同時期に電流測定手段6へ伝達されることが期待できる。   The receiving electrode 4 in FIG. 1 itself has a resistance value and a capacitance, so that a delay time is generated in the transmission of alternating current. In FIG. 3, the delay time adjusting means 14 behind the selecting means 13 is for fine adjustment of this, and is provided as necessary. This is for correcting a delay caused according to the distance from each transmission electrode 3 to the current measuring means 6. That is, the delay time of the near transmitting electrode 3 is set to be long in order to match the transmitting electrode 3 far from the current measuring means 6. Thereby, it is expected that the variation in delay time generated up to the reception electrode 4 is eliminated and transmitted to the current measuring means 6 at the same time.

このn番目の送信電極3に印加された周期的な交流電圧は、n番目の送信電極3とm番目の受信電極4との交点の静電結合を介して、m番目の受信電極4に伝達される。ここではm番目の受信電極4と限定したが、実際にはn番目の送信電極3と交点のある複数の受信電極4に対して影響を与える。検出面の汚れなどの影響があると、接近した物体自体のインピーダンスが高いため、接近した物体を介しての電界により送信電極3と受信電極4の間の電界が増えて、送信電極3と受信電極4の間の静電結合は増加し、受信電極4に流れる受信電流も大きくなる。逆に検出対象の人の指など比較的インピーダンスの低い物体が接近した場合には、送信電極3からの交流電界を吸収する作用の方が強いために、送信電極3と受信電極4の間の静電結合は減少し、受信電極4に流れる受信電流は小さくなる。従って、汚れと人の指などの検出対象は、容易に区別することができる。   The periodic AC voltage applied to the nth transmission electrode 3 is transmitted to the mth reception electrode 4 through electrostatic coupling at the intersection of the nth transmission electrode 3 and the mth reception electrode 4. Is done. Although it is limited to the mth receiving electrode 4 here, it actually affects the plurality of receiving electrodes 4 that intersect with the nth transmitting electrode 3. If there is an influence such as contamination on the detection surface, the impedance of the approaching object itself is high, so the electric field between the transmission electrode 3 and the reception electrode 4 is increased by the electric field through the approaching object, and the transmission electrode 3 and the reception are received. The electrostatic coupling between the electrodes 4 increases, and the reception current flowing through the reception electrode 4 also increases. Conversely, when an object having a relatively low impedance such as a finger of a person to be detected approaches, the action of absorbing the AC electric field from the transmission electrode 3 is stronger, so that the gap between the transmission electrode 3 and the reception electrode 4 is greater. The electrostatic coupling decreases and the reception current flowing through the reception electrode 4 decreases. Accordingly, it is possible to easily distinguish between detection targets such as dirt and human fingers.

ここで、受信電極4は、検出対象の交点近傍以外に物体が接近しても影響がないようにするために、接地あるいは仮想接地などにより電圧の変動が抑えられている。このため、受信電極4への伝達は、電圧と言うよりはむしろ電流である。つまり、選択された送信電極3とある受信電極4との交点には、静電結合により交流電界が発生するために、受信電極4に受信電流が流れるのである。そこで、物体が接近した交点では交流電界が変化するために、受信電極4に流れる受信電流が変化する。   Here, in order to prevent the reception electrode 4 from being affected even when an object approaches other than the vicinity of the intersection to be detected, fluctuations in voltage are suppressed by grounding or virtual grounding. For this reason, the transmission to the receiving electrode 4 is a current rather than a voltage. That is, an alternating electric field is generated by electrostatic coupling at the intersection of the selected transmission electrode 3 and a certain reception electrode 4, so that a reception current flows through the reception electrode 4. Therefore, since the AC electric field changes at the intersection where the object approaches, the reception current flowing through the reception electrode 4 changes.

電流測定手段6では、マルチライン駆動手段5により送信電極3に送信電圧行列T(t,n)に対応した交流電圧波形が印加される毎に、m番目の受信電極4に流れる受信電流を測定して、例えばデルタシグマ型のAD変換器等によりデジタル値に変換し、対応する受信電流行列R(t,m)の値を更新して線形演算手段7に出力する。ここでの添え字tは行列の行番号でマルチライン駆動手段5でのt回目の駆動による電流であることを示し、添え字mは列番号で受信電極4の番号に対応する。   The current measuring means 6 measures the received current flowing through the mth receiving electrode 4 every time the AC voltage waveform corresponding to the transmission voltage matrix T (t, n) is applied to the transmitting electrode 3 by the multiline driving means 5. Then, for example, it is converted into a digital value by a delta sigma type AD converter or the like, and the value of the corresponding reception current matrix R (t, m) is updated and output to the linear operation means 7. Here, the subscript t is a row number of the matrix, which indicates a current generated by the t-th driving in the multiline driving means 5, and the subscript m is a column number corresponding to the number of the receiving electrode 4.

ここで、各交点の静電容量の値は通常1pF程度の微小な値であり、受信電極4に流れる受信電流やその変化も微弱である。そのため、受信電極4に流れる受信電流を検出するために、送信電極3から印加される複数の周期による電流を累積して検出する。しかし、受信電極4に流れる受信電流は交流であるため、単純に累積してしまうと累積値がゼロになってしまう。これを回避するために、従来の線順次駆動の場合と同様な手法を用いることが可能である。つまり、交流電流の位相に同期した累積をするという事である。例えば、送信電極3に印加される周期的な交流電圧に同期して累積コンデンサをスイッチ切り換えする方法や、送信電極3に印加される周期的な交流電圧に同期して復調波形を畳み込むことにより累積する方法などがある。但し、送信電圧行列の値によっては、受信する電流値は負の値になる場合もある。この場合にも受信回路が飽和しないように配慮をする必要がある。具体的な方法として線形演算手段7における、例えば基準電圧や電源電圧などについて、飽和しないような値に設定や調整をするということである。   Here, the value of the capacitance at each intersection is usually a minute value of about 1 pF, and the reception current flowing through the reception electrode 4 and its change are also weak. Therefore, in order to detect the reception current flowing through the reception electrode 4, currents having a plurality of periods applied from the transmission electrode 3 are accumulated and detected. However, since the reception current flowing through the reception electrode 4 is alternating current, if it is simply accumulated, the accumulated value becomes zero. In order to avoid this, it is possible to use the same method as in the case of the conventional line sequential driving. In other words, accumulation is performed in synchronization with the phase of the alternating current. For example, the cumulative capacitor is switched by synchronizing with a periodic AC voltage applied to the transmission electrode 3 or the demodulated waveform is convoluted by convolution with the periodic AC voltage applied to the transmission electrode 3. There are ways to do it. However, depending on the value of the transmission voltage matrix, the received current value may be a negative value. Even in this case, it is necessary to take care not to saturate the receiving circuit. As a specific method, for example, the reference voltage or the power supply voltage in the linear calculation means 7 is set or adjusted to a value that does not saturate.

また電流測定手段6において、検出対象の物体が接近していない場合の測定値に近い値をオフセットとして差し引くようにすると、物体の接近による測定値の変化をより正確に測定することが出来る。この際、検出対象の物体が接近していない場合の測定値は、送信電圧行列T(t,n)の影響を大きく受ける。そのため、添え字tに対応して異なる値をオフセットとして差し引くようにした。さらに、検出面の汚れ等の影響がある場合などには、m番目の受信電極4ごとに異なる値をオフセットとして差し引くようにすると良い。   If the current measuring means 6 subtracts a value close to the measured value when the object to be detected is not approaching as an offset, the change in the measured value due to the approach of the object can be measured more accurately. At this time, the measured value when the object to be detected is not approaching is greatly affected by the transmission voltage matrix T (t, n). Therefore, a different value corresponding to the subscript t is subtracted as an offset. Furthermore, when there is an influence such as contamination on the detection surface, it is preferable to subtract a different value for each m-th receiving electrode 4 as an offset.

マルチライン駆動を行った場合に測定される受信電流行列R(t,m)の値は、数式1に示すように、送信電圧行列T(t,n)と交点結合行列P(n,m)との行列の積によって表される。ここで、交点結合行列P(n,m)とは、2次元の座標に対応した電極の各交点の静電結合の強さに対応するもので、送信電圧行列が単位行列の線順次駆動を行った場合に得られるであろう受信電流行列の値を想定したものである。なお、ここでの添え字nは行列の行番号でn番目の送信電極3に対応し、添え字mは列番号でm番目の受信電極4に対応する。   The values of the received current matrix R (t, m) measured when multiline driving is performed are as follows: the transmission voltage matrix T (t, n) and the intersection coupling matrix P (n, m) And is represented by the product of the matrix. Here, the intersection coupling matrix P (n, m) corresponds to the strength of electrostatic coupling at each intersection of the electrodes corresponding to the two-dimensional coordinates, and the transmission voltage matrix performs line sequential driving of the unit matrix. It assumes the value of the received current matrix that would be obtained if it was performed. Here, the subscript n corresponds to the nth transmission electrode 3 in the row number of the matrix, and the subscript m corresponds to the mth reception electrode 4 in the column number.

(数1) R(t,m)=T(t,n)P(n,m)
何故ならば、静電結合による電流は線形であるために加法定理が成り立つからである。例えば、n1番目の送信電極3に1Vの交流電圧を印加した場合にm番目の受信電極4へ流れ込む受信電流をR(n1,m)とし、n2番目の送信電極3に1Vの交流電圧を印加した場合にm番目の受信電極4へ流れ込むる受信電流をR(n2,m)とする。n1番目の送信電極3に2V,n2番目の送信電極3に3Vの交流電圧を同時に印加した場合には、R(n1,m)を2倍し、R(n2,m)を3倍して加算した電流がm番目の受信電極4に流れる。
(Equation 1) R (t, m) = T (t, n) P (n, m)
This is because the addition theorem holds because the current due to electrostatic coupling is linear. For example, when an AC voltage of 1V is applied to the n1th transmission electrode 3, the reception current flowing into the mth reception electrode 4 is R (n1, m), and an AC voltage of 1V is applied to the n2th transmission electrode 3 In this case, the reception current flowing into the mth reception electrode 4 is R (n2, m). When an AC voltage of 2V is applied to the n1st transmission electrode 3 and 3V to the n2nd transmission electrode 3 simultaneously, R (n1, m) is doubled and R (n2, m) is tripled. The added current flows through the mth receiving electrode 4.

したがって、線形演算手段7では、数式2に示すように電流測定手段6からの受信電流行列R(t,m)に送信電圧行列T(t,n)の逆行列を左から掛ける。これにより、線順次駆動を行った場合に流れるであろう交点結合行列P(n,m)に変換する。送信電圧行列は正則行列のため、逆行列は必ず存在する。数式2は、数式1の両辺に送信電圧行列T(t,n)の逆行列を左から掛けて、右辺と左辺を入れ換えたものである。   Therefore, the linear calculation means 7 multiplies the reception current matrix R (t, m) from the current measurement means 6 by the inverse matrix of the transmission voltage matrix T (t, n) from the left as shown in Equation 2. Thereby, it is converted into an intersection coupling matrix P (n, m) that will flow when line sequential driving is performed. Since the transmission voltage matrix is a regular matrix, there is always an inverse matrix. Formula 2 is obtained by multiplying both sides of Formula 1 by the inverse matrix of the transmission voltage matrix T (t, n) from the left and exchanging the right side and the left side.

(数2) P(n,m)={T(t,n)の逆行列}R(t,m)
但し、ここでの送信電圧行列T(t,n)の逆行列は、都度計算する必要はなく、通常予め計算されたものを使用すれば良い。
(Equation 2) P (n, m) = {inverse matrix of T (t, n)} R (t, m)
However, the inverse matrix of the transmission voltage matrix T (t, n) here does not need to be calculated every time, and a normally calculated one may be used.

また、線形演算手段7の演算は必ずしも行列の掛け算を行う必要はなく、送信電圧行列T(t,n)の逆行列の要素の値が0になる項については演算の必要がないし、要素の値が1または−1に同一の係数を掛けた値の場合には単純な加減算を行えば良い。つまり、送信電圧行列T(t,n)の逆行列の全要素に同一の係数を掛けてから数式2の演算を行うようにしても良い。こうすることにより、小数の要素をすべて整数にすれば、演算が簡単になるからである。特に0を除くすべての要素の絶対値が同一の小数の場合などには、係数倍によりすべての要素を1か0か−1にすることができるため、簡単な加減算のみにするとこができる。係数倍しても、近接演算手段8では、絶対値でなく相対値で近接演算するため、演算の結果には殆ど影響がないという特徴があるため、各要素を整数になるよう係数倍することは有益である。   Further, the calculation of the linear calculation means 7 does not necessarily need to perform matrix multiplication, and it is not necessary to calculate the term in which the element value of the inverse matrix of the transmission voltage matrix T (t, n) is 0. If the value is 1 or −1 multiplied by the same coefficient, simple addition / subtraction may be performed. That is, the calculation of Formula 2 may be performed after multiplying all elements of the inverse matrix of the transmission voltage matrix T (t, n) by the same coefficient. This is because if all the decimal elements are made integers, the calculation is simplified. In particular, when the absolute values of all elements except 0 are the same decimal number, all elements can be set to 1 or 0 or −1 by coefficient multiplication, so that only simple addition and subtraction can be performed. Even if the coefficient is multiplied, the proximity calculation means 8 performs a proximity calculation using a relative value instead of an absolute value, and therefore has a characteristic that there is almost no influence on the result of the calculation. Is beneficial.

近接演算手段8は、線形演算手段7で求めた2次元の座標に対応した電極の各交点の静電結合に依存した電流値として線順次駆動を行った場合に流れるであろう交点結合行列P(n,m)あるいはその推移から、検出対象の物体の接近と位置を計算する。   The proximity calculation means 8 is an intersection coupling matrix P that will flow when line-sequential driving is performed as a current value depending on the electrostatic coupling of each intersection of the electrodes corresponding to the two-dimensional coordinates obtained by the linear calculation means 7. The approach and position of the object to be detected are calculated from (n, m) or its transition.

制御手段9aは、全体動作のステータス及びシーケンスを管理する。ここでいうステータスとは、例えば電流測定中などの状態を指し、シーケンスとは電流測定のオンやオフの手順などを指す。制御手段9aはタイミング信号発生手段40とインターバル発生手段41、パワーセーブモード切替手段42などにより構成した。ただし、インターバル発生手段41及びパワーセーブモード切替手段42は必要に応じて加える。また、本発明の特徴として、シーケンスで電流測定のオンやオフを電流測定手段に対応して切り替える、電流測定スイッチ制御手段43を備える。これは従来のシーケンスとは異なる特徴的な動作をするため、区別の意味を含めて電流測定スイッチ制御手段43と呼ぶことにした。   The control means 9a manages the status and sequence of the overall operation. The status here refers to a state such as during current measurement, for example, and the sequence refers to an on / off procedure for current measurement. The control means 9a comprises a timing signal generating means 40, an interval generating means 41, a power save mode switching means 42, and the like. However, the interval generation means 41 and the power save mode switching means 42 are added as necessary. Further, as a feature of the present invention, there is provided a current measurement switch control means 43 that switches on / off of current measurement corresponding to the current measurement means in a sequence. Since this has a characteristic operation different from the conventional sequence, it is called the current measurement switch control means 43 including the meaning of distinction.

本発明による近接検出方法による、具体的な動作の例について、図5を基に説明する。これは駆動測定工程20で送信電圧行列のN行分の駆動と測定をまとめて行ってから演算工程で演算を行う場合の例である。   An example of a specific operation by the proximity detection method according to the present invention will be described with reference to FIG. This is an example of the case where the calculation is performed in the calculation process after driving and measurement for N rows of the transmission voltage matrix are collectively performed in the drive measurement process 20.

図5のフローをスタートした後、駆動測定工程20では、駆動して電流を測定し受信電流行列の更新を行なう。駆動測定工程20はマルチライン駆動工程26と受信電流を測定するための電流測定工程21の2つの工程とにより成り立つ。マルチライン駆動工程26と電流測定工程21はほぼ同時に行なわれる。測定工程21は電流は、受信電極4からの電流あるいは電荷量を測定する時だけ電流測定工程21に係る装置の電源をオンにする電流測定スイッチオン工程27の後、受信電極4からの電流或いは電荷量を測定する検出電流測定工程28を行なう。受信電極4からの電流或いは電荷量を測定が終了した後に電流測定工程21に係る装置の電源をオフにする電流測定スイッチオフ工程29を行なう。   After starting the flow of FIG. 5, in the drive measurement step 20, the drive is measured to measure the current and the received current matrix is updated. The drive measurement process 20 includes two processes, a multiline drive process 26 and a current measurement process 21 for measuring the received current. The multiline driving process 26 and the current measurement process 21 are performed almost simultaneously. In the measurement step 21, the current is supplied from the reception electrode 4 after the current measurement switch-on step 27 for turning on the power of the apparatus related to the current measurement step 21 only when measuring the current or charge amount from the reception electrode 4. A detection current measuring step 28 for measuring the charge amount is performed. After the measurement of the current or charge amount from the receiving electrode 4 is completed, a current measurement switch-off step 29 for turning off the power supply of the device according to the current measurement step 21 is performed.

またマルチライン駆動工程26は物体の接近を検出する検出領域2における1つの次元に対応する複数の送信電極3に同時に周期的な交流電圧を印加するための波形を発生させるマルチライン波形発生工程24と、必要に応じて各送信電極3から電流測定手段6までの距離に応じて生じる遅延を補正するための遅延時間調整工程25を有する。駆動測定工程20において受信電流行列の更新をt=1〜NまでN回繰り返すことで送信電圧行列全要素に対応した駆動を一通り行う。その後、演算工程30に移り演算を行なう。演算工程30は線形演算工程22と近接演算工程23とにより成り立つ。線形演算工程22では駆動測定工程20で更新された受信電流行列を、線形演算を行ない、交点結合行列を更新する。そして近接演算工程23により線形演算工程22で更新された交点結合行列の値あるいはその推移から、検出対象の物体の接近や位置を検出する。この一連の工程を一定周期で繰り返すことで近接検出方法を実現する。   In the multiline driving step 26, a multiline waveform generating step 24 for generating a waveform for simultaneously applying a periodic AC voltage to a plurality of transmitting electrodes 3 corresponding to one dimension in the detection region 2 for detecting the approach of an object. And a delay time adjustment step 25 for correcting a delay caused by the distance from each transmission electrode 3 to the current measuring means 6 as necessary. In the drive measurement process 20, the reception current matrix is updated N times from t = 1 to N, thereby performing a drive corresponding to all elements of the transmission voltage matrix. Thereafter, the calculation process 30 is performed to perform the calculation. The calculation process 30 includes a linear calculation process 22 and a proximity calculation process 23. In the linear calculation step 22, the reception current matrix updated in the drive measurement step 20 is linearly calculated to update the intersection coupling matrix. Then, the approach or position of the object to be detected is detected from the value of the intersection coupling matrix updated in the linear calculation step 22 by the proximity calculation step 23 or its transition. The proximity detection method is realized by repeating this series of steps at a constant period.

但し、これは一例であり、例えば並列処理などにより線形演算工程22や近接演算工程23中に次の駆動測定工程20を同時に行うようにしてもよい。   However, this is only an example, and the next drive measurement step 20 may be performed simultaneously during the linear calculation step 22 and the proximity calculation step 23 by, for example, parallel processing.

このように、駆動測定工程20では、マルチライン駆動工程26による送信電極3への駆動を行いながら受信電極4の電流を電流測定工程21で測定し、デジタル値に変換する。この際、通常駆動の回数tが1からNに至るまでN回繰り返すことにより、送信電圧行列の全要素に対応した駆動を一通り行う。   Thus, in the drive measurement step 20, the current of the reception electrode 4 is measured in the current measurement step 21 while being driven to the transmission electrode 3 by the multiline drive step 26, and converted into a digital value. At this time, the driving corresponding to all the elements of the transmission voltage matrix is performed one by one by repeating N times until the number t of normal driving reaches 1 to N.

より詳細な送信電極3への駆動と受信電極4からの電流測定のタイミングの模式図を、図4に示す。   FIG. 4 shows a schematic diagram of the timing of the driving to the transmitting electrode 3 and the current measurement from the receiving electrode 4 in more detail.

図4において、駆動波形は各送信電極3の電圧波形を示したものであり、電流測定については、駆動波形に対応した交流電流を測定するタイミングを示したものである。ランダムインターバルは、ノイズの影響をランダムにするためのランダムな待ち時間の挿入で、例えば送信電極3に対応した電流を複数回測定する間に任意のインターバルを必要に応じて挿入すればよい。横軸は、これらに共通の時間軸である。駆動波形1から駆動波形6と便宜上6つの波形を図4では示しているが、これは模式的なものであり、駆動波形の数はN個存在する。例えば駆動波形1と駆動波形2で電流測定がt=4のときに、駆動波形1は立ち上がりから開始する3サイクルの短形波を印加しているのに対し、駆動波形2では極性を反転させて立下りから開始する3サイクルの短形波を印加している。また、駆動波形4の電流測定t=5の状態や、駆動波形6における電流測定t=6についてでも極性を反転させて立下りから開始する3サイクルの短形波を印加しており、それ以外では立ち上がりから開始する3サイクルの短形波を印加している。これらの極性は、送信電圧行列の各要素の値に対応したものである。   In FIG. 4, the drive waveform shows the voltage waveform of each transmission electrode 3, and the current measurement shows the timing of measuring the alternating current corresponding to the drive waveform. The random interval is insertion of a random waiting time for randomizing the influence of noise. For example, an arbitrary interval may be inserted as needed while measuring the current corresponding to the transmission electrode 3 a plurality of times. The horizontal axis is a time axis common to these. FIG. 4 shows six waveforms for convenience from the driving waveform 1 to the driving waveform 6, but this is a schematic one, and there are N driving waveforms. For example, when the current measurement is t = 4 in the driving waveform 1 and the driving waveform 2, the driving waveform 1 applies a three-cycle short wave starting from the rising edge, whereas the driving waveform 2 reverses the polarity. A three-cycle short wave starting from the falling edge is applied. In addition, in the state of the current measurement t = 5 in the drive waveform 4 and the current measurement t = 6 in the drive waveform 6, a three-cycle short wave starting from the falling edge with the polarity reversed is applied. Then, a short wave of 3 cycles starting from the rising edge is applied. These polarities correspond to the values of the elements of the transmission voltage matrix.

図4のタイミングは、後述する数式11に示す行列Tを送信電圧行列として用いた場合の一例であり、送信電圧行列の値に基づいた極性で各送信電極3に順次駆動波形が印加される。この模式図では、便宜上1回の駆動における矩形波の印加を3サイクルとしているが、この限りでないことは言うまでもない。なお、送信電極3への駆動と受信電極4からの交流の電流測定は従来の線順次駆動35の場合と同様に同期が取られており、反転した駆動による電流測定値は符号が逆になる。このように駆動して測定された電流により受信電流行列の値が更新される。送信電圧行列の全要素に対応した駆動を一通り行なうことにより、受信電流行列の全要素も更新される。   The timing in FIG. 4 is an example when a matrix T shown in Equation 11 described later is used as a transmission voltage matrix, and a drive waveform is sequentially applied to each transmission electrode 3 with a polarity based on the value of the transmission voltage matrix. In this schematic diagram, for the sake of convenience, the application of the rectangular wave in one drive is three cycles, but it is needless to say that this is not the case. Note that the drive to the transmission electrode 3 and the AC current measurement from the reception electrode 4 are synchronized in the same manner as in the case of the conventional line-sequential drive 35, and the signs of the current measurement values by the inverted drive are reversed. . The value of the received current matrix is updated with the current measured by driving in this way. All elements of the reception current matrix are also updated by performing a single drive corresponding to all elements of the transmission voltage matrix.

線形演算工程22では、電流測定工程21で更新された受信電流行列を、線形演算を行うことで、交点結合行列の値を更新する。   In the linear calculation step 22, the value of the intersection coupling matrix is updated by performing a linear calculation on the reception current matrix updated in the current measurement step 21.

近接演算工程23では、線形演算工程22で更新された交点結合行列の値あるいはその推移から、近接演算手段8により検出対象の物体の接近や位置を検出する。   In the proximity calculation step 23, the proximity calculation means 8 detects the approach or position of the object to be detected from the value of the intersection coupling matrix updated in the linear calculation step 22 or its transition.

但し、検出対象の物体が未だ接近していない場合で正確な位置の演算をする必要がない場合などでは、必ずしも送信電圧行列の全ての行について送信電極3への駆動と受信電極4からの電流測定を行う必要はない。最低限、全ての送信電極3が駆動されるための送信電圧行列の行についてのみ駆動すれば良い。言い換えると、各列について最低1回は駆動するようにすれば良い。例えば、前述の数式11に示す送信電圧行列Tを用いる場合には、t=1〜3に対応する行についてのみ駆動すれば全ての送信電極3が駆動されるし、数式9に示す送信電圧行列Tを用いる場合には、いずれか1行についてのみ駆動すれば良い。つまり、送信電極3の数よりも駆動回数のほうが少ない回数で駆動する。この場合には変化のみを抽出できれば良いので線形演算工程22を省略しても良い。何故ならば、どの交点に物体が接近しても、受信電流行列の値に通常何等かの変化があるために、近接演算手段8で物体が接近したことを検出することが可能だからである。こうすることにより、物体が接近するのを待っている状態での消費電力を小さくすることができる。いわゆるパワーセーブである。例えば、後述する全ての送信電極3を同時に駆動する場合などでは、図6に示すように、送信電圧行列1行分について送信電極3への駆動と受信電極4からの電流測定を行うのみにすることも可能である。また、数式11に示す送信電圧行列Tの場合には、最初の3行分の駆動により全ての送信電極3が駆動される。   However, when the object to be detected is not yet approaching and it is not necessary to calculate an accurate position, the driving to the transmission electrode 3 and the current from the reception electrode 4 are not necessarily performed for all rows of the transmission voltage matrix. There is no need to make measurements. At least, it is sufficient to drive only the rows of the transmission voltage matrix for driving all the transmission electrodes 3. In other words, it is sufficient to drive each column at least once. For example, in the case of using the transmission voltage matrix T shown in Equation 11 described above, if only the row corresponding to t = 1 to 3 is driven, all the transmission electrodes 3 are driven, and the transmission voltage matrix shown in Equation 9 is used. When T is used, it is sufficient to drive only one of the rows. That is, the number of driving times is smaller than the number of transmission electrodes 3. In this case, the linear calculation step 22 may be omitted because only changes can be extracted. This is because, even if an object approaches any intersection, there is usually some change in the value of the received current matrix, so that the proximity computing means 8 can detect that the object has approached. By doing so, it is possible to reduce power consumption while waiting for an object to approach. This is so-called power saving. For example, when all the transmission electrodes 3 described later are driven simultaneously, as shown in FIG. 6, only the drive to the transmission electrode 3 and the current measurement from the reception electrode 4 are performed for one row of the transmission voltage matrix. It is also possible. Further, in the case of the transmission voltage matrix T shown in Expression 11, all the transmission electrodes 3 are driven by driving for the first three rows.

図6に示す手順の説明を行なう。図6では、図5とほぼ同様の工程を有している。異なる点は、駆動測定工程20での駆動測定回数である。この近接検出方法では、例えば送信電圧行列の1行分の駆動と測定を行うごとに、更新された受信電流行列を基に線形演算と近接演算をおこない、これを一定周期ごとに繰り返す近接検出方法を示したものである。図5の工程と比べ、駆動する回数を減らすことにより消費電力を低減できる。この駆動モードをパワーセーブモードと呼ぶ。   The procedure shown in FIG. 6 will be described. 6 includes almost the same steps as those in FIG. The difference is the number of drive measurements in the drive measurement step 20. In this proximity detection method, for example, every time driving and measurement of one row of the transmission voltage matrix is performed, linear calculation and proximity calculation are performed based on the updated received current matrix, and this is repeated at regular intervals. Is shown. Compared with the process of FIG. 5, the power consumption can be reduced by reducing the number of times of driving. This drive mode is called a power save mode.

本発明のマルチライン駆動に関して、1ラインずつ駆動する線順次駆動の場合との比較をしながら説明を行なう。以上に数式1及び数式2を基に説明したが、送信電圧行列T(t,n)および交点結合行列P(n,m)および受信電流行列R(t,m)の転置行列を用いて、行列の掛け算の順番を入換えても同様であることは、言うまでもない。この場合は、数式3が数式1に対応し、数式4が数式2に対応する。この計算処理は、線形演算手段7により線形演算工程22で行なわれるものである。   The multi-line drive of the present invention will be described while comparing with the case of line-sequential drive that drives line by line. As described above based on Equation 1 and Equation 2, using the transposed matrix of the transmission voltage matrix T (t, n), the intersection coupling matrix P (n, m), and the reception current matrix R (t, m), Needless to say, the same applies even if the order of matrix multiplication is changed. In this case, Equation 3 corresponds to Equation 1, and Equation 4 corresponds to Equation 2. This calculation process is performed in the linear calculation step 22 by the linear calculation means 7.

(数3) RT(m,t)=PT(m,n)TT(n,t)
(数4) PT(m,n)=RT(m,t){TT(n,t)の逆行列}
なお、以上に電流測定手段6で送信電極3の交流電圧波形と送信電極3と受信電極4との交点の静電容量に対応した交流電流を測定した場合の例を示したが、電流測定手段6では、ステップ状の電圧変化を送信電極3に印加した場合に送信電極3と受信電極4の交点の静電容量に比例して流れる電荷量に対応した値を測定しても良い。この場合には、送信電圧行列T(t,n)に対応してn番目の送信電極3の極性を含めた電圧変化をV(t,n)、交点結合行列P(n,m)に対応してn番目の送信電極3とm番目の受信電極4の交点の静電容量をC(n,m)、受信電流行列R(t,m)に対応して電流測定手段6で測定するm番目の受信電極4に流れる電荷量をQ(t,m)、電荷量を測定するための送信電極3の電圧変化の回数をlとすると、数式5と数式6が成り立つ。数式6は線形演算手段7及び線形演算工程22により交点結合行列に対応する交点の静電容量への変換に利用される。
(Equation 3) R T (m, t) = P T (m, n) T T (n, t)
(Equation 4) P T (m, n) = R T (m, t) {Inverse matrix of T T (n, t)}
In addition, although the example at the time of measuring the alternating current corresponding to the electrostatic capacitance of the alternating voltage waveform of the transmission electrode 3 and the intersection of the transmission electrode 3 and the reception electrode 4 with the current measurement means 6 was shown above, the current measurement means 6, when a step-like voltage change is applied to the transmission electrode 3, a value corresponding to the amount of charge flowing in proportion to the capacitance at the intersection of the transmission electrode 3 and the reception electrode 4 may be measured. In this case, the voltage change including the polarity of the nth transmission electrode 3 corresponding to the transmission voltage matrix T (t, n) corresponds to V (t, n) and the intersection coupling matrix P (n, m). Then, the capacitance at the intersection of the nth transmitting electrode 3 and the mth receiving electrode 4 is measured by the current measuring means 6 corresponding to C (n, m) and the received current matrix R (t, m). When the amount of charge flowing through the second receiving electrode 4 is Q (t, m) and the number of voltage changes of the transmitting electrode 3 for measuring the amount of charge is 1, Equations 5 and 6 hold. Equation 6 is used by the linear calculation means 7 and the linear calculation step 22 to convert the intersection corresponding to the intersection coupling matrix into a capacitance.

(数5) Q(t,m)=l・V(t,n)C(n,m)
(数6) C(n,m)={V(t,n)の逆行列}Q(t,m)/l
これらの数式5と数式6は、数式1と数式2に対応したものである。また、数式5と数式6についても、数式7と数式8に示すように、転置行列を用いて行列の掛け算の順番を入れ換えても同様であることは、言うまでもない。
(Equation 5) Q (t, m) = l · V (t, n) C (n, m)
(Equation 6) C (n, m) = {inverse matrix of V (t, n)} Q (t, m) / l
These Formula 5 and Formula 6 correspond to Formula 1 and Formula 2. It goes without saying that Formulas 5 and 6 are the same even if the order of matrix multiplication is changed using a transposed matrix, as shown in Formulas 7 and 8.

(数7) QT(m,t)=l・CT(m,n)VT(n,t)
(数8) CT(m,n)=QT(m,t){VT(n,t)の逆行列}/l
これより、本発明の特徴である送信電圧行列T(t,n)の各要素の値と効果の関係について説明する。前述したように、送信電圧行列は、逆行列が存在する正則行列である必要がある。また、送信電圧行列T(t,n)の要素の値は、駆動回路を簡単にするためには、1か0か−1に同一の係数を掛けた値であることが望ましい。さらに、線形演算を簡単にするためには、逆行列の要素も整数に同一の係数を掛けた値、特に1か0か−1に同一の係数を掛けた値であることが望ましい。また、送信電圧行列が直交行列の場合には、効率的に電源電圧を小さくすることができる。ここでいう直交行列とは、転置行列との積が単位行列となる行列のことである。
(Expression 7) Q T (m, t) = l · C T (m, n) V T (n, t)
(Equation 8) C T (m, n) = Q T (m, t) {Inverse matrix of V T (n, t)} / l
The relationship between the value of each element of the transmission voltage matrix T (t, n), which is a feature of the present invention, and the effect will be described. As described above, the transmission voltage matrix needs to be a regular matrix having an inverse matrix. Also, the element value of the transmission voltage matrix T (t, n) is preferably a value obtained by multiplying 1, 0, or −1 by the same coefficient in order to simplify the drive circuit. Furthermore, in order to simplify the linear operation, it is desirable that the elements of the inverse matrix are also values obtained by multiplying the integer by the same coefficient, particularly by multiplying the same coefficient by 1 or 0 or −1. Further, when the transmission voltage matrix is an orthogonal matrix, the power supply voltage can be efficiently reduced. The orthogonal matrix here is a matrix whose product with the transposed matrix is a unit matrix.

これらの条件を満たす行列として、例えばアダマール行列が知られている。このアダマール行列とは、要素が1または−1のいずれかであり、かつ各行が互いに直行であるような正方行列である。   As a matrix satisfying these conditions, for example, a Hadamard matrix is known. This Hadamard matrix is a square matrix whose elements are either 1 or -1 and whose rows are orthogonal to each other.

第1の送信電圧行列の例として、このアダマール行列により全ての送信電極3を同時に駆動する場合について説明する。なお、説明の便宜上、ここでは数式9に示す8行8列のアダマール行列を用いる場合について説明するが、この限りではない。なお、以降の例においても便宜上比較的小さい行列でその特徴を説明するが、同様にその限りでないことは言うまでもない。   As an example of the first transmission voltage matrix, a case where all the transmission electrodes 3 are simultaneously driven by this Hadamard matrix will be described. For convenience of explanation, the case of using an 8-by-8 Hadamard matrix shown in Equation 9 will be described here, but this is not restrictive. In the following examples, the features will be described with a relatively small matrix for convenience, but it goes without saying that the same is not true.

Figure 2011003071
この場合には、1ラインずつ駆動する線順次駆動の場合と比較すると、各電極とも駆動する回数が8倍になっており、同じ電圧で駆動した場合には、駆動には8倍の消費電力が必要になる。しかし、線順次駆動を行った場合に流れるであろう交点結合行列P(n,m)を求める場合に掛け算する送信電圧行列の逆行列は各要素の大きさが8分の1になっている。この8分の1倍の演算により、ノイズの大きさも8分の1倍になる。このため、8回の駆動の合成ノイズの強さは、ノイズがランダムの場合には二乗和の平方根により求められるため、線順次駆動の場合のノイズの強さを1とすると、数式10に示すように約0.35倍になる。あるいは、8回の測定値の平均によってノイズが約0.35倍になると考えても良い。このように直交行列を用いた場合には、同時に駆動する送信電極3の数の平方根の逆数に比例してノイズを減衰させることができる。
Figure 2011003071
In this case, the number of times each electrode is driven is 8 times that in the case of line-sequential driving that drives one line at a time. Is required. However, the inverse matrix of the transmission voltage matrix to be multiplied when obtaining the intersection coupling matrix P (n, m) that will flow when line sequential driving is performed has the size of each element being 1/8. . By this one-eighth operation, the noise magnitude is also one-eighth. For this reason, the intensity of the combined noise of the eight times of driving is obtained by the square root of the sum of squares when the noise is random. Therefore, assuming that the noise intensity in the case of line sequential driving is 1, Equation 10 shows It becomes about 0.35 times. Alternatively, it may be considered that the noise is increased by about 0.35 times by the average of eight measurement values. When an orthogonal matrix is used in this way, noise can be attenuated in proportion to the inverse of the square root of the number of transmission electrodes 3 that are driven simultaneously.

Figure 2011003071
また、1ラインずつ駆動する線順次駆動の場合と同様のS/N比とする場合には、信号の強さは駆動する電圧に比例するため、電源電圧を約0.35倍に小さくすることができる。ここで、駆動のために必要な消費電力が電源電圧の二乗に比例すると考えられるので、駆動回数が8倍になってもほぼ同じ消費電力に抑えることが出来る。また、昇圧回路の規模や昇圧電力効率や駆動回路の耐圧などを考慮すると、駆動電圧を大幅に低くできるメリットは大きい。
あるいは、同時に複数の送信電極3を駆動することにより、例えば同じ電源電圧で駆動する場合には駆動するマルチライン駆動手段5より出力される交流電圧のサイクル数を少なくすることができることにより、SN比を低下させずに検出速度を速くすることができる。また、同じ検出速度で交流電圧のサイクル数を少なくすれば、SN比を低下させずに受信にともなう消費電力を大幅に削減させることが出来る。何故ならば、図7に示すように、受信電流を測定する時だけ電流測定手段に電源を供給するようにすれば、測定する交流電圧のサイクル数が減ったことに対応して、電流測定手段で消費する消費電流を少なくすることができる。例えば、数9に示す送信電圧行列の場合には、線形演算手段7あるいは線形演算工程22で、8回の受信値を基に線形演算するため、充放電サイクル数を8分の1倍にしてもほぼ同様のSN比を確保することが出来る。したがって、電流測定手段での消費電流、ひいては消費電力を約8分の1に低下させることが出来る。
Figure 2011003071
Also, when the S / N ratio is the same as in the case of line-sequential driving for driving one line at a time, since the signal strength is proportional to the driving voltage, the power supply voltage should be reduced by about 0.35 times. Can do. Here, since it is considered that the power consumption required for driving is proportional to the square of the power supply voltage, even when the number of times of driving becomes eight times, it can be suppressed to substantially the same power consumption. Considering the scale of the booster circuit, the boosted power efficiency, the withstand voltage of the drive circuit, etc., there is a great merit that the drive voltage can be significantly lowered.
Alternatively, by simultaneously driving a plurality of transmission electrodes 3, for example, when driving with the same power supply voltage, it is possible to reduce the cycle number of the AC voltage output from the driving multiline driving means 5, thereby reducing the SN ratio. It is possible to increase the detection speed without lowering. Further, if the number of AC voltage cycles is reduced at the same detection speed, the power consumption associated with reception can be greatly reduced without reducing the SN ratio. This is because, as shown in FIG. 7, if power is supplied to the current measuring means only when the received current is measured, the current measuring means corresponds to the decrease in the number of cycles of the alternating voltage to be measured. Current consumption can be reduced. For example, in the case of the transmission voltage matrix shown in Equation 9, the linear calculation means 7 or the linear calculation step 22 performs a linear calculation based on eight received values, so the number of charge / discharge cycles is increased by a factor of eight. Can also ensure a substantially similar signal-to-noise ratio. Therefore, the current consumption in the current measuring means, and hence the power consumption, can be reduced to about 1/8.

なお、駆動するごとに受ける周期的なノイズをランダムにする可能性を高くするために、図4に示すように、各駆動間にランダムなインターバルを入れて、駆動するごとの交流電圧の位相の関係が一定にならないようにしても良い。   In addition, in order to increase the possibility of randomizing the periodic noise received every time driving, as shown in FIG. 4, a random interval is inserted between each driving, and the phase of the AC voltage for each driving is changed. The relationship may not be constant.

但し、全ての送信電極3を同時に駆動するためのアダマール行列は、2のべき乗の大きさであるために、送信電極3の数が2のべき乗の場合に限られる。次に数式11に示す第2の送信電圧行列の例では、送信電極3の数が2のべき乗に限らないものであり、小さいアダマール行列を対角要素に入れてより大きな送信電圧行列を構成したものである。例えば、2行2列のアダマール行列3個を対角要素に入れて6行6列の送信電圧行列を構成した場合の例を、数式11に示す。ただし、駆動する周期を短くして電極間の検出の同時性を高めるために、数式11に示すように、送信電圧行列は行を並べかえたものを用いてもよい。また、列を並べかえても、特に支障はない。   However, since the Hadamard matrix for driving all the transmission electrodes 3 simultaneously is a power of 2, the number of the transmission electrodes 3 is limited to a power of 2. Next, in the example of the second transmission voltage matrix shown in Formula 11, the number of transmission electrodes 3 is not limited to a power of 2, and a larger transmission voltage matrix is configured by putting a small Hadamard matrix in a diagonal element. Is. For example, Expression 11 shows an example in which three 6-row 6-column transmission voltage matrices are formed by putting three 2-by-2 Hadamard matrices in diagonal elements. However, in order to shorten the driving cycle and increase the synchronism of detection between the electrodes, as shown in Expression 11, a transmission voltage matrix in which rows are rearranged may be used. Moreover, there is no particular problem even if the rows are rearranged.

Figure 2011003071
この例では、数式9の場合の例と同様に、従来の線順次と同様のS/N比としつつ、電源電圧を2の平方根の逆数倍、すなわち約0.71倍に小さくすることができる。この場合の消費電力は、1ラインずつ駆動する線順次駆動の場合とほぼ同じである。あるいは、同様に検出速度を早くしても良い。
Figure 2011003071
In this example, the power supply voltage can be reduced to the inverse of the square root of 2, that is, approximately 0.71 times, while the S / N ratio is the same as that in the conventional line sequential, as in the case of Expression 9. it can. The power consumption in this case is almost the same as in the case of line sequential driving in which one line is driven. Alternatively, the detection speed may be increased similarly.

以上に、アダマール行列そのものあるいは部分行列にアダマール行列のみを用いた場合の例を示したが、さらに、2行2列のアダマール行列の各要素を−1倍して左右の列を入れ換えたものを4行1列目と6行3列目と2行5列目からはじまるように追加した場合の例を、数式12に示す。   The example in which only the Hadamard matrix is used as the Hadamard matrix itself or the partial matrix has been shown above. Further, each element of the 2-by-2 Hadamard matrix is multiplied by −1 to replace the left and right columns. Formula 12 shows an example in which addition is made so as to start from the fourth row, first column, the sixth row, third column, and the second row, fifth column.

Figure 2011003071
この例では、送信電極3の数が2のべき乗である必要はなく、同時に4つの送信電極3を駆動しているため、数式11の場合の例より電源電圧や検出速度を改善したものである。
Figure 2011003071
In this example, the number of the transmission electrodes 3 does not need to be a power of 2, and the four transmission electrodes 3 are driven at the same time. Therefore, the power supply voltage and the detection speed are improved compared to the example of Expression 11. .

2のべき乗でない送信電圧行列の他の求め方として、より大きなアダマール行列の部分行列を用いるようにしても良い。例えば7行7列の送信電圧行列として、8行8列のアダマール行列の例えば1行目と8列目を除いた部分行列として、数式13に示す送信行列を得る。ただし、この場合には、直交行列とはならないため、7つの送信電極3を同時に駆動していても、4回の測定の平均を行った場合と同じ効果しか得られない。それでも、線順次駆動と比較すると、例えば同じ電圧で駆動した場合に4倍に検出速度を短くできる効果は大きい。ここでいう4回の測定とは、線形演算工程22において交点結合行列の各要素の値を求めるために、数式13で示されるTの逆行列の各行において0でない要素が4要素あることに対応するものである。つまり、7回送信電極3は駆動するが、各交点結合の静電容量はそのうち所定の4回の測定により決定されるということになる。   As another method of obtaining a transmission voltage matrix that is not a power of 2, a larger Hadamard matrix submatrix may be used. For example, the transmission matrix shown in Formula 13 is obtained as a partial matrix excluding the first row and the eighth column of the Hadamard matrix of 8 rows and 8 columns as the transmission voltage matrix of 7 rows and 7 columns. However, in this case, since it is not an orthogonal matrix, even if the seven transmission electrodes 3 are driven simultaneously, only the same effect as when the average of four measurements is performed can be obtained. Nevertheless, compared to line sequential driving, for example, when driven at the same voltage, the effect of shortening the detection speed four times is significant. The four measurements here correspond to the fact that there are four non-zero elements in each row of the inverse matrix of T shown in Equation 13 in order to obtain the value of each element of the intersection coupling matrix in the linear operation step 22. To do. That is, although the transmission electrode 3 is driven seven times, the capacitance of each intersection coupling is determined by predetermined four measurements.

Figure 2011003071
なお、数式9に示したアダマール行列を用いると、1行目を駆動している時には全ての送信電極3の極性が同じになるために、指が接近していない場合でも、受信電極4を流れる合成された電流が大きくなり、電流測定手段6において飽和を生じやすくなる。このように送信電圧行列の行に印加される電流の合計値の絶対値が大きいと電流測定手段6において飽和しやすくなる。数式9に示すアダマール行列の場合には、1行目の合計値が8で、他の行の合計値は0である。飽和を回避するために、電流測定手段6のゲインを下げてしまうと、検出の分解能を低下させたり、電流測定手段6が受けるノイズの影響が相対的に大きくなったりしてしまう。
そこで、電流測定手段6のゲインを下げずに飽和を回避するために、送信電圧行列Tの列毎に係数倍することにより、指が接近していない場合の受信電流を小さくして、電流測定手段6での飽和を生じないようにすることが出来る。さらに、行の合計値の極性を揃えるために、行毎に係数倍しても良い。例えば、数式9に示すアダマール行列の2列目と3列目と5行目をマイナス1倍した数式14に示す送信電圧行列Tを用いることにより、行の合計値の絶対値の最大のものが4になるため、指が接近していない場合の受信電極4の電流の最大値は数式9に示すアダマール行列の約半分に抑えることができる。この場合の逆行列は、送信電圧行列の転置行列を8で割ったものである。
Figure 2011003071
If the Hadamard matrix shown in Equation 9 is used, the polarity of all the transmission electrodes 3 becomes the same when the first row is driven, so that even when the finger is not approaching, the flow flows through the reception electrode 4. The synthesized current increases and saturation is likely to occur in the current measuring means 6. Thus, if the absolute value of the total value of the currents applied to the rows of the transmission voltage matrix is large, the current measuring means 6 is likely to be saturated. In the case of the Hadamard matrix shown in Equation 9, the total value of the first row is 8, and the total value of the other rows is 0. If the gain of the current measuring means 6 is lowered in order to avoid saturation, the detection resolution is lowered, and the influence of noise on the current measuring means 6 is relatively increased.
Therefore, in order to avoid saturation without lowering the gain of the current measuring means 6, the received current when the finger is not approaching is reduced by multiplying the coefficient for each column of the transmission voltage matrix T, thereby measuring the current. Saturation in the means 6 can be prevented from occurring. Furthermore, in order to make the polarity of the total value of the rows uniform, a coefficient may be multiplied for each row. For example, by using the transmission voltage matrix T shown in Formula 14 in which the second column, the third column, and the fifth row of the Hadamard matrix shown in Formula 9 are multiplied by −1, the maximum absolute value of the total value of the rows can be obtained. Therefore, the maximum value of the current of the receiving electrode 4 when the finger is not approaching can be suppressed to about half of the Hadamard matrix shown in Equation 9. The inverse matrix in this case is the transposed matrix of the transmission voltage matrix divided by 8.

Figure 2011003071
なお、ここでは2列目と3列目と5行目をマイナス1倍した場合の例を示したが、この限りではなく、行の合計値の範囲が小さくなるものであればどの行や列にマイナス1倍をしても良い。これらの係数は、例えば列の係数について1またはマイナス1の全組み合わせについて各行の合計値の絶対値を小さくなるものをプログラムで判定させて、各行の合計値がマイナスの行をマイナス1倍するようにしても、容易に得ることが出来る。あるいは、各行の合計値の絶対値の大きな行に着目してその値を小さくするように列の係数を変えるようにするとより高速に望ましい係数を容易に求めることができる。
Figure 2011003071
Here, an example in which the second column, the third column, and the fifth row are minus 1 has been shown. However, this is not restrictive, and any row or column can be used as long as the total value range of the rows is small. It may be minus 1 times. For these coefficients, for example, a program that makes the absolute value of the total value of each row smaller for all combinations of 1 or minus 1 for the column coefficient is determined by the program, so that the row where the total value of each row is minus is multiplied by minus 1. However, it can be easily obtained. Alternatively, if a column coefficient is changed so as to reduce the value by paying attention to a row having a large absolute value of the total value of each row, a desired coefficient can be easily obtained at a higher speed.

以上に例を挙げて、送信電圧行列の決め方について、便宜上送信電極3の数が少ない場合について説明したが、送信電極3の数が増えた場合でも同様の方法で送信電圧行列を決めることができることは言うまでもない。   As an example, the method for determining the transmission voltage matrix has been described for the case where the number of transmission electrodes 3 is small for convenience. However, the transmission voltage matrix can be determined by the same method even when the number of transmission electrodes 3 is increased. Needless to say.

また、以上に送信電圧行列Tとその逆行列について説明したが、電圧変化を示す行列Vとその逆行列についても同様である。   Although the transmission voltage matrix T and its inverse matrix have been described above, the same applies to the matrix V indicating the voltage change and its inverse matrix.

なお、以上に説明した送信電圧行列や受信電流行列や交点結合行列は、便宜的に抽象的な表現をしたもので、具体的には複数の記憶素子あるいは演算手段10などにより実現されることは言うまでもない。   The transmission voltage matrix, reception current matrix, and intersection coupling matrix described above are expressed in an abstract manner for the sake of convenience. Specifically, the transmission voltage matrix, the reception current matrix, and the intersection coupling matrix are not realized by a plurality of storage elements or computing means 10. Needless to say.

以上に示したように、本発明によると、複数の送信電極3を同時に駆動することにより、S/N比を落とさずに電源電圧を低くすることが可能であり、あるいは検出速度の早い近接検出装置及びその方法を実現することができる。あるいは、交流電圧の周波数を遅くすることにより、配線抵抗が高い場合でも良好に検出することのできる近接検出装置及びその方法を実現することができる。あるいは、電源電圧と検出速度と交流電圧の周波数が同じ場合には、ノイズの影響を小さくすることのできる近接検出装置及びその方法を実現することができる。   As described above, according to the present invention, it is possible to reduce the power supply voltage without decreasing the S / N ratio by simultaneously driving the plurality of transmission electrodes 3, or proximity detection with a high detection speed. An apparatus and its method can be realized. Alternatively, it is possible to realize a proximity detection apparatus and method that can detect well even when the wiring resistance is high by slowing the frequency of the AC voltage. Alternatively, when the power supply voltage, the detection speed, and the frequency of the AC voltage are the same, it is possible to realize a proximity detection apparatus and method that can reduce the influence of noise.

1 支持基板
2 検出領域
3 送信電極
4 受信電極
5 マルチライン駆動手段
6 電流測定手段
7 線形演算手段
8 近接演算手段
9a 制御手段
9b 従来例の制御手段
10 演算手段
11 矩形波発生手段
12 送信電圧行列参照手段
13 選択手段
14 遅延時間調整手段
16 インバータ
20 駆動測定工程
21 電流測定工程
22 線形演算工程
23 近接演算工程
24 マルチライン波形発生工程
25 遅延時間調整工程
26 マルチライン駆動工程
27 電流測定スイッチオン工程
28 検出電流測定工程
29 電流測定スイッチオフ工程
30 演算工程
35 従来例の線順次駆動手段
40 タイミング信号発生手段
41 インターバル発生手段
42 パワーセーブモード切替手段
43 電流測定スイッチ制御手段
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Detection area | region 3 Transmission electrode 4 Reception electrode 5 Multiline drive means 6 Current measurement means 7 Linear calculation means 8 Proximity calculation means 9a Control means 9b Conventional control means 10 Calculation means 11 Rectangular wave generation means 12 Transmission voltage matrix Reference means 13 Selection means 14 Delay time adjustment means 16 Inverter 20 Drive measurement process 21 Current measurement process 22 Linear calculation process 23 Proximity calculation process 24 Multiline waveform generation process 25 Delay time adjustment process 26 Multiline drive process 27 Current measurement switch-on process 28 Detection Current Measurement Step 29 Current Measurement Switch-Off Step 30 Calculation Step 35 Conventional Line Sequential Driving Unit 40 Timing Signal Generation Unit 41 Interval Generation Unit 42 Power Save Mode Switching Unit 43 Current Measurement Switch Control Unit

Claims (14)

物体の接近判定を求める近接検出装置或いは近接位置を求める近接検出装置であって、
支持基板上の検出領域に配置された、複数の送信電極と、前記送信電極と電気的に絶縁した受信電極と、
前記送信電極の少なくとも二つ以上の電極に周期的な交流電圧を同時に印加するマルチライン駆動手段と、
前記受信電極からの電流あるいは電荷量を前記送信電極への駆動に同期して測定する電流測定手段と、
前記電流測定手段で測定した電流値あるいは電荷量を前記送信電極と前記受信電極の各交点の静電容量に対応した値に変換し前記検出領域への物体の近接或いは近接位置を求める演算手段と、
全体のステータス及びシーケンスを管理する制御手段とを有し、
前記制御手段はタイミング信号発生手段と電源の供給を制御する電流測定スイッチ制御手段とを有する近接検出装置。
A proximity detection device for determining the approach of an object or a proximity detection device for determining a proximity position,
A plurality of transmission electrodes disposed in a detection region on the support substrate; and a reception electrode electrically insulated from the transmission electrodes;
Multiline driving means for simultaneously applying a periodic alternating voltage to at least two of the transmitting electrodes;
Current measuring means for measuring a current or a charge amount from the receiving electrode in synchronization with driving to the transmitting electrode;
Arithmetic means for converting the current value or the amount of charge measured by the current measuring means into a value corresponding to the capacitance of each intersection of the transmitting electrode and the receiving electrode, and obtaining the proximity or proximity position of the object to the detection region; ,
Control means for managing the overall status and sequence,
The proximity detecting device includes a timing signal generating means and a current measurement switch control means for controlling supply of power.
前記演算手段は、
前記電流測定手段で測定した電流値あるいは電荷量を線形演算し前記送信電極と前記受信電極の各交点の静電容量に対応した値に変換する線形演算手段と、
前記線形演算手段の出力から前記検出領域への物体の接近判定或いは接近位置を求める近接演算手段と、
により構成される請求項1に記載の近接検出装置。
The computing means is
A linear calculation means for linearly calculating a current value or a charge amount measured by the current measurement means and converting the value into a value corresponding to a capacitance at each intersection of the transmission electrode and the reception electrode;
Proximity calculation means for obtaining an approach determination or an approach position of an object to the detection region from the output of the linear calculation means;
The proximity detection device according to claim 1, comprising:
前記交流電圧は、送信電圧行列に対応し、前記送信電圧行列は正則行列である請求項1に記載の近接検出装置。   The proximity detection device according to claim 1, wherein the AC voltage corresponds to a transmission voltage matrix, and the transmission voltage matrix is a regular matrix. 前記電流測定スイッチ制御手段は、前記受信電極からの電流あるいは電荷量を測定する時だけ前記電流測定手段に電源の供給することを特徴とする請求項1に記載の近接検出装置。   2. The proximity detection apparatus according to claim 1, wherein the current measurement switch control means supplies power to the current measurement means only when measuring a current or a charge amount from the reception electrode. 前記制御手段は、前記マルチライン駆動手段が複数回前記送信電極を駆動する際、前記送信電極に対応した電流を複数回測定する間にランダムのインターバルを設けるインターバル発生手段を有することを特徴とする請求項1に記載の近接検出装置。   The control means includes interval generating means for providing a random interval while measuring the current corresponding to the transmission electrode a plurality of times when the multi-line driving means drives the transmission electrode a plurality of times. The proximity detection apparatus according to claim 1. 前記制御手段は、近接検出を行なう通常モードと、少なくとも送信電極の数より少ない回数で前記マルチライン駆動手段が駆動する簡易モードを切り替えるパワーセーブモード切り替え手段を有していることを特徴とする請求項1に記載の近接検出装置。   The control means includes power save mode switching means for switching between a normal mode in which proximity detection is performed and a simple mode in which the multi-line driving means is driven at least less than the number of transmission electrodes. Item 2. The proximity detection device according to Item 1. 前記マルチライン駆動手段は、前記受信電極それぞれに発生する遅延時間のばらつきを補正する遅延時間調整手段を有することを特徴とする請求項1に記載の近接検出装置。   The proximity detection apparatus according to claim 1, wherein the multi-line driving unit includes a delay time adjusting unit that corrects a variation in delay time generated in each of the reception electrodes. 物体の接近判定をする近接検出方法或いは接近位置を求める近接検出方法であって、
複数の送信電極に同時に周期的な交流電圧を印加するマルチライン駆動工程と、
他の1つの次元に対応する受信電極からの電流あるいは電荷量を前記送信電極への駆動に同期して測定する電流測定工程と、
前記電流測定工程で得られた電流値あるいは電荷量を前記送信電極と前記受信電極の各交点の静電容量に対応した値に変換し前記検出領域への物体の近接判定或いは近接位置を求める演算工程と、からなり、
前記電流測定工程は、前記受信電極からの電流あるいは電荷量を測定する時だけ電流測定工程に係る装置の電源をオンにする近接検出方法。
A proximity detection method for determining approach of an object or a proximity detection method for determining an approach position,
A multi-line driving process for simultaneously applying a periodic AC voltage to a plurality of transmission electrodes;
A current measuring step of measuring a current or a charge amount from a receiving electrode corresponding to another one dimension in synchronization with driving of the transmitting electrode;
An operation for converting the current value or the charge amount obtained in the current measuring step into a value corresponding to the capacitance at each intersection of the transmitting electrode and the receiving electrode, and determining the proximity of the object to the detection region or calculating the proximity position Process,
The current measurement step is a proximity detection method in which the power source of the apparatus according to the current measurement step is turned on only when measuring the current or charge amount from the receiving electrode.
前記演算工程では、
前記電流測定工程で得られた電流値あるいは電荷量を線形演算し前記送信電極と前記受信電極の各交点の静電容量に対応した値に変換する線形演算工程と、
前記線形演算工程の出力から前記検出領域への物体の近接判定或いは近接位置を求める近接演算工程と、
からなる請求項8に記載の近接検出方法。
In the calculation step,
A linear calculation step of linearly calculating the current value or the amount of charge obtained in the current measurement step and converting it to a value corresponding to the capacitance of each intersection of the transmission electrode and the reception electrode;
Proximity calculation step for determining the proximity or proximity position of an object to the detection region from the output of the linear calculation step;
The proximity detection method according to claim 8, comprising:
前記マルチライン駆動工程では、前記交流電圧は送信電圧行列に対応し、前記送信電圧行列は正則行列である請求項8に記載の近接検出装方法。   9. The proximity detection method according to claim 8, wherein, in the multi-line driving step, the AC voltage corresponds to a transmission voltage matrix, and the transmission voltage matrix is a regular matrix. 前記送信電圧行列はアダマール行列を基礎にして決定される請求項10に記載の近接検出方法。   The proximity detection method according to claim 10, wherein the transmission voltage matrix is determined based on a Hadamard matrix. 前記マルチライン駆動工程では、複数回前記送信電極を駆動する際、前記送信電極に対応した電流を複数回測定する間に任意のインターバルを設ける請求項8に記載の近接検出方法。   The proximity detection method according to claim 8, wherein in the multi-line driving step, when the transmission electrode is driven a plurality of times, an arbitrary interval is provided between measurement of a current corresponding to the transmission electrode a plurality of times. 前記マルチライン駆動工程および前記電流測定工程では、近接検出を行なう通常のモードと、前記送信電極の数より少ない回数で送信電極を駆動する簡易的なモードとを切り替える請求項8に記載の近接検出方法。   9. The proximity detection according to claim 8, wherein, in the multiline driving step and the current measurement step, switching is performed between a normal mode in which proximity detection is performed and a simple mode in which the transmission electrodes are driven less than the number of transmission electrodes. Method. 前記マルチライン駆動工程では、前記受信電極でそれぞれ発生する遅延時間のばらつきを補正する遅延時間調整工程を有する請求項8に記載の近接検出方法。   The proximity detection method according to claim 8, wherein the multiline driving step includes a delay time adjustment step of correcting a variation in delay time generated in each of the reception electrodes.
JP2009146561A 2009-06-19 2009-06-19 Proximity detection device and proximity detection method Pending JP2011003071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146561A JP2011003071A (en) 2009-06-19 2009-06-19 Proximity detection device and proximity detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146561A JP2011003071A (en) 2009-06-19 2009-06-19 Proximity detection device and proximity detection method

Publications (1)

Publication Number Publication Date
JP2011003071A true JP2011003071A (en) 2011-01-06

Family

ID=43560967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146561A Pending JP2011003071A (en) 2009-06-19 2009-06-19 Proximity detection device and proximity detection method

Country Status (1)

Country Link
JP (1) JP2011003071A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118957A (en) * 2010-11-12 2012-06-21 Sharp Corp Linear element column value estimation method, capacitance detection method, integrated circuit, touch sensor system, and electronic equipment
JP5232924B2 (en) * 2009-12-25 2013-07-10 シャープ株式会社 Display device and display device control method
WO2014002752A1 (en) * 2012-06-27 2014-01-03 シャープ株式会社 Touch panel controller, touch panel device, and electronic information device
KR101354674B1 (en) 2011-11-29 2014-03-26 어보브반도체 주식회사 Apparatus for sensing charge of multi touch panel
JP2016057624A (en) * 2014-09-05 2016-04-21 株式会社半導体エネルギー研究所 Matrix device and characteristic measurement method and drive method thereof
JP2016057623A (en) * 2014-09-05 2016-04-21 株式会社半導体エネルギー研究所 Matrix device, and characteristic measurement method and drive method thereof
JP2016122303A (en) * 2014-12-24 2016-07-07 シャープ株式会社 Touch panel controller, touch panel system, and electronic device
US9606684B2 (en) 2012-06-27 2017-03-28 Sharp Kabushiki Kaisha Touch panel controller, touch panel device, and electronic information device
CN110427128A (en) * 2019-08-29 2019-11-08 深圳市德名利电子有限公司 Multichannel driving method, multichannel driving device and touch panel
JP2020087374A (en) * 2018-11-30 2020-06-04 株式会社ジャパンディスプレイ Detector
WO2022030148A1 (en) * 2020-08-05 2022-02-10 アルプスアルパイン株式会社 Measurement device and measurement method and measurement program therefor

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232924B2 (en) * 2009-12-25 2013-07-10 シャープ株式会社 Display device and display device control method
JP2012118957A (en) * 2010-11-12 2012-06-21 Sharp Corp Linear element column value estimation method, capacitance detection method, integrated circuit, touch sensor system, and electronic equipment
US9563323B1 (en) 2010-11-12 2017-02-07 Sharp Kabushiki Kaisha Capacitance detecting method, integrated circuit, touch sensor system, and electronic device
US9501451B2 (en) 2010-11-12 2016-11-22 Sharp Kabushiki Kaisha Linear system coefficient estimating method, linear device column value estimating method, capacitance detecting method, integrated circuit, touch sensor system, and electronic device
KR101354674B1 (en) 2011-11-29 2014-03-26 어보브반도체 주식회사 Apparatus for sensing charge of multi touch panel
JP2014010505A (en) * 2012-06-27 2014-01-20 Sharp Corp Touch panel controller, touch panel device, and electronic information apparatus
WO2014002752A1 (en) * 2012-06-27 2014-01-03 シャープ株式会社 Touch panel controller, touch panel device, and electronic information device
US9606684B2 (en) 2012-06-27 2017-03-28 Sharp Kabushiki Kaisha Touch panel controller, touch panel device, and electronic information device
JP2016057624A (en) * 2014-09-05 2016-04-21 株式会社半導体エネルギー研究所 Matrix device and characteristic measurement method and drive method thereof
JP2016057623A (en) * 2014-09-05 2016-04-21 株式会社半導体エネルギー研究所 Matrix device, and characteristic measurement method and drive method thereof
JP2016122303A (en) * 2014-12-24 2016-07-07 シャープ株式会社 Touch panel controller, touch panel system, and electronic device
JP2020087374A (en) * 2018-11-30 2020-06-04 株式会社ジャパンディスプレイ Detector
JP7245638B2 (en) 2018-11-30 2023-03-24 株式会社ジャパンディスプレイ detector
CN110427128A (en) * 2019-08-29 2019-11-08 深圳市德名利电子有限公司 Multichannel driving method, multichannel driving device and touch panel
WO2022030148A1 (en) * 2020-08-05 2022-02-10 アルプスアルパイン株式会社 Measurement device and measurement method and measurement program therefor
JP7362933B2 (en) 2020-08-05 2023-10-17 アルプスアルパイン株式会社 Measuring device, its measuring method, and measuring program

Similar Documents

Publication Publication Date Title
WO2009107415A1 (en) Proximity detector and proximity detection method
JP2011003071A (en) Proximity detection device and proximity detection method
JP2011047774A (en) Proximity detection device and proximity detection method
TWI448946B (en) Position detecting device and position detecting method
JP6436374B2 (en) Electronic equipment, capacitance sensor and touch panel
US8928622B2 (en) Demodulation method and system with low common noise and high SNR for a low-power differential sensing capacitive touch panel
CN108141212B (en) Capacitance measuring device with reduced noise
TWI512566B (en) Touch control detecting apparatus and method thereof
US8581857B2 (en) Position detecting device and position detecting method
TWI511009B (en) Touch sensitive system and circuit and method for mutual capacitance measurement
JP2013516602A5 (en)
JP2011257884A (en) Electrostatic coordinate input device, electrostatic coordinate input method and information appliance
CN111522459B (en) Driving and detecting terminals of capacitive sensing array using differential sensing
Yu et al. Novel capacitive displacement sensor based on interlocking stator electrodes with sequential commutating excitation
US8976122B2 (en) Control unit, sensing device for a capacitive touch panel and method therefor
TWI517014B (en) Method and device for identifying touch signal
TW201300788A (en) Power measurement apparatus
TWI597642B (en) Touch processor
JP2018160174A (en) Touch detection apparatus
CN107092383B (en) Touch processor
CN104461093A (en) Control system and touch device with same
TW201709027A (en) Touch sensitive system and apparatus and method for measuring signals of touch sensitive screen
JP2012122781A (en) Resistance measurement device
TWI594167B (en) Touch sensitive system and apparatus and method for measuring signals of touch sensitive screen
TW201741845A (en) Signal measuring apparatus and method and touch sensitive system