JP2011002171A - Air conditioning method and air conditioner - Google Patents

Air conditioning method and air conditioner Download PDF

Info

Publication number
JP2011002171A
JP2011002171A JP2009146084A JP2009146084A JP2011002171A JP 2011002171 A JP2011002171 A JP 2011002171A JP 2009146084 A JP2009146084 A JP 2009146084A JP 2009146084 A JP2009146084 A JP 2009146084A JP 2011002171 A JP2011002171 A JP 2011002171A
Authority
JP
Japan
Prior art keywords
air
separation membrane
gas
flow path
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009146084A
Other languages
Japanese (ja)
Other versions
JP5601795B2 (en
Inventor
Masakazu Kuroda
正和 黒田
Kazuya Kimura
和矢 木村
Megumi Yuzawa
恩 湯沢
Tetsuo Arai
哲雄 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamato Co Ltd
Original Assignee
Yamato Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamato Co Ltd filed Critical Yamato Co Ltd
Priority to JP2009146084A priority Critical patent/JP5601795B2/en
Publication of JP2011002171A publication Critical patent/JP2011002171A/en
Application granted granted Critical
Publication of JP5601795B2 publication Critical patent/JP5601795B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning method and its device capable of more efficiently carrying out air conditioning treatment of dehumidifying and humidification by a device of a simple structure by solving issues of a conventional indirect cooling method.SOLUTION: In the air conditioning method and air conditioner, a passage for treatment gas is formed in one side of a separation membrane made of a desiccant material, a passage for regeneration gas is formed in another side, treatment air is circulated through the passage for treatment gas, and regeneration air is circulated through the passage for regeneration gas. Moisture in the treatment air of the passage for treatment gas is absorbed by the separation membrane, and the absorbed moisture spread in the separation membrane is evaporated by the regeneration air of the passage for regeneration gas. Alternatively, moisture in the regeneration air of the passage for regeneration gas is absorbed by the separation membrane, and the absorbed moisture spread in the separation membrane is evaporated by the treatment air of the passage for treatment gas.

Description

本発明は、デシカント材による水分の凝縮と蒸発のメカニズムを利用した室内などの閉空間の温度と湿度を調節する空気調和方法及び空気調和装置に関する。   The present invention relates to an air conditioning method and an air conditioning apparatus for adjusting the temperature and humidity of a closed space such as a room using a mechanism of moisture condensation and evaporation by a desiccant material.

一般の住居や事務室、作業場などの閉空間の室内の温度と湿度を好ましい状態に制御し、調節すること、即ち空気調和(空調)を達成することは、快適な生活や活動を行なうための重要な要素の一つである。
この空気調和のために、従来からさまざまなタイプの冷房装置、加温装置、加湿装置、除湿装置などが採用されている。このようなさまざまな空気調和装置の中で、空気中の水分の吸着・脱着性能をもつデシカント材を用いたデシカント空気調和法はその効率やエネルギーコストなどの点から優れた方法の一つである。
Controlling and adjusting the temperature and humidity in closed spaces such as general residences, offices, and workplaces to favorable conditions, that is, achieving air conditioning (air conditioning) is necessary for comfortable living and activities. One of the important elements.
For this air conditioning, various types of cooling devices, heating devices, humidifying devices, dehumidifying devices, and the like have been conventionally used. Among these various air conditioners, the desiccant air conditioning method using a desiccant material that has the ability to adsorb and desorb moisture in the air is one of the excellent methods in terms of efficiency and energy cost. .

しかしながら、このデシカント空気調和法には、次のような課題があり、そのためにエネルギー効率を低下させ、高コストを招いている。
(イ) シリカゲル、ゼオライトなど一般に広く使用されているデシカント材は、デシカント材の除湿機能を十分に発揮させるためには、吸着した水分の脱着のために60℃以上の比較的高い乾燥空気による乾燥が必要である。
(ロ) 除湿と乾燥を連続的に行なう方法として、ハニカム構造で円柱状に成型されたデシカント材のローターを回転させ、水分の吸着・脱着のステップを連続的に行なうローター方式が採用されている(例えば、非特許文献1参照)。
(ハ) デシカント材への水分の吸着により吸着熱が発生し、除湿された空気(被処理空気)の温度上昇が大きくなる。多くのデシカント材の吸着能は、関係湿度が高いほど大きいため、吸着による温度の上昇は関係湿度を下げ、吸着能を低下させる要因となる。
(ニ)水分の吸着により吸着熱が発生し、被処理空気の温度が上昇するので、除湿された空気を再び所定の温度まで冷却するために、各種の冷却装置と組み合わせて運転することが必要となる(例えば、特許文献1、非特許文献2参照)。
However, this desiccant air conditioning method has the following problems, which lowers energy efficiency and invites high costs.
(Ii) In general, desiccant materials such as silica gel and zeolite are dried with a relatively high dry air of 60 ° C. or higher for desorption of adsorbed water in order to fully exert the dehumidifying function of the desiccant material. is required.
(B) As a method of continuously performing dehumidification and drying, a rotor method is adopted in which a rotor of a desiccant material formed into a cylindrical shape with a honeycomb structure is rotated to continuously perform moisture adsorption / desorption steps. (For example, refer nonpatent literature 1).
(C) Adsorption heat is generated by the adsorption of moisture to the desiccant material, and the temperature rise of the dehumidified air (treated air) increases. Since the adsorption capacity of many desiccants is higher as the relative humidity is higher, an increase in temperature due to adsorption lowers the relative humidity and lowers the adsorption capacity.
(D) Adsorption heat is generated due to moisture adsorption, and the temperature of the air to be treated rises, so it is necessary to operate in combination with various cooling devices to cool the dehumidified air to a predetermined temperature again. (For example, refer to Patent Document 1 and Non-Patent Document 2).

これらの問題を解決し、エネルギー効率が大きく、かつ低コスト化を達成するために、次のような方法が提案されている。
一つの方法は、除湿時に発生する吸着熱を連続的に効率よく除去することである。例えば、アルミニウム製のスリットの間にハニカム構造のデシカント材を組み込み、スリットに冷却流体を流すことにより吸着熱を除去する(非特許文献3参照)。この冷却流体を利用してデシカント材を冷却し、吸着熱を除去する方法は、除去熱量が大きいことや種々の除去温度域に柔軟に対応でき、冷却温度効果も確実であるが、デキカント機器の構造が複雑となり、まだ実用化されていない。
In order to solve these problems and achieve high energy efficiency and low cost, the following methods have been proposed.
One method is to efficiently and continuously remove the heat of adsorption generated during dehumidification. For example, a desiccant material having a honeycomb structure is incorporated between aluminum slits, and the heat of adsorption is removed by flowing a cooling fluid through the slits (see Non-Patent Document 3). The method of cooling the desiccant material using this cooling fluid to remove the heat of adsorption can cope with the large amount of heat removed and various removal temperature ranges, and the cooling temperature effect is reliable. The structure is complicated and has not yet been put into practical use.

もう一つの方法は、除湿時に発生する吸着熱を発生させないことである。水分の吸着により熱が発生するので、吸着による除湿に代えて、熱交換法によって除湿する空気を冷却するとともに除湿する、間接冷却法がある。間接冷却法では、冷却用空気の流路と除湿空気の流路を、ガス及び水分の浸透性のない分離壁で分離する。   Another method is not to generate the heat of adsorption generated during dehumidification. Since heat is generated by moisture adsorption, there is an indirect cooling method in which air to be dehumidified is cooled and dehumidified by a heat exchange method instead of dehumidification by adsorption. In the indirect cooling method, the cooling air flow path and the dehumidified air flow path are separated by a separation wall having no gas and moisture permeability.

即ち、分離壁の一方の面に除湿される空気の流路を形成し、反対側の面に冷却用空気の流路を形成する。除湿される空気の流路に除湿される空気を流し、冷却用空気の流路に冷却用空気を流す。除湿される空気が接する除湿空気の流路の壁面は乾燥し、反対側の冷却用空気の流路の冷却用空気に接する壁面は湿潤した状態とし、冷却用空気の流路に冷却用空気を流通して壁面上の湿潤している液体を蒸発させ、蒸発潜熱を利用してこの分離壁を冷却する。その結果、その反対側の除湿空気の流路を流れる除湿する空気を冷却し、除湿することができる(非特許文献4参照)。   That is, a flow path for air to be dehumidified is formed on one surface of the separation wall, and a flow path for cooling air is formed on the opposite surface. Air to be dehumidified is caused to flow through the flow path of air to be dehumidified, and cooling air is caused to flow through the flow path of cooling air. The wall surface of the dehumidified air flow path that is in contact with the air to be dehumidified is dried, the wall surface of the opposite cooling air flow path that is in contact with the cooling air is moistened, and the cooling air is placed in the flow path of the cooling air. It circulates and evaporates the wet liquid on the wall surface, and cools this separation wall using latent heat of vaporization. As a result, the air to be dehumidified flowing through the flow path of the dehumidified air on the opposite side can be cooled and dehumidified (see Non-Patent Document 4).

冷却用空気の流路と除湿空気の流路を分離する分離壁は、プラスチックフィルムなどのガス不浸透性のフィルムの冷却用空気の流路の壁面に水分を保持できるセルロース、多孔質固体などの物質を膜状に付けて湿潤面とするコンポジット材などがある。(特許文献2参照)   The separation wall that separates the cooling air flow path from the dehumidified air flow path is made of cellulose, porous solids, etc. that can retain moisture on the walls of the cooling air flow path of gas impermeable films such as plastic films. There is a composite material or the like in which a substance is applied in the form of a film to form a wet surface. (See Patent Document 2)

このような間接冷却法では、水など液体を蒸発させて冷却(直接冷却)して熱交換面を冷却し、この冷却された熱交換面に除湿空気を接触させて冷却(間接冷却)する工程をカスケード的に多数回繰り返す方法(このカスケード的に繰り返す工程を「マイソトセンコサイクル(Maisotsenco cycle)」という)によって、低湿度で低温度の空気を得ることができる(特許文献3参照)。   In such an indirect cooling method, a liquid such as water is evaporated and cooled (direct cooling) to cool the heat exchange surface, and dehumidified air is brought into contact with the cooled heat exchange surface to cool (indirect cooling). Can be obtained in a low-humidity and low-temperature air (see Patent Document 3) by a method in which the above is repeated in a cascading manner (this cascade-repeating process is referred to as “Maisotsenco cycle”).

間接冷却法は、水分の吸着による温度上昇はなく、理想状態では除湿する空気の露点温度まで冷却できる可能性を有するが、冷却用空気が接する湿潤面へ蒸発させる水などの液体を適切に補給する方法や冷却効果を高めるために複雑な構造が必要となることなどの問題がある。   The indirect cooling method does not increase in temperature due to moisture adsorption and has the possibility of cooling to the dew point temperature of the air to be dehumidified in an ideal state, but appropriately replenishes liquids such as water to evaporate to the wet surface where the cooling air contacts. There is a problem that a complicated structure is required in order to increase the cooling effect and the cooling method.

また、除湿される空気の流路と冷却用空気の流路を分離する分離壁は気体透過性の高いものとし、除湿空気の流路の表面にはデシカント材を付け、冷却用空気の流路の冷却用空気の接する面は水などの蒸発する液体あるいはデシカント液体で湿潤した面とする方法が提案されている(特許文献4参照)。この方法では、除湿される空気の流路の中の空気は冷却用空気の流路の中の冷却用空気と混合するとともに、除湿される空気の流路の空気が冷却用空気の流路を流通することになり、直接冷却と間接冷却が混合した方法になるので、除湿される空気の十分な除湿と冷却、及びこれらを決められた状態に簡単に制御することは困難である。   In addition, the separation wall that separates the flow path of the air to be dehumidified from the flow path of the cooling air has high gas permeability, and a desiccant material is attached to the surface of the flow path of the dehumidified air so that the flow path of the cooling air A method has been proposed in which the surface in contact with the cooling air is a surface wetted with an evaporating liquid such as water or a desiccant liquid (see Patent Document 4). In this method, the air in the dehumidified air flow path is mixed with the cooling air in the cooling air flow path, and the dehumidified air flow path air passes through the cooling air flow path. Since it becomes a method in which direct cooling and indirect cooling are mixed, it is difficult to sufficiently dehumidify and cool the air to be dehumidified, and to easily control these to a predetermined state.

デシカント材からなるローターを使用する場合、吸着場所と脱着場所が異なることが、デシカント材や空気の大きな温度上昇の要因となるので、ローターの半径方向にデシカント材の付着する吸着部と付着しない非吸着部を設け、吸着による潜熱の発生を抑制するとともに、非吸着部に低温流体などを流して冷却する方法が提案されている。また、水分の脱着(再生)部では、脱着による潜熱でデシカント材が冷却されるので、脱着部と吸着部で温度差があり、熱伝導による吸着部の冷却を促進し、吸着熱による温度上昇を抑制する方法も出されている(特許文献5)。しかし、吸着熱の除去のため非吸着部を作る必要があるので吸着効率が低下し、また、吸着部から非吸着部への熱伝導による熱移動なので放熱量が小さく、また、非吸着部に低温流体を流通させる場合などは、処理空気と冷却空気の流路の分離など空気調和装置の構造も複雑になり、冷却効果は小さい。   When using a rotor made of a desiccant material, the difference between the adsorption location and the desorption location will cause a large temperature rise in the desiccant material and air. There has been proposed a method in which an adsorption part is provided to suppress the generation of latent heat due to adsorption and to cool the non-adsorption part by flowing a low-temperature fluid or the like. Also, in the moisture desorption (regeneration) part, the desiccant material is cooled by the latent heat due to the desorption, so there is a temperature difference between the desorption part and the adsorption part, promoting the cooling of the adsorption part by heat conduction, and the temperature rise due to adsorption heat There is also a method for suppressing the above (Patent Document 5). However, it is necessary to make a non-adsorption part to remove the heat of adsorption, so the adsorption efficiency is reduced, and the heat transfer is small due to heat transfer from the adsorption part to the non-adsorption part. When a low-temperature fluid is circulated, the structure of the air conditioner such as separation of the flow path between the processing air and the cooling air becomes complicated, and the cooling effect is small.

特開2002−130738号公報JP 2002-130738 A 米国特許出願2002/0038552 A1US Patent Application 2002/0038552 A1 米国特許出願2005/0218535 A1US patent application 2005/0218535 A1 米国特許出願2003/0033821 A1US Patent Application 2003/0033821 A1 特開2008−43899号公報JP 2008-43899 A

AkioKodama et al. : “Experimental study of optimal operationfor a honeycomb adsorber operated with thermal swing“J. Chem. Eng. of Japan, Vol.26, 530〜535(1993)、Akio Kodama et al .: “Experimental study of optimal operation for a honeycomb adsorber operated with thermal swing” J. Chem. Eng. Of Japan, Vol. 26, 530-535 (1993), 福井伊津志、頭島康博「省エネルギー型低露点用乾式除湿機、建築設備と配管工事」10、61〜63(2006)Fukui Itsushi, Yasuhiro Tojima "Energy-saving dry dehumidifier for low dew point, building equipment and piping work" 10, 61-63 (2006) 児玉昭雄「吸着熱除去によるデシカント空調プロセスの低温度駆動−断熱除湿限界の克服」日本機械学会誌 Vol.110、No.1065、654(2007)Akio Kodama "Low temperature drive of desiccant air conditioning process by removing heat of adsorption-Overcoming the limit of adiabatic dehumidification" Journal of the Japan Society of Mechanical Engineers Vol.110, No.1065, 654 (2007) 宮崎隆彦、秋澤 淳、秋山 誠、二階 勲、上田 祐樹、柏木孝夫「Maisotosenko型気化式冷却器の性能解析」第42回空気調和・冷凍連合講演会講演論文集、77〜80(2008)Takahiko Miyazaki, Satoshi Akizawa, Makoto Akiyama, Isao Nikai, Yuki Ueda, Takao Kashiwagi, “Performance Analysis of the Maitotosenko Evaporative Cooler”, Proceedings of the 42nd Air Conditioning and Refrigeration Union Lecture, 77-80 (2008)

本発明は、以上のような水分の吸着及び水分の透過性のない分離壁を用いる従来の間接冷却法の問題点を解決して、簡単な構造の装置で、より効率よく除湿や加湿という空気調和処理を行うことができる空気調和方法とその装置を提供することを目的とするものである。   The present invention solves the problems of the conventional indirect cooling method using a separation wall having no moisture adsorption and moisture permeability as described above, and is a device having a simple structure and more efficiently dehumidifying and humidifying air. An object of the present invention is to provide an air conditioning method and apparatus capable of performing a conditioning process.

本発明者らは、空気の除湿や加湿のような空気調和処理を行うに際して、空気中の水分の凝縮により発生する吸着熱を、吸着した水分の蒸発による蒸発潜熱でうまく除去する方法について着目して鋭意検討の結果、これを巧みに組み合わせて、間接冷却法により吸着熱を除去しつつ連続的に空気調和処理を行うことのできる方法を見出し、本発明を完成した。   The present inventors pay attention to a method of successfully removing the heat of adsorption generated by condensation of moisture in the air by the latent heat of evaporation due to evaporation of the absorbed moisture when performing air conditioning such as dehumidification and humidification of air. As a result of intensive studies, the inventors have skillfully combined them and found a method capable of continuously performing an air conditioning process while removing heat of adsorption by an indirect cooling method, thereby completing the present invention.

即ち、本発明は、以下の内容をその要旨とする発明である。
(1)デシカント材からなる分離膜の一つの側に被処理ガス用流路を形成し、他の側に再生ガス用流路を形成し、被処理ガス用流路に被処理空気を、再生ガス用流路に再生用空気を流通させるとともに、被処理ガス用流路の被処理空気中の水分を分離膜に吸着させ、分離膜中を拡散した吸着水分を再生ガス用流路の再生用空気で蒸発させる、または再生ガス用流路の再生用空気中の水分を分離膜に吸着させ、分離膜中を拡散した吸着水分を被処理ガス用流路の被処理空気で蒸発させることを特徴とする、空気調和方法。
That is, the present invention has the following contents.
(1) A gas flow path is formed on one side of a separation membrane made of a desiccant material, a regeneration gas flow path is formed on the other side, and the air to be processed is regenerated in the gas flow path. The regeneration air is circulated through the gas flow path, the moisture in the treated air in the gas flow path is adsorbed on the separation membrane, and the adsorbed moisture diffused in the separation film is regenerated in the regeneration gas flow path. It is characterized by evaporating with air or by adsorbing moisture in the regeneration air in the regeneration gas flow path to the separation membrane and evaporating the adsorbed moisture diffused in the separation membrane with the treated air in the treatment gas flow path And air conditioning method.

(2)被処理ガス用流路に湿潤した被処理空気を、再生ガス用流路に乾燥した再生用空気を流通させるとともに、被処理ガス用流路の被処理空気中の水分を分離膜に吸着させ、分離膜中を拡散した吸着水分を再生ガス用流路の再生用空気で蒸発させることにより被処理空気の除湿を行なうことを特徴とする、前記(1)に記載の空気調和方法。 (2) The wet process air is circulated in the process gas channel and the dry regeneration air is circulated in the regeneration gas channel, and the moisture in the process gas in the process gas channel is used as a separation membrane. The air conditioning method according to (1), wherein the air to be treated is dehumidified by evaporating adsorbed moisture that has been adsorbed and diffused in the separation membrane with the regeneration air in the regeneration gas flow path.

(3)被処理ガス用流路に乾燥した被処理空気を、再生ガス用流路に湿潤した再生用空気を流通させるとともに、再生ガス用流路の再生用空気中の水分を分離膜に吸着させ、分離膜中を拡散した吸着水分を被処理ガス用流路の被処理空気で蒸発させることにより被処理空気の加湿を行なうことを特徴とする、前記(1)に記載の空気調和方法。 (3) The air to be treated is passed through the flow path for the gas to be treated, and the air for regeneration that has been wetted to the flow path for the regeneration gas is circulated, and moisture in the air for regeneration in the flow path for the regeneration gas is adsorbed to the separation membrane. The air conditioning method according to (1), wherein the air to be treated is humidified by evaporating the adsorbed moisture diffused in the separation membrane with the air to be treated in the flow path for the gas to be treated.

(4)分離膜が、空気中の水分を吸着し、該膜の反対側表面まで拡散するが、空気はほとんど透過しない性質を有する膜であって、80℃以下の温度で空気中の水分を吸着し、5℃以上の温度で吸着した水分を脱着(放出)する能力を有するデシカント材であることを特徴とする、前記(1)ないし(3)のいずれかに記載の空気調和方法。 (4) The separation membrane adsorbs moisture in the air and diffuses it to the opposite surface of the membrane, but hardly permeates the air, and removes moisture in the air at a temperature of 80 ° C. or less. The air conditioning method according to any one of (1) to (3), wherein the desiccant material has an ability to adsorb and desorb (release) moisture adsorbed at a temperature of 5 ° C. or higher.

(5)分離膜が、その水分の吸着能が、分離膜1kgあたり0.01kg〜0.65kgであるデシカント材であることを特徴とする、前記(1)ないし(4)のいずれかに記載の空気調和方法。 (5) The separation membrane is a desiccant material having a moisture adsorption capacity of 0.01 kg to 0.65 kg per kg of the separation membrane, according to any one of (1) to (4), Air conditioning method.

(6)分離膜が、その水分の拡散速度が、4m/日〜12000m/日であるデシカント材であることを特徴とする、前記(1)ないし(5)のいずれかに記載の空気調和方法。 (6) The air conditioning method according to any one of (1) to (5), wherein the separation membrane is a desiccant material having a moisture diffusion rate of 4 m / day to 12000 m / day. .

(7)分離膜が、その厚さが10μm〜3mmの薄膜のデシカント材であることを特徴とする、前記(1)ないし(6)のいずれかに記載の空気調和方法。 (7) The air conditioning method according to any one of (1) to (6), wherein the separation membrane is a thin-film desiccant material having a thickness of 10 μm to 3 mm.

(8)分離膜が、金属繊維膜、活性炭素繊維膜、セルロース繊維膜、多孔質高分子膜、高分子繊維織布、及びこれらのシート材料に水分吸着能のある無機物質を付着固定させた膜からなる群から選ばれるいずれかの薄膜状のデシカント材であることを特徴とする、前記(1)ないし(7)のいずれかに記載の空気調和方法。 (8) Separation membrane was made to adhere and fix a metal fiber membrane, activated carbon fiber membrane, cellulose fiber membrane, porous polymer membrane, polymer fiber woven fabric, and an inorganic substance capable of adsorbing moisture to these sheet materials The air conditioning method according to any one of (1) to (7) above, wherein the thin-film desiccant material is selected from the group consisting of films.

(9)被処理ガス用流路へ流入する被処理空気の比エンタルピーと再生用ガス用流路を流出する再生用空気の比エンタルピーの差と、被処理ガス用流路を流出する被処理空気の比エンタルピーと再生用ガス用流路へ流入する再生用空気の比エンタルピーの差がほぼ同一となる操作条件で空気を処理することを特徴とする、前記(1)ないし(8)のいずれかに記載の空気調和方法。 (9) The difference between the specific enthalpy of the air to be treated flowing into the flow path for the treated gas and the specific enthalpy of the regenerating air flowing out of the flow path for the regenerating gas, and the air to be treated flowing out of the flow path for the treated gas Any one of the above (1) to (8), characterized in that the air is treated under an operating condition in which the difference between the specific enthalpy of the gas and the specific enthalpy of the regeneration air flowing into the regeneration gas channel is substantially the same. The air conditioning method described in 1.

(10)デシカント材からなる分離膜と、分離膜の一つの側に形成した被処理ガス用流路と、分離膜の他の側に形成した再生ガス用流路とからなり、該分離膜が、被処理ガス用流路の被処理空気又は再生ガス用流路の再生用空気と接する面で水分を吸着し、分離膜中を再生ガス用流路又は被処理ガス用流路に向けて拡散するが、空気はほとんど透過しない薄膜であることを特徴とする空気調和装置。 (10) A separation membrane made of a desiccant material, a gas flow passage to be processed formed on one side of the separation membrane, and a regeneration gas flow passage formed on the other side of the separation membrane. Then, moisture is adsorbed on the surface of the flow path for the gas to be treated or the surface of the flow path for the regeneration gas in contact with the air for regeneration, and diffuses in the separation membrane toward the flow path for the regeneration gas or the flow path for the treatment gas. However, the air conditioner is a thin film that hardly transmits air.

(11)分離膜が、その水分の吸着能が分離膜1kgあたり0.01kg〜0.65kgであることを特徴とする、前記(10)に記載の空気調和装置。 (11) The air conditioning apparatus according to (10) above, wherein the separation membrane has a moisture adsorption capacity of 0.01 kg to 0.65 kg per kg of the separation membrane.

(12)分離膜が、その水分の拡散速度が4m/日〜12000m/日であるデシカント材であることを特徴とする、前記(10)または(11)に記載の空気調和装置。 (12) The air conditioning apparatus according to (10) or (11), wherein the separation membrane is a desiccant material having a moisture diffusion rate of 4 m / day to 12000 m / day.

(13)分離膜が、その厚さが10μm〜3mmの薄膜のデシカント材であることを特徴とする、前記(10)ないし(12)のいずれかに記載の空気調和装置。 (13) The air conditioner according to any one of (10) to (12), wherein the separation membrane is a thin-film desiccant material having a thickness of 10 μm to 3 mm.

本発明の空気調和方法によって、室内などの閉空間の空気調和処理を容易に、かつ効率的に行うことができる。即ち、高湿度の空気の除湿の場合に、30℃〜50℃の比較的低温度の再生用空気を用いても、効率的に除湿を行なうことができ、しかも除湿の終わった空気の温度上昇が抑制されるので、改めて処理後の空気を冷却するなどの操作が省略できる場合もある。また、逆に、本発明の空気調和方法によって、比較的低温度の乾燥した空気に対しても、再生用空気として30℃〜50℃程度の水分を含む空気を使用することで、これらの乾燥した空気を容易に加湿・加温することができる。   With the air conditioning method of the present invention, air conditioning processing in a closed space such as a room can be easily and efficiently performed. That is, in the case of dehumidifying high-humidity air, it is possible to perform dehumidification efficiently even if relatively low temperature regeneration air of 30 ° C. to 50 ° C. is used, and the temperature of the dehumidified air rises. Therefore, an operation such as cooling the treated air may be omitted. On the other hand, by using the air conditioning method of the present invention, air containing moisture of about 30 ° C. to 50 ° C. is used as regeneration air even for relatively low temperature dried air. The humidified air can be easily humidified and heated.

本発明の空気調和装置の構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the air conditioning apparatus of this invention. 本発明の並流方式を示す説明図である。It is explanatory drawing which shows the parallel flow system of this invention. 本発明の向流方式を示す説明図である。It is explanatory drawing which shows the countercurrent system of this invention. 本発明の一部循環方式を示す説明図である。It is explanatory drawing which shows the partial circulation system of this invention. 本発明のクロスフロー方式の構造の一例を示す説明図である。It is explanatory drawing which shows an example of the structure of the crossflow system of this invention. 本発明の方法による空気の湿度と温度の変化を示す空気線図である。It is an air diagram which shows the change of the humidity and temperature of the air by the method of this invention. 実施例1及び2の方法による空気の湿度と温度の変化を示す空気線図である。It is an air diagram which shows the humidity and temperature change of the air by the method of Example 1 and 2.

本発明は、図1に示すように、空気中の水分を吸着・脱着できるデシカント材からなる分離膜1を用いて、この分離膜1の一つの側に被処理ガス用流路2を形成し、他の側に再生ガス用流路3を形成し、被処理ガス用流路2に被処理空気8を、再生ガス用流路3に再生用空気9を流通させて空気の除湿、加湿、加温、冷却などの種々の空気調和処理を行うものである。   In the present invention, as shown in FIG. 1, a separation gas 1 made of a desiccant material capable of adsorbing and desorbing moisture in the air is used to form a gas flow channel 2 to be treated on one side of the separation membrane 1. The regeneration gas flow path 3 is formed on the other side, the air to be treated 8 is circulated through the gas flow path 2 and the regeneration air 9 is circulated through the regeneration gas flow path 3 to dehumidify and humidify the air. Various air conditioning processes such as heating and cooling are performed.

本発明の空気調和方法では、次の2通りの空気調和処理のパターンがある。
まず、被処理空気8として湿潤した空気を用い、再生用空気9として乾燥した低温度の空気を用いる場合には、この被処理空気8中の水分を分離膜1の一つの側である被処理空気と接する面で吸着させ、この吸着した水分を分離膜1の他の側である再生用空気と接する面において蒸発・放散させて、吸着熱をその蒸発潜熱として吸収することにより分離膜1を冷却し、更には、その結果として分離膜1の一つの側に接する被処理空気8を冷却することによって、被処理空気8の温度上昇を抑制しながら、同時に被処理空気8中の水分を除去する、空気の除湿冷却操作を行なうことができる。
In the air conditioning method of the present invention, there are the following two air conditioning patterns.
First, when wet air is used as the air to be treated 8 and low-temperature air is used as the regeneration air 9, moisture in the air to be treated 8 is treated on one side of the separation membrane 1. The separation membrane 1 is adsorbed on the surface in contact with the air, and the adsorbed moisture is evaporated and dissipated on the surface in contact with the regeneration air on the other side of the separation membrane 1 to absorb the heat of adsorption as its latent heat of vaporization. Cooling and, as a result, cooling the air to be treated 8 that contacts one side of the separation membrane 1, while simultaneously suppressing the temperature rise of the air to be treated 8, removes moisture in the air to be treated 8. The air can be dehumidified and cooled.

また、逆に、被処理空気8として乾燥した低温度の空気を用い、再生用空気9として湿潤した比較的高温度の空気を用いる場合には、この再生用空気9中の水分を分離膜1の一つの側である再生用空気と接する面で吸着させ、この吸着した水分を分離膜1の他の側である被処理空気と接する面で蒸発・放散させることによって、分離膜1の他の側に接する被処理空気8を加温しながら水分を供給する、加湿加温操作を行なうことができる。   Conversely, when dry low-temperature air is used as the air to be treated 8 and relatively high-temperature air humidified as the regeneration air 9 is used, moisture in the regeneration air 9 is separated from the separation membrane 1. The other side of the separation membrane 1 is adsorbed on the surface in contact with the regeneration air, which is one side of the separation membrane, and the adsorbed moisture is evaporated and dissipated on the surface in contact with the air to be treated on the other side of the separation membrane 1. It is possible to perform a humidifying and heating operation in which moisture is supplied while heating the air to be treated 8 in contact with the side.

これらの方法のうち、前者の除湿冷却操作を行なう場合を例として、本発明の方法を更に詳しく説明する。図1において、デシカント材からなる分離膜1の上部に被処理ガス用流路2が、下部に再生ガス用流路3が形成されており、図1の左側から水分を含んで湿潤した被処理空気8が被処理空気入口4から流入し、右端から除湿された被処理空気8が被処理空気出口5から流出する。また、同じく分離膜1の下部右側から乾燥した再生用空気9が再生用空気入口6から流入し、左側の再生用空気出口7から水分を含んだ再生用空気9が流出する。   Of these methods, the method of the present invention will be described in more detail by taking the former case of performing the dehumidifying and cooling operation as an example. In FIG. 1, a processing gas channel 2 is formed in the upper part of a separation membrane 1 made of a desiccant material, and a regeneration gas channel 3 is formed in the lower part, and the processing target wetted with moisture from the left side of FIG. The air 8 flows in from the processing air inlet 4, and the processing air 8 dehumidified from the right end flows out of the processing air outlet 5. Similarly, dry regeneration air 9 flows from the regeneration air inlet 6 from the lower right side of the separation membrane 1, and regeneration air 9 containing moisture flows out from the regeneration air outlet 7 on the left side.

被処理ガス用流路2においてデシカント材からなる分離膜1の一つの面に接した被処理空気8は、デシカント材の水分吸着能によってその水分がデシカント材に吸着される。デシカント材に吸着された水分は分離膜1の内部を拡散して、分離膜1の反対側の他の面にまで移行する。分離膜1の他の面に移行してきた水分は、ここで再生ガス用流路3を流れる乾燥した再生用空気9に接して水分が蒸発・放散されて、水分が再生用空気9中に移行する。   The to-be-treated air 8 in contact with one surface of the separation membrane 1 made of the desiccant material in the to-be-treated gas channel 2 is adsorbed to the desiccant material by the moisture adsorbing ability of the desiccant material. The moisture adsorbed on the desiccant material diffuses inside the separation membrane 1 and moves to the other surface on the opposite side of the separation membrane 1. The moisture that has migrated to the other surface of the separation membrane 1 is in contact with the dry regeneration air 9 that flows through the regeneration gas flow path 3 here, and the moisture is evaporated and diffused, so that the moisture moves into the regeneration air 9. To do.

このようにして被処理空気8中の水分が再生用空気9の中に移行することによって、被処理空気8の除湿を行なうことができる。この水分の凝縮・吸着による除湿の際に吸着熱が発生し、これを除去しないと除湿後の空気が加熱され、温度の上昇した被処理空気となってしまい、改めてこの除湿された空気を冷却する必要が生ずる。このような余分な冷却操作を避けるためには、この水分の凝縮・吸着の際に発生する吸着熱を冷却その他の方法によって除去することが必要となる。また、デシカント材からなる分離膜1からも、吸着した水分を乾燥操作などによって除去しなければ、その吸着能が低下する。   In this way, the moisture in the air to be treated 8 is transferred into the regeneration air 9 so that the air to be treated 8 can be dehumidified. Adsorption heat is generated during dehumidification due to the condensation and adsorption of moisture, and if this is not removed, the air after dehumidification is heated and the temperature rises to air to be treated, and this dehumidified air is cooled again. Need to be done. In order to avoid such an excessive cooling operation, it is necessary to remove the heat of adsorption generated during the condensation and adsorption of moisture by cooling or other methods. Further, even if the adsorbed moisture is not removed by a drying operation or the like from the separation membrane 1 made of a desiccant material, the adsorbing ability is lowered.

この吸着熱の除去とデシカント材の冷却、乾燥を行なうために、本発明では吸着した水分の蒸発潜熱を利用する。即ち、分離膜1であるデシカント材の被処理ガス用流路2の被処理空気8に接する面で吸着した水分が、多孔質の材料からなるデシカント材の水分の拡散特性に基づき、デシカント材の中を反対側の再生ガス用流路3の再生用空気9に接する面まで拡散・透過してくる。ここで乾燥した再生用空気9と接触して、デシカント材の水分が蒸発して、水分が再生用空気9中に放散される。水分の凝縮・吸着の際に吸着熱が発生するが、本発明の方法によれば、この吸着熱は再生用空気9と接触した水分が蒸発する際の蒸発潜熱として吸収され、除去されることとなる。この結果、分離膜1のデシカント材の中に熱が蓄積したり、温度が上昇することが少なくなる。   In order to remove the heat of adsorption and cool and dry the desiccant material, the present invention utilizes the latent heat of vaporization of the adsorbed water. That is, the moisture adsorbed on the surface of the desiccant material flow path 2 of the desiccant material that is the separation membrane 1 in contact with the air to be treated 8 is based on the moisture diffusion characteristics of the desiccant material made of a porous material. The inside diffuses and permeates to the surface in contact with the regeneration air 9 of the regeneration gas flow path 3 on the opposite side. The moisture of the desiccant material evaporates by contacting with the drying air 9 dried here, and the moisture is diffused into the regeneration air 9. Adsorption heat is generated during the condensation and adsorption of moisture. According to the method of the present invention, this adsorption heat is absorbed and removed as latent heat of vaporization when the moisture in contact with the regeneration air 9 evaporates. It becomes. As a result, heat accumulates in the desiccant material of the separation membrane 1 and the temperature does not increase.

また、デシカント材の中の水分が再生用空気9の中に放散されるので、同時にデシカント材の乾燥も行われることとなり、分離膜1のデシカント材の水分吸着能が低下することが避けられる。   In addition, since the moisture in the desiccant material is diffused into the regenerating air 9, the desiccant material is also dried at the same time, and it is avoided that the moisture adsorption capacity of the desiccant material of the separation membrane 1 is lowered.

このような被処理空気8中の水分の吸着、拡散、脱着が円滑に行なわれるためには、分離膜1が、水分を効率よく吸着し、拡散するための十分な能力を有するデシカント材であって、かつ被処理空気8そのものはほとんど透過しない膜であることが必要である。このようなデシカント材としては、一般的に表面に数nmから数100μmのミクロポア及びマクロポアを有する多孔質構造の膜であり、このミクロポアに水分が吸着される。特に、水の物理特性、表面張力などから数nmから数十nm程度のミクロポアを有する多孔質構造の膜が好ましい。   In order for such adsorption, diffusion and desorption of moisture in the air to be treated 8 to be performed smoothly, the separation membrane 1 is a desiccant material having sufficient ability to adsorb and diffuse moisture efficiently. And the to-be-processed air 8 itself needs to be a film | membrane which hardly permeate | transmits. Such a desiccant material is generally a film having a porous structure having micropores and macropores of several nanometers to several hundreds of micrometers on the surface, and moisture is adsorbed to the micropores. In particular, a membrane having a porous structure having micropores of several nanometers to several tens of nanometers is preferable in view of physical properties of water, surface tension, and the like.

分離膜の水分の吸着能は、具体的には分離膜の単位重量(kg)あたり水分量が0.01kg〜0.65kg程度であることが必要であり、0.05kg〜0.2kg程度であることが好ましい。   Specifically, the water adsorption capacity of the separation membrane requires that the amount of water per unit weight (kg) of the separation membrane be about 0.01 kg to 0.65 kg, and about 0.05 kg to 0.2 kg. Preferably there is.

また、吸着した水分が分離膜の反対側に移行するために、分離膜の中の水分の拡散速度が4m/日〜12000m/日程度であることが必要であり、40m/日〜1200m/日程度であることが好ましい。   Further, in order for the adsorbed moisture to move to the opposite side of the separation membrane, the diffusion rate of moisture in the separation membrane needs to be about 4 m / day to 12000 m / day, and 40 m / day to 1200 m / day. It is preferable that it is a grade.

更には、分離膜1は、水分の吸着能や多孔質構造を持たせること、分離膜としての強度を確保するという観点からはその厚さがある程度大きいほうが好ましいが、水分の効率的、かつ円滑な拡散という観点からはできるだけ厚さが薄いものが好ましい。これらの点を考慮して、分離膜1の厚さは10μmから3mmであり、より好ましくは100μm〜600μmのものである。
分離膜1の厚さが3ミリメートルを超えると、分離膜中の水分の拡散速度が律速となり、水分の吸着・脱着の速度が低下してしまい、好ましくない。また、分離膜1の厚さが10ミクロン以下となると、膜が分離壁として十分な強度を持つことができず、実用的ではない。
Furthermore, it is preferable that the separation membrane 1 has a certain thickness from the viewpoint of providing moisture adsorption ability and a porous structure, and ensuring the strength as the separation membrane. From the viewpoint of diffusive diffusion, it is preferable that the thickness is as thin as possible. Considering these points, the thickness of the separation membrane 1 is 10 μm to 3 mm, more preferably 100 μm to 600 μm.
If the thickness of the separation membrane 1 exceeds 3 mm, the diffusion rate of moisture in the separation membrane becomes rate-determining and the moisture adsorption / desorption rate decreases, which is not preferable. On the other hand, when the thickness of the separation membrane 1 is 10 microns or less, the membrane cannot have sufficient strength as a separation wall, which is not practical.

このような水分の吸着、拡散、脱着能力を有するデシカント材としては、具体的には例えば、金属繊維膜、活性炭素繊維膜、セルロース繊維膜などの種々の繊維でできた多孔性シート、多孔質高分子膜や高分子繊維織布などの多孔性シート、及びこれらのシート材料を基材にして水分吸着能のある無機物質や有機物質を付着固定させた膜を利用することができる。   Specific examples of the desiccant material having such moisture adsorption, diffusion, and desorption capabilities include porous sheets made of various fibers such as metal fiber membranes, activated carbon fiber membranes, and cellulose fiber membranes, and porous materials. A porous sheet such as a polymer film or a polymer fiber woven fabric, and a film in which an inorganic substance or an organic substance capable of adsorbing moisture is attached and fixed using these sheet materials as a base material can be used.

更に詳しくは、銅、アルミニウムなどの金属繊維、ガラス繊維などの無機繊維、炭素繊維、合成繊維、セルロース繊維などの有機繊維など種々の繊維材料でできた多孔性のシートに対して、吸着材としてシリカゲル、活性炭、アルミナ、アルミノシリケートよりなるゼオライト類、メソポーラスシリカ、非晶質アルミニウムケイ酸塩を含む粘土などとの複合体、チタン−シリカゲル系の吸着材から選ばれる種々の吸着材を塗布または化学反応により固着させたデシカント材が利用できる。更に、ポリアクリル酸架橋体などの吸水性高分子を利用した不織布シートのデシカント材、スポンジ状酸化チタンよりなるシートのデシカント材なども利用することができる。   More specifically, as an adsorbent for porous sheets made of various fiber materials such as metal fibers such as copper and aluminum, inorganic fibers such as glass fibers, carbon fibers, synthetic fibers, and organic fibers such as cellulose fibers. Apply or chemically apply various adsorbents selected from silica gel, activated carbon, alumina, zeolites composed of aluminosilicates, mesoporous silica, complexes with clay containing amorphous aluminum silicate, and titanium-silica gel adsorbents A desiccant material fixed by reaction can be used. Furthermore, a desiccant material for a nonwoven fabric sheet using a water-absorbing polymer such as a cross-linked polyacrylic acid, a desiccant material for a sheet made of sponge-like titanium oxide, and the like can also be used.

分離膜1の形状は、一般的には平面状のものでよいが、空気とデシカント材との接触効率をより大きくするために、また、強度を高める点から、波板状のもの、突起のあるフィン付のものなどでもよい。   The shape of the separation membrane 1 may be generally planar, but in order to increase the contact efficiency between the air and the desiccant material, and from the point of increasing the strength, the shape of the corrugated plate and the protrusion A thing with a certain fin etc. may be sufficient.

次に、本発明の空気調和方法の除湿・再生の場合のメカニズムについて、図1の空気調和装置において、図6に示す空気線図を用いて説明する。   Next, the mechanism in the case of dehumidification / regeneration of the air conditioning method of the present invention will be described using the air diagram shown in FIG. 6 in the air conditioning apparatus of FIG.

被処理空気8は被処理ガス入口4から被処理ガス用流路2に流入し、被処理ガス用流路2流通して、分離膜1の被処理ガス用流路2の側の面と接触しながら被処理ガス出口5に至る。被処理空気8の入口の状態は、図6の空気線図のKの位置である。被処理空気8中の水分は被処理ガス用流路2の分離膜1と接触して吸着・除去され、絶対湿度を低下しつつ流れ、分離膜1の温度は水分の吸着により発生する吸着熱により上昇するので、分離膜1に接する被処理空気8の温度も上昇することになる。被処理ガス用流路2内でこの変化が断熱的に行われれば、被処理空気の温度は、図6の空気線図の等比エンタルピー線に沿って変化し、被処理ガス用流路2の出口5では状態Lになる。   The treated air 8 flows from the treated gas inlet 4 into the treated gas channel 2, flows through the treated gas channel 2, and contacts the surface of the separation membrane 1 on the side of the treated gas channel 2. While reaching the gas outlet 5 to be processed. The state of the inlet of the air to be treated 8 is the position K in the air diagram of FIG. Moisture in the air to be treated 8 is adsorbed / removed in contact with the separation membrane 1 of the gas flow passage 2 and flows while lowering the absolute humidity. The temperature of the separation membrane 1 is the heat of adsorption generated by moisture adsorption. As a result, the temperature of the air to be treated 8 in contact with the separation membrane 1 also rises. If this change is performed adiabatically in the gas flow path 2 to be processed, the temperature of the air to be processed changes along the isoenthalpy line of the air diagram of FIG. At the exit 5, the state is L.

一方、再生用空気9は、再生用ガス入口6から再生ガス用流路3に流入し、再生ガス用流路3を流通して、分離膜1の再生ガス用流路3の側の面と接触して水分を蒸発させ、絶対湿度を増加させながら再生ガス用流路3の出口7に至る。再生用空気9の再生用ガス入口6での状態は図6の空気線図のPである。再生用空気9は再生ガス用流路3の分離膜1と接触して水分を蒸発させ、絶対湿度を増加しつつ流れる。分離膜1の温度は水分の蒸発により発生する蒸発潜熱により冷却されるので、分離膜1に接する再生用空気9の温度も降下することになる。再生ガス用流路3内でこの変化が断熱的に行われれば、再生用空気9の温度は、図6の空気線図の等比エンタルピー線に沿って変化し、再生ガス用流路3の出口7では状態Qになる。   On the other hand, the regeneration air 9 flows into the regeneration gas channel 3 from the regeneration gas inlet 6, flows through the regeneration gas channel 3, and the surface of the separation membrane 1 on the side of the regeneration gas channel 3. It contacts and evaporates moisture, and reaches the outlet 7 of the regeneration gas channel 3 while increasing the absolute humidity. The state of the regeneration air 9 at the regeneration gas inlet 6 is P in the air diagram of FIG. The regeneration air 9 comes into contact with the separation membrane 1 of the regeneration gas flow path 3 to evaporate moisture, and flows while increasing the absolute humidity. Since the temperature of the separation membrane 1 is cooled by the latent heat of evaporation generated by the evaporation of moisture, the temperature of the regeneration air 9 in contact with the separation membrane 1 also drops. If this change is adiabatically performed in the regeneration gas flow path 3, the temperature of the regeneration air 9 changes along the isoenthalpy line of the air diagram of FIG. The exit 7 is in state Q.

本発明のように、分離膜1の厚さが非常に薄く、物質移動及び熱移動が十分速く行われれば、分離膜1の被処理ガス用流路2の被処理空気8と接する面で発生した吸着熱は、分離膜1の中を移動して反対側の再生ガス用流路3に接する表面に速やかに伝達され、再生用空気9と接する表面で水分の蒸発の潜熱に利用される。このため、被処理ガス用流路2と再生ガス用流路3の間での熱交換が行なわれ、被処理ガス用流路2と再生ガス用流路3の中の変化はそれぞれ独立して断熱的には進まず、被処理ガス用流路2と再生ガス用流路3を全体として断熱的変化をする。このため、被処理空気8の被処理ガス用流路2の出口5の状態は上記の場合とは異なり、被処理空気の出口5の状態は図6の空気線図のM、再生用空気9の再生ガス用流路3の出口7での状態は同じくRとなる。したがって、被処理空気8のLの状態の温度TとMの状態の温度Tの温度差T―Tだけ冷却される。 If the separation membrane 1 is very thin and mass transfer and heat transfer are performed sufficiently fast as in the present invention, the separation membrane 1 is generated on the surface of the separation gas flow channel 2 in contact with the air to be processed 8. The adsorbed heat moves through the separation membrane 1 and is quickly transmitted to the surface in contact with the regeneration gas flow path 3 on the opposite side, and is used for latent heat of evaporation of moisture on the surface in contact with the regeneration air 9. For this reason, heat exchange is performed between the gas flow path 2 and the regeneration gas flow path 3, and the changes in the gas flow path 2 and the regeneration gas flow path 3 are independent of each other. The process gas flow 2 and the regeneration gas flow 3 are changed as a whole without adiabatic. Therefore, the state of the outlet 5 of the gas flow path 2 for the air to be processed 8 is different from the above case, and the state of the outlet 5 of the air to be processed is M in the air diagram of FIG. The state at the outlet 7 of the regeneration gas flow path 3 is also R. Therefore, it is cooled by the temperature difference T L -T M temperature T M of the state of the temperature T L and M states L of air to be treated 8.

本発明の空気調和方法では、上述の被処理ガス用流路の被処理空気と再生ガス用流路の再生用空気の流通方法について、図2〜図4に示す種々の方法を採用することができる。即ち、図2に示すような被処理空気と再生用空気を分離膜を挟んで同じ位置から導入して同じ方向に流す並流方式、図3に示すような被処理空気と再生用空気を分離膜を挟んで反対の位置から導入してそれぞれ反対の方向に流す向流方式、図4に示すような被処理空気と再生用空気を分離膜を挟んで反対の位置から導入しながら、処理済みの被処理空気の一部を再生ガス用流路に流し再生用空気と混合する一部循環方式などがあり、使用条件に応じて任意に選択すればよい。   In the air conditioning method of the present invention, various methods shown in FIG. 2 to FIG. 4 can be adopted as the circulation method of the air to be treated in the above-described gas flow path and the regeneration air in the regeneration gas flow path. it can. That is, the air to be treated and the air for regeneration as shown in FIG. 2 are introduced from the same position across the separation membrane and flow in the same direction, and the air to be treated and the air for regeneration as shown in FIG. 3 are separated. Counterflow system that introduces from opposite positions across the membrane and flows in opposite directions, treated air and regeneration air as shown in Fig. 4 while being introduced from opposite positions across the separation membrane There is a partial circulation system in which a part of the air to be treated flows through the regeneration gas flow channel and is mixed with the regeneration air, and may be arbitrarily selected according to use conditions.

並流方式は、除湿操作の場合には、向流方式に比べて同じ除去水分量であってもより低温度の除湿した空気が得られる。一部循環方式では、温度や湿度の条件に制約はあるが、並流方式よりも更に低温度の除湿空気が得られる。一部循環方式では、除湿された被処理空気の一部を外部に抜き出すが、残りの除湿された空気を再生ガス用流路に導入し、外部から導入された空気と混合して再生用空気とする。被処理空気の一部が再生ガス用流路に導入されるため、再生用空気の外部からの導入量は必要に応じて調節する。一部循環方式では、再生用空気の入口温度及び湿度は外気温度、湿度より低下し、乾燥除去される水分量が増加するとともに吸着量も増加し発生する吸着熱も大きくなるが、乾燥により除去される水分の蒸発潜熱で除去され、被処理空気の温度は低下する。
また、この3種類の処理方式のいずれかを前段とし、他の方式を後段として直列に設置する2段処理方式にすれば、更に高い除湿効率が達成できる。
In the case of the dehumidifying operation, the parallel flow method can obtain dehumidified air at a lower temperature even when the amount of water removed is the same as that in the countercurrent method. In the partial circulation method, although there are restrictions on temperature and humidity conditions, dehumidified air at a lower temperature can be obtained than in the parallel flow method. In the partial circulation method, a part of the dehumidified air to be treated is extracted to the outside, but the remaining dehumidified air is introduced into the regeneration gas flow path and mixed with the air introduced from the outside for regeneration air. And Since part of the air to be treated is introduced into the regeneration gas flow path, the amount of regeneration air introduced from the outside is adjusted as necessary. In the partial circulation method, the inlet temperature and humidity of the regeneration air are lower than the outside air temperature and humidity, the amount of moisture removed by drying increases, the amount of adsorption increases, and the generated heat of adsorption increases. The water is removed by the latent heat of vaporization of the water, and the temperature of the air to be treated decreases.
Further, if one of the three types of treatment methods is used as a front stage and the other method is used as a rear stage and a two-stage treatment method is installed in series, higher dehumidification efficiency can be achieved.

このほかに、図5に示すように、被処理ガス用流路と再生ガス用流路を直交させ、被処理ガス用流路を流通させる被処理空気と再生ガス用流路を流通させる再生用空気を直交させ、必要に応じてこのユニットを多数積み重ねる、いわゆるクロスフロー方式がある。この方式では、再生用ガスの脱着(乾燥)能力は、並流方式や向流方式に比べて大きく、高湿度の被処理ガスの除湿では高い除去効率が期待できる。   In addition to this, as shown in FIG. 5, the flow path for the processing gas and the flow path for the regeneration gas are orthogonal to each other, and the air for processing that flows the flow path for the processing gas and the flow path for the regeneration gas are circulated. There is a so-called cross flow method in which air is orthogonalized and a large number of units are stacked as necessary. In this method, the desorption (drying) ability of the regeneration gas is larger than that of the cocurrent flow method and the counterflow method, and high removal efficiency can be expected in dehumidification of the high-humidity gas to be treated.

従来のローター方式のように、デシカント材の水分の脱着と乾燥を吸着とは異なった別の場所で加熱によって行なう方式では、デシカント材の十分な乾燥と再生のために90〜100℃の高温度の空気を用いる必要があった。しかし、本発明の方法では、上記のように、同じ調和装置の内部で、しかも再生用空気としてこのような高温度の空気を使用する必要はなく、40〜50℃程度の温度の空気を用いて乾燥・再生を行なうことができる。   As in the case of the conventional rotor method, in a method in which the desorption and drying of the desiccant material is performed by heating at a different place from the adsorption, a high temperature of 90 to 100 ° C. is required for sufficient drying and regeneration of the desiccant material. Of air was necessary. However, in the method of the present invention, as described above, it is not necessary to use such high-temperature air as regeneration air inside the same harmony apparatus, and air having a temperature of about 40 to 50 ° C. is used. Can be dried and regenerated.

このように再生用空気として比較的低い温度の空気を使用できるということは、さまざまな冷房設備や冷凍設備から多量に発生する排気空気をそのまま利用することが可能となり、排熱の有効利用という点でも大きなメリットを有する。   The fact that air at a relatively low temperature can be used as regeneration air in this way makes it possible to use exhaust air generated in large quantities from various cooling and refrigeration facilities as it is, and to effectively use exhaust heat. But it has great benefits.

次に、本発明を実施例によって更に詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention in more detail, this invention is not limited at all by these Examples.

向流方式による空気の除湿・乾燥処理
図1に示す向流方式の空気調和装置を用いて、次のような操作で室内空気の除湿・乾燥処理を行った。 空気調和装置は、被処理ガス用流路2が20cm×0.3cm、再生ガス用流路3が20cm×0.3cm、長さが40cmの直方体のサイズであり、分離膜1のデシカント材として厚さが0.15mmのセルロース繊維の集合した実体内に抗菌効果のある金属を担持したゼオライトを含ませた薄膜を用いた。
このデシカント材の特性は次の通りであった。
・水分吸着能: 20℃の吸着平衡 X=5.5H0.914
ここで、Xは平衡吸着量(g-H2O/kg-吸着剤)、
Hは絶対湿度(g-H2O/kg-乾燥空気)
・水分拡散速度: 5100m/日
1. Dehumidification / drying treatment of air by counterflow method The indoor air dehumidification / drying treatment was performed by the following operation using the countercurrent type air conditioner shown in FIG. The air conditioner has a rectangular parallelepiped size in which the gas flow path 2 is 20 cm × 0.3 cm, the regeneration gas flow path 3 is 20 cm × 0.3 cm, and the length is 40 cm, and is used as a desiccant material for the separation membrane 1. A thin film in which a zeolite carrying a metal having an antibacterial effect was contained in an aggregate of cellulose fibers having a thickness of 0.15 mm was used.
The characteristics of this desiccant material were as follows.
Moisture adsorption capacity: adsorption equilibrium at 20 ° C. X = 5.5H 0.914
Where X is the equilibrium adsorption amount (gH 2 O / kg-adsorbent),
H is absolute humidity (gH 2 O / kg-dry air)
・ Water diffusion rate: 5100m / day

除湿・乾燥処理の操作条件は次の通りであった。
・被処理空気(除湿する空気):
流入速度:2.1m/秒、
温度:30.6℃、湿度:0.024(kg-H2O/kg-乾燥空気)
・再生用空気:
流入速度:1.8m/秒、
温度:40.5℃、湿度:0.0155(kg-H2O/kg-乾燥空気)
The operating conditions of the dehumidification / drying treatment were as follows.
・ Air to be treated (air to be dehumidified):
Inflow speed: 2.1 m / sec,
Temperature: 30.6 ° C, Humidity: 0.024 (kg-H 2 O / kg-dry air)
・ Regeneration air:
Inflow speed: 1.8 m / sec,
Temperature: 40.5 ° C, Humidity: 0.0155 (kg-H 2 O / kg-dry air)

この操作条件で被処理空気8を被処理ガス入口4から、再生用空気9を再生用ガス入口6から図1に示す空気調和装置に流通させて、4時間連続して運転を行い、空気の除湿・乾燥処理を行なった。
およそ0.5時間経過した時点から後の被処理ガス出口5及び再生用ガス出口7での空気の湿度と温度は次の通りであった。
・被処理空気(除湿された空気):
温度:37.8℃、湿度:0.018(kg-H2O/kg-乾燥空気)、
・再生用空気:
温度:30.0℃、湿度:0.022(kg-H2O/kg-乾燥空気)、
Under these operating conditions, the air to be treated 8 is circulated from the gas inlet 4 to be treated and the regeneration air 9 is circulated from the regeneration gas inlet 6 to the air conditioner shown in FIG. Dehumidification / drying treatment was performed.
The humidity and temperature of air at the gas outlet 5 to be processed and the gas outlet 7 for regeneration after the time point of about 0.5 hours were as follows.
・ Air to be treated (dehumidified air):
Temperature: 37.8 ° C., Humidity: 0.018 (kg-H 2 O / kg-dry air),
・ Regeneration air:
Temperature: 30.0 ° C., Humidity: 0.022 (kg-H 2 O / kg-dry air),

この空気の除湿・乾燥処理の前後における被処理空気と再生用空気の温度と湿度の変化を図7に示す。
この結果から、処理前には湿度が0.024(kg-H2O/kg-乾燥空気)であった被処理空気8(図7のA1)が、本発明の方法による除湿・乾燥処理を行なったところ、その湿度が0.019(kg-H2O/kg-乾燥空気)まで減少し(図7のA2)、被処理空気の湿度は0.005(kg-H2O/kg-乾燥空気)除去された。この除湿操作にもかかわらず、被処理空気の温度は30.6℃から37.8℃とわずかな温度上昇だけであった。
FIG. 7 shows changes in temperature and humidity of the air to be treated and the air for regeneration before and after the dehumidification / drying treatment of the air.
From this result, the air to be treated 8 (A1 in FIG. 7) whose humidity was 0.024 (kg-H 2 O / kg-dry air) before the treatment was subjected to the dehumidification / dry treatment by the method of the present invention. As a result, the humidity decreased to 0.019 (kg-H 2 O / kg-dry air) (A2 in FIG. 7), and the humidity of the air to be treated was 0.005 (kg-H 2 O / kg- Dry air) was removed. Despite this dehumidifying operation, the temperature of the air to be treated was only a slight temperature rise from 30.6 ° C. to 37.8 ° C.

もし、このデシカント材による空気中の水分の吸着・脱着が、被処理ガス用流路2と再生ガス用流路3のそれぞれの流路でそれぞれ断熱的に変化すれば、被処理ガス用流路2の被処理空気の温度は等比エンタルピー線に沿って変化し、被処理ガス用流路2の出口5の空気の温度は45℃になる。一方、再生ガス用流路3の空気の温度も等比エンタルピー線に沿って変化し、再生ガス用流路3の出口7では27.2℃になる。   If adsorption / desorption of moisture in the air by the desiccant material changes adiabatically in each of the flow path 2 for the gas to be processed and the flow path 3 for the regeneration gas, the flow path for the gas to be processed The temperature of the to-be-processed air 2 changes along the isospecific enthalpy line, and the temperature of the air at the outlet 5 of the to-be-processed gas flow path 2 becomes 45 ° C. On the other hand, the temperature of the air in the regeneration gas channel 3 also changes along the isentropic line and reaches 27.2 ° C. at the outlet 7 of the regeneration gas channel 3.

即ち、上記の実施例の場合には、被処理空気の比エンタルピーh1は、流入温度30.6℃、絶対湿度24(g-H2O/kg-乾燥空気)であるので、図7の比エンタルピー線図よりh1=92(kJ/kg乾燥空気)、再生用空気の比エンタルピーhd1は、流入空気温度40.5℃、絶対湿度15.5(g-H2O/kg-乾燥空気)であるので、hd1=82(kJ/kg乾燥空気)となる。 That is, in the case of the above embodiment, the specific enthalpy h1 of the air to be treated is the inflow temperature of 30.6 ° C. and the absolute humidity of 24 (gH 2 O / kg-dry air). From the figure, h1 = 92 (kJ / kg dry air), and the specific enthalpy hd1 of regeneration air is an inflow air temperature of 40.5 ° C. and an absolute humidity of 15.5 (gH 2 O / kg-dry air). = 82 (kJ / kg dry air).

もし、被処理ガス用流路2及び再生ガス用流路3内で、被処理空気8と再生用空気9がそれぞれ断熱的に変化すれば、等比エンタルピー線に沿って変化するので、被処理ガス用流路2の出口5の被処理空気の比エンタルピーは入口4と同じで変化せず、再生ガス用流路3の出口7の再生用空気の比エンタルピーも入口6と同じで変化しない。この実施例では、被処理ガス用流路2と再生ガス用流路3の間で熱交換があり、被処理ガス用流路2と再生ガス用流路3全体で断熱的に変化し、被処理空気8の出口温度と湿度は、それぞれ上記の実験結果(平均値)から、37.8℃、絶対湿度19(g-H2O/kg-乾燥空気)であるので、比エンタルピーh2は、h2=87(kJ/kg-乾燥空気)となる。湿度が小さくなるので比エンタルピーは小さくなる。また、再生用空気9の出口の温度と湿度の実験結果(平均値)は、それぞれ30.0℃、絶対湿度22(g-H2O/kg-乾燥空気)であるので、比エンタルピーhd2は、hd2=87.5(kJ/kg乾燥空気)である。湿度が大きくなるので比エンタルピーは大きくなる。被処理空気8の被処理ガス用流路2の入口4の比エンタルピーと再生用空気9の再生ガス用流路3の出口の比エンタルピーとの差Δh1は、Δh1=92―87=5(kJ/kg-乾燥空気)となり、再生用空気9の再生ガス用流路3の入口の比エンタルピーと被処理空気8の被処理ガス用流路2の出口の比エンタルピーとの差Δh2は、Δh2=87.5−82=5.5(kJ/kg-乾燥空気)となり、それぞれの比エンタルピー差は凡そ一致する。 If the to-be-treated air 8 and the to-be-reproduced air 9 are adiabatically changed in the to-be-treated gas flow path 2 and the regenerated gas flow path 3, they change along the isometric enthalpy line. The specific enthalpy of the air to be treated at the outlet 5 of the gas flow channel 2 is the same as that of the inlet 4 and does not change, and the specific enthalpy of the regeneration air at the outlet 7 of the regeneration gas flow channel 3 is the same as that of the inlet 6 and does not change. In this embodiment, there is a heat exchange between the gas flow path 2 to be treated and the flow path 3 for the regeneration gas. Since the outlet temperature and humidity of the processing air 8 are 37.8 ° C. and absolute humidity 19 (gH 2 O / kg-dry air) from the above experimental results (average values), the specific enthalpy h2 is h2 = 87 (kJ / kg-dry air). The specific enthalpy is reduced because the humidity is reduced. Further, the experimental results (average values) of the temperature and humidity at the outlet of the regeneration air 9 are 30.0 ° C. and absolute humidity 22 (gH 2 O / kg-dry air), respectively, so the specific enthalpy hd2 is hd2 = 87.5 (kJ / kg dry air). As the humidity increases, the specific enthalpy increases. The difference Δh1 between the specific enthalpy of the inlet 4 of the gas flow path 2 of the target air 8 and the specific enthalpy of the outlet of the regeneration gas path 3 of the regeneration air 9 is Δh1 = 92−87 = 5 (kJ / Kg-dry air), and the difference Δh2 between the specific enthalpy of the inlet of the regeneration gas flow path 3 of the regeneration air 9 and the specific enthalpy of the outlet of the processed gas flow path 2 of the air to be treated 8 is Δh2 = 87.5-82 = 5.5 (kJ / kg-dry air), and the specific enthalpy differences are almost the same.

向流方式による低温空気の加温・加湿処理
図1の実施例1と同一の空気調和装置を用いて、実施例1とは逆に、以下のようにして低温度、低湿度の空気を加温・加湿する空気調和処理を行った。
・被処理空気(加温・加湿する空気):
流入速度:1.8m/秒、
温度:21.7℃、湿度:0.0056(kg-H2O/kg-乾燥空気)
・再生用空気:
流入速度:2.3m/秒、
温度:36.9℃、湿度:0.0205(kg-H2O/kg-乾燥空気)
Heating / humidifying treatment of low-temperature air by the counter-current method Contrary to the first embodiment, air of low temperature and low humidity is applied as follows, using the same air conditioner as in the first embodiment of FIG. Air conditioning treatment to warm and humidify was performed.
・ Air to be treated (Air to be heated / humidified):
Inflow speed: 1.8 m / sec,
Temperature: 21.7 ° C., Humidity: 0.0056 (kg-H 2 O / kg-dry air)
・ Regeneration air:
Inflow velocity: 2.3 m / sec,
Temperature: 36.9 ° C, Humidity: 0.0205 (kg-H 2 O / kg-dry air)

この操作条件で被処理空気を被処理ガス入口4から、再生用空気を再生ガス入口6から空気調和装置に流通させて、4時間連続して運転を行い、空気の加温・加湿処理を行なった。
0.5時間経過した時点での被処理ガス出口5及び再生用ガス出口7での空気の湿度と温度は次の通りであった。
・被処理空気(加温・加湿された空気):
温度:27℃、湿度:0.0086(kg-H2O/kg-乾燥空気)、
・再生用空気:
温度:29.5℃、湿度:0.0142(kg-H2O/kg-乾燥空気)、
Under these operating conditions, the air to be treated is circulated from the gas inlet 4 to be treated and the regeneration air is circulated from the regeneration gas inlet 6 to the air conditioner and continuously operated for 4 hours to heat and humidify the air. It was.
The humidity and temperature of the air at the gas outlet 5 to be processed and the gas outlet 7 for regeneration when 0.5 hours had passed were as follows.
・ Air to be treated (heated / humidified air):
Temperature: 27 ° C., Humidity: 0.0086 (kg-H 2 O / kg-dry air),
・ Regeneration air:
Temperature: 29.5 ° C., Humidity: 0.0142 (kg-H 2 O / kg-dry air),

この結果から、実施例1とは逆に被処理空気と再生用空気を流すことにより、処理前には温度が21.7℃、湿度が0.0056(kg-H2O/kg-乾燥空気)という低温度、低湿度の処理空気が、本発明の方法による加温・加湿処理を行なったところ、温度が27℃、湿度が0.0086(kg-H2O/kg-乾燥空気)のように加温、加湿することができた。
このような比較的低温度の空気の加温・加湿処理は、例えばスーパーなどの冷凍ショーケースの周囲の冷気の調節などに利用することができる。
From this result, the air to be treated and the air for regeneration are flowed in the opposite direction to Example 1, so that the temperature before the treatment is 21.7 ° C. and the humidity is 0.0056 (kg-H 2 O / kg-dry air). ) The low-temperature, low-humidity treated air was heated and humidified by the method of the present invention, and the temperature was 27 ° C. and the humidity was 0.0086 (kg-H 2 O / kg-dry air). So that it could be heated and humidified.
Such a relatively low-temperature air heating / humidifying treatment can be used, for example, for adjusting the cool air around a freezer showcase such as a supermarket.

本発明の空気調和方法及び空気調和装置を用いることによって、室内などの閉空間の除湿や加湿などの空気調和処理を容易に、効率的に行うことができる。従って、従来からさまざまな空調装置が使用されている居室や作業場、事務室などの閉空間の温度と湿度の調節などの空気調和処理に有用である。また、低温度の空気の加温・加湿処理には、例えばスーパーなどの冷凍ショーケースの周囲の滞留冷気の調節などに有用である。
また、本発明の空気調和方法は省エネルギーを促進しかつ室内空気環境、快適性指向にかなう環境調和型技術として、さまざまな産業用、民生用分野に適用できる。
By using the air conditioning method and the air conditioning apparatus of the present invention, air conditioning processing such as dehumidification and humidification in a closed space such as a room can be easily and efficiently performed. Therefore, it is useful for air conditioning processing such as adjusting the temperature and humidity of a closed space such as a living room, work place, or office room where various air conditioners have been used. In addition, the heating / humidifying treatment of low-temperature air is useful for adjusting the staying cool air around a freezer showcase such as a supermarket.
The air conditioning method of the present invention can be applied to various industrial and consumer fields as an environmentally harmonious technology that promotes energy saving and meets indoor air environments and comfort orientation.

1.分離膜(デシカント材)
2.被処理ガス用流路
3.再生ガス用流路
4.被処理ガス入口
5.被処理ガス出口
6.再生用ガス入口
7.再生用ガス出口
8.被処理空気
9.再生用空気
1. Separation membrane (desiccant material)
2. 2. Flow path for gas to be treated 3. Regenerative gas flow path 4. Processed gas inlet Processed gas outlet 6. 6. Gas inlet for regeneration Regeneration gas outlet 8. 8. Processed air Regenerative air

Claims (13)

デシカント材からなる分離膜の一つの側に被処理ガス用流路を形成し、他の側に再生ガス用流路を形成し、被処理ガス用流路に被処理空気を、再生ガス用流路に再生用空気を流通させるとともに、被処理ガス用流路の被処理空気中の水分を分離膜に吸着させ、分離膜中を拡散した吸着水分を再生ガス用流路の再生用空気で蒸発させる、または再生ガス用流路の再生用空気中の水分を分離膜に吸着させ、分離膜中を拡散した吸着水分を被処理ガス用流路の被処理空気で蒸発させる、ことを特徴とする、空気調和方法。   A flow path for the gas to be processed is formed on one side of the separation membrane made of the desiccant material, a flow path for the regeneration gas is formed on the other side, and the air to be processed is supplied to the flow path for the gas to be processed. The regeneration air is circulated through the passage, the moisture in the treated air in the treated gas channel is adsorbed on the separation membrane, and the adsorbed moisture diffused in the separation membrane is evaporated by the regeneration air in the regeneration gas channel. Or the moisture in the regeneration air in the regeneration gas flow path is adsorbed by the separation membrane, and the adsorbed moisture diffused in the separation membrane is evaporated by the air to be treated in the flow path for the treatment gas. , Air conditioning method. 被処理ガス用流路に湿潤した被処理空気を、再生ガス用流路に乾燥した再生用空気を流通させるとともに、被処理ガス用流路の被処理空気中の水分を分離膜に吸着させ、分離膜中を拡散した吸着水分を再生ガス用流路の再生用空気で蒸発させることにより被処理空気の除湿を行なうことを特徴とする、請求項1に記載の空気調和方法。   The process air wetted in the flow path for the gas to be processed is circulated through the regeneration air that is dried in the flow path for the regeneration gas, and the moisture in the air to be processed in the flow path for the process gas is adsorbed to the separation membrane, The air conditioning method according to claim 1, wherein the air to be treated is dehumidified by evaporating the adsorbed moisture diffused in the separation membrane with the regeneration air in the regeneration gas flow path. 被処理ガス用流路に乾燥した被処理空気を、再生ガス用流路に湿潤した再生用空気を流通させるとともに、再生ガス用流路の再生用空気中の水分を分離膜に吸着させ、分離膜中を拡散した吸着水分を被処理ガス用流路の被処理空気で蒸発させることにより被処理空気の加湿を行なうことを特徴とする、請求項1に記載の空気調和方法。   The air to be treated is passed through the flow path for the gas to be treated, and the air for regeneration that has been moistened through the flow path for the gas to be recirculated, and the moisture in the air for regeneration in the flow path for the regenerative gas is adsorbed to the separation membrane and separated. 2. The air conditioning method according to claim 1, wherein the air to be treated is humidified by evaporating the adsorbed moisture diffused in the film with the air to be treated in the flow path for the gas to be treated. 分離膜が、空気中の水分を吸着し、膜の反対側まで拡散するが、空気はほとんど透過しない性質を有する膜であって、80℃以下の温度で空気中の水分を吸着し、5℃以上の温度で吸着した水分を放出する能力を有するデシカント材であることを特徴とする、請求項1ないし3のいずれかの項に記載の空気調和方法。   The separation membrane adsorbs moisture in the air and diffuses to the opposite side of the membrane, but has a property of hardly transmitting air, adsorbs moisture in the air at a temperature of 80 ° C. or less, and 5 ° C. The air-conditioning method according to any one of claims 1 to 3, wherein the air-conditioning method is a desiccant material capable of releasing moisture adsorbed at the above temperature. 分離膜が、その水分の吸着能が、分離膜1kgあたり0.01kg〜0.65kgであるデシカント材であることを特徴とする、請求項1ないし4のいずれかの項に記載の空気調和方法。   The air conditioning method according to any one of claims 1 to 4, wherein the separation membrane is a desiccant material having a moisture adsorption capacity of 0.01 kg to 0.65 kg per kg of the separation membrane. . 分離膜が、その水分の拡散速度が、4m/日〜12000m/日であるデシカント材であることを特徴とする、請求項1ないし5のいずれかの項に記載の空気調和方法。   The air conditioning method according to any one of claims 1 to 5, wherein the separation membrane is a desiccant material having a moisture diffusion rate of 4 m / day to 12000 m / day. 分離膜が、その厚さが10μm〜3mmの薄膜のデシカント材であることを特徴とする、請求項1ないし6のいずれかの項に記載の空気調和方法。   The air conditioning method according to any one of claims 1 to 6, wherein the separation membrane is a thin-film desiccant material having a thickness of 10 µm to 3 mm. 分離膜が、金属繊維膜、活性炭素繊維膜、セルロース繊維膜、多孔質高分子膜、高分子繊維織布、及びこれらのシート材料に水分吸着能のある無機物質を付着固定させた膜からなる群から選ばれるいずれかの薄膜状のデシカント材であることを特徴とする、請求項1ないし7のいずれかの項に記載の空気調和方法。   The separation membrane comprises a metal fiber membrane, activated carbon fiber membrane, cellulose fiber membrane, porous polymer membrane, polymer fiber woven fabric, and a membrane in which an inorganic substance capable of adsorbing moisture is attached and fixed to these sheet materials. The air conditioning method according to any one of claims 1 to 7, wherein the air-conditioning method is any one of a thin-film desiccant material selected from a group. 被処理ガス用流路へ流入する被処理空気の比エンタルピーと再生用ガス用流路を流出する再生用空気の比エンタルピーの差と、被処理ガス用流路を流出する被処理空気の比エンタルピーと再生用ガス用流路へ流入する再生用空気の比エンタルピーの差がほぼ同一となる操作条件で空気を処理することを特徴とする、請求項1ないし8のいずれかの項に記載の空気調和方法。   The difference between the specific enthalpy of the air to be treated flowing into the flow path for the treated gas and the specific enthalpy of the regenerating air flowing out of the flow path for the regenerating gas, and the specific enthalpy of the air to be treated flowing out of the flow path for the treated gas The air according to any one of claims 1 to 8, wherein the air is treated under an operating condition in which a difference in specific enthalpy between the regeneration air flowing into the regeneration gas flow path is substantially the same. Harmony method. デシカント材からなる分離膜と、分離膜の一つの側に形成した被処理ガス用流路と、分離膜の他の側に形成した再生ガス用流路とからなり、該分離膜が被処理ガス用流路の被処理空気又は再生ガス用流路の再生用空気と接する面で水分を吸着し、分離膜中を再生ガス用流路又は被処理ガス用流路に向けて拡散するが、空気はほとんど透過しない薄膜であることを特徴とする空気調和装置。   A separation membrane made of a desiccant material, a flow path for a gas to be processed formed on one side of the separation membrane, and a flow path for a regeneration gas formed on the other side of the separation membrane, the separation membrane being a gas to be processed Moisture is adsorbed on the surface of the regenerator channel that is in contact with the air to be treated or the regenerator air, and diffuses in the separation membrane toward the regenerator gas channel or the regenerator gas channel. Is an air conditioner characterized by being a thin film that hardly permeates. 分離膜が、その水分の吸着能が分離膜1kgあたり0.01kg〜0.65kgであることを特徴とする、請求項10に記載の空気調和装置。   The air conditioning apparatus according to claim 10, wherein the separation membrane has a moisture adsorption capacity of 0.01 kg to 0.65 kg per kg of the separation membrane. 分離膜が、その水分の拡散速度が4m/日〜12000m/日であるデシカント材であることを特徴とする、請求項10または11に記載の空気調和装置。   The air conditioning apparatus according to claim 10 or 11, wherein the separation membrane is a desiccant material having a moisture diffusion rate of 4 m / day to 12000 m / day. 分離膜が、その厚さが10μm〜3mmの薄膜のデシカント材であることを特徴とする、請求項10ないし12のいずれかの項に記載の空気調和装置。   The air conditioner according to any one of claims 10 to 12, wherein the separation membrane is a thin-film desiccant material having a thickness of 10 µm to 3 mm.
JP2009146084A 2009-06-19 2009-06-19 Air conditioning method and air conditioning apparatus Active JP5601795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146084A JP5601795B2 (en) 2009-06-19 2009-06-19 Air conditioning method and air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146084A JP5601795B2 (en) 2009-06-19 2009-06-19 Air conditioning method and air conditioning apparatus

Publications (2)

Publication Number Publication Date
JP2011002171A true JP2011002171A (en) 2011-01-06
JP5601795B2 JP5601795B2 (en) 2014-10-08

Family

ID=43560266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146084A Active JP5601795B2 (en) 2009-06-19 2009-06-19 Air conditioning method and air conditioning apparatus

Country Status (1)

Country Link
JP (1) JP5601795B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214949A (en) * 2013-04-25 2014-11-17 新晃工業株式会社 Total heat exchanger using water vapor selection permeable film
WO2016076267A1 (en) * 2014-11-11 2016-05-19 株式会社 東芝 Humidity exchanger and air-conditioner
CN106964240A (en) * 2017-05-11 2017-07-21 曙光节能技术(北京)股份有限公司 Gas steam segregator for submerging liquid cooling system
KR20190014358A (en) * 2017-08-02 2019-02-12 한양대학교 에리카산학협력단 Dehumidification device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069208A (en) * 1992-02-21 1994-01-18 Westvaco Corp Activated carbon
JPH08260360A (en) * 1996-01-29 1996-10-08 Toyota Central Res & Dev Lab Inc Surface skin material for vehicle
JP2002001106A (en) * 2000-06-20 2002-01-08 Ebara Corp Functional element for dehumidification or heat exchange and its manufacturing method
JP2002130738A (en) * 2000-10-19 2002-05-09 Daikin Ind Ltd Air conditioner
JP2002224530A (en) * 2001-01-31 2002-08-13 Mitsubishi Electric Corp Combined desiccant material, fixed desiccant device using combined desiccant material and air conditioner using fixed desiccant device
WO2004107490A1 (en) * 2003-05-30 2004-12-09 Asahi Kasei Kabushiki Kaisha Humidifier
JP2005083591A (en) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp Moisture adsorbing device, and dehumidification device and refrigerating machine using the same
JP2005095858A (en) * 2003-08-25 2005-04-14 Syst Enji Service Kk Cleaning method of exhaust gas containing volatile hydrocarbon
JP2006015186A (en) * 2004-06-30 2006-01-19 Mitsubishi Electric Corp Dehumidifier
JP2007064508A (en) * 2005-08-29 2007-03-15 Rengo Co Ltd Sheet for total heat exchanger
JP2007187403A (en) * 2006-01-16 2007-07-26 Shin Nippon Air Technol Co Ltd Desiccant ventilation system
JP2007245018A (en) * 2006-03-16 2007-09-27 Mitsubishi Chemicals Corp Adsorption sheet, adsorbing element, method for manufacturing the same, and application thereof
US20080034966A1 (en) * 2006-08-14 2008-02-14 Nanocap Technologies, Llc Versatile dehumidification process and apparatus
JP2008127209A (en) * 2006-11-16 2008-06-05 Mitsubishi Electric Corp Mesoporous inorganic material and its manufacturing process

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069208A (en) * 1992-02-21 1994-01-18 Westvaco Corp Activated carbon
JPH08260360A (en) * 1996-01-29 1996-10-08 Toyota Central Res & Dev Lab Inc Surface skin material for vehicle
JP2002001106A (en) * 2000-06-20 2002-01-08 Ebara Corp Functional element for dehumidification or heat exchange and its manufacturing method
JP2002130738A (en) * 2000-10-19 2002-05-09 Daikin Ind Ltd Air conditioner
JP2002224530A (en) * 2001-01-31 2002-08-13 Mitsubishi Electric Corp Combined desiccant material, fixed desiccant device using combined desiccant material and air conditioner using fixed desiccant device
WO2004107490A1 (en) * 2003-05-30 2004-12-09 Asahi Kasei Kabushiki Kaisha Humidifier
JP2005095858A (en) * 2003-08-25 2005-04-14 Syst Enji Service Kk Cleaning method of exhaust gas containing volatile hydrocarbon
JP2005083591A (en) * 2003-09-04 2005-03-31 Mitsubishi Electric Corp Moisture adsorbing device, and dehumidification device and refrigerating machine using the same
JP2006015186A (en) * 2004-06-30 2006-01-19 Mitsubishi Electric Corp Dehumidifier
JP2007064508A (en) * 2005-08-29 2007-03-15 Rengo Co Ltd Sheet for total heat exchanger
JP2007187403A (en) * 2006-01-16 2007-07-26 Shin Nippon Air Technol Co Ltd Desiccant ventilation system
JP2007245018A (en) * 2006-03-16 2007-09-27 Mitsubishi Chemicals Corp Adsorption sheet, adsorbing element, method for manufacturing the same, and application thereof
US20080034966A1 (en) * 2006-08-14 2008-02-14 Nanocap Technologies, Llc Versatile dehumidification process and apparatus
JP2010501065A (en) * 2006-08-14 2010-01-14 ナノキャップ テクノロジーズ リミテッド ライアビリティ カンパニー Universal dehumidification process and equipment
JP2008127209A (en) * 2006-11-16 2008-06-05 Mitsubishi Electric Corp Mesoporous inorganic material and its manufacturing process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214949A (en) * 2013-04-25 2014-11-17 新晃工業株式会社 Total heat exchanger using water vapor selection permeable film
WO2016076267A1 (en) * 2014-11-11 2016-05-19 株式会社 東芝 Humidity exchanger and air-conditioner
JP2016087596A (en) * 2014-11-11 2016-05-23 株式会社東芝 Humidity exchanger and air conditioner
CN106964240A (en) * 2017-05-11 2017-07-21 曙光节能技术(北京)股份有限公司 Gas steam segregator for submerging liquid cooling system
KR20190014358A (en) * 2017-08-02 2019-02-12 한양대학교 에리카산학협력단 Dehumidification device
KR101981392B1 (en) 2017-08-02 2019-05-22 한양대학교 에리카산학협력단 Dehumidification device

Also Published As

Publication number Publication date
JP5601795B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
Rambhad et al. Solid desiccant dehumidification and regeneration methods—A review
CN110030654B (en) Air-exchanging air conditioner
US6003327A (en) Method and apparatus for cooling warm moisture-laden air
US5660048A (en) Air conditioning system for cooling warm moisture-laden air
US5727394A (en) Air conditioning system having improved indirect evaporative cooler
US4341539A (en) Thermally regenerative desiccant element
KR101630143B1 (en) Dehumidification device and dehumidification system
JP3992051B2 (en) Air conditioning system
JPH05245333A (en) Airconditioning method and airconditioning system
JP2005525528A (en) Sorptive heat exchanger and associated cooling sorption method
JP3861902B2 (en) Humidity control device
KR20060085691A (en) Air conditioner
WO2011111753A1 (en) Desiccant air conditioning device
JP5601795B2 (en) Air conditioning method and air conditioning apparatus
JP4075950B2 (en) Air conditioner
WO2005123225A1 (en) Dehumidifier
JP3711834B2 (en) Humidity control system
JP4529318B2 (en) Dehumidifying device and cold air generator using the dehumidifying device
US20220134277A1 (en) Solar-driven membrane-based open-cycle adsorption air conditioner
JP5764813B2 (en) Low dew point air generator
TWI768054B (en) Process and air conditioning apparatus for conditioning a fluid, and applications of the air conditioning apparatus
NL1032512C2 (en) Air conditioning system for buildings or vehicles, includes water vapor permeable membrane for removing air from moisture being supplied to sorption reactor
JP2005140372A (en) Air conditioner
JP2016084982A (en) Dehumidifier
JP2005164220A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5601795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250