JP2011002301A - Neutron instrumentation system and neutron instrumentation method - Google Patents

Neutron instrumentation system and neutron instrumentation method Download PDF

Info

Publication number
JP2011002301A
JP2011002301A JP2009144396A JP2009144396A JP2011002301A JP 2011002301 A JP2011002301 A JP 2011002301A JP 2009144396 A JP2009144396 A JP 2009144396A JP 2009144396 A JP2009144396 A JP 2009144396A JP 2011002301 A JP2011002301 A JP 2011002301A
Authority
JP
Japan
Prior art keywords
circuit
reactor
detector
measuring circuit
pulse counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009144396A
Other languages
Japanese (ja)
Inventor
Teiji Miyazaki
禎司 宮崎
Tadayoshi Oda
直敬 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009144396A priority Critical patent/JP2011002301A/en
Publication of JP2011002301A publication Critical patent/JP2011002301A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To integrate and simplify an instrumentation system for measuring a neutron flux outside a reactor.SOLUTION: This system includes a pulse counting circuit 5 for measuring a startup range, a fine current measuring circuit 7 for measuring a power range, and a fluctuating component measuring circuit 6 for measuring a range between the pulse counting circuit 5 and the fine current measuring circuit 7, which are arranged outside the reactor. The system further includes: aB detector 1 arranged outside the reactor, and connected so as to issue an output to the pulse counting circuit 5, the fine current measuring circuit 7 and the fluctuating component measuring circuit 6, for equalizingB coating thickness of the detector inner surface by plasma sputtering; and a measured signal selection means 8 arranged outside the reactor, for selecting some of each output from the pulse counting circuit 5, the fine current measuring circuit 7 and the fluctuating component measuring circuit 6, based on each output from the pulse counting circuit 5, the fine current measuring circuit 7 and the fluctuating component measuring circuit 6 on the basis of the output from theB detector 1.

Description

この発明は、原子炉外で中性子束を計測する中性子計装システムおよびそれを利用した中性子計装方法に関する。   The present invention relates to a neutron instrumentation system for measuring a neutron flux outside a nuclear reactor and a neutron instrumentation method using the neutron instrumentation system.

従来の原子炉外で中性子束を計測するにあたっては、中性子束レンジが大きな範囲で変動するため、中性子束レンジに応じて複数種類の測定系が使い分けられるのが普通である(特許文献1参照)。たとえば典型的な加圧水型原子炉(PWR)では、中性子束レンジに応じて3種類の測定系が使い分けられる。すなわち、スタートアップレンジ(10−1〜10n/cm/sec)の中性子束計測にはBF検出器を用いたパルス計数系が使用され、ワイドレンジ(1〜1010n/cm/sec)の中性子束計測には核分裂電離箱を用いたゆらぎ成分測定系が使用され、パワーレンジ(5×10〜5×1010n/cm/sec)の中性子束計測には10B検出器を用いた微小電流測定系が使用される。このうち燃料の未臨界監視をワイドレンジで行ない、停止時監視をスタートアップレンジで行ない、運転時監視をパワーレンジで行なっている。 When measuring a neutron flux outside a conventional nuclear reactor, the neutron flux range fluctuates in a large range, and therefore it is common to use a plurality of types of measurement systems depending on the neutron flux range (see Patent Document 1). . For example, in a typical pressurized water reactor (PWR), three types of measurement systems are used depending on the neutron flux range. That is, a pulse counting system using a BF 3 detector is used for neutron flux measurement in the start-up range (10 −1 to 10 6 n / cm 2 / sec), and a wide range (1 to 10 10 n / cm 2 / sec) is used. The fluctuation component measurement system using a fission ionization chamber is used for neutron flux measurement in sec), and 10 B detection is used for neutron flux measurement in the power range (5 × 10 2 to 5 × 10 10 n / cm 2 / sec). A minute current measurement system using a measuring instrument is used. Of these, subcritical monitoring of fuel is performed in a wide range, stop monitoring is performed in a startup range, and operation monitoring is performed in a power range.

特開平9−243784号公報JP-A-9-243784

上述のPWRの炉外中性子計装システムにおいては、測定レンジに応じて独立に複数の測定系を設けており、複雑なシステム構成となっている。   In the above-described PWR out-of-core neutron instrumentation system, a plurality of measurement systems are provided independently in accordance with the measurement range, resulting in a complicated system configuration.

本発明は、これらの測定系を統合することにより、簡素化した原子炉の炉外中性子計装を実現することを目的とする。   An object of the present invention is to realize a simplified reactor neutron instrumentation by integrating these measurement systems.

上記目的を達成するために、本発明に係る中性子計装システムは、原子炉外で中性子束を計測する中性子計装システムにおいて、原子炉外に配置されてスタートアップレンジを計測するパルス計数回路と、原子炉外に配置されてパワーレンジを計測する微小電流測定回路と、原子炉外に配置されて前記パルス計数回路および微小電流測定回路の間のレンジを計測するゆらぎ成分測定回路と、前記パルス計数回路、前記微小電流測定回路および前記ゆらぎ成分測定回路に出力を出すように接続され、検出器内面の10Bコーティング厚を、厚さの増加に対する検出感度がほぼ一定で安定している範囲の厚さで且つマイクロメーターオーダーで均一化し、原子炉外に配置された10B検出器と、前記10B検出器の出力に基づく前記パルス計数回路、前記微小電流測定回路および前記ゆらぎ成分測定回路の出力に基づいて、前記パルス計数回路、前記微小電流測定回路および前記ゆらぎ成分測定回路の出力のいずれかを選択する、原子炉外に配置された測定信号選択手段と、を有することを特徴とする。 In order to achieve the above object, a neutron instrumentation system according to the present invention is a neutron instrumentation system that measures a neutron flux outside a nuclear reactor, a pulse counting circuit that is arranged outside the reactor and measures a startup range; A minute current measuring circuit arranged outside the nuclear reactor for measuring the power range, a fluctuation component measuring circuit arranged outside the nuclear reactor for measuring the range between the pulse counting circuit and the minute current measuring circuit, and the pulse counting circuit, wherein the low current measurement circuit and connected to produce an output to the fluctuation component measurement circuit, the 10 B coating thickness detector the inner surface, the thickness of the range detection sensitivity for increase in the thickness is stable at substantially constant and homogenized with a micrometer order, and 10 B detector disposed outside the reactor, the pulse count based on the output of the 10 B detector of Selected from the output of the pulse counting circuit, the minute current measuring circuit and the fluctuation component measuring circuit based on the output of the path, the minute current measuring circuit and the fluctuation component measuring circuit Measurement signal selection means.

また、本発明に係る中性子計装方法は、原子炉外で中性子束を計測する中性子計装方法において、検出器内面の10Bコーティング厚を、厚さの増加に対する検出感度がほぼ一定で安定している範囲の厚さで且つマイクロメーターオーダーで均一化した10B検出器を原子炉外に配置し、スタートアップレンジを計測するパルス計数回路を原子炉外に配置し、パワーレンジを計測する微小電流測定回路を原子炉外に配置し、前記パルス計数回路および微小電流測定回路の間のレンジを計測するゆらぎ成分測定回路を原子炉外に配置し、前記10B検出器の出力を前記パルス計数回路、前記微小電流測定回路および前記微小電流測定回路に出すように接続し、前記10B検出器の出力に基づく前記パルス計数回路、前記微小電流測定回路および前記微小電流測定回路の出力に基づいて、前記パルス計数回路、前記微小電流測定回路および前記微小電流測定回路の出力のいずれかを選択すること、を特徴とする。 Further, the neutron instrumentation method according to the present invention, the neutron instrumentation methods for measuring the neutron flux in a nuclear reactor outside the 10 B coating thickness detector the inner surface, the detection sensitivity for an increase in thickness is stabilized at a substantially constant A 10 B detector with a thickness within a certain range and uniform in the micrometer order is placed outside the reactor, a pulse counting circuit that measures the startup range is placed outside the reactor, and a minute current that measures the power range A measurement circuit is arranged outside the reactor, a fluctuation component measurement circuit for measuring the range between the pulse counting circuit and the minute current measuring circuit is arranged outside the reactor, and the output of the 10 B detector is used as the pulse counting circuit. The pulse counting circuit based on the output of the 10 B detector, the minute current measuring circuit, and the minute current measuring circuit. And selecting one of the output of the pulse counting circuit, the minute current measuring circuit and the minute current measuring circuit based on the output of the minute current measuring circuit.

本発明によれば、広範囲の炉外中性子測定レンジを、簡素なシステムでカバーすることができる。   According to the present invention, a wide range of in-core neutron measurement ranges can be covered with a simple system.

本発明に係る炉外中性子計装システムの一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment of the reactor neutron instrumentation system which concerns on this invention. 10Bコーティング厚における厚さの増加に対する検出感度を示す図。 The figure which shows the detection sensitivity with respect to the increase in thickness in 10B coating thickness. 図1の炉外中性子計装システムの10B検出器の製造過程において、プラズマスパッタリングによって10B検出器内面のコーティング厚を均一化する方法の例を示す模式的立断面図。FIG. 2 is a schematic sectional elevation view showing an example of a method for equalizing the coating thickness on the inner surface of the 10 B detector by plasma sputtering in the manufacturing process of the 10 B detector of the out-of-core neutron instrumentation system of FIG. 1.

以下、本発明に係る出力分布監視装置の実施形態について図面を参照して説明する。   Hereinafter, an embodiment of an output distribution monitoring apparatus according to the present invention will be described with reference to the drawings.

図1は本発明に係る炉外中性子計装システムの一実施形態の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of an embodiment of an in-core neutron instrumentation system according to the present invention.

図1において、10B検出器1および監視ユニット4は原子炉(たとえばPWR)2の炉外に設置されている。10B検出器1はプラズマスパッタリングにより10Bコーティング厚を、厚さの増加に対する検出感度がほぼ一定で安定している範囲の厚さで且つマイクロメーターオーダーで均一化させて製造する。プラズマスパッタリングによる10B検出器1の製造方法については、図2を参照して後述する。なお、10B検出器1の封入ガスとしてArガスを使用するのが好ましい。 In FIG. 1, the 10 B detector 1 and the monitoring unit 4 are installed outside a reactor (for example, PWR) 2. The 10 B detector 1 is manufactured by plasma sputtering so that the 10 B coating thickness is uniform in the order of micrometers and in a thickness range in which the detection sensitivity with respect to the increase in thickness is substantially constant and stable. A method for manufacturing the 10 B detector 1 by plasma sputtering will be described later with reference to FIG. In addition, it is preferable to use Ar gas as the sealed gas of the 10 B detector 1.

10B検出器1の出力信号は、信号線3を介して、監視ユニット4に内蔵されるパルス計数回路5、ゆらぎ成分測定回路6、微小電流測定回路7に接続される。パルス計数回路5、ゆらぎ成分測定回路6、微小電流測定回路7から得られた測定信号は、測定信号選択手段8に入力される。 The output signal of the 10 B detector 1 is connected to the pulse counting circuit 5, the fluctuation component measuring circuit 6, and the minute current measuring circuit 7 incorporated in the monitoring unit 4 through the signal line 3. Measurement signals obtained from the pulse counting circuit 5, the fluctuation component measurement circuit 6, and the minute current measurement circuit 7 are input to the measurement signal selection means 8.

10B検出器1から得られた信号は、パルス計数回路5、ゆらぎ成分測定回路6、微小電流測定回路7によってそれぞれ測定される。ゆらぎ成分の計測は、一般にキャンベル計測またはMSV(2乗平均電圧)計測と呼ばれるものである。 The signal obtained from the 10 B detector 1 is measured by the pulse counting circuit 5, the fluctuation component measuring circuit 6, and the minute current measuring circuit 7, respectively. The fluctuation component measurement is generally called Campbell measurement or MSV (root mean square voltage) measurement.

従来の10B検出器では10Bコーティング厚をマイクロメーターオーダーで均一化することが困難であり、10Bへの中性子照射により発生したα線が10B自身に吸収される量を一定にすることができなかったため、パルス計数値とゆらぎ成分測定値の比を一定にすることが困難であったが、プラズマスパッタリングにより、10Bコーティング厚をマイクロメーターオーダーで均一化させた10B検出器1は、パルス計数値とゆらぎ成分測定値の比を一定とすることができるため、本実施形態の実現が可能となる。 In conventional 10 B detector it is difficult to equalize the thickness 10 B coated with micrometer order, to a constant amount of α-rays generated by the neutron irradiation of the 10 B is absorbed to 10 B itself because could not, although the ratio of the pulse count and the fluctuation component measurements it is difficult to be constant, by plasma sputtering, 10 10 B detector 1 B coating thicknesses were homogenized in micrometer order Since the ratio between the pulse count value and the fluctuation component measurement value can be made constant, this embodiment can be realized.

また、10B検出器1の封入ガスに、放射線照射によるガス成分に経年変化の無いArガスを使用することで、パルス計数値とゆらぎ成分測定値の比の経年変化を無くすことができる。 In addition, by using Ar gas that has no secular change in the gas component due to radiation irradiation as the sealed gas of the 10 B detector 1, it is possible to eliminate the secular change in the ratio between the pulse count value and the fluctuation component measured value.

また、10B検出器の10Bコーティング厚は、図2に示すような厚さの増加に対する検出感度がほぼ一定で安定している範囲の厚さ、好ましくはこの範囲の中心の厚さとすることにより、厚さがばらついたとしても安定した高い感度が実現できる。 In addition, the 10 B coating thickness of the 10 B detector should be a thickness in a range where the detection sensitivity with respect to the increase in thickness as shown in FIG. 2 is substantially constant and stable, and preferably a thickness in the center of this range. Therefore, even if the thickness varies, stable high sensitivity can be realized.

それぞれの回路で測定された測定値は、測定信号選択手段8に入力される。測定信号選択手段8は、それぞれの回路から得られる測定信号の値があらかじめ設定した値に到達すると自動的に監視に使用する測定回路を選択する。   Measurement values measured by the respective circuits are input to the measurement signal selection means 8. The measurement signal selection means 8 automatically selects a measurement circuit to be used for monitoring when the value of the measurement signal obtained from each circuit reaches a preset value.

以上説明したように、10B検出器から得られた信号に対して、測定レンジに応じてパルス計数、ゆらぎ成分測定、微小電流測定を切り替えて適用することで、一つの測定系で、PWRのスタートアップレンジ、ワイドレンジ、パワーレンジを監視可能となり、従来システムと比べて簡素化した中性子計装システムを得ることが可能となる。 As described above, by switching and applying pulse counting, fluctuation component measurement, and minute current measurement according to the measurement range, the signal obtained from the 10 B detector can be used in one measurement system. The start-up range, wide range, and power range can be monitored, and a neutron instrumentation system that is simpler than the conventional system can be obtained.

また、新たな測定系と従来PWRのスタートアップレンジの両方で、未臨界確認を行なうことが可能となり、現在のPWRの原子炉周りのレイアウトを変更せずに、未臨界確認に対する監視の多様性(Diversity)を確保することが可能となる。   In addition, subcriticality confirmation can be performed in both the new measurement system and the conventional PWR startup range, and the diversity of monitoring for subcriticality confirmation (without changing the layout around the current PWR reactor) ( Diversity) can be secured.

ここで、プラズマスパッタリングによる10B検出器1の製造方法の例について説明する。図3は、図1の炉外中性子計装システムの10B検出器を製造する過程において、プラズマスパッタリングによって10B検出器内面のコーティング厚をマイクロメーターオーダーで均一化する方法の例を示す模式的立断面図である。 Here, an example of a 10 method for producing a B detector 1 by plasma sputtering. FIG. 3 is a schematic diagram showing an example of a method for uniformizing the coating thickness on the inner surface of the 10 B detector by plasma sputtering in the process of manufacturing the 10 B detector of the neutron instrumentation system of FIG. FIG.

コーティングを施すパイプである接地電極21と、その内面に円柱状の導体で先端が突起状の中心電極22と、両者を電気的に絶縁する絶縁体23と、2つの電極に高周波電力を供給する電源24と、パイプ21内において中心電極22と絶縁体23を移動させる電極移動手段25に加えて、ガス供給装置33が、配管32によってコーティング装置20に接続されている。供給されたガスは、中心電極内の空洞31を通って、パイプ21内に導入される。パイプ21は、図示しない真空排気装置によって、たとえば、図3の右側方向に排気される。   High frequency power is supplied to the ground electrode 21 which is a pipe to be coated, a center electrode 22 having a cylindrical conductor on its inner surface and a protruding tip, an insulator 23 which electrically insulates both, and two electrodes In addition to the power source 24 and the electrode moving means 25 for moving the center electrode 22 and the insulator 23 in the pipe 21, a gas supply device 33 is connected to the coating device 20 by a pipe 32. The supplied gas is introduced into the pipe 21 through the cavity 31 in the center electrode. The pipe 21 is exhausted, for example, in the right direction of FIG. 3 by a vacuum exhaust device (not shown).

供給されるガスは、アルゴン、ヘリウム、窒素、水素、などの純粋ガスや、あるいは、それらを適量ずつ混合したものである。   The supplied gas is a pure gas such as argon, helium, nitrogen, hydrogen, or a mixture of them in appropriate amounts.

ガス供給装置33から供給されるガスは、配管32によってコーティング装置20まで導かれ、中心電極22内に作られた空洞を通って、パイプ21内に供給される。パイプ21は、図示しない真空排気装置によって排気され、供給されるガスの量と排気速度のバランスで、パイプ21内の圧力が決定される。このとき、空間内のガスは、その一定量が、排気され、同時に、同じ量の新鮮なガスが流入している状態にある。プラズマの作用で、スパッタ材27がパイプ21内面にスパッタされる過程の中で、パイプ21や中心電極22の表面に吸着していたガスやスパッタ材自身に不純物として含まれていた気体成分がプラズマ内に混入する。この不純物ガス成分は、このスパッタ空間のガスの交換に乗って空間外へ排気される。   The gas supplied from the gas supply device 33 is guided to the coating device 20 by the pipe 32, and is supplied into the pipe 21 through a cavity formed in the center electrode 22. The pipe 21 is exhausted by a vacuum exhaust device (not shown), and the pressure in the pipe 21 is determined by the balance between the amount of gas supplied and the exhaust speed. At this time, a certain amount of the gas in the space is exhausted, and at the same time, the same amount of fresh gas is flowing. During the process in which the sputter material 27 is sputtered on the inner surface of the pipe 21 by the action of plasma, the gas adsorbed on the surfaces of the pipe 21 and the center electrode 22 and the gas components contained as impurities in the sputter material itself are plasma. Mixed in. The impurity gas component is exhausted out of the space by exchanging the gas in the sputtering space.

このような方法により、スパッタを行なっているプラズマに含まれる不純物を外部に排気することが可能となる。この製造方法により、図1における10B検出器1の10Bコーティング厚をマイクロメーターオーダーで均一化させることができる。 By such a method, impurities contained in the plasma being sputtered can be exhausted to the outside. With this manufacturing method, the 10 B coating thickness of the 10 B detector 1 in FIG. 1 can be made uniform on the order of micrometers.

1… 10B検出器
2… 原子炉
3… 信号線
4… 監視ユニット
5… パルス測定回路
6… ゆらぎ成分測定回路
7… 微小電流測定回路
8… 測定回路選択手段
21…接地電極(パイプ)
22…中心電極
23…絶縁体
24…電源
25…電極移動手段
27…中性子変換層
30…プラズマ
31…中心導体中の空洞管
32…配管
33…ガス供給系
DESCRIPTION OF SYMBOLS 1 ... 10 B detector 2 ... Reactor 3 ... Signal line 4 ... Monitoring unit 5 ... Pulse measurement circuit 6 ... Fluctuation component measurement circuit 7 ... Micro current measurement circuit 8 ... Measurement circuit selection means 21 ... Ground electrode (pipe)
22 ... Center electrode 23 ... Insulator 24 ... Power source 25 ... Electrode moving means 27 ... Neutron conversion layer 30 ... Plasma 31 ... Cavity tube 32 in the center conductor ... Pipe 33 ... Gas supply system

Claims (4)

原子炉外で中性子束を計測する中性子計装システムにおいて、
原子炉外に配置されてスタートアップレンジを計測するパルス計数回路と、
原子炉外に配置されてパワーレンジを計測する微小電流測定回路と、
原子炉外に配置されて前記パルス計数回路および微小電流測定回路の間のレンジを計測するゆらぎ成分測定回路と、
前記パルス計数回路、前記微小電流測定回路および前記ゆらぎ成分測定回路に出力を出すように接続され、検出器内面の10Bコーティング厚を、厚さの増加に対する検出感度がほぼ一定で安定している範囲の厚さで且つマイクロメーターオーダーで均一化し、原子炉外に配置された10B検出器と、
前記10B検出器の出力に基づく前記パルス計数回路、前記微小電流測定回路および前記ゆらぎ成分測定回路の出力に基づいて、前記パルス計数回路、前記微小電流測定回路および前記ゆらぎ成分測定回路の出力のいずれかを選択する、原子炉外に配置された測定信号選択手段と、
を有することを特徴とする中性子計装システム。
In a neutron instrumentation system that measures neutron flux outside the reactor,
A pulse counting circuit that is placed outside the reactor and measures the startup range;
A micro current measurement circuit that is placed outside the reactor and measures the power range;
A fluctuation component measuring circuit arranged outside the nuclear reactor to measure a range between the pulse counting circuit and the minute current measuring circuit;
Connected to output to the pulse counting circuit, the minute current measuring circuit, and the fluctuation component measuring circuit, and the 10 B coating thickness on the inner surface of the detector has a stable and constant detection sensitivity with respect to the increase in thickness. A 10 B detector with a thickness in the range and uniform on the micrometer order and placed outside the reactor;
Based on the outputs of the pulse counting circuit, the minute current measuring circuit and the fluctuation component measuring circuit based on the output of the 10 B detector, the outputs of the pulse counting circuit, the minute current measuring circuit and the fluctuation component measuring circuit are output. A measurement signal selection means arranged outside the nuclear reactor to select one of them;
A neutron instrumentation system comprising:
前記10B検出器はプラズマスパッタリングにより10Bコーティングされていることを特徴とする請求項1に記載の中性子計装システム。 The neutron instrumentation system according to claim 1, wherein the 10 B detector is coated with 10 B by plasma sputtering. 前記10B検出器はArガスが封入されていることを特徴とする請求項1に記載の中性子計装システム。 The neutron instrumentation system according to claim 1, wherein the 10 B detector is filled with Ar gas. 原子炉外で中性子束を計測する中性子計装方法において、
検出器内面の10Bコーティング厚を、厚さの増加に対する検出感度がほぼ一定で安定している範囲の厚さで且つマイクロメーターオーダーで均一化した10B検出器を原子炉外に配置し、
スタートアップレンジを計測するパルス計数回路を原子炉外に配置し、
パワーレンジを計測する微小電流測定回路を原子炉外に配置し、
前記パルス計数回路および微小電流測定回路の間のレンジを計測するゆらぎ成分測定回路を原子炉外に配置し、
前記10B検出器の出力を前記パルス計数回路、前記微小電流測定回路および前記微小電流測定回路に出すように接続し、
前記10B検出器の出力に基づく前記パルス計数回路、前記微小電流測定回路および前記微小電流測定回路の出力に基づいて、前記パルス計数回路、前記微小電流測定回路および前記微小電流測定回路の出力のいずれかを選択すること、
を特徴とする中性子計装方法。
In the neutron instrumentation method for measuring neutron flux outside the reactor,
The 10 B coating thickness detector the inner surface, the 10 B detector sensitivity is substantially equalized and a micrometer order in a thickness of constant are stable range for an increase in the thickness disposed outside the reactor,
A pulse counting circuit that measures the startup range is located outside the reactor,
A small current measurement circuit that measures the power range is placed outside the reactor,
A fluctuation component measurement circuit for measuring a range between the pulse counting circuit and the minute current measurement circuit is arranged outside the reactor,
Connecting the output of the 10 B detector to the pulse counting circuit, the minute current measuring circuit, and the minute current measuring circuit;
Based on the outputs of the pulse counting circuit, the minute current measuring circuit, and the minute current measuring circuit based on the output of the 10 B detector, the outputs of the pulse counting circuit, the minute current measuring circuit, and the minute current measuring circuit are output. To choose one,
A neutron instrumentation method characterized by
JP2009144396A 2009-06-17 2009-06-17 Neutron instrumentation system and neutron instrumentation method Withdrawn JP2011002301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144396A JP2011002301A (en) 2009-06-17 2009-06-17 Neutron instrumentation system and neutron instrumentation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144396A JP2011002301A (en) 2009-06-17 2009-06-17 Neutron instrumentation system and neutron instrumentation method

Publications (1)

Publication Number Publication Date
JP2011002301A true JP2011002301A (en) 2011-01-06

Family

ID=43560374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144396A Withdrawn JP2011002301A (en) 2009-06-17 2009-06-17 Neutron instrumentation system and neutron instrumentation method

Country Status (1)

Country Link
JP (1) JP2011002301A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969677A (en) * 2013-01-25 2014-08-06 中国科学技术大学 Wide dynamic range neutron flux measuring system and method based on Pulse-Current mode
JP7493096B2 (en) 2020-08-05 2024-05-30 コリア ハイドロ アンド ニュークリアー パワー カンパニー リミテッド Dynamic control rod control capability measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969677A (en) * 2013-01-25 2014-08-06 中国科学技术大学 Wide dynamic range neutron flux measuring system and method based on Pulse-Current mode
JP7493096B2 (en) 2020-08-05 2024-05-30 コリア ハイドロ アンド ニュークリアー パワー カンパニー リミテッド Dynamic control rod control capability measurement method

Similar Documents

Publication Publication Date Title
US8445839B2 (en) Self-calibrating, highly accurate, long-lived, dual rhodium vanadium emitter nuclear in-core detector
JP6334704B2 (en) Ionization chamber radiation detector
JPS629870B2 (en)
Mazed et al. Design parameters and technology optimization of 3He-filled proportional counters for thermal neutron detection and spectrometry applications
US4634568A (en) Fixed incore wide range neutron sensor
US3043954A (en) Fission chamber assembly
Tang et al. A normal-pressure MWPC for beam diagnostics at RIBLL2
Geslot et al. Development and manufacturing of special fission chambers for in-core measurement requirements in nuclear reactors
US5192490A (en) Extended range neutron detection device for monitoring and control of nuclear reactors
JP5894357B2 (en) Apparatus and system for determining in-reactor gamma ray flux level and nuclear reactor equipped with the apparatus
JP2011002301A (en) Neutron instrumentation system and neutron instrumentation method
Sasao et al. Strategy for the absolute neutron emission measurement on ITER
De Vries et al. A Siegbahn-Edvarson Type Ironfree Double Focusing Beta-Ray Spectrometer
CN103472475B (en) A kind of transmission-type monitor ionization chamber being suitable for low energy X ray and measuring
JP4625557B2 (en) Reactor power monitoring device
JP4829052B2 (en) Manufacturing method of neutron detector
Reichenberger et al. Fabrication and testing of a 5-node micro-pocket fission detector array for real-time, spatial, iron-wire port neutron-flux monitoring
CN202661630U (en) Transmission type monitoring ionization chamber suitable for measurement of low-energy X-rays
CN206515476U (en) A kind of neutron tube
JP5450442B2 (en) Method for determining the effective mass of fissile material
Tazhen et al. Measuring the self-generated magnetic field and the velocity of plasma flow in a pulsed plasma accelerator
Jana et al. Measurement of transmission efficiency for 400 MeV proton beam through collimator at Fermilab MuCool Test Area using Chromox-6 scintillation screen
JP4776599B2 (en) Film forming apparatus and film forming method
Fabjan Calorimeters: Gaseous readouts compared to alternatives
Uritani et al. A long and slender position-sensitive helium-3 proportional counter with an anode wire supported by a ladder-shaped solid insulator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110421

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120904