JP2011002255A - Optical encoder and electronic apparatus - Google Patents

Optical encoder and electronic apparatus Download PDF

Info

Publication number
JP2011002255A
JP2011002255A JP2009143379A JP2009143379A JP2011002255A JP 2011002255 A JP2011002255 A JP 2011002255A JP 2009143379 A JP2009143379 A JP 2009143379A JP 2009143379 A JP2009143379 A JP 2009143379A JP 2011002255 A JP2011002255 A JP 2011002255A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
signal
optical encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009143379A
Other languages
Japanese (ja)
Other versions
JP5016001B2 (en
Inventor
Norikazu Okada
教和 岡田
Kohei Yasukawa
光平 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009143379A priority Critical patent/JP5016001B2/en
Publication of JP2011002255A publication Critical patent/JP2011002255A/en
Application granted granted Critical
Publication of JP5016001B2 publication Critical patent/JP5016001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Transform (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical encoder which can obtain a linearly-fluctuating asymmetrical triangular wave from a light receiving element, while avoiding an influence of optical dispersion of an optical component, detecting highly accurately a moving direction of a moving body by one light receiving signal, and detecting an absolute position of the moving body.SOLUTION: In the optical encoder, a light receiving surface 4 of a first light receiving element 3 has a step shape having four step parts 4A-4D, and a width dimension of each step part 4A-4D is equal to a width dimension L of a light-on part 5 of the moving body 1, and each step dimension d thereof is equal to each other. Hereby, a light receiving signal A+ output from the first light receiving element 3 is linearly fluctuated corresponding to movement of the moving body 1, and has a triangular wave shape which is asymmetrical with respect to the normal/reverse state of the moving direction, and therefor the moving direction of the moving body 1 can be detected highly accurately by one signal, and the absolute position of the moving body can be detected. Further, even when incident light into the light receiving surface 4 is dispersed to the moving direction, fluctuation of the total amount of a light receiving quantity can be avoided, to thereby enable highly accurate movement detection.

Description

この発明は、受光素子を用いて移動体の位置,移動速度、移動方向等を検出する光学式エンコーダに関し、一例として特に複写機、プリンターなどの印刷機器、FA機器、カメラ等におけるレンズフォーカス調整、クランクシャフト等の車両用の駆動部品の回転,移動量の検出に用いると好適である光学式エンコーダに関する。   The present invention relates to an optical encoder that detects a position, a moving speed, a moving direction, and the like of a moving body using a light receiving element, and as an example, lens focus adjustment particularly in a copying machine, a printing device such as a printer, an FA device, a camera, The present invention relates to an optical encoder suitable for use in detecting the amount of rotation and movement of a vehicle drive component such as a crankshaft.

従来、特許文献1(特開平11−101614号公報)では、光透過強度がステップ的に等間隔で変化する要素格子から構成された光学スケールを用いると共に上記光学スケールを透過した光を単一受光面で検出する受光器により移動量を検出する技術が開示されている。上記受光器による受光信号は非対称三角形の信号波形を有し、この信号波形が非対称三角形の受光信号の強度の変動率で移動方向と移動量を検出している。   Conventionally, in Patent Document 1 (Japanese Patent Laid-Open No. 11-101614), an optical scale composed of element gratings whose light transmission intensity changes at equal intervals stepwise is used, and light that has passed through the optical scale is received as a single light. A technique for detecting the amount of movement by a light receiver that detects the surface is disclosed. The light reception signal by the light receiver has a signal waveform of an asymmetric triangle, and the signal waveform detects the moving direction and the amount of movement based on the fluctuation rate of the intensity of the light reception signal of the asymmetric triangle.

また、特許文献2(特開2007−248359号公報)では、光を透過する三角形パターンを有する移動スケールと、この移動スケールを透過した光を受光する受光素子とを有し、上記受光素子の受光信号により移動スケールの移動を検出する技術が開示されている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-248359) includes a moving scale having a triangular pattern that transmits light and a light receiving element that receives light transmitted through the moving scale, and receives light from the light receiving element. A technique for detecting movement of a moving scale by a signal is disclosed.

また、特許文献3(特開昭61−138111号公報)では、受光素子の受光部を三角形状として、被写体の測距を行う技術が開示されている。   Patent Document 3 (Japanese Patent Laid-Open No. 61-138111) discloses a technique for measuring a subject by using a light receiving portion of a light receiving element as a triangular shape.

また、特許文献4(特開昭61−292016号公報)では、符号盤の光学トラックの光透過部からの光を受光して、位相の90°ずつ異なる受光信号を出力するように4個の受光素子を配置して、この4個の受光素子から三角波信号を得る光学式エンコーダが開示されている。   Further, in Patent Document 4 (Japanese Patent Laid-Open No. 61-292016), four light receiving signals are received so as to receive light from the light transmitting portion of the optical track of the code board and to output a light receiving signal having a phase difference of 90 °. An optical encoder is disclosed in which a light receiving element is disposed and a triangular wave signal is obtained from the four light receiving elements.

また、特許文献5(特開2001−153685号公報)では、スケールに低反射率の四角形のデジタルパターンと低反射率の三角形のアナログパターンを設け、上記スケールで反射された光を受光部で受光して、移動検出を行う光学式エンコーダが開示されている。   Further, in Patent Document 5 (Japanese Patent Application Laid-Open No. 2001-153585), a low-reflectance square digital pattern and a low-reflectance triangle analog pattern are provided on the scale, and the light reflected by the scale is received by the light receiving unit. An optical encoder that performs movement detection is disclosed.

ところで、上述の特許文献1に開示されている技術では、移動体として用いられる光学スケールの形態により三角波を有する受光信号を受光器から得るので、受光信号がパルス信号である場合に比べて分解能が向上する。その上、上記三角波が非対称三角形波であれば、移動体の絶対位置を検出できるだけでなく、移動方向検知精度も向上する。   By the way, in the technique disclosed in Patent Document 1 described above, a light reception signal having a triangular wave is obtained from a light receiver in the form of an optical scale used as a moving body, so that the resolution is higher than when the light reception signal is a pulse signal. improves. In addition, if the triangular wave is an asymmetric triangular wave, not only the absolute position of the moving body can be detected, but also the moving direction detection accuracy can be improved.

しかし、上述の特許文献1に示される技術では、光透過強度がステップ的に変動するスケールを作製しても、発光素子は発光波長、経年変化、ばらつき、外乱等により光量が変動する。その上、スケール位置により受光強度が変動するので、スケールの透過率以外にも光強度が変動する要因が多く存在し、受光信号がリニアに変動する三角波を形成することは非常に困難である。   However, with the technique disclosed in Patent Document 1 described above, even if a scale in which the light transmission intensity varies stepwise is produced, the light amount of the light emitting element varies due to the emission wavelength, aging, variation, disturbance, and the like. In addition, since the received light intensity varies depending on the scale position, there are many factors that cause the light intensity to vary in addition to the transmittance of the scale, and it is very difficult to form a triangular wave in which the received light signal varies linearly.

そこで、リニアな三角波を得るために、上述の特許文献2では移動スケールに光を透過する三角形パターンを形成し、上述の特許文献3では受光素子の受光部を三角形状にする技術が提案されている。   Therefore, in order to obtain a linear triangular wave, the above-mentioned Patent Document 2 proposes a technique of forming a triangular pattern that transmits light on the moving scale, and the above-mentioned Patent Document 3 proposes a technique for making the light receiving portion of the light receiving element a triangular shape. Yes.

しかし、四角形の加工パターンを形成するには、加工機械をX軸(1次元)で機械操作すれば作製可能であるに対して、上述の移動スケールや受光素子における三角形状の加工パターンは、X軸とY軸との2次元で加工機械を調整して製造する必要がある。このため、特に、数μmオーダーの精度が要求される光学式エンコーダにおいては、リニアリティーを構築するのに限界がある。また、受光素子を作製する時のマスク形状は四角形であり、X軸とY軸に対して、角度を有するパターンはずれが生じ易い。   However, in order to form a rectangular processing pattern, the processing machine can be manufactured by mechanically operating the X-axis (one-dimensional), whereas the above-described moving scale and the triangular processing pattern in the light receiving element are X It is necessary to adjust and manufacture the processing machine in two dimensions of the axis and the Y axis. For this reason, there is a limit in constructing linearity, particularly in an optical encoder that requires an accuracy of the order of several μm. Further, the mask shape when manufacturing the light receiving element is a quadrangle, and the pattern having an angle with respect to the X axis and the Y axis is likely to be displaced.

さらに、受光素子への受光像は、移動体が移動する時のスリットなどに起因して光が屈折し、受光面へ入射する光量の移動方向の勾配にばらつきが生じる。このため、勾配方向(移動方向)に傾きを有する三角形状では、受光面へ入射する光量の移動方向の勾配がばらついて変動した時に受光量の総量が変動し易く、移動スケールや受光素子に形成した三角形状の加工パターンの通りの三角波を得ることは難しい。   Further, in the received light image on the light receiving element, light is refracted due to a slit or the like when the moving body moves, and the gradient in the moving direction of the amount of light incident on the light receiving surface varies. For this reason, with a triangular shape that has an inclination in the gradient direction (movement direction), the total amount of received light is likely to fluctuate when the gradient in the movement direction of the amount of light incident on the light receiving surface varies and is formed on a moving scale or light receiving element. It is difficult to obtain a triangular wave according to the triangular processing pattern.

一方、上述の特許文献4に開示される光学式エンコーダでは、従来からある四角形状の光透過部(スリット)を用い、4個の受光素子も同一形状の四角形とすることで、この4個の受光素子が出力する受光信号から二等辺三角形の波形を有する三角波信号を得ている。   On the other hand, in the optical encoder disclosed in Patent Document 4 described above, a conventional rectangular light transmission part (slit) is used, and the four light receiving elements are also formed in the same shape, so that these four A triangular wave signal having an isosceles triangular waveform is obtained from the light receiving signal output from the light receiving element.

しかし、この特許文献4による方法は、分解能は向上するものの、受光信号から得られる三角波信号の波形が二等辺三角形であるので、電位値変動率が一定となり、移動体の絶対位置,移動方向の検出はできない。このため、特許文献4による方法では、移動体の方向を検出するためには2相の三角波信号が必要になる。   However, although the method according to Patent Document 4 improves the resolution, since the waveform of the triangular wave signal obtained from the light reception signal is an isosceles triangle, the potential value variation rate is constant, and the absolute position of the moving body and the moving direction are changed. It cannot be detected. For this reason, the method according to Patent Document 4 requires a two-phase triangular wave signal in order to detect the direction of the moving body.

また、上述した特許文献5に開示の光学式エンコーダでは、スケールに三角形パターンだけでなく、四角形のデジタルパターンを形成することで、パルス数をカウントすることが可能となり、スケールの移動検出範囲を広げることが容易にできる。   Further, in the optical encoder disclosed in Patent Document 5 described above, it is possible to count the number of pulses by forming not only a triangular pattern but also a quadrangular digital pattern on the scale, thereby expanding the movement detection range of the scale. Can be easily done.

しかし、この特許文献5の光学式エンコーダについても、スケールに2パターンを設けることにより、スケール面積が増大するので、光学特性の保持が難しい。つまり、スケールに入射する光が、平行光かつ発光密度が均一でなければ、受光部から得られる受光信号の三角波とデジタル波形の同期を取ることが困難となる。   However, the optical encoder of Patent Document 5 also has difficulty in maintaining optical characteristics because the scale area is increased by providing two patterns on the scale. In other words, unless the light incident on the scale is parallel light and the light emission density is not uniform, it is difficult to synchronize the triangular wave of the light reception signal obtained from the light receiving unit and the digital waveform.

特開平11−101614号公報JP 11-101614 A 特開2007−248359号公報JP 2007-248359 A 特開昭61−138111号公報JP-A-61-138111 特開昭61−292016号公報JP-A-61-292016 特開2001−153685号公報Japanese Patent Laid-Open No. 2001-153585

そこで、この発明の課題は、光学部品の光学ばらつきの影響を回避しつつ受光素子からリニアに変動する非対称三角形波を得ることができ、1つの受光信号で移動体の移動方向を高精度に検出でき、移動体の絶対位置の検出が可能になる光学式エンコーダを提供することにある。   Accordingly, an object of the present invention is to obtain an asymmetric triangular wave that fluctuates linearly from a light receiving element while avoiding the influence of optical variations of optical components, and to detect the moving direction of a moving body with a single light receiving signal with high accuracy. An optical encoder capable of detecting the absolute position of a movable body is provided.

上記課題を解決するため、この発明の光学式エンコーダは、発光部と、
上記発光部からの光が到達し得る領域に配置されている第1の受光素子と、
上記第1の受光素子に対応する位置を通過するときに上記光が上記第1の受光素子に入射する状態にする光オン部および上記第1の受光素子に対応する位置を通過するときに上記光が上記第1の受光素子に入射しない状態にする光オフ部を有すると共に一方向に移動するときに上記光オン部と光オフ部が上記受光素子に対応する位置を交互に通過する移動体とを備え、
上記移動体の光オフ部の上記一方向の寸法である幅寸法は、上記光オン部の上記一方向の幅寸法の正の整数倍であり、
上記第1の受光素子は、
上記移動体の隣接する1対の光オン部と光オフ部の幅寸法を加算した1ピッチの幅寸法において、複数の段部を有する階段形状であり、各段部の幅寸法が上記光オン部の幅寸法に等しく、かつ、各段部の段差寸法が等しい受光面を有することを特徴としている。
In order to solve the above problems, an optical encoder of the present invention includes a light emitting unit,
A first light receiving element disposed in a region where light from the light emitting unit can reach;
When the light passes through a position corresponding to the first light receiving element, the light is turned on when passing through the position corresponding to the first light receiving element, and when the light passes through a position corresponding to the first light receiving element. A moving body that has a light-off portion that prevents light from entering the first light-receiving element and that alternately passes through the position corresponding to the light-receiving element when the light-on portion and the light-off portion move in one direction. And
The width dimension that is the dimension in one direction of the light-off portion of the moving body is a positive integer multiple of the width dimension in one direction of the light-on portion,
The first light receiving element is:
In the width dimension of one pitch obtained by adding the width dimension of the pair of adjacent light-on and light-off parts of the moving body, the stepped shape has a plurality of steps, and the width of each step is the light-on It has a light receiving surface that is equal to the width dimension of each part and has the same step size in each step part.

この発明の光学式エンコーダによれば、上記第1の受光素子の各段部は、幅寸法が移動体の光オン部の幅寸法に等しいと共に段差寸法が互いに等しくなっており、階段形状の受光面を構成している。これにより、この第1の受光素子が出力する第1の受光信号は、上記移動体の移動に対応してリニアに変動すると共に移動方向の正逆に関して非対称な三角波形となる。この非対称な三角波形の第1の受光信号によって、移動体の移動方向を1信号にて高精度に検出できると共に移動体の絶対位置の検出が可能になる。   According to the optical encoder of the present invention, each step portion of the first light receiving element has a width dimension equal to a width dimension of the light-on portion of the moving body and a step dimension equal to each other. Make up surface. As a result, the first light receiving signal output from the first light receiving element has a triangular waveform that fluctuates linearly corresponding to the movement of the moving body and is asymmetric with respect to forward and reverse of the moving direction. With the first light-receiving signal having the asymmetric triangular waveform, the moving direction of the moving body can be detected with high accuracy with one signal, and the absolute position of the moving body can be detected.

また、この発明によれば、上記第1の受光信号の非対称な三角波形の頂点の片側に対応する範囲において、移動体の各単位当たりの移動量に応じて受光面への照射面積が均等面積だけ増減するので、上記範囲において受光強度の変化率は常に一定であり、強度変化がばらつく懸念もない。   According to the present invention, in the range corresponding to one side of the apex of the asymmetric triangular waveform of the first light receiving signal, the irradiation area on the light receiving surface is uniform according to the amount of movement per unit of the moving body. Therefore, the rate of change in the received light intensity is always constant in the above range, and there is no fear that the intensity change varies.

また、受光素子の受光面を三角形状にしたり、移動体に三角形状の光透過部を形成したりする必要がないので、光学式エンコーダに要求される数μmオーダーの加工精度を確保できる。また、この発明によれば、三角形状の受光面を有する受光素子とは異なり、受光面へ入射する光量の移動方向の勾配(光量分布状態)がばらついて変動した時にも受光量の総量が変動することを回避でき、高精度な非対称三角波の波形をもった受光信号を確保できる。   In addition, since it is not necessary to make the light receiving surface of the light receiving element triangular, or to form a triangular light transmitting portion on the moving body, it is possible to ensure processing accuracy on the order of several μm required for the optical encoder. Further, according to the present invention, unlike a light receiving element having a triangular light receiving surface, the total amount of received light varies even when the gradient (light amount distribution state) of the light amount incident on the light receiving surface varies and varies. Therefore, it is possible to secure a light receiving signal having a highly accurate asymmetric triangular waveform.

また、この発明では、光オン部の幅寸法を光オフ部の幅寸法よりも狭く設定することで、光オフ部への光の回り込みの影響を低減でき、受光信号のばらつき特性が向上する。また、上記光オン部の幅寸法に対する光オフ部の幅寸法の比率を変えることで、上記第1の受光素子が出力する第1の受光信号の非対称三角形の波形を調整することが可能である。   Further, in the present invention, by setting the width dimension of the light-on part to be narrower than the width dimension of the light-off part, it is possible to reduce the influence of light sneaking into the light-off part and improve the variation characteristics of the received light signal. Further, by changing the ratio of the width dimension of the light-off portion with respect to the width dimension of the light-on portion, it is possible to adjust the waveform of the asymmetric triangle of the first light reception signal output from the first light-receiving element. .

また、一実施形態の光学式エンコーダは、上記第1の受光素子が出力する第1の受光信号の信号波形を中心レベルで反転させた信号波形である第2の受光信号を出力するように上記第1の受光素子の受光面を180°回転させた姿勢であると共に上記第1の受光素子の受光面と同形状である受光面を有する第2の受光素子を備える。   Also, the optical encoder of one embodiment outputs the second light receiving signal, which is a signal waveform obtained by inverting the signal waveform of the first light receiving signal output from the first light receiving element at the center level. The light-receiving surface of the first light-receiving element is rotated by 180 °, and a second light-receiving element having a light-receiving surface having the same shape as the light-receiving surface of the first light-receiving element is provided.

この実施形態によれば、上記第1の受光素子が出力する第1の受光信号と上記第2の受光素子が出力する第2の受光信号とが互いに反転しているので、上記第1,第2の受光信号を比較演算することで、SN比の向上を図れる。また、上記第1,第2の受光素子の互い受光面の階段形状の部分を組み合せることで組合せた全体としての受光面の形状を四角形にすることができ、単位幅寸法当たりの受光面の面積をより大きく確保できるので、SN比の向上に繋がる。   According to this embodiment, the first light receiving signal output from the first light receiving element and the second light receiving signal output from the second light receiving element are inverted with each other. By comparing and calculating the two received light signals, the SN ratio can be improved. Further, by combining the stepped portions of the light receiving surfaces of the first and second light receiving elements, the shape of the light receiving surface as a whole can be made a quadrangle, and the light receiving surface per unit width dimension Since a larger area can be secured, this leads to an improvement in the SN ratio.

また、一実施形態の光学式エンコーダは、上記第1の受光素子と第2の受光素子からなる1組の受光素子を、上記移動方向に隣接して複数組備える。   An optical encoder according to an embodiment includes a plurality of sets of light receiving elements each including the first light receiving element and the second light receiving element adjacent to each other in the moving direction.

この実施形態によれば、上記複数組の受光素子を備えたことで、移動体が光オフ部に比べて光オン部の領域が小さい場合、移動体の光オン部の一部が汚れ等により光透過率が悪化した場合等においても、SN比が低下することを回避できる。   According to this embodiment, since the plurality of sets of light receiving elements are provided, when the moving body has a smaller light-on portion area than the light-off portion, a part of the light-on portion of the moving body is soiled or the like. Even when the light transmittance is deteriorated, it is possible to avoid a decrease in the SN ratio.

また、一実施形態の光学式エンコーダは、上記第1の受光素子が出力する第1の受光信号と上記第2の受光素子が出力する第2の受光信号とが入力されると共に上記第1の受光信号と第2の受光信号とを差動演算する差動演算回路を備える。   In the optical encoder according to the embodiment, the first light receiving signal output from the first light receiving element and the second light receiving signal output from the second light receiving element are input and the first light receiving signal is input. A differential arithmetic circuit that differentially calculates the light reception signal and the second light reception signal is provided.

この実施形態によれば、上記第1,第2の2つの受光信号を差動演算することで、SN比が倍にアップするだけではなく、受光信号のバラツキが平均化される。   According to this embodiment, the differential calculation of the first and second light reception signals not only doubles the SN ratio, but also averages the variation in the light reception signals.

また、一実施形態の光学式エンコーダは、上記差動演算回路によって差動演算された信号をAD変換するAD変換回路を備える。   An optical encoder according to an embodiment includes an AD conversion circuit that performs AD conversion on a signal that has been differentially calculated by the differential arithmetic circuit.

この実施形態によれば、上記第1,第2の受光信号は、その非対称三角形の波形の1周期に傾きが変化する箇所が2箇所存在し、上記差動演算された信号波形は1周期に傾きが変化する箇所が2箇所存在する。よって、上記差動演算された信号をAD変換することで、上記第1,第2の受光信号の非対称三角形の波形と同期の取れた上記1周期に1パルスのデジタル出力信号を得ることができる。したがって、例えば、上記デジタル出力信号により周期のカウントを行い、上記第1,第2の受光信号による三角波出力によって周期内の絶対位置を読み取ることが可能となる。これにより、より広範囲において絶対位置の検出が可能となる。   According to this embodiment, the first and second received light signals have two locations where the inclination changes in one cycle of the waveform of the asymmetric triangle, and the differentially calculated signal waveform has one cycle. There are two places where the slope changes. Therefore, by performing A / D conversion on the differentially calculated signal, a digital output signal of one pulse can be obtained in the one period synchronized with the asymmetric triangular waveform of the first and second light receiving signals. . Therefore, for example, the period is counted by the digital output signal, and the absolute position in the period can be read by the triangular wave output by the first and second light receiving signals. Thereby, the absolute position can be detected in a wider range.

また、一実施形態の光学式エンコーダは、上記差動演算回路は、差動演算された信号として2系統の同一の電流信号を出力し、
上記AD変換回路には、上記2系統の電流信号のうちの一方の系統の電流信号が入力され、
さらに、上記2系統の電流信号のうちの一方の系統の電流信号が入力される帰還回路を備える。
Further, in the optical encoder of one embodiment, the differential arithmetic circuit outputs two identical current signals as differentially calculated signals,
The AD converter circuit receives a current signal from one of the two current signals.
Further, a feedback circuit is provided to which a current signal of one of the two current signals is input.

この実施形態によれば、AD変換回路からは、上述した非対称三角波形の第1,第2の受光信号と同期の取れた1周期に1パルスのデジタル出力信号が得られる。また、上記帰還回路からは、基準電圧に対して安定した非対称三角波形の信号が得られる。また、上記AD変換回路と帰還回路は、同じ差動演算回路からの同一の電流信号から上記デジタル出力信号と非対称三角波形の信号を出力する。よって、上記デジタル出力信号と非対称三角波形の信号の同期が取れるだけでなく、信号間のばらつきも低減される。   According to this embodiment, a digital output signal of one pulse is obtained from the AD conversion circuit in one cycle synchronized with the first and second light receiving signals having the above-described asymmetric triangular waveform. In addition, a signal having an asymmetric triangular waveform that is stable with respect to the reference voltage is obtained from the feedback circuit. The AD conversion circuit and the feedback circuit output the digital output signal and the asymmetric triangular waveform signal from the same current signal from the same differential operation circuit. Therefore, not only the digital output signal and the asymmetric triangular waveform signal can be synchronized, but also the variation between the signals can be reduced.

また、一実施形態の電子機器は、上記光学式エンコーダを備えたことで、光学部品の特性ばらつきの影響を避けながら、リニアに変動する非対称三角形波が得られ、分解能が向上するだけでなく、光学設計が容易になる。よって、より小型のカメラのレンズフォーカスなど、モバイル機器(電子機器)に活用することが可能となる。さらに、上記差動演算回路を備えることによってSN比の向上が図れ、上記AD変換回路を備えることによって上記非対象三角波に同期の取れたデジタル出力信号による広範囲な位置検出が可能となる。また、上記差動演算回路が2系統の同一の電流信号を出力することで信号間のばらつきも低減できる。ここで示す、電子機器とは通常光学式エンコーダが用いられるインクジェットプリンタ、複写機等FA機器の他、上記カメラ機器。又民生及び、産業用ロボット機器等、移動量検知を必要とする全ての機器を示す。   In addition, the electronic apparatus according to the embodiment includes the optical encoder, so that an asymmetric triangular wave that linearly varies while avoiding the influence of variation in characteristics of optical components is obtained, and not only the resolution is improved, Optical design becomes easy. Therefore, it can be used for mobile devices (electronic devices) such as lens focus of smaller cameras. Furthermore, the SN ratio can be improved by providing the differential arithmetic circuit, and a wide range of positions can be detected by the digital output signal synchronized with the non-target triangular wave by providing the AD conversion circuit. In addition, since the differential arithmetic circuit outputs two identical current signals, the variation between the signals can be reduced. The electronic device shown here is the above camera device in addition to the FA device such as an ink jet printer and a copying machine in which an optical encoder is usually used. It also shows all devices that require movement detection, such as consumer and industrial robot devices.

この発明の光学式エンコーダによれば、第1の受光素子の受光面が複数の段部を有する階段形状であり、各段部は幅寸法が移動体の光オン部の幅寸法に等しいと共に段差寸法が互いに等しいので、第1の受光素子が出力する第1の受光信号が移動体の移動に対応してリニアに変動すると共に移動方向の正逆に関して非対称な三角波形となるから、移動体の移動方向を1信号にて高精度に検出できると共に移動体の絶対位置の検出が可能になる。また、受光面が三角形状である場合と異なり、加工精度の確保が容易であると共に、受光面への入射光が移動方向にばらついた場合にも受光量の総量が変動することを回避でき、高精度な移動検出が可能になる。   According to the optical encoder of the present invention, the light receiving surface of the first light receiving element has a stepped shape having a plurality of stepped portions, and each stepped portion has a width dimension equal to the width dimension of the light-on portion of the moving body and a step. Since the dimensions are equal to each other, the first light receiving signal output from the first light receiving element varies linearly in accordance with the movement of the moving body and becomes an asymmetric triangular waveform with respect to the forward and reverse movement directions. The moving direction can be detected with high accuracy with one signal and the absolute position of the moving body can be detected. In addition, unlike the case where the light receiving surface has a triangular shape, it is easy to ensure processing accuracy, and even when the incident light on the light receiving surface varies in the moving direction, it can be avoided that the total amount of light received varies. High-precision movement detection becomes possible.

この発明の光学式エンコーダの第1実施形態の受光素子の配置と受光信号波形を示す図である。It is a figure which shows arrangement | positioning and the light-receiving signal waveform of the light receiving element of 1st Embodiment of the optical encoder of this invention. 上記第1実施形態における受光動作を説明するための図である。It is a figure for demonstrating the light reception operation | movement in the said 1st Embodiment. 上記第1実施形態の比較例の受光素子の配置と受光信号波形を示す図である。It is a figure which shows arrangement | positioning and the light reception signal waveform of the light receiving element of the comparative example of the said 1st Embodiment. この発明の光学式エンコーダの第2実施形態の受光素子の配置と受光信号波形を示す図である。It is a figure which shows arrangement | positioning and the light-receiving signal waveform of the light receiving element of 2nd Embodiment of the optical encoder of this invention. この発明の光学式エンコーダの第3実施形態の受光素子の配置を示す図である。It is a figure which shows arrangement | positioning of the light receiving element of 3rd Embodiment of the optical encoder of this invention. この発明の光学式エンコーダの第4実施形態の受光回路を示す図である。It is a figure which shows the light receiving circuit of 4th Embodiment of the optical encoder of this invention. 上記第4実施形態の受光回路の差動増幅器(差動演算回路)43の回路の一例を示す図である。It is a figure which shows an example of the circuit of the differential amplifier (differential arithmetic circuit) 43 of the light-receiving circuit of the said 4th Embodiment. 上記第4実施形態の受光回路における各部の信号波形のシミュレーション結果を示す波形図である。It is a wave form diagram which shows the simulation result of the signal waveform of each part in the light receiving circuit of the said 4th Embodiment. 上記第1実施形態の受光面に受光像Z1が照射されている様子を示す図である。It is a figure which shows a mode that the light reception image Z1 is irradiated to the light-receiving surface of the said 1st Embodiment. 上記第1実施形態の受光面に受光像Z2が照射されている様子を示す図である。It is a figure which shows a mode that the light reception image Z2 is irradiated to the light-receiving surface of the said 1st Embodiment. 上記第1実施形態の比較例の受光面に受光像Z1が照射されている様子を示す図である。It is a figure which shows a mode that the light reception image Z1 is irradiated to the light-receiving surface of the comparative example of the said 1st Embodiment. 上記第1実施形態の比較例の受光面に受光像Z2が照射されている様子を示す図である。It is a figure which shows a mode that the light reception image Z2 is irradiated to the light-receiving surface of the comparative example of the said 1st Embodiment.

以下、この発明を図示の実施の形態により詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.

(第1の実施の形態)
この発明の光学式エンコーダの第1実施形態は、図1に示すように、移動体としてのスケール1と、上記スケール1に光を照射する発光部2と、この発光部2からスケール1を経由して光を受光する第1の受光素子3を有する。上記発光部2は、一例として発光ダイオード等で構成され、一例として、スケール1の裏側(図1の紙面の奥側)に上記スケール1に対向するように配置される。
(First embodiment)
As shown in FIG. 1, the first embodiment of the optical encoder of the present invention includes a scale 1 as a moving body, a light emitting unit 2 that irradiates light to the scale 1, and the light emitting unit 2 via the scale 1. Thus, the first light receiving element 3 that receives light is provided. The light emitting unit 2 is configured by a light emitting diode or the like as an example, and as an example, is disposed on the back side of the scale 1 (back side of the paper surface of FIG. 1) so as to face the scale 1.

一方、第1の受光素子3は、一例としてフォトダイオード等で構成され、発光部2から出射されてスケール1を通過した光が受光面4に入射するように、受光面4がスケール1に対向するように配置されている。すなわち、この受光面4が、図1に描かれているスケール1の対向面に対向するように配置される。   On the other hand, the first light receiving element 3 is configured by a photodiode or the like as an example, and the light receiving surface 4 faces the scale 1 so that light emitted from the light emitting unit 2 and passed through the scale 1 enters the light receiving surface 4. Are arranged to be. That is, the light receiving surface 4 is arranged so as to face the facing surface of the scale 1 depicted in FIG.

また、上記スケール1は、発光部2からの光を透過する光オン部5と、発光部2からの光を透過しない光オフ部6とを有し、この光オン部5と光オフ部6とが移動方向Xに向かって交互に配置されている。また、この実施形態では、上記光オフ部の上記移動方向Xの寸法である幅寸法は、この実施形態では、上記光オン部6の上記移動方向Xの寸法である幅寸法Lの3倍(3L)である。   The scale 1 includes a light-on unit 5 that transmits light from the light-emitting unit 2 and a light-off unit 6 that does not transmit light from the light-emitting unit 2. The light-on unit 5 and the light-off unit 6 Are alternately arranged in the moving direction X. In this embodiment, the width dimension that is the dimension in the movement direction X of the light-off part is three times the width dimension L that is the dimension in the movement direction X of the light-on part 6 in this embodiment ( 3L).

また、上記第1の受光素子3の受光面4は、上記移動方向Xの寸法が、光オン部5の幅寸法と光オフ部6の幅寸法との和(L+3L)つまりスケール1の1ピッチPに等しい。すなわち、第1の受光素子3の幅寸法は、上記光オン部5の幅寸法Lの4倍である。また、上記第1の受光素子3の受光面4は、4つの段部4A,4B,4C,4Dを有する階段形状である。また、各段部4A〜4Dの幅寸法は上記光オン部5の幅寸法Lに等しい。また、各段部4A〜4Dの段差寸法dは等しい。なお、上記スケール1の光オン部5の上記移動方向Xと直交する方向の長さは、上記第1の受光素子3の段差寸法dの4倍よりも長い。   The light receiving surface 4 of the first light receiving element 3 has a dimension in the movement direction X that is the sum of the width dimension of the light-on part 5 and the width dimension of the light-off part 6 (L + 3L), that is, one pitch of the scale 1. Equal to P. That is, the width dimension of the first light receiving element 3 is four times the width dimension L of the light-on portion 5. The light receiving surface 4 of the first light receiving element 3 has a stepped shape having four step portions 4A, 4B, 4C, 4D. Moreover, the width dimension of each step part 4A-4D is equal to the width dimension L of the said light ON part 5. FIG. Moreover, the step dimension d of each step part 4A-4D is equal. Note that the length of the light-on portion 5 of the scale 1 in the direction orthogonal to the moving direction X is longer than four times the step size d of the first light receiving element 3.

上記構成の光学式エンコーダにおいて、上記スケール1が移動方向Xに移動して、上記発光部2から出射されて上記スケール1の光オン部5を透過した光が受光素子3の受光面4の段部4A,4B,4C,4Dに順に入射する。これにより、上記受光素子3は、受光面4に入射する光量に応じて受光信号A+を出力する。この受光信号A+の信号波形は、図1の下欄に示すように、移動方向の正逆に関して非対称の三角形波である。スケール1が上記移動方向に1ピッチだけ移動することによって、受光信号A+の1周期Tの非対称三角形波が得られる。   In the optical encoder configured as described above, the scale 1 moves in the moving direction X, and the light emitted from the light emitting unit 2 and transmitted through the light-on unit 5 of the scale 1 is provided on the light receiving surface 4 of the light receiving element 3. It injects into part 4A, 4B, 4C, 4D in order. As a result, the light receiving element 3 outputs a light receiving signal A + according to the amount of light incident on the light receiving surface 4. The signal waveform of the light reception signal A + is a triangular wave that is asymmetric with respect to forward and reverse movement directions, as shown in the lower column of FIG. By moving the scale 1 by one pitch in the moving direction, an asymmetric triangular wave of one period T of the received light signal A + is obtained.

次に、図2を参照して、上記受光素子3から上記非対称三角形波の受光信号A+が得られる過程の一部を説明する。   Next, with reference to FIG. 2, a part of the process in which the light receiving signal A + of the asymmetric triangular wave is obtained from the light receiving element 3 will be described.

先ず、スケール1の隣接する光オン部5と光オフ部6との境界C1が、受光面4の1段目の段部4Aと2段目の段部4Bとの境界の箇所(0)に対応する位置にあるときに、上記スケール1から受光面4へ光が入射する面積は、1段目の段部4Aの面積(3×S1)となる。このとき、受光面4へ光が入射する面積は最小であり、図1の下欄に示す受光信号A+の非対称三角形波の下限値Q0に対応している。   First, the boundary C1 between the light-on part 5 and the light-off part 6 adjacent to each other in the scale 1 is located at the boundary (0) between the first step part 4A and the second step part 4B of the light receiving surface 4. When in the corresponding position, the area where light enters the light receiving surface 4 from the scale 1 is the area (3 × S1) of the first step 4A. At this time, the area where the light is incident on the light receiving surface 4 is the smallest, and corresponds to the lower limit value Q0 of the asymmetric triangular wave of the light receiving signal A + shown in the lower column of FIG.

次に、上記境界C1が、移動方向Xに(1/3)L1だけ移動して、上記境界の箇所(0)に対応する位置から受光面4の2段目の段部4Bの箇所(1)に対応する位置に達すると、受光面4の1段目の段部4Aの入射面積が面積S1だけ減少する一方、2段目の段部4Bの入射面積が面積S2=2×S1だけ増加する。よって、受光面4への光の入射面積は、1段目の段部4Aの面積の3分の1の面積S1だけ増加する。この面積S1は、段部4Aの幅寸法L×(1/3)×段差寸法dである。このとき、図1の下欄に示す受光信号A+は、非対称三角形波の値Q1に対応している。なお、図2に示す箇所(1)と箇所(2)は、2段目の段部4Bの幅寸法Lを3等分する位置としている。   Next, the boundary C1 moves in the moving direction X by (1/3) L1, and the position (1 of the second step 4B of the light receiving surface 4 from the position corresponding to the position (0) of the boundary (1). ), The incident area of the first step 4A of the light receiving surface 4 decreases by the area S1, while the incident area of the second step 4B increases by the area S2 = 2 × S1. To do. Therefore, the light incident area on the light receiving surface 4 is increased by an area S1 that is one third of the area of the first step 4A. The area S1 is the width dimension L × (1/3) × the step dimension d of the stepped portion 4A. At this time, the received light signal A + shown in the lower column of FIG. 1 corresponds to the value Q1 of the asymmetric triangular wave. Note that the locations (1) and (2) shown in FIG. 2 are positions where the width dimension L of the second step 4B is equally divided into three.

次に、スケール1の隣接する光オン部5と光オフ部6との境界C1が、受光面4の2段目の段部4Bの箇所(1)に対応する位置から、上記移動方向Xに移動距離(1/3)Lだけ移動して、上記境界C1が段部4Bの箇所(2)に対応する位置に達すると、受光面4の1段目の段部4Aの入射面積がさらに面積S1だけ減少する一方、2段目の段部4Bの入射面積がさらに面積S2だけ増加する。これにより、受光面4の入射面積が領域S1の分だけ増加する。このとき、図1の下欄に示す受光信号A+は、非対称三角形波の値Q2に対応している。   Next, the boundary C <b> 1 between the adjacent light-on part 5 and light-off part 6 of the scale 1 is moved in the moving direction X from the position corresponding to the position (1) of the second step part 4 </ b> B of the light receiving surface 4. When the boundary C1 moves by a moving distance (1/3) L and reaches the position corresponding to the position (2) of the step 4B, the incident area of the first step 4A of the light receiving surface 4 is further increased. While decreasing by S1, the incident area of the second step 4B further increases by area S2. As a result, the incident area of the light receiving surface 4 is increased by the area S1. At this time, the light reception signal A + shown in the lower column of FIG. 1 corresponds to the value Q2 of the asymmetric triangular wave.

次に、上記境界C1が、上記2段目の段部4Bの箇所(2)に対応する位置から3段目の段部4Cの箇所(3)に対応する位置に移動したとする。なお、上記箇所(3)と箇所(4)は、段部4Cの幅寸法Lを3等分する位置としている。よって、上記移動距離は、(1/3)L+(1/3)L=(2/3)Lである。この(2/3)Lの移動によって、上記1段目の段部4Aの面積S1と2段目の段部4Bの面積S2の分だけ入射面積が減少すると同時に、2段目の段部4Bの面積S2と3段目の段部4Cの面積S3の分だけ入射面積が増加する。よって、上記(2/3)Lの移動によって、受光面4の全体としては、光の入射面積は、(S3−S1)=2S1だけ増加する。このとき、図1の下欄に示す受光信号A+は、非対称三角形波の値Q3に対応している。   Next, it is assumed that the boundary C1 has moved from a position corresponding to the position (2) of the second step 4B to a position corresponding to the position (3) of the third step 4C. In addition, the said location (3) and location (4) are made into the position which divides the width dimension L of the step part 4C into 3 equal parts. Therefore, the moving distance is (1/3) L + (1/3) L = (2/3) L. This (2/3) L movement reduces the incident area by the area S1 of the first step 4A and the area S2 of the second step 4B, and at the same time, the second step 4B. The incident area increases by the area S2 and the area S3 of the third step 4C. Therefore, by the movement of (2/3) L, the light incident area of the entire light receiving surface 4 is increased by (S3−S1) = 2S1. At this time, the light reception signal A + shown in the lower column of FIG. 1 corresponds to the value Q3 of the asymmetric triangular wave.

次に、上記境界C1が、上記2段目の段部4Bの箇所(3)に対応する位置から3段目の段部4Cの箇所(4)に対応する位置に(1/3)Lだけ移動したとする。この(1/3)Lの移動によって、上記2段目の段部4Bは入射面積が面積S2だけ減少すると共に上記3段目の段部4Cは入射面積が面積S3だけ増加する。よって、上記(1/3)Lの移動によって、受光面4の全体としては、光の入射面積は、(S3−S2)=S1だけ増加する。このとき、図1の下欄に示す受光信号A+は、非対称三角形波の値Q4に対応している。   Next, the boundary C1 is moved from the position corresponding to the position (3) of the second step 4B to the position corresponding to the position (4) of the third step 4C by (1/3) L. Suppose you move. By the movement of (1/3) L, the incident area of the second step 4B is reduced by the area S2, and the incident area of the third step 4C is increased by the area S3. Therefore, by the movement of (1/3) L, the light incident area of the entire light receiving surface 4 increases by (S3−S2) = S1. At this time, the light reception signal A + shown in the lower column of FIG. 1 corresponds to the value Q4 of the asymmetric triangular wave.

次に、上記境界C1が、3段目の段部4Cの箇所(4)に対応する位置から4段目の段部4Dの端の箇所(5)に対応する位置まで(4/3)Lだけ移動したとする。この(4/3)Lの移動によって、受光面4の入射面積は、4段目の段部4Dの面積3×S4となる。よって、受光面4の入射面積は、この(4/3)Lの移動の前の(S2+2×S3)から(3×S4)へ4×S1だけ増加する。このとき、図1の下欄に示す受光信号A+は、非対称三角形波の上限値Q5に対応している。また、上述の下限値Q0から上限値Q5までの三角形波の傾斜は一定である。   Next, the boundary C1 extends from a position corresponding to the position (4) of the third step 4C to a position corresponding to the end (5) of the fourth step 4D (4/3) L. Just move. By this (4/3) L movement, the incident area of the light receiving surface 4 becomes the area 3 × S4 of the fourth step 4D. Therefore, the incident area of the light receiving surface 4 increases by 4 × S1 from (S2 + 2 × S3) before the (4/3) L movement to (3 × S4). At this time, the light reception signal A + shown in the lower column of FIG. 1 corresponds to the upper limit value Q5 of the asymmetric triangular wave. Further, the inclination of the triangular wave from the lower limit value Q0 to the upper limit value Q5 is constant.

次に、上記境界C1が、さらに、移動方向XにLだけ移動することで、受光面4の1段目の段部4Aだけに光が入射する。これにより、受光面4の光が入射する面積が、(12×S1−3×S1)=9×S1だけ減少して、受光面4への入射面積が段部4Aの面積つまり3×S1になる。これにより、図1の下欄に示す受光信号A+の非対称三角形波は、下限値Q0に戻る。   Next, the boundary C <b> 1 further moves by L in the movement direction X, so that light is incident only on the first step 4 </ b> A of the light receiving surface 4. As a result, the light incident area on the light receiving surface 4 is reduced by (12 × S1−3 × S1) = 9 × S1, and the incident area on the light receiving surface 4 becomes the area of the stepped portion 4A, that is, 3 × S1. Become. As a result, the asymmetric triangular wave of the light reception signal A + shown in the lower column of FIG. 1 returns to the lower limit value Q0.

このように、非対称三角形波である受光信号A+の1周期Tが、スケール1が1ピッチP=4×L1だけ移動することに対応している。そして、受光信号A+の下限値Q0から上限値Q5に対応する領域では、スケール1が移動方向Xに(1/3)Lだけ移動する毎に、受光素子3の受光面4の入射面積が、面積S1分だけ増加する。つまり、上記スケール1が移動方向Xに光オン部5の幅寸法Lだけ移動する毎に、受光面4への入射光量が1段目の段部4Aの受光面積分だけ増加する。したがって、スケール1の上記境界C1が、受光面4の1段目の段部4Aと2段目の段部4Bとの境界(0)に対応する位置から、4段目の段部4Dの端の箇所(5)に対応する位置まで移動方向Xに1ピッチPの4分の3だけ移動することによって、受光面4に光が入射する面積が1段目の段部4Aの受光面積(3×S1)から4段目の段部4Dの受光面積(12×S1)へリニアに増大する。よって、スケール1の境界C1が上記箇所(0)に対応する位置から箇所(5)に対応する位置まで(3/4)Pだけ移動することによって、受光面4の受光量がリニアに増大し、図1の下欄に示す受光信号A+は、下限値Q0から上限値Q5まで一定の傾斜で増大する。また、スケール1の境界C1が箇所(5)に対応する位置からさらに、移動方向XにLだけ移動することで、受光面4の受光量がリニアに減少し、上記受光信号A+は、上限値Q5から下限値Q0まで一定の傾斜で減少する。   Thus, one period T of the light receiving signal A + that is an asymmetric triangular wave corresponds to the scale 1 moving by one pitch P = 4 × L1. In the region corresponding to the lower limit value Q0 to the upper limit value Q5 of the light receiving signal A +, every time the scale 1 moves by (1/3) L in the moving direction X, the incident area of the light receiving surface 4 of the light receiving element 3 is It increases by the area S1. That is, every time the scale 1 moves in the movement direction X by the width dimension L of the light-on portion 5, the amount of incident light on the light receiving surface 4 increases by the light receiving area of the first step portion 4A. Accordingly, the boundary C1 of the scale 1 from the position corresponding to the boundary (0) between the first step 4A and the second step 4B of the light receiving surface 4 is the end of the fourth step 4D. Is moved by three quarters of one pitch P in the movement direction X to the position corresponding to the point (5), so that the light incident area on the light receiving surface 4 is the light receiving area (3 of the first step 4A). It increases linearly from (S1) to the light receiving area (12 × S1) of the fourth step 4D. Therefore, when the boundary C1 of the scale 1 moves from the position corresponding to the location (0) to the location corresponding to the location (5) by (3/4) P, the amount of light received on the light receiving surface 4 increases linearly. The light receiving signal A + shown in the lower column of FIG. 1 increases with a constant slope from the lower limit value Q0 to the upper limit value Q5. Further, when the boundary C1 of the scale 1 further moves from the position corresponding to the location (5) by L in the moving direction X, the amount of light received by the light receiving surface 4 decreases linearly, and the light receiving signal A + is the upper limit value. It decreases with a constant slope from Q5 to the lower limit Q0.

こうして、上記スケール1が移動方向Xへ移動することによって、上記受光素子3から図1の下欄に示す非対称三角形波形の受光信号A+が得られる。また、上記スケール1が移動方向Xとは逆の方向へ移動することによって、図1の下欄に破線で示す非対称三角形波形の受光信号A−が得られる。この受光信号A−のQ0からQ5までの増加の傾きが受光信号A+のQ5からQ0までの減少の傾きに相当し、受光信号A−のQ5からQ0までの減少の傾きが受光信号A+のQ0からQ5までの増加の傾きに相当している。   Thus, when the scale 1 moves in the movement direction X, the light receiving signal A + having the asymmetric triangular waveform shown in the lower column of FIG. Further, when the scale 1 moves in the direction opposite to the moving direction X, a light receiving signal A− having an asymmetric triangular waveform indicated by a broken line in the lower column of FIG. 1 is obtained. The slope of the increase in the light reception signal A− from Q0 to Q5 corresponds to the slope of the decrease in the light reception signal A + from Q5 to Q0, and the slope of the decrease in the light reception signal A− from Q5 to Q0 is Q0 of the light reception signal A +. This corresponds to an increasing slope from 1 to Q5.

ここで、図3を参照して、上記実施形態の比較例(特開昭61‐292016号公報に対応)を説明する。この比較例では、スケール101が有する光オン部102の移動方向の幅寸法Mと光オフ部103の移動方向の幅寸法Mとが等しくなっている。また、このスケール101の1ピッチP=2Mに対して、4つの受光素子105,106,107,108が配置され、各受光素子105〜108の幅寸法は、(1/2)Mである。また、スケール101が移動方向Xに移動すると、受光素子105が出力する受光信号A+は、台形波となる。また、受光素子106が出力する受光信号B+は、受光信号A+に対して位相が90°遅れた台形波となる。また、受光素子107,108が出力する受光信号A−,B−も位相が順に90°ずつ遅れた台形波となる。そして、上記受光信号A+と受光信号B+を加算することにより、二等辺三角形波である信号((A+)+(B+))が得られる。この比較例は、インクジェットプリンタ等に多く使われているが、上述のような二等辺三角形波の信号では、1周期内の絶対位置が検出できないので、カメラフォーカス等の微小動作範囲での使用や小型化には不向きである。   Here, with reference to FIG. 3, a comparative example of the above embodiment (corresponding to Japanese Patent Laid-Open No. 61-292016) will be described. In this comparative example, the width dimension M in the movement direction of the light-on part 102 of the scale 101 is equal to the width dimension M in the movement direction of the light-off part 103. Further, four light receiving elements 105, 106, 107, and 108 are arranged with respect to 1 pitch P = 2M of the scale 101, and the width dimension of each of the light receiving elements 105 to 108 is (1/2) M. When the scale 101 moves in the movement direction X, the light receiving signal A + output from the light receiving element 105 becomes a trapezoidal wave. The light receiving signal B + output from the light receiving element 106 is a trapezoidal wave whose phase is delayed by 90 ° with respect to the light receiving signal A +. Further, the light receiving signals A− and B− output from the light receiving elements 107 and 108 are also trapezoidal waves whose phases are sequentially delayed by 90 °. Then, by adding the light reception signal A + and the light reception signal B +, a signal ((A +) + (B +)) that is an isosceles triangular wave is obtained. This comparative example is often used in an ink jet printer or the like. However, since the absolute position within one cycle cannot be detected with an isosceles triangular wave signal as described above, it can be used in a minute operating range such as a camera focus. Not suitable for downsizing.

これに対して、本実施形態によれば、図1に示すような非対称三角形波形の受光信号A+が得られるので、1周期内の絶対位置が検出可能になり、微小動作や小型化に最適と言える。   On the other hand, according to the present embodiment, since the light receiving signal A + having an asymmetric triangular waveform as shown in FIG. 1 is obtained, the absolute position within one cycle can be detected, which is optimal for micro operation and miniaturization. I can say that.

ここで、図9A,図9Bを参照して、本実施形態において、スケール1の光オン部5から受光素子3の受光面4に照射される受光像がばらついた場合の動作について説明する。まず、図9Bに例示される受光像Z2は、中央の領域U1で光強度が高くW1であり、中央の領域U1の両脇の領域U2a,U2bでは中央の領域U1よりも光強度が低くW2a,W2bである。   Here, with reference to FIG. 9A and FIG. 9B, the operation when the received light image irradiated from the light-on portion 5 of the scale 1 to the light receiving surface 4 of the light receiving element 3 varies in the present embodiment will be described. First, the received light image Z2 illustrated in FIG. 9B has a high light intensity W1 in the central region U1, and the light intensity is lower in the regions U2a and U2b on both sides of the central region U1 than in the central region U1. , W2b.

次に、図9Aに例示される受光像Z1は、中央の領域U1で光強度が高くW1であり、中央の領域U1の両脇の領域U2a,U2bでは光強度がW3a,W3bである。この光強度W3a,W3bは受光像Z2の領域U2の光強度U2よりも低い。さらに、受光像Z1は、領域U2a,U2bの両脇の領域U3a,U3bを有し、この領域U3a,U3bでは、上記領域U2a,U2bの光強度W3a,W3bよりも低い光強度W4a,W4bになっている。すなわち、図9Bの受光像Z2の光強度W2の領域U2a,U2bが拡散して、図9Aの受光像Z1の領域U2a,U2bとU3a,U3bになっている。なお、上記受光像Z1とZ2の様な光量分布のばらつきは、スケール1の移動時に光オン部5等に起因して光が屈折することによって発生する。   Next, the light reception image Z1 illustrated in FIG. 9A has a high light intensity W1 in the central region U1, and the light intensities W3a and W3b in the regions U2a and U2b on both sides of the central region U1. The light intensities W3a and W3b are lower than the light intensity U2 in the region U2 of the received light image Z2. Further, the received light image Z1 has regions U3a and U3b on both sides of the regions U2a and U2b. In these regions U3a and U3b, the light intensities W4a and W4b are lower than the light intensities W3a and W3b of the regions U2a and U2b. It has become. That is, the regions U2a and U2b of the light intensity W2 of the light reception image Z2 in FIG. 9B are diffused into regions U2a and U2b and U3a and U3b of the light reception image Z1 in FIG. 9A. The variation in the light amount distribution as in the light reception images Z1 and Z2 is caused by light being refracted due to the light-on portion 5 or the like when the scale 1 is moved.

ここで、この実施形態の受光素子3の受光面4によれば、図9Aに示す受光像Z1による受光総量は、図9Bに示す受光像Z2による受光総量と等しくなることが分かる。   Here, according to the light receiving surface 4 of the light receiving element 3 of this embodiment, it can be seen that the total amount of light received by the received light image Z1 shown in FIG. 9A is equal to the total amount of light received by the received light image Z2 shown in FIG. 9B.

一方、図10A,図10Bに例示される比較例では、受光面204が三角形になっている。ここで、前述と同様に、図10Bの受光像Z2の光強度W2の領域U2a,U2bが拡散して、図10Aの受光像Z1の領域U2a,U2bとU3a,U3bになっている。この場合、この三角形の受光面204では、図10Bの受光像Z2から図10Aの受光像Z1へ拡散した場合、図10Aにおいて中央領域U1の左側の領域U2a,U3aによる受光総量は、図10Bにおいて中央領域U1の左側の領域U2aによる受光総量よりも減少する。一方、図10Aにおいて中央領域U1の右側の領域U2b,U3bによる受光総量は、図10Bにおいて中央領域U1の右側の領域U2bによる受光総量よりも増加する。ここで、図10Bの右側の領域U2bの光量と図10Bの左側の領域U2aの光量とが同じであると共に図10Aの右側領域U2b,U3bでの拡散と左側領域U2a,U3aでの拡散とが同様である場合を除いて、上記受光総量の減少量と上記受光総量の増加量とは異なる。したがって、この比較例の受光面204によれば、上記場合を除いて、図10Aに示す受光像Z1による受光総量は、図10Bに示す受光像Z2による受光総量と異なってくる。   On the other hand, in the comparative example illustrated in FIGS. 10A and 10B, the light receiving surface 204 has a triangular shape. Here, similarly to the above, the regions U2a and U2b of the light intensity W2 of the light reception image Z2 in FIG. 10B are diffused into regions U2a and U2b and U3a and U3b of the light reception image Z1 in FIG. 10A. In this case, when the triangular light receiving surface 204 diffuses from the light receiving image Z2 in FIG. 10B to the light receiving image Z1 in FIG. 10A, the total amount of light received by the regions U2a and U3a on the left side of the central region U1 in FIG. This is less than the total amount of light received by the region U2a on the left side of the central region U1. On the other hand, in FIG. 10A, the total amount of light received by the regions U2b and U3b on the right side of the central region U1 is larger than the total amount of light received by the region U2b on the right side of the central region U1 in FIG. Here, the amount of light in the right region U2b in FIG. 10B is the same as the amount of light in the left region U2a in FIG. 10B, and the diffusion in the right regions U2b and U3b and the diffusion in the left regions U2a and U3a in FIG. Except for the same case, the amount of decrease in the total amount of received light is different from the amount of increase in the total amount of received light. Therefore, according to the light receiving surface 204 of this comparative example, except for the above case, the total amount of light received by the received light image Z1 shown in FIG. 10A is different from the total amount of light received by the received light image Z2 shown in FIG. 10B.

これに対して、本実施形態の受光素子3の受光面4によれば、図9Bの中央領域U1の右側の領域U2bによる受光総量は、図9Aの中央領域U1の右側の領域U2b,U3bによる受光総量に等しくなり、かつ、図9Bの中央領域U1の左側の領域U2aによる受光総量は、図9Aの中央領域U1の左側の領域U2a,U3aによる受光総量に等しくなる。よって、本実施形態の受光面4によれば、受光面4への受光像がZ2からZ1へ拡散しても受光総量は変動しないので、光学式エンコーダ特有の光量バラツキの影響を軽減でき、高精度な移動情報が得られる。   On the other hand, according to the light receiving surface 4 of the light receiving element 3 of the present embodiment, the total amount of light received by the region U2b on the right side of the central region U1 in FIG. 9B is based on the regions U2b and U3b on the right side of the central region U1 in FIG. The total received light amount is equal to the total received light amount, and the total received light amount by the region U2a on the left side of the central region U1 in FIG. 9B is equal to the total received light amount by the regions U2a and U3a on the left side of the central region U1 in FIG. Therefore, according to the light receiving surface 4 of the present embodiment, even if the received light image on the light receiving surface 4 is diffused from Z2 to Z1, the total amount of received light does not fluctuate. Accurate movement information can be obtained.

尚、上記実施形態では、移動体であるスケール1の光オフ部6の幅寸法を光オン部5の幅寸法の3倍にしたが、光オフ部6の幅寸法を光オン部5の幅寸法の2倍あるいは4倍以上の整数倍としてもよい。   In the above embodiment, the width of the light-off portion 6 of the scale 1 that is a moving body is three times the width of the light-on portion 5, but the width of the light-off portion 6 is the width of the light-on portion 5. It is good also as an integer multiple of 2 times or 4 times or more of a dimension.

(第2の実施の形態)
次に、図4を参照して、この発明の光学式エンコーダの第2実施形態を説明する。この第2実施形態は、第1の受光素子3に加えて、第2の受光素子23を備えた点だけが、前述の第1実施形態と異なる。よって、この第2実施形態では、前述の第1実施形態と同じ部分には同じ符号を付して、前述の第1実施形態と異なる点を主として説明する。
(Second embodiment)
Next, a second embodiment of the optical encoder according to the present invention will be described with reference to FIG. This second embodiment differs from the first embodiment only in that a second light receiving element 23 is provided in addition to the first light receiving element 3. Therefore, in the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and different points from the first embodiment will be mainly described.

この第2の受光素子23が有する受光面24は、第1の受光素子3の受光面4と同じ形状であり、4つの段部24A,24B,24C,24Dを有する階段形状である。また、この第2の受光素子23の受光面24は、第1の受光素子3の受光面4を180°回転させた姿勢である。また、上記第1の受光素子3の受光面4の段部4A,4B,4C,4Dに第2の受光素子23の受光面24の段部24D,24C,24B,24Aを組合せるように第1,第2の受光素子3,23を配置している。これにより、受光面4と受光面24とが組合せられた受光面は全体としての四角形状になっている。   The light receiving surface 24 of the second light receiving element 23 has the same shape as the light receiving surface 4 of the first light receiving element 3, and has a stepped shape having four step portions 24A, 24B, 24C, and 24D. The light receiving surface 24 of the second light receiving element 23 is in a posture in which the light receiving surface 4 of the first light receiving element 3 is rotated by 180 °. Further, the step portions 4A, 4B, 4C, 4D of the light receiving surface 4 of the first light receiving element 3 are combined with the step portions 24D, 24C, 24B, 24A of the light receiving surface 24 of the second light receiving element 23. First and second light receiving elements 3 and 23 are arranged. Thus, the light receiving surface in which the light receiving surface 4 and the light receiving surface 24 are combined has a rectangular shape as a whole.

上記構成の光学式エンコーダでは、上記スケール1が移動方向Xに移動すると、上記第1の受光素子3は、前述の第1実施形態で述べたように、図1の下欄に示す1周期Tの非対称三角形波の第1の受光信号A+を出力する。一方、上記第2の受光素子23は、図4の下欄に示す1周期Tの非対称三角形波の第2の受光信号A−を出力する。この第2の受光信号A−は、第1の受光信号A+の信号波形を中心レベルで反転させた信号波形である。上記第1の受光信号A+と第2の受光信号A−とが互いに反転しているので、上記第1,第2の受光信号A+,A−を比較演算することで、SN比の向上を図れる。   In the optical encoder having the above-described configuration, when the scale 1 moves in the movement direction X, the first light receiving element 3 has a period T shown in the lower column of FIG. 1 as described in the first embodiment. The first light receiving signal A + of the asymmetric triangular wave is output. On the other hand, the second light receiving element 23 outputs a second light receiving signal A− of an asymmetric triangular wave having one period T shown in the lower column of FIG. The second light receiving signal A− is a signal waveform obtained by inverting the signal waveform of the first light receiving signal A + at the center level. Since the first light receiving signal A + and the second light receiving signal A- are inverted from each other, the S / N ratio can be improved by comparing the first and second light receiving signals A + and A-. .

また、受光面4と24との組合せにより全体としての四角形状の受光面になるので、スケール1の移動時に全体としての受光面への受光量をより多くできて、SN比の向上を図れる。   Further, the combination of the light receiving surfaces 4 and 24 results in a rectangular light receiving surface as a whole. Therefore, when the scale 1 is moved, the amount of light received on the light receiving surface as a whole can be increased, and the SN ratio can be improved.

(第3の実施の形態)
次に、図5を参照して、この発明の光学式エンコーダの第3実施形態を説明する。この第3実施形態は、上記第1の受光素子3と第2の受光素子23との組み合わせた受光素子対31を上記移動方向に隣接して複数対備えた点だけが前述の第2実施形態と異なる。よって、この第3実施形態では、前述の第2実施形態と同じ部分には同じ符号を付して、前述の第2実施形態と異なる点を主として説明する。
(Third embodiment)
Next, a third embodiment of the optical encoder of the present invention will be described with reference to FIG. In the third embodiment, only the point that a plurality of pairs of light receiving elements 31 that are a combination of the first light receiving element 3 and the second light receiving element 23 are provided adjacent to each other in the moving direction is the second embodiment described above. And different. Therefore, in the third embodiment, the same parts as those in the second embodiment are denoted by the same reference numerals, and differences from the second embodiment will be mainly described.

この第3実施形態では、上記複数の受光素子対31を備えたので、複数の第1の受光素子3からの第1の受光信号A+を加算し、複数の第2の受光素子23からの第2の受光信号A−を加算することにより、一部の光オン部5が汚れ等により透過率が悪い状態であっても信号が平均化され、SN比が低下することを回避してSN比を保持できる。   In the third embodiment, since the plurality of light receiving element pairs 31 are provided, the first light receiving signals A + from the plurality of first light receiving elements 3 are added and the second light receiving elements 23 from the plurality of second light receiving elements 23 are added. By adding the two received light signals A−, even if some of the light-on portions 5 are in a state where the transmittance is poor due to dirt or the like, the signals are averaged, and the SN ratio is avoided by reducing the SN ratio. Can be held.

なお、上記移動方向に隣接して配置した複数の第1の受光素子3を一体に形成した1つの受光素子とし、上記移動方向に隣接して配置した複数の第2の受光素子23を一体に形成した1つの受光素子としてもよい。   A plurality of first light receiving elements 3 arranged adjacent to each other in the moving direction are integrally formed as one light receiving element, and a plurality of second light receiving elements 23 arranged adjacent to each other in the moving direction are integrally formed. It is good also as one formed light receiving element.

(第4の実施の形態)
次に、図6を参照して、この発明の光学式エンコーダの第4実施形態を説明する。この第4実施形態は、前述の第2実施形態の光学式エンコーダの第1の受光素子3と第2の受光素子23を備える。
(Fourth embodiment)
Next, a fourth embodiment of the optical encoder of the present invention will be described with reference to FIG. The fourth embodiment includes the first light receiving element 3 and the second light receiving element 23 of the optical encoder of the second embodiment described above.

また、この第4実施形態は、上記第1の受光素子3が出力する第1の受光信号A+を対数圧縮する1段目の増幅器41と、第2の受光素子23が出力する第2の受光信号A−を対数圧縮する1段目の増幅器42を備える。また、この第4実施形態は、上記増幅器41からの増幅信号と増幅器42からの増幅信号とが入力される差動増幅器(差動演算回路)43と、この差動増幅器(差動演算回路)43が出力する2系統の同一の電流信号のうちの一方の系統の電流信号が入力されるAD変換器(AD変換回路)45と、2系統の同一の電流信号のうちの一方の系統の電流信号が入力される帰還回路46を備える。この帰還回路46は、コンパレータ47と抵抗48と基準電圧部49とを有する。   In the fourth embodiment, the first light receiving signal A + output from the first light receiving element 3 is logarithmically compressed, and the second light receiving element 23 outputs the second light receiving element 23. A first stage amplifier 42 for logarithmically compressing the signal A- is provided. The fourth embodiment also includes a differential amplifier (differential arithmetic circuit) 43 to which the amplified signal from the amplifier 41 and the amplified signal from the amplifier 42 are input, and the differential amplifier (differential arithmetic circuit). An AD converter (AD converter circuit) 45 to which a current signal of one of the two systems of the same current signal output from 43 is input, and a current of one of the two systems of the same current signal A feedback circuit 46 to which a signal is input is provided. The feedback circuit 46 includes a comparator 47, a resistor 48, and a reference voltage unit 49.

この第4実施形態では、第1,第2の受光素子3,23からの第1,第2の受光信号A+,A−を増幅器41,42で対数圧縮することで、光量依存性を除去する。また、上記対数圧縮した第1,第2の受光信号A+,A−を差動増幅器(差動演算回路)43で差動演算することで、第1の受光信号A+と第2の受光信号A−との差に対応した差動出力信号が得られる。これにより、SN比が倍になるだけでなく、スケール1と受光素子3,23とが互いに傾いた場合にも、この傾きの影響が相殺されて、SN比を保持できる。   In the fourth embodiment, the first and second light receiving signals A + and A− from the first and second light receiving elements 3 and 23 are logarithmically compressed by the amplifiers 41 and 42, thereby removing the light quantity dependency. . Further, the first and second light receiving signals A + and A− logarithmically compressed are subjected to differential operation by a differential amplifier (differential operation circuit) 43, whereby the first light receiving signal A + and the second light receiving signal A are obtained. A differential output signal corresponding to the difference from − is obtained. As a result, not only the SN ratio is doubled, but also when the scale 1 and the light receiving elements 3 and 23 are inclined with respect to each other, the influence of the inclination is offset and the SN ratio can be maintained.

また、差動増幅器(差動演算回路)43では、1段目の増幅器41,42で対数圧縮された受光信号A+,A−が伸張され、上記差動出力信号としての非対称三角波形の電流信号をAD変換器(AD変換回路)45へ出力する。このAD変換器(AD変換回路)45では、上記非対称三角波形の電流信号が1/0信号に変換され、上記非対称三角形波形の電流信号と同期の取れた1周期Tに1パルスのデジタル出力信号が得られる。したがって、例えば、上記デジタル出力信号により周期のカウントを行い、上記第1,第2の受光信号A+,A−による三角波出力によって1周期内の絶対位置を読み取ることが可能となる。これにより、より広範囲において絶対位置の検出が可能となる。   Further, in the differential amplifier (differential arithmetic circuit) 43, the light reception signals A + and A− logarithmically compressed by the amplifiers 41 and 42 in the first stage are expanded, and an asymmetric triangular waveform current signal is used as the differential output signal. Is output to an AD converter (AD conversion circuit) 45. In this AD converter (AD conversion circuit) 45, the current signal having the asymmetric triangular waveform is converted into a 1/0 signal, and a digital output signal having one pulse in one period T synchronized with the current signal having the asymmetric triangular waveform. Is obtained. Therefore, for example, the period can be counted by the digital output signal, and the absolute position within one period can be read by the triangular wave output by the first and second light receiving signals A + and A−. Thereby, the absolute position can be detected in a wider range.

また、この第4実施形態では、差動増幅器(差動演算回路)43が、2系統の同一の電流信号を出力し、そのうちの一方の系統の電流信号が帰還回路46に入力される。この帰還回路46により、基準電圧部49による基準電圧に対して安定した非対称三角波形のアナログ電圧出力が得られる。これにより、上記AD変換器(AD変換回路)45が出力するデジタル出力信号と上記帰還回路46が出力する非対称三角波形のアナログ電圧出力との同期が取れるだけでなく、上記デジタル出力信号とアナログ電圧出力との間のばらつきも低減される。   In the fourth embodiment, the differential amplifier (differential arithmetic circuit) 43 outputs two systems of the same current signal, and the current signal of one of the systems is input to the feedback circuit 46. By this feedback circuit 46, an analog voltage output having an asymmetric triangular waveform which is stable with respect to the reference voltage by the reference voltage unit 49 is obtained. As a result, the digital output signal output from the AD converter (AD conversion circuit) 45 and the analog voltage output of the asymmetric triangular waveform output from the feedback circuit 46 can be synchronized, and the digital output signal and the analog voltage can be synchronized. Variations between outputs are also reduced.

図7に、上記差動増幅器(差動演算回路)43を構成する回路の一例を示す。この回路例では、差動増幅回路(差動演算回路)81と2つのカレントミラー回路82,83とを備え、上記カレントミラー回路82が出力する電流信号が帰還回路46へ入力され、上記カレントミラー回路83が出力する電流信号がAD変換器(AD変換回路)45へ入力される。この2つのカレントミラー回路82,83が出力する電流信号は電流値が一致していて、同期が取れているだけでなく、第1,第2の受光信号A+,A−のばらつきに対しても同様の変動を示すので、上記デジタル出力信号とアナログ電圧出力との間のばらつきも低減される。   FIG. 7 shows an example of a circuit constituting the differential amplifier (differential arithmetic circuit) 43. In this circuit example, a differential amplifier circuit (differential arithmetic circuit) 81 and two current mirror circuits 82 and 83 are provided, and a current signal output from the current mirror circuit 82 is input to the feedback circuit 46, and the current mirror is output. A current signal output from the circuit 83 is input to an AD converter (AD conversion circuit) 45. The current signals output from the two current mirror circuits 82 and 83 have the same current value and are not only synchronized, but also with respect to variations in the first and second received light signals A + and A−. Since the same variation is exhibited, the variation between the digital output signal and the analog voltage output is also reduced.

次に、図8の波形図に、図6の回路図における各部の信号波形のシミュレーション結果を示す。図8では、横軸は時間(μ秒)であり、縦軸は、各信号の信号値(振幅)を示している。第1の受光信号A+の波形は、前述したように、非対称三角波形であり、第2の受光信号A−の波形は、第1の受光信号A+を中央レベル(0.6μA)で反転させた非対称三角波形になっている。また、上記差動増幅器(差動演算回路)43が出力する差動出力信号は、第1の受光信号A+と第2の受光信号A−との差に対応した三角波形になっている。そして、この三角波形の差動出力信号が入力される帰還回路46が出力する非対称三角波形のアナログ電圧出力Aoutは、第1の受光信号A+と第2の受光信号A−との差に対応した三角波アナログ電圧になっている。   Next, the waveform diagram of FIG. 8 shows the simulation result of the signal waveform of each part in the circuit diagram of FIG. In FIG. 8, the horizontal axis represents time (μ seconds), and the vertical axis represents the signal value (amplitude) of each signal. As described above, the waveform of the first light reception signal A + is an asymmetric triangular waveform, and the waveform of the second light reception signal A− is obtained by inverting the first light reception signal A + at the center level (0.6 μA). Asymmetric triangular waveform. The differential output signal output from the differential amplifier (differential arithmetic circuit) 43 has a triangular waveform corresponding to the difference between the first light receiving signal A + and the second light receiving signal A−. The analog voltage output Aout having an asymmetric triangular waveform output from the feedback circuit 46 to which the differential output signal having the triangular waveform is input corresponds to the difference between the first light receiving signal A + and the second light receiving signal A−. Triangular wave analog voltage.

また、上記AD変換器(AD変換回路)45が出力するデジタル出力信号Doutは、非対称三角波形の第1,第2の受光信号A+,A−と同期の取れた1周期Tに1パルスのパルス波形になっている。   The digital output signal Dout output from the AD converter (AD converter circuit) 45 is a pulse of one pulse in one period T synchronized with the first and second light receiving signals A + and A− having an asymmetric triangular waveform. It has a waveform.

なお、この第4実施形態では、上述の第2実施形態の1対の第1の受光素子3と第2の受光素子23を備える場合を説明したが。上述の第3実施形態の複数対の受光素子対31を備えてもよい。この場合、複数の第1の受光信号A+が加算されて1段目の増幅器41に入力され、複数の第2の受光信号A−が加算されて1段目の増幅器42に入力される。よって、信号が平均化され、SN比の低下を防止できる。   In the fourth embodiment, the case where the pair of the first light receiving element 3 and the second light receiving element 23 of the second embodiment described above is provided has been described. A plurality of pairs of light receiving elements 31 of the third embodiment described above may be provided. In this case, a plurality of first light reception signals A + are added and inputted to the first stage amplifier 41, and a plurality of second light reception signals A− are added and inputted to the first stage amplifier 42. Therefore, the signals are averaged and the SN ratio can be prevented from decreasing.

1 スケール
2 発光部
3,23 受光素子
4,24 受光面
4A〜4D,24A〜24D 段部
5 光オン部
6 光オフ部
23 第2の受光素子
41,42 増幅器
43 差動増幅器(差動演算回路)
45 AD変換器(AD変換回路)
46 帰還回路
81 差動増幅回路
82,83 カレントミラー回路
C1 境界
Z1,Z2 受光像
DESCRIPTION OF SYMBOLS 1 Scale 2 Light-emitting part 3,23 Light-receiving element 4,24 Light-receiving surface 4A-4D, 24A-24D Step part 5 Light-on part 6 Light-off part 23 2nd light-receiving element 41,42 Amplifier 43 Differential amplifier (Differential operation) circuit)
45 AD converter (AD conversion circuit)
46 feedback circuit 81 differential amplifier circuit 82,83 current mirror circuit C1 boundary Z1, Z2 received light image

Claims (7)

発光部と、
上記発光部からの光が到達し得る領域に配置されている第1の受光素子と、
上記第1の受光素子に対応する位置を通過するときに上記光が上記第1の受光素子に入射する状態にする光オン部および上記第1の受光素子に対応する位置を通過するときに上記光が上記第1の受光素子に入射しない状態にする光オフ部を有すると共に一方向に移動するときに上記光オン部と光オフ部が上記第1の受光素子に対応する位置を交互に通過する移動体とを備え、
上記移動体の光オフ部の上記一方向の寸法である幅寸法は、上記光オン部の上記一方向の幅寸法の正の整数倍であり、
上記第1の受光素子は、
上記移動体の隣接する1対の光オン部と光オフ部の幅寸法を加算した1ピッチの幅寸法において、複数の段部を有する階段形状であり、各段部の幅寸法が上記光オン部の幅寸法に等しく、かつ、各段部の段差寸法が等しい受光面を有することを特徴とする光学式エンコーダ。
A light emitting unit;
A first light receiving element disposed in a region where light from the light emitting unit can reach;
When the light passes through a position corresponding to the first light receiving element, the light is turned on when passing through the position corresponding to the first light receiving element, and when the light passes through a position corresponding to the first light receiving element. It has a light-off part that prevents light from entering the first light-receiving element, and the light-on part and the light-off part alternately pass through positions corresponding to the first light-receiving element when moving in one direction. And a moving body
The width dimension that is the dimension in one direction of the light-off portion of the moving body is a positive integer multiple of the width dimension in one direction of the light-on portion,
The first light receiving element is:
In the width dimension of one pitch obtained by adding the width dimension of the pair of adjacent light-on and light-off parts of the moving body, the stepped shape has a plurality of steps, and the width of each step is the light-on An optical encoder having a light receiving surface that is equal to the width dimension of each section and has the same step dimension at each step section.
請求項1に記載の光学式エンコーダにおいて、
上記第1の受光素子が出力する第1の受光信号の信号波形を中心レベルで反転させた信号波形である第2の受光信号を出力するように上記第1の受光素子の受光面を180°回転させた姿勢であると共に上記第1の受光素子の受光面と同形状である受光面を有する第2の受光素子を備えることを特徴とする光学式エンコーダ。
The optical encoder according to claim 1,
The light receiving surface of the first light receiving element is 180 ° so as to output a second light receiving signal which is a signal waveform obtained by inverting the signal waveform of the first light receiving signal output from the first light receiving element at the center level. An optical encoder comprising a second light receiving element having a light receiving surface that is rotated and has the same shape as the light receiving surface of the first light receiving element.
請求項2に記載の光学式エンコーダにおいて、
上記第1の受光素子と第2の受光素子からなる1組の受光素子を、上記移動方向に隣接して複数組備えることを特徴とする光学式エンコーダ。
The optical encoder according to claim 2, wherein
An optical encoder comprising a plurality of sets of light receiving elements each including the first light receiving element and the second light receiving element adjacent to each other in the moving direction.
請求項2または3に記載の光学式エンコーダにおいて、
上記第1の受光素子が出力する第1の受光信号と上記第2の受光素子が出力する第2の受光信号とが入力されると共に上記第1の受光信号と第2の受光信号とを差動演算する差動演算回路を備えることを特徴とする光学式エンコーダ。
The optical encoder according to claim 2 or 3,
The first light receiving signal output from the first light receiving element and the second light receiving signal output from the second light receiving element are input, and the difference between the first light receiving signal and the second light receiving signal is input. An optical encoder comprising a differential operation circuit for performing dynamic operation.
請求項4に記載の光学式エンコーダにおいて、
上記差動演算回路によって差動演算された信号をAD変換するAD変換回路を備えることを特徴とする光学式エンコーダ。
The optical encoder according to claim 4, wherein
An optical encoder comprising an AD conversion circuit for AD converting a signal differentially calculated by the differential arithmetic circuit.
請求項5に記載の光学式エンコーダにおいて、
上記差動演算回路は、
差動演算された信号として2系統の同一の電流信号を出力し、
上記AD変換回路には、上記2系統の電流信号のうちの一方の系統の電流信号が入力され、
さらに、上記2系統の電流信号のうちの一方の系統の電流信号が入力される帰還回路を備えることを特徴とする光学式エンコーダ。
The optical encoder according to claim 5, wherein
The differential arithmetic circuit is
Output two identical current signals as differentially calculated signals,
The AD converter circuit receives a current signal from one of the two current signals.
The optical encoder further comprises a feedback circuit to which a current signal of one of the two current signals is input.
請求項1から6のいずれか一つに記載の光学式エンコーダを備えた電子機器。   The electronic device provided with the optical encoder as described in any one of Claim 1 to 6.
JP2009143379A 2009-06-16 2009-06-16 Optical encoder and electronic equipment Expired - Fee Related JP5016001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009143379A JP5016001B2 (en) 2009-06-16 2009-06-16 Optical encoder and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009143379A JP5016001B2 (en) 2009-06-16 2009-06-16 Optical encoder and electronic equipment

Publications (2)

Publication Number Publication Date
JP2011002255A true JP2011002255A (en) 2011-01-06
JP5016001B2 JP5016001B2 (en) 2012-09-05

Family

ID=43560332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009143379A Expired - Fee Related JP5016001B2 (en) 2009-06-16 2009-06-16 Optical encoder and electronic equipment

Country Status (1)

Country Link
JP (1) JP5016001B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457542B (en) * 2011-11-29 2014-10-21 Univ Nat Kaohsiung Applied Sci Optical encoder
JP2015090303A (en) * 2013-11-05 2015-05-11 株式会社安川電機 Encoder, motor with encoder, and servo system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068646A1 (en) * 1999-05-10 2000-11-16 Citizen Watch Co., Ltd. Dimension measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000068646A1 (en) * 1999-05-10 2000-11-16 Citizen Watch Co., Ltd. Dimension measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457542B (en) * 2011-11-29 2014-10-21 Univ Nat Kaohsiung Applied Sci Optical encoder
JP2015090303A (en) * 2013-11-05 2015-05-11 株式会社安川電機 Encoder, motor with encoder, and servo system

Also Published As

Publication number Publication date
JP5016001B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
JP5755010B2 (en) Encoder
EP2511666B1 (en) Encoder
JP5717633B2 (en) Optical position measuring device
JP4960133B2 (en) Absolute position measuring encoder
JP6312505B2 (en) Optical encoder and apparatus equipped with the same
US8941051B2 (en) Photosensor for position detecting device, position detecting device using same and position detecting method
JP6400036B2 (en) Position detection device, machine tool, and exposure device
JP5595148B2 (en) Absolute encoder
US9464924B2 (en) Scale, displacement detection apparatus, lens apparatus, image pickup system, and assembling apparatus
JPH07286861A (en) Device and method for optical conversion
KR100821441B1 (en) Optical encoder
JP2011247879A (en) Optical encoder
JP2006084458A (en) Optical encoder and electronic equipment using the same
JP5016001B2 (en) Optical encoder and electronic equipment
JP2011220864A (en) Optical reference position detection type encoder
JP2008083019A (en) Photoelectric encoder and electronic device using the same
JP2012013654A (en) Absolute encoder and imaging apparatus
JP5553669B2 (en) Optical absolute position measurement encoder
JP6261380B2 (en) Optical encoder
JP2008232705A (en) Photoelectric encoder
JP2009047595A (en) Absolute position length-measurement type encoder
CN113028998A (en) Optical position measuring device
KR101553025B1 (en) encoder
US20240110816A1 (en) Optical encoder
JP6196539B2 (en) Optical encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5016001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees