JP2011001606A - Alloy material with high hardness, high corrosion resistance and high wear resistance, wear-resistant member using the same, and method for producing the wear-resistant member - Google Patents

Alloy material with high hardness, high corrosion resistance and high wear resistance, wear-resistant member using the same, and method for producing the wear-resistant member Download PDF

Info

Publication number
JP2011001606A
JP2011001606A JP2009145846A JP2009145846A JP2011001606A JP 2011001606 A JP2011001606 A JP 2011001606A JP 2009145846 A JP2009145846 A JP 2009145846A JP 2009145846 A JP2009145846 A JP 2009145846A JP 2011001606 A JP2011001606 A JP 2011001606A
Authority
JP
Japan
Prior art keywords
wear
resistant
hardness
less
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009145846A
Other languages
Japanese (ja)
Other versions
JP5567792B2 (en
Inventor
Takashi Rokutanda
貴史 六反田
Satoru Habu
悟 土生
Masashi Murakami
正志 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2009145846A priority Critical patent/JP5567792B2/en
Publication of JP2011001606A publication Critical patent/JP2011001606A/en
Application granted granted Critical
Publication of JP5567792B2 publication Critical patent/JP5567792B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Ni-Cr-Al alloy having reduced variation in a Cr concentration, to provide a wear-resistant member using the same, and to provide a method for producing the wear-resistant member.SOLUTION: The alloy material with high hardness, high corrosion resistance and high wear resistance is composed of, by mass, 30 to 45% Cr and 2 to 6% Al, and the balance Ni with inevitable impurities, and in the alloy material, the variation in the concentration of C in a unit area of 500 μm×500 μm is ≤3 mass%. The wear-resistant member uses the same. By the control of the size of an ingot and the temperature of a mold, Cr segregation caused by cooling non-uniformity is reduced.

Description

本発明は、高硬度耐食耐磨耗合金素材およびそれを用いた耐磨耗合金部材並びにその製造方法に関するものである。   The present invention relates to a high-hardness corrosion-resistant wear-resistant alloy material, a wear-resistant alloy member using the same, and a method for producing the same.

従来から、粉末や粒体などの原料物質を圧縮して、医薬品、医薬部外品、化粧品、農薬、飼料、食料などのタブレットを成形する場合、タブレット形状に応じた貫通孔を有する臼と、この臼の貫通孔(臼孔)内に挿入される下杵および上杵とを組合せた成形型が用いられている。このような成形型を使用したタブレット成形機では、まず下杵が挿入された臼内に粉末などの原料物質を充填し、この原料物質を上杵で圧縮することにより、所望のタブレットが成形される。
タブレット成形機などに用いられる成形型には、例えば特開平7−8540号公報に記載されているように、合金工具鋼(例えばSKS2やSKD11など)のような鉄基合金、あるいはMoやWなどの化合物を主体とする超硬合金などが従来から用いられている。しかし、これら従来の成形型用合金では、必ずしも耐食性や強度の点で満足した特性が得られておらず、原料物質の性質によっては成形型の寿命が大幅に低下するというような問題が生じている。
例えば、近年用途の多様化などに伴って、酸性粉末やアルカリ性粉末のような腐食性の高い粉末などを加圧成形する必要が生じている。このような腐食性の高い粉末の成形に、従来の合金工具鋼などからなる成形型を用いた場合、それらの表面が早期に腐食されてしまう。型表面の腐食は、原料粉末の離型性の低下要因となったり、さらには強度劣化などを招くことになる。
また、合金工具鋼などからなる成形型の耐食性を向上させるために、クロムメッキで表面をコーティングすることも試みられているが、メッキ層の剥離により十分な効果は得られていない。クロムメッキ層は表面硬度の向上などに対しても一定の効果を示すものの、それ自体が容易に剥離してしまうことから、十分にかつ安定して耐磨耗性の向上効果などを得ることはできない。このようなことから、成形型用部材の強度や硬度を維持しつつ、耐食性や耐磨耗性などの向上を図ることが望まれている。
このような耐磨耗性の問題を解決するために特開2001−62595号公報(特許文献1)には高硬度、高耐食性を備える錠剤成形用杵および臼が記載されている。この合金は高硬度、高耐食性の他に離型性も兼ね備えているが、錠剤成形直後から数時間程度の離型性は良いものの、量産を行なうにあたっては更なる離型性の改善が望まれていた。また、この合金は疲労強度が比較的低いので高強度化、そして成形面の鏡面仕上げ性も望まれていた。
Conventionally, when compressing raw materials such as powders and granules to form tablets such as pharmaceuticals, quasi-drugs, cosmetics, agricultural chemicals, feeds, foods, etc., a mortar having a through-hole according to the tablet shape, A molding die is used in which a lower punch and an upper punch inserted into a through hole (mortar hole) of the die are combined. In a tablet molding machine using such a mold, a desired tablet is molded by first filling a raw material such as a powder into a die into which a lower punch is inserted and compressing the raw material with an upper punch. The
Examples of molds used in tablet molding machines include iron-based alloys such as alloy tool steels (eg, SKS2 and SKD11), or Mo and W, as described in, for example, JP-A-7-8540. Conventionally, cemented carbides mainly composed of these compounds have been used. However, these conventional mold alloys do not necessarily have satisfactory characteristics in terms of corrosion resistance and strength, and depending on the properties of the raw materials, there is a problem that the mold life is significantly reduced. Yes.
For example, with the diversification of applications in recent years, it has become necessary to press-mold highly corrosive powders such as acidic powders and alkaline powders. When a conventional mold made of alloy tool steel or the like is used to form such highly corrosive powder, the surfaces thereof are corroded early. Corrosion on the mold surface causes a reduction in the releasability of the raw material powder, and further causes strength deterioration.
In addition, in order to improve the corrosion resistance of a mold made of alloy tool steel or the like, it has been attempted to coat the surface with chrome plating, but a sufficient effect has not been obtained due to peeling of the plating layer. Although the chrome plating layer has a certain effect on the improvement of surface hardness etc., it will peel off easily, so it is possible to obtain a sufficient and stable improvement in wear resistance etc. Can not. For these reasons, it is desired to improve the corrosion resistance and wear resistance while maintaining the strength and hardness of the mold member.
In order to solve such a problem of wear resistance, Japanese Patent Application Laid-Open No. 2001-62595 (Patent Document 1) describes a tablet molding pestle and a die having high hardness and high corrosion resistance. This alloy has both high hardness and high corrosion resistance, but also has mold release properties. Although it has good mold release properties for several hours immediately after tablet formation, further improvement in mold release properties is desired for mass production. It was. Further, since this alloy has a relatively low fatigue strength, it has been desired to increase the strength and to provide a mirror finish on the molding surface.

一方、耐食性が求められる用途としては、上述した腐食性粉末の成形型のような製造装置に限らず、例えば薬品類の処理装置、廃液や廃泥の処理装置、燃焼装置やその周辺部品などが挙げられる。また、樹脂レンズやエンプラなどの樹脂成形金型や刃物、直動軸受けなどの部品もこのような主として耐食性が求められる用途には、従来、ステンレス鋼のような耐食鋼が用いられてきた。しかしながら、ステンレス鋼のような耐食鋼は強度や硬度などが不十分であり、特に硬度や耐磨耗性が求められる用途には使用することができない。
例えば特開昭63−18031号公報(特許文献2)には、耐食性に優れた熱間プレス金型として、Cr20〜50質量%、Al1.5〜9質量%、残部が実質的にNiからなる金型が記載されている。このプレス金型は、温度500〜800℃、プレス圧500〜2000kg/cm(50〜200MPa)での熱間プレスに対して高硬度を示し、耐座屈性を有するというような特性を有しており、またNiやCrにより耐食性を得ている。しかし、このNi−Cr−Al系合金からなる金型部品は、材料硬度や耐食性に優れるものの、必ずしも十分な耐磨耗性を有しておらず、使用条件によっては部品の摺動部に磨耗が進行し、部品寿命が短くなるという欠点を有している。
樹脂レンズやエンプラなどの樹脂成形金型は鏡面仕上げ性が良好であることが望まれる。従来の鋼材では析出した比較的大きな炭化物によって硬化する合金である。このため研磨時の析出炭化物粒子の脱落による小孔の発生、脱落粒子による研磨面の損傷が発生し、鏡面仕上げ加工が困難であった。また従来の鋼材では離型性を良くするためにNiメッキやCrNコーティングを行なうが、満足できる離型性ではなく、表面粗度によっては離型性が悪くなったり、磨耗によって離型性が変化するという問題があった。
また、より特性を向上させるために国際公開第2006/035671号パンフレット(特許文献3)には、Ni−Cr−Al合金の時効処理後のX線回折強度を調製することにより、金型としての特性を向上させることが開示されている。これにより、未時効組織を低減することができている。
しかしながら、従来のように未時効組織の制御だけでは不十分であることが分かった。この原因を追及したところNi−Cr−Al合金はCrの偏析が起きやすく、Crの偏析が多いところでは時効熱処理後にその周辺との硬度差によって、研磨後の鏡面に微細な凹凸が発生しやすいといった問題があった。
On the other hand, the application requiring corrosion resistance is not limited to a manufacturing apparatus such as the mold for corrosive powders described above, but includes, for example, chemical processing apparatuses, waste liquid and waste mud processing apparatuses, combustion apparatuses and peripheral parts thereof. Can be mentioned. In addition, corrosion-resistant steel such as stainless steel has been conventionally used for applications such as resin lenses and engineering plastics, such as resin molding dies, blades, and linear motion bearings, which mainly require corrosion resistance. However, corrosion-resistant steel such as stainless steel has insufficient strength and hardness, and cannot be used for applications that require particularly hardness and wear resistance.
For example, Japanese Patent Application Laid-Open No. 63-18031 (Patent Document 2) discloses a hot press die having excellent corrosion resistance, Cr 20-50% by mass, Al 1.5-9% by mass, and the balance being substantially Ni. The mold is described. This press die has characteristics such as high hardness and resistance to buckling against hot pressing at a temperature of 500 to 800 ° C. and a pressing pressure of 500 to 2000 kg / cm 2 (50 to 200 MPa). In addition, corrosion resistance is obtained by Ni or Cr. However, although the mold parts made of this Ni-Cr-Al alloy are excellent in material hardness and corrosion resistance, they do not necessarily have sufficient wear resistance, and wear on the sliding parts of the parts depending on the use conditions. Progresses and the component life is shortened.
It is desired that resin molds such as resin lenses and engineering plastics have good mirror finish. Conventional steel is an alloy that is hardened by a relatively large carbide precipitated. For this reason, small pores are generated due to dropping of the precipitated carbide particles during polishing, and the polished surface is damaged due to the falling particles, and mirror finishing is difficult. In addition, Ni plating or CrN coating is applied to improve the releasability of conventional steel materials, but it is not a satisfactory releasability. There was a problem to do.
In order to further improve the properties, International Publication No. 2006/035671 pamphlet (Patent Document 3) describes the X-ray diffraction intensity after aging treatment of Ni—Cr—Al alloy as a mold. It is disclosed to improve the properties. Thereby, an unaged structure | tissue can be reduced.
However, it has been found that control of an unaged tissue as in the past is not sufficient. In pursuit of this cause, Ni-Cr-Al alloy is prone to segregation of Cr, and where there is a large amount of segregation of Cr, fine unevenness is likely to occur on the mirror surface after polishing due to the difference in hardness from its periphery after aging heat treatment. There was a problem.

特開2001−62595号公報JP 2001-62595 A 特開昭63−18031号公報JP-A 63-18031 国際公開第2006/035671号パンフレットInternational Publication No. 2006/035671 Pamphlet

従来のNi−Cr−Al合金ではCrの偏析を十分改善できず。その結果、部分的な硬度差が生じ、研磨加工を施したときに研磨面に微細な凹凸が発生していた。微細な凹凸が残ると表面を平坦にできず、例えば、金型等の用途では成型面を平坦にせねばならず。従来の材料では微細な表面凹凸を解消するために必要以上に研磨工程に時間がかかったり、時間をかけて研磨を行っても改善させず不良となることもあった。均一な平坦面でない面を使って、金型成型すると成形品の面が凸凹になりきれいな成形品が作れないといった問題も生じていた。また、刃物に適用した場合もきれいな刃面ができないといった問題もあった。
本発明は、このような問題を解決するためのものでCr偏析を低減することにより、部分的な硬度差を無くし、研磨加工を施した際に研磨面の微細な凹凸を無くすための高硬度耐食耐磨耗合金素材およびそれを用いた耐摩耗性部材並びにその製造方法を提供するためのものである。
Conventional Ni—Cr—Al alloys cannot sufficiently improve Cr segregation. As a result, a partial hardness difference occurred, and fine irregularities were generated on the polished surface when the polishing process was performed. If the fine irregularities remain, the surface cannot be flattened. For example, in applications such as molds, the molding surface must be flattened. In the case of conventional materials, the polishing process takes more time than necessary to eliminate fine surface irregularities, and even if polishing takes time, it does not improve and sometimes becomes defective. When a die is molded using a surface that is not a uniform flat surface, the surface of the molded product becomes uneven, and there is a problem that a beautiful molded product cannot be made. In addition, there is a problem that a clean blade surface cannot be obtained when applied to a blade.
The present invention is for solving such problems, and by reducing Cr segregation, it eliminates a partial hardness difference and has a high hardness for eliminating fine irregularities on the polished surface when polishing is performed. An object is to provide a corrosion-resistant and wear-resistant alloy material, a wear-resistant member using the same, and a method for producing the same.

本発明の高硬度耐食耐摩耗性合金素材は、Crを30〜45質量%、Alを2〜6質量%含み、残部をNiおよび不可避不純物からなり、単位面積500μm×500μmのCr濃度のバラツキが3質量%以下であることを特徴とするものである。また、硬度の平均がHv150以上Hv200以下であることが好ましい。また、単位面積500μm×500μmを25個の小単位100μm×100μmに分割したとき、Cr濃度が、単位面積の平均よりも1.5%以上ずれている小単位が25個中3個以下(0含む)であることが好ましい。
また、このような高硬度耐食耐磨耗合金素材は、表面の一部あるいはすべてを研磨加工して成る耐磨耗性部材に好適である。また、耐摩耗性部材は、硬度の平均がHv600以上Hv750以下であり、同一平面の硬度のバラツキが2.0%以下であることが好ましい。また、研磨加工された箇所の表面凹凸の最大値が0.5μm以下であることが好ましい。また、研磨された箇所の面積が10mm以上であることが好ましい。また、表面粗さRaが1μm以下であることが好ましい。
The high-hardness corrosion-resistant wear-resistant alloy material of the present invention contains 30 to 45% by mass of Cr, 2 to 6% by mass of Al, the balance is made of Ni and inevitable impurities, and has a variation in Cr concentration of unit area 500 μm × 500 μm. It is characterized by being 3% by mass or less. Moreover, it is preferable that the average hardness is Hv150 or more and Hv200 or less. Further, when a unit area of 500 μm × 500 μm is divided into 25 small units of 100 μm × 100 μm, 3 or less of 25 small units whose Cr concentration is shifted by 1.5% or more from the average of the unit areas (0 Preferably).
Further, such a high hardness corrosion resistant wear resistant alloy material is suitable for a wear resistant member formed by polishing a part or all of the surface. The wear resistant member preferably has an average hardness of Hv600 or more and Hv750 or less, and a hardness variation of the same plane is 2.0% or less. Moreover, it is preferable that the maximum value of the surface unevenness of the polished part is 0.5 μm or less. Moreover, it is preferable that the area of the grind | polished location is 10 mm < 2 > or more. Further, the surface roughness Ra is preferably 1 μm or less.

また、本発明の耐摩耗性部材の製造方法は、Crを30〜45質量%、Alを2〜6質量%含み、残部をNiおよび不可避不純物である原料を混合し、溶解してNi−Cr−Al合金溶湯を調製する工程と、前記Ni−Cr−Al合金溶湯を使って、鋳型の冷却面からの最短距離が120mm以下のインゴットを調製する工程と、前記インゴットを溶体化処理して硬度Hvが150〜200の高硬度耐食耐磨耗合金素材を調製する工程と、前記高硬度耐食耐磨耗合金素材に機械加工を施す工程と、500〜750℃で時効熱処理を施す工程と、表面研磨加工を施す工程を具備することを特徴とするものである。
また、インゴットサイズは冷却面からの最長距離が80mm以下であることが好ましい。また、鋳型温度を50℃以上200℃以下として鋳造を行なうことが好ましい。また、インゴットを鋳造する工程において、鋳型の肉厚が50mm以上であることが好ましい。また、研磨加工後の表面粗さRaが1μm以下であることが好ましい。
Moreover, the manufacturing method of the wear-resistant member of the present invention includes 30 to 45% by mass of Cr, 2 to 6% by mass of Al, and the remaining Ni and raw materials that are inevitable impurities are mixed and dissolved to form Ni-Cr. A step of preparing a molten Al alloy, a step of preparing an ingot having a minimum distance of 120 mm or less from the cooling surface of the mold using the molten Ni-Cr-Al alloy, and subjecting the ingot to a solution treatment to obtain a hardness A step of preparing a high-hardness corrosion-resistant wear-resistant alloy material having Hv of 150 to 200, a step of machining the high-hardness corrosion-resistant wear-resistant alloy material, a step of applying an aging heat treatment at 500 to 750 ° C., and a surface It comprises a step of applying a polishing process.
The ingot size is preferably 80 mm or less at the longest distance from the cooling surface. Further, casting is preferably performed at a mold temperature of 50 ° C. or higher and 200 ° C. or lower. In the step of casting the ingot, the thickness of the mold is preferably 50 mm or more. Moreover, it is preferable that the surface roughness Ra after polishing is 1 μm or less.

本発明によれば、Cr偏析を低減しているので、部分的な硬度差を無くし、研磨加工後の研磨面の微細な凹凸を低減することが可能な高硬度耐食耐摩耗性合金素材を提供することができる。また、このような高硬度耐食耐摩耗性合金素材を使った耐摩耗性部材は、微細な凹凸が低減されているので平坦な研磨面を得ることができる。また、耐摩耗性部材の製造方法は、本発明の耐摩耗性部材を効率よく得ることができる。   According to the present invention, since Cr segregation is reduced, a high-hardness corrosion-resistant wear-resistant alloy material that eliminates partial hardness differences and can reduce fine irregularities on the polished surface after polishing is provided. can do. In addition, since the wear-resistant member using such a high hardness corrosion-resistant wear-resistant alloy material has reduced fine irregularities, a flat polished surface can be obtained. Moreover, the manufacturing method of an abrasion-resistant member can obtain the abrasion-resistant member of this invention efficiently.

本発明の耐摩耗性部材(刃物)の一例を示す図。The figure which shows an example of the abrasion-resistant member (cutlery) of this invention. 図1の断面図。Sectional drawing of FIG. インゴットの一例を示す図。The figure which shows an example of an ingot. 単位面積500μm×500μmを示す図。The figure which shows unit area 500 micrometers x 500 micrometers.

本発明の高硬度耐食耐磨耗合金素材は、Crを30〜45質量%、Alを2〜6質量%含み、残部をNiおよび不可避不純物からなり、単位面積500μm×500μmの断面Cr濃度のバラツキが3質量%以下であることを特徴とするものである。
Cr(クロム)は耐食性および加工性を確保するための材料で30〜45質量%、さらには35〜41質量%が好ましい。30質量%未満では耐食性が不十分であり、45質量%を超えるとCrの偏析が発生し易くなり加工性が低下する。また、Al(アルミニウム)は硬さを調製するための材料である。その含有量は2〜6質量%、さらには3〜5質量%が好ましい。また、残部Ni(ニッケル)である。
また、不可避不純物は、Ni、Cr、Al以外の元素を示すが、その含有量は合計で1質量%以下が好ましい。また、Ni、Cr、Al以外の成分として、Zr(ジルコニウム)、Hf(ハフニウム)、V(バナジウム)、Ta(タンタル)、Mo(モリブデン)、W(タングステン)、Nb(ニオブ)から選択される少なくとも1種以上の元素を0.2〜2質量%含有させてもよい。これら元素は合金素材の硬度を向上させるために有効である。
また、Mg(マグネシウム)は脱酸剤として効果的であり、その添加量は0.001〜0.015質量%が好ましい。0.001質量%未満では添加の効果が不十分であり、0.015質量%を超えるとそれ以上の効果が得られないだけでなく硬度が低下する恐れがある。
The high-hardness corrosion-resistant wear-resistant alloy material of the present invention contains 30 to 45% by mass of Cr, 2 to 6% by mass of Al, the balance is made of Ni and inevitable impurities, and has a variation in cross-sectional Cr concentration of unit area 500 μm × 500 μm. Is 3% by mass or less.
Cr (chromium) is a material for ensuring corrosion resistance and workability, and is preferably 30 to 45 mass%, more preferably 35 to 41 mass%. If it is less than 30% by mass, the corrosion resistance is insufficient, and if it exceeds 45% by mass, segregation of Cr tends to occur and the workability is lowered. Al (aluminum) is a material for adjusting the hardness. The content is preferably 2 to 6% by mass, more preferably 3 to 5% by mass. The balance is Ni (nickel).
The inevitable impurities indicate elements other than Ni, Cr, and Al, and the total content is preferably 1% by mass or less. Further, as a component other than Ni, Cr, and Al, it is selected from Zr (zirconium), Hf (hafnium), V (vanadium), Ta (tantalum), Mo (molybdenum), W (tungsten), and Nb (niobium). You may contain 0.2-2 mass% of at least 1 or more types of element. These elements are effective for improving the hardness of the alloy material.
Moreover, Mg (magnesium) is effective as a deoxidizer, and the addition amount is preferably 0.001 to 0.015% by mass. If it is less than 0.001% by mass, the effect of addition is insufficient, and if it exceeds 0.015% by mass, not only a further effect cannot be obtained but also the hardness may be lowered.

本発明は、上記合金組成を具備するNi−Cr−Al合金素材において、単位面積500μm×500μmのCr濃度のバラツキが3質量%以下であることを特徴とするものである。また、Cr濃度のバラツキは小さいほどよく、好ましくは2質量%以下である。
Cr濃度のバラツキは、SEM−EDX法(エネルギー分散型X線分光器を使ったX線分光法)で行う。高硬度耐食耐磨耗合金素材またはそれを使った耐摩耗性部材の任意の測定面(測定においては切断面を使ってもよい)を選択し、単位面積500μm×500μmをSEM−EDX法で平均のCr量を測定し、その測定部を100μm×100μm単位(小単位)に分割し、各小単位(100μm×100μm)ごとにCr量を分析する。Cr濃度のバラツキは、単位(100μm×100μm)において、最大値(Crの質量%)−最小値(Crの質量%)=Cr濃度のバラツキ(質量%)、とする。
本発明は、このCr濃度のバラツキが3質量%以下である。3質量%を超えると部分的にCr量リッチな領域ができ硬度差が発生する。Cr偏析を低減することにより、部分的な硬度差を無くし、研磨加工を行い易くする。Cr濃度のバラツキは小さい程よいが、製造管理の煩雑さを考慮するとCr濃度のバラツキは0.5〜1.4質量%が好ましい。また、同様の方法においてAlを分析するとAl濃度のバラツキは0.5%質量以下、さらには0.1〜0.3質量%が好ましい。
また、高硬度耐食耐磨耗合金素材とは、鋳造後のインゴットに鍛造、圧延等の塑性加工を施し、溶体化処理を施したものを示す。また、耐摩耗性部材は、合金素材を加工して時効熱処理を施したもの、また、さらに研磨加工を施したものを示す。
The present invention is characterized in that, in the Ni—Cr—Al alloy material having the above alloy composition, the variation in Cr concentration of a unit area of 500 μm × 500 μm is 3% by mass or less. Further, the variation in Cr concentration is preferably as small as possible, and is preferably 2% by mass or less.
The variation in Cr concentration is performed by SEM-EDX method (X-ray spectroscopy using an energy dispersive X-ray spectrometer). Select an arbitrary measurement surface (a cut surface may be used for measurement) of a high-hardness corrosion-resistant wear-resistant alloy material or a wear-resistant member using the same, and average a unit area of 500 μm × 500 μm by the SEM-EDX method The amount of Cr is measured, the measurement part is divided into 100 μm × 100 μm units (small units), and the Cr amount is analyzed for each small unit (100 μm × 100 μm). The variation of the Cr concentration is, in the unit (100 μm × 100 μm), the maximum value (Cr mass%) − minimum value (Cr mass%) = Cr concentration variation (mass%).
In the present invention, the variation in Cr concentration is 3% by mass or less. If it exceeds 3% by mass, a Cr-rich region is partially formed and a hardness difference occurs. By reducing Cr segregation, a partial hardness difference is eliminated and polishing is facilitated. The smaller the variation in Cr concentration, the better. However, considering the complexity of production management, the variation in Cr concentration is preferably 0.5 to 1.4% by mass. Further, when Al is analyzed in the same manner, the variation in Al concentration is preferably 0.5% by mass or less, more preferably 0.1 to 0.3% by mass.
Further, the high hardness corrosion resistant wear resistant alloy material refers to a material obtained by subjecting an ingot after casting to plastic processing such as forging and rolling and subjecting it to a solution treatment. In addition, the wear-resistant member is a member obtained by processing an alloy material and subjecting it to an aging heat treatment, or a member subjected to polishing.

また、単位面積500μm×500μmを25個の小単位100μm×100μmに分割したとき、Cr濃度が、単位面積の平均よりも1.5%以上ずれている小単位が25個中3個以下であることが好ましい。Cr濃度のバラツキ(最大値−最小値)を3質量%以下にするだけでなく、濃度ずれを極力抑えることがCr偏析を低減することに有効である。図4に単位面積500μm×500μmを25個の小単位100μm×100μmに分割した図を示した。まず、SEM−EDX法を用いて、単位面積500μm×500μmの視野にてCr濃度を求め、この値を平均値とする。次に、小単位100μm×100μmの視野にてCr濃度を分析する。この作業を小単位25個について行い、平均値と比べてCr濃度が1.5%以上ずれている小単位の数を数える。本発明では、このような分析方法を用いたとき、Cr濃度が、単位面積の平均よりも1.5%以上ずれている小単位が25個中3個以下(0含む)となる。   In addition, when the unit area of 500 μm × 500 μm is divided into 25 small units of 100 μm × 100 μm, the Cr concentration is shifted by 1.5% or more from the average of the unit area, and 3 or less of the small units are 25 or less. It is preferable. In addition to reducing the Cr concentration variation (maximum value-minimum value) to 3% by mass or less, it is effective in reducing Cr segregation to suppress concentration deviation as much as possible. FIG. 4 shows a diagram in which a unit area of 500 μm × 500 μm is divided into 25 small units of 100 μm × 100 μm. First, using the SEM-EDX method, the Cr concentration is obtained in a visual field having a unit area of 500 μm × 500 μm, and this value is taken as an average value. Next, the Cr concentration is analyzed in a visual field of a small unit of 100 μm × 100 μm. This operation is performed for 25 small units, and the number of small units whose Cr concentration is shifted by 1.5% or more compared with the average value is counted. In the present invention, when such an analysis method is used, the Cr concentration is 3 or less (including 0) of 25 small units having a deviation of 1.5% or more from the average of the unit areas.

また、高硬度耐食耐磨耗合金素材は、硬度の平均がHv150〜200であることが好ましい。特に、鋳造後のインゴットに鍛造、圧延を施し、溶体化熱処理を施した合金素材の硬度がHv150〜200の範囲であることが好ましい。この範囲であれば、時効熱処理後の硬度の平均をHv600〜750の範囲に調整し易い。
高硬度耐食耐磨耗合金素材を使って耐摩耗性部材にするには、鍛造、圧延、打抜き等の機械加工を施して形状を整える。次に時効熱処理を施し、硬度を向上させる。本発明ではCr偏析を低減しているので、硬度の平均がHv600以上Hv750以下であり、さらに硬度のバラツキを2.0%以下とすることができる。
硬度の測定方法は、JIS−Z−2244に基づき荷重1kgで行う。同一測定面において、5か所測定し、その平均値を求める。硬度のバラツキは、[(最大の硬度−最小の硬度)/(硬度の平均値)]×100%により求める。また、硬度の測定箇所は、研磨加工した箇所がある場合は、研磨加工部(研磨加工した箇所)から任意の5か所を選定し、各箇所で硬度Hvを測定するものとする。
The high hardness corrosion resistant wear resistant alloy material preferably has an average hardness of Hv150 to 200. In particular, it is preferable that the hardness of the alloy material obtained by forging and rolling the ingot after casting and performing solution heat treatment is in the range of Hv150 to 200. If it is this range, it will be easy to adjust the average of the hardness after an aging heat processing in the range of Hv600-750.
In order to make a wear-resistant member using a high-hardness corrosion-resistant wear-resistant alloy material, the shape is adjusted by performing machining such as forging, rolling, and punching. Next, an aging heat treatment is applied to improve the hardness. Since Cr segregation is reduced in the present invention, the average hardness is Hv600 or higher and Hv750 or lower, and the hardness variation can be 2.0% or less.
The measuring method of hardness is performed with a load of 1 kg based on JIS-Z-2244. Measure five points on the same measurement surface and determine the average value. The variation in hardness is obtained by [(maximum hardness−minimum hardness) / (average value of hardness)] × 100%. In addition, as for hardness measurement locations, if there are polished locations, any five locations are selected from the polished portion (polished locations), and the hardness Hv is measured at each location.

本発明では、合金素材のCr濃度バラツキを提言しているので、耐摩耗性部材の硬度をHv600以上Hv750以下と高くした上で、さらに硬度バラツキを2.0%以下と低減できる。また、研磨加工を施したときに微細な凹凸のない研磨面を得ることができる。このため、表面粗さRaが1μm以下、さらには0.5μm以下の鏡面研磨加工を施したとしても研磨時間の短縮も可能である。そのため、研磨効率が向上する。また、このような鏡面加工を施したとき、研磨加工した箇所の表面凹凸を0.5μm以下と平坦にすることができる。このため、不良発生率も下がり、製品歩留まりが向上する。   In the present invention, since the Cr concentration variation of the alloy material is proposed, the hardness variation can be further reduced to 2.0% or less after the hardness of the wear resistant member is increased to Hv600 or more and Hv750 or less. In addition, a polished surface without fine irregularities can be obtained when polishing is performed. For this reason, the polishing time can be shortened even if a mirror polishing process is performed with a surface roughness Ra of 1 μm or less, and further 0.5 μm or less. Therefore, the polishing efficiency is improved. Further, when such mirror processing is performed, the surface unevenness of the polished portion can be flattened to 0.5 μm or less. For this reason, the defect occurrence rate is also reduced and the product yield is improved.

従来は単に表面粗さRaで管理していたが、Cr偏析を制御していないと、同じRa1μmであってもその研磨面の表面凹凸は1.5μm以上と非常に大きかった。この表面凹凸の原因を追及したところ、Cr偏析部の境界に表面凹凸の原因があることが判明した。このような研磨面では、例えば成形品を作るための金型に使うと成形品の表面凹凸が大きくなり、きれいな成形品ができないまたは成形品の離型性が不十分といった不具合があった。本発明のようにCr偏析を低減することにより、表面凹凸を0.5μm以下にできるので成形品を作る金型に使ったとしても表面が平滑で離型性の良い金型を作ることができる。また、刃物に使った場合、表面が平滑で切れ味のよい刃面(刃先)を得ることができる。   Conventionally, the surface roughness Ra was simply managed, but if the segregation of Cr was not controlled, the surface unevenness of the polished surface was as large as 1.5 μm or more even with the same Ra of 1 μm. When the cause of this surface unevenness was investigated, it was found that there was a cause of surface unevenness at the boundary of the Cr segregation part. When such a polished surface is used, for example, in a mold for producing a molded product, the surface unevenness of the molded product becomes large, and there is a problem that a clean molded product cannot be formed or the molded product has insufficient releasability. By reducing Cr segregation as in the present invention, the surface unevenness can be reduced to 0.5 μm or less, so that even when used in a mold for producing a molded product, a mold having a smooth surface and good releasability can be produced. . Moreover, when it uses for a cutter, the surface is smooth and can obtain a sharp cutting surface (blade edge).

また、表面凹凸の測定方法は、研磨面を表面粗さ計で測定し、断面曲線を求め、最も大きな凹凸差を求めるものとする。凹凸差は隣り合う凹部と凸部の差を取り、最も大きな凹凸差を表面凹凸の最大値とする。
また、研磨加工後の表面凹凸を小さくできるので、研磨された箇所の面積が10mm以上と広い研磨加工部であったとしても平坦な面が得られる。そのため、短辺の長さが4mm以上の幅広の耐摩耗性部材であったとしても研磨ムラがなく、均一な鏡面を得ることができる。
このような合金素材は、様々な耐摩耗性部材に適用できる。特に、その表面の一部または全部に研磨加工を施すような耐摩耗性部材に好適である。また、Ni−Cr−Al合金は高硬度、高耐食性を示す材料であるため、このような特性が必要な分野にも適用できる。耐摩耗性部材の一例としては、粉末や粒体などの原料物質を圧縮して、医薬品、医薬部外品、化粧品、農薬、飼料、食料などのタブレットを成形する場合の成形型、臼、杵などが挙げられる。また、手術用メス、ハサミ、さらには一般用の刃物などもある。また、耐食性を利用して、ピンセット、手術用メスなどの手術用機器にも好適である。いずれの分野でもRa1μm以下、さらには0.5μm以下の鏡面加工が必要な分野である。
Moreover, the measuring method of surface unevenness | corrugation shall measure a grinding | polishing surface with a surface roughness meter, calculates | requires a cross-sectional curve, and calculates | requires the largest unevenness | corrugation difference. The unevenness difference is the difference between adjacent recesses and protrusions, and the largest unevenness difference is defined as the maximum surface unevenness.
Moreover, since the surface unevenness | corrugation after grinding | polishing processing can be made small, even if it is a grinding | polishing process part with a large area of 10 mm < 2 > or more, the flat surface is obtained. Therefore, even if it is a wide wear-resistant member having a short side length of 4 mm or more, there is no polishing unevenness and a uniform mirror surface can be obtained.
Such an alloy material can be applied to various wear-resistant members. In particular, it is suitable for a wear-resistant member in which a part or all of the surface thereof is polished. Further, since Ni—Cr—Al alloy is a material exhibiting high hardness and high corrosion resistance, it can be applied to fields requiring such characteristics. Examples of wear-resistant members include molds, mortars, and molds for compressing raw materials such as powders and granules to form tablets for pharmaceuticals, quasi-drugs, cosmetics, agricultural chemicals, feeds, foods, etc. Etc. In addition, there are surgical scalpels, scissors, and general-purpose blades. Moreover, it is suitable for surgical instruments such as tweezers and surgical scalpels by utilizing the corrosion resistance. In any field, Ra 1 μm or less, further 0.5 μm or less is required.

図1に本発明の耐摩耗性部材の一例である刃物を示した。図中、1は刃物、2は刃先、3は刃物本体部である。また、図2は図1の刃先を厚さ方向から見た断面図である。刃先2は研磨加工が施された箇所であり、刃物本体部は研磨加工が施されていない箇所である。   FIG. 1 shows a cutter as an example of the wear-resistant member of the present invention. In the figure, 1 is a blade, 2 is a blade edge, and 3 is a blade body. FIG. 2 is a cross-sectional view of the blade edge of FIG. 1 viewed from the thickness direction. The blade edge 2 is a place where the polishing process is performed, and the blade main body is a place where the polishing process is not performed.

次に本発明の耐摩耗性部材の製造方法について説明する。本発明の耐摩耗性部材の製造方法は特に限定されるものではないが、効率よく得るための方法として次のものが挙げられる。
本発明の耐摩耗性部材の製造方法は、Crを30〜45質量%、Alを2〜6質量%含み、残部をNiおよび不可避不純物である原料を混合し、溶解してNi−Cr−Al合金溶湯を調製する工程と、前記Ni−Cr−Al合金溶湯を使って、鋳型の冷却面からの最長距離が120mm以下のインゴットを調製する工程と、前記インゴットを溶体化処理して硬度Hvが150〜200の高硬度耐食耐磨耗合金素材を調製する工程と、前記高硬度耐食耐磨耗合金素材に機械加工を施す工程と、500〜750℃で時効熱処理を施す工程と、表面研磨加工を施す工程を具備することを特徴とするものである。
まず、原料としてのCr、Al、Ni、必要に応じ、Zr、Hf、V、Ta、Mo、W、Nbから選ばれる元素を所定量秤量して混合し、溶解する。このとき真空溶解法を用いれば、溶解時に不純物が混入することを低減することができる。
Next, the manufacturing method of the wear resistant member of the present invention will be described. Although the manufacturing method of the abrasion-resistant member of this invention is not specifically limited, The following are mentioned as a method for obtaining efficiently.
The manufacturing method of the wear-resistant member of the present invention comprises 30 to 45% by mass of Cr, 2 to 6% by mass of Al, the remainder being mixed with Ni and raw materials that are inevitable impurities, and melted to be Ni-Cr-Al A step of preparing a molten alloy, a step of preparing an ingot having a maximum distance of 120 mm or less from the cooling surface of the mold using the molten Ni-Cr-Al alloy, and a hardness Hv by solution treatment of the ingot. A step of preparing a 150 to 200 high hardness corrosion resistant wear resistant alloy material, a step of machining the high hardness corrosion resistant wear resistant alloy material, a step of aging heat treatment at 500 to 750 ° C., and a surface polishing process It comprises the process of giving.
First, Cr, Al, Ni as raw materials and, if necessary, an element selected from Zr, Hf, V, Ta, Mo, W, and Nb are weighed, mixed, and dissolved. At this time, if a vacuum melting method is used, it is possible to reduce the mixing of impurities during melting.

原料を溶解してできた原料溶湯を鋳型に注入してインゴットを製造する。このとき、鋳型の冷却面からインゴットの最短距離が120mm以下となるようにインゴットサイズを調製する。鋳型の冷却面とは、鋳型において原料溶湯と接する面を示す(つまり、鋳型の内面が冷却面となる)。例えば、直径<長さの円柱状インゴットの場合はインゴットの半径が冷却面からインゴットの最短距離になる。また、四角の短辺長さ<長さの四角柱のインゴット、平板状のインゴットを製造する場合は厚さ方向断面における中心点までの長さが冷却面からインゴットの最短距離となる。また、直径>長さの円柱状インゴットの場合はインゴットの厚さ方向長さの半分が冷却面からインゴットの最短距離になる。図3にインゴットの一例を示した。矢印は直径であり、冷却面からインゴットの最短距離とは円柱の半径を示す。   An ingot is manufactured by pouring a raw material melt obtained by melting the raw material into a mold. At this time, the ingot size is adjusted so that the shortest distance of the ingot from the cooling surface of the mold is 120 mm or less. The cooling surface of the mold refers to a surface in contact with the raw material melt in the mold (that is, the inner surface of the mold becomes the cooling surface). For example, in the case of a cylindrical ingot having a diameter <length, the radius of the ingot is the shortest distance from the cooling surface to the ingot. In the case of manufacturing a rectangular column ingot or a flat plate ingot having a square short side length <length, the length to the center point in the cross section in the thickness direction is the shortest distance from the cooling surface to the ingot. In the case of a cylindrical ingot with a diameter> length, half of the length of the ingot in the thickness direction is the shortest distance from the cooling surface to the ingot. FIG. 3 shows an example of an ingot. The arrow indicates the diameter, and the shortest distance from the cooling surface to the ingot indicates the radius of the cylinder.

インゴットのサイズを半径120mm以下、さらには半径80mm以下と小さくすることにより冷却時の冷却むらを無くすことができる。また、鋳型温度を50℃以上200℃以下として鋳造を行なうことが好ましい。インゴットサイズや鋳型温度を調製することによりインゴットを急冷処理することができ冷却むらを無くす。急冷処理することにより、均一に混ざった原料溶湯をそのままインゴットにできるため、インゴット内のCr偏析を無くすことができる。   By reducing the size of the ingot to a radius of 120 mm or less, and further to a radius of 80 mm or less, cooling unevenness during cooling can be eliminated. Further, casting is preferably performed at a mold temperature of 50 ° C. or higher and 200 ° C. or lower. By adjusting the ingot size and mold temperature, the ingot can be rapidly cooled to eliminate uneven cooling. By carrying out the rapid cooling process, the uniformly mixed raw material melt can be made into an ingot as it is, so that Cr segregation in the ingot can be eliminated.

本発明の製造方法においては冷却むらが生じないように制御すること、特に部分的な除冷状態とならないように冷却工程を管理することが重要である。また、冷却むらをなくすにはインゴットを小さくすることが有効であるが、あまり小さいと量産性が低下するのでインゴットの短辺の長さは30mm以上が好ましい。インゴットの短辺の長さとは、円柱状インゴットの円の直径を示し、四角柱状インゴットの場合は四角の短辺を示す。
また、鋳型の肉厚を50mm以上、さらには100mm以上と厚い鋳型を使うことも冷却むらをなすく上で有効である。鋳型は、鋳鉄や炭素鋼などの鉄合金で出来ている。鋳型の肉厚を厚くすることにより鋳型の熱容量を大きくすることができ冷却ムラを低減することができる。
In the production method of the present invention, it is important to control so as not to cause uneven cooling, and in particular, to manage the cooling process so as to prevent partial cooling. In order to eliminate uneven cooling, it is effective to make the ingot small, but if it is too small, the mass productivity is lowered, so the length of the short side of the ingot is preferably 30 mm or more. The short side length of the ingot indicates the diameter of a circle of the cylindrical ingot, and in the case of a quadrangular columnar ingot, the short side of the square.
In addition, it is effective to use a thick mold having a mold thickness of 50 mm or more, and further 100 mm or more, in order to prevent uneven cooling. The mold is made of an iron alloy such as cast iron or carbon steel. By increasing the thickness of the mold, the heat capacity of the mold can be increased and cooling unevenness can be reduced.

このように冷却工程を管理してCrの偏析を低減した上で、インゴットを調製する。次に、得られたインゴットに必要に応じ、鍛造、圧延加工、表面研磨を施して形状を整える。鍛造工程や圧延工程は熱間で行ってもよい。その後、1000〜1300℃で熱処理する溶体化熱処理を施す。溶体化熱処理後は、合金素材の硬度Hvが150〜200であることが好ましい。Cr偏析を低減してもインゴットの硬さが100未満と小さいと後述する時効処理後に目的とする硬度が得られない。また、200を超えると硬くなりすぎ切削加工が行い難い。また、溶体化熱処理は、酸化等の汚染を防ぐために、アルゴン雰囲気中、真空熱処理を使うことが好ましい。
次に、得られた合金素材に機械加工を施す工程を行う。機械加工は、鍛造加工、圧延加工、切断加工、切削加工、打抜き加工などの塑性加工を施す加工を示す。また、必要に応じ、各種加工を組合せてもよいし、途中に洗浄工程や熱処理工程を入れてもよい。この機械加工により、最終的に用いる耐摩耗性部材の形状またはそれに近い形状まで加工する。
Thus, the cooling process is managed to reduce the segregation of Cr, and then the ingot is prepared. Next, the obtained ingot is subjected to forging, rolling, and surface polishing as necessary to adjust the shape. The forging process and the rolling process may be performed hot. Thereafter, solution heat treatment is performed by heat treatment at 1000 to 1300 ° C. After the solution heat treatment, the hardness Hv of the alloy material is preferably 150 to 200. Even if Cr segregation is reduced, if the hardness of the ingot is as small as less than 100, the desired hardness cannot be obtained after the aging treatment described later. Moreover, when it exceeds 200, it will become hard too much and it will be difficult to cut. Further, the solution heat treatment is preferably a vacuum heat treatment in an argon atmosphere in order to prevent contamination such as oxidation.
Next, a process of machining the obtained alloy material is performed. The machining indicates a process for performing plastic working such as forging, rolling, cutting, cutting, and punching. Moreover, various processes may be combined as needed, and a washing process or a heat treatment process may be inserted in the middle. By this machining, the shape of the wear-resistant member to be used finally is processed to a shape close thereto.

次に、500〜750℃で時効熱処理を施す工程を行う。また、熱処理時間は1〜15時間が好ましい。また、時効熱処理は、酸化等の汚染を防ぐために、アルゴン雰囲気中、真空熱処理を使うことが好ましい。また、未時効組織をなくすために特許文献3に記載されたように時効熱処理前の前処理加熱を行うことも有効である。時効熱処理前の好ましい前処理加熱としては、例えば(イ)400〜700℃の温度に、昇温速度100℃/h以上、500℃/h以下、好ましくは100℃/h以上、400℃/h以下、で加熱することからなるもの、または(ロ)400〜500℃の温度範囲において少なくとも0.5時間保持することからなるもの、を挙げることができる。ここで、上記(イ)における昇温速度が100℃/hより遅い場合、特性はでるが処理に時間がかかりすぎることから製造上好ましくない。一方、昇温速度が500℃/hを越えるような過度である場合、温度分布の不均一化や析出に伴う体積収縮が過度になってクラック発生の誘因となる場合がある。(ロ)における保持時間が0.5時間未満である場合、この前処理加熱による効果が十分得られない場合がある。保持時間の上限は5時間が好ましい。5時間を越えて熱処理を施したとしても、それ以上の効果は得難い。   Next, the process of performing an aging heat processing at 500-750 degreeC is performed. The heat treatment time is preferably 1 to 15 hours. The aging heat treatment is preferably a vacuum heat treatment in an argon atmosphere in order to prevent contamination such as oxidation. It is also effective to perform pretreatment heating before aging heat treatment as described in Patent Document 3 in order to eliminate unaged structures. As preferable pretreatment heating before the aging heat treatment, for example, (i) a temperature of 400 to 700 ° C., a temperature rising rate of 100 ° C./h or more, 500 ° C./h or less, preferably 100 ° C./h or more, 400 ° C./h In the following, mention may be made of what consists of heating in (b), or what consists of holding for at least 0.5 hours in the temperature range of 400-500 ° C. Here, when the temperature increase rate in the above (a) is slower than 100 ° C./h, the characteristics appear, but it takes too much time for the treatment, which is not preferable in production. On the other hand, if the temperature rising rate is excessive such that it exceeds 500 ° C./h, the temperature distribution may become non-uniform or the volume shrinkage accompanying the precipitation may become excessive, leading to crack generation. When the holding time in (b) is less than 0.5 hour, the effect of this pretreatment heating may not be sufficiently obtained. The upper limit of the holding time is preferably 5 hours. Even if the heat treatment is performed for more than 5 hours, it is difficult to obtain further effects.

次に、表面研磨加工を施す工程を行う。表面研磨加工は、表面粗さRaが1μm以下、さらにはRa0.5μm以下の鏡面加工が必要な個所に施す。例えば、成形型(金型)の場合、内面を研磨加工する。また、刃物であれば刃として機能する部分を研磨する。研磨方法はダイヤモンド砥石を使った研磨、例えばポリッシング研磨加工が挙げられる。また、必要に応じ、切削加工等を施してもよい。   Next, a step of performing surface polishing is performed. The surface polishing process is performed at a place where a mirror finish with a surface roughness Ra of 1 μm or less and further Ra 0.5 μm or less is required. For example, in the case of a mold (mold), the inner surface is polished. Moreover, if it is a blade, the part which functions as a blade will be grind | polished. Examples of the polishing method include polishing using a diamond grindstone, such as polishing polishing. Moreover, you may perform cutting etc. as needed.

[実施例]
(実施例1〜5、比較例1〜2)
Crを38質量%、Alを3.8質量%、残部Niからなる原料粉末を混合、溶解し、原料溶湯を調整した。
次に表1に示した円柱状インゴット、鋳型温度にしてインゴットを調整した。
各インゴットに熱間鍛造および熱間圧延を施した後、真空熱処理炉を使いアルゴン雰囲気中1000〜1300℃で溶体化熱処理を施して合金素材を作製した。
次に、得られた合金素材を鍛造、圧延、切削加工を施すことにより、縦30mm×横5mm×厚さ1mmの板材を製造した。先端部(縦2mm×横5mm)をプレスして断面三角形になるようにとがらせた。その後、真空熱処理炉を使いアルゴン雰囲気中650〜700℃×4〜10時間の時効熱処理を施した後、先端部を表面粗さRa0.5μmの鏡面となるように研磨加工を施した。なお、先端部は刃先となる部分である。
比較例1はインゴットサイズが鋳型の冷却面から200mm離れたもの、比較例2は鋳型の温度を事前に温めず室温(25℃)で行ったなどの製造条件が合わないものを用意した。
各パラメータの測定は、研磨加工を施した個所を選択し、前述に記載の方法で行った。
[Example]
(Examples 1-5, Comparative Examples 1-2)
A raw material powder composed of 38% by mass of Cr, 3.8% by mass of Al, and the balance Ni was mixed and melted to prepare a raw material melt.
Next, the ingot was adjusted to the cylindrical ingot and mold temperature shown in Table 1.
Each ingot was subjected to hot forging and hot rolling, and then subjected to solution heat treatment at 1000 to 1300 ° C. in an argon atmosphere using a vacuum heat treatment furnace to produce an alloy material.
Next, the obtained alloy material was subjected to forging, rolling, and cutting to produce a plate material having a length of 30 mm × width of 5 mm × thickness of 1 mm. The tip (2 mm long × 5 mm wide) was pressed and bent so as to have a triangular cross section. Then, after aging heat treatment was performed in an argon atmosphere at 650 to 700 ° C. for 4 to 10 hours using a vacuum heat treatment furnace, the tip portion was polished so as to have a mirror surface with a surface roughness Ra of 0.5 μm. Note that the tip portion is a portion that becomes a cutting edge.
Comparative Example 1 was prepared with an ingot size that was 200 mm away from the cooling surface of the mold, and Comparative Example 2 was prepared with a mold that did not meet the manufacturing conditions, such as being performed at room temperature (25 ° C.) without preheating the mold temperature.
The measurement of each parameter was performed by the method described above by selecting a portion subjected to polishing.

Figure 2011001606
Figure 2011001606

Figure 2011001606
Figure 2011001606

表から分かる通り、本実施例にかかる耐摩耗性部材(刃物)は、Cr濃度バラツキ(Cr偏析)を抑制してあるので、平面硬度のバラツキが小さい。その結果、研磨加工を施したときの表面凹凸の差が小さくできる。
(実施例6〜10)
表3に示すNi−Cr−Al合金組成を使って錠剤成形用の金型として杵を製造した。
各インゴットに熱間鍛造および熱間圧延を施した後、1100〜1250℃で溶体化熱処理を施して合金素材を作製した。次に表4に示した形状となるように鍛造、圧延、切削加工を施した後、600〜700℃×6〜12時間の時効熱処理を施した。その後、杵の成型面として使う面については表面粗さRa0.2μmとなるように研磨した。各杵について実施例1と同様の測定を行った。
As can be seen from the table, the wear-resistant member (blade) according to the present example suppresses variation in Cr concentration (Cr segregation), and thus variation in planar hardness is small. As a result, the difference in surface irregularities when the polishing process is performed can be reduced.
(Examples 6 to 10)
Using the Ni—Cr—Al alloy composition shown in Table 3, a punch was produced as a mold for tableting.
Each ingot was subjected to hot forging and hot rolling, and then subjected to solution heat treatment at 1100 to 1250 ° C. to produce an alloy material. Next, forging, rolling, and cutting were performed so that the shapes shown in Table 4 were obtained, and then aging heat treatment was performed at 600 to 700 ° C. × 6 to 12 hours. Thereafter, the surface used as the molding surface of the ridge was polished so as to have a surface roughness Ra of 0.2 μm. The same measurement as Example 1 was performed about each cage.

Figure 2011001606
Figure 2011001606

Figure 2011001606
Figure 2011001606

表4から分かる通り、金型にも使える。幅広の耐摩耗性部材においてもCr偏析を低減できる。そのため、表面凹凸の小さな研磨面を得ることができる。この杵を使って錠剤を成形したところ、離型性が良かった。   As can be seen from Table 4, it can also be used for molds. Even in a wide wear-resistant member, Cr segregation can be reduced. Therefore, a polished surface with small surface irregularities can be obtained. When this tablet was used to mold a tablet, the releasability was good.

1…刃物
2…刃先
3…刃物本体部
DESCRIPTION OF SYMBOLS 1 ... Blade 2 ... Cutting edge 3 ... Blade body part

Claims (13)

Crを30〜45質量%、Alを2〜6質量%含み、残部をNiおよび不可避不純物からなり、単位面積500μm×500μmのCr濃度のバラツキが3質量%以下であることを特徴とする高硬度耐食耐磨耗合金素材。 High hardness characterized by containing 30 to 45% by mass of Cr, 2 to 6% by mass of Al, the balance being Ni and inevitable impurities, and variation in Cr concentration of unit area 500 μm × 500 μm being 3% by mass or less Corrosion-resistant and wear-resistant alloy material. 硬度の平均がHv150以上Hv200以下であることを特徴とする請求項1記載の高硬度耐食耐磨耗合金素材。 The high hardness corrosion-resistant wear-resistant alloy material according to claim 1, wherein the average hardness is Hv150 or more and Hv200 or less. 単位面積500μm×500μmを25個の小単位100μm×100μmに分割したとき、Cr濃度が、単位面積の平均よりも1.5%以上ずれている小単位が25個中3個以下(0含む)であることを特徴とする請求項1または請求項2のいずれか1項に記載の高硬度耐食耐磨耗合金素材。 When a unit area of 500 μm × 500 μm is divided into 25 small units of 100 μm × 100 μm, the Cr concentration is shifted by 1.5% or more from the average of the unit area, and 3 or less of 25 small units (including 0) The high-hardness corrosion-resistant wear-resistant alloy material according to any one of claims 1 and 2. 請求項1ないし請求項3記載の高硬度耐食耐磨耗合金素材を用いて製造され、表面の一部あるいはすべてを研磨加工して成る耐磨耗性部材。 A wear-resistant member manufactured using the high-hardness corrosion-resistant wear-resistant alloy material according to any one of claims 1 to 3, and having a part or all of the surface polished. 硬度の平均がHv600以上Hv750以下であり、同一平面の硬度のバラツキが2.0%以下であることを特徴とする請求項4記載の耐摩耗性部材。 The wear-resistant member according to claim 4, wherein the average hardness is Hv600 or more and Hv750 or less, and the hardness variation of the same plane is 2.0% or less. 研磨加工された箇所の表面凹凸の最大値が0.5μm以下であることを特徴とする請求項4または請求項5記載の耐摩耗性部材。 The wear-resistant member according to claim 4 or 5, wherein the maximum value of the surface irregularities of the polished portion is 0.5 µm or less. 研磨された箇所の面積が10mm以上であることを特徴とする請求項4ないし請求項6のいずれか1項に記載の耐摩耗性部材。 The wear-resistant member according to any one of claims 4 to 6, wherein an area of the polished portion is 10 mm 2 or more. 表面粗さRaが1μm以下であることを特徴とする請求項4ないし請求項7のいずれか1項に記載の耐摩耗性部材。 The wear-resistant member according to any one of claims 4 to 7, wherein the surface roughness Ra is 1 µm or less. Crを30〜45質量%、Alを2〜6質量%含み、残部をNiおよび不可避不純物である原料を混合し、溶解してNi−Cr−Al合金溶湯を調製する工程と、
前記Ni−Cr−Al合金溶湯を使って、鋳型の冷却面からの最短距離が120mm以下のインゴットを調製する工程と、
前記インゴットを溶体化処理して硬度Hvが150〜200の高硬度耐食耐磨耗合金素材を調製する工程と、
前記高硬度耐食耐磨耗合金素材に機械加工を施す工程と、
500〜750℃で時効熱処理を施す工程と、
表面研磨加工を施す工程を
具備することを特徴とする耐摩耗性部材の製造方法。
A step of mixing 30 to 45% by mass of Cr, 2 to 6% by mass of Al, and mixing Ni and raw materials which are inevitable impurities, and preparing a Ni-Cr-Al alloy melt by melting;
Using the Ni-Cr-Al alloy molten metal to prepare an ingot having a shortest distance from the cooling surface of the mold of 120 mm or less;
A step of solution-treating the ingot to prepare a high-hardness corrosion-resistant wear-resistant alloy material having a hardness Hv of 150 to 200;
Machining the high hardness corrosion resistant wear resistant alloy material;
Applying aging heat treatment at 500 to 750 ° C .;
A method for producing a wear-resistant member, comprising a step of performing surface polishing.
インゴットサイズは冷却面からの最長距離が80mm以下であることを特徴とする請求項9の耐摩耗性部材の製造方法。 The method for producing a wear-resistant member according to claim 9, wherein the ingot size has a maximum distance from the cooling surface of 80 mm or less. 鋳型温度を50℃以上200℃以下として鋳造を行なうことを特徴とする請求項9ないし請求項10のいずれか1項に記載の耐摩耗性部材の製造方法。 The method for producing a wear-resistant member according to any one of claims 9 to 10, wherein casting is performed at a mold temperature of 50 ° C to 200 ° C. インゴットを鋳造する工程において、鋳型の肉厚が50mm以上であることを特徴とする請求項9ないし請求項11のいずれか1項に記載の耐摩耗性部材の製造方法。 The method for producing a wear-resistant member according to any one of claims 9 to 11, wherein, in the step of casting the ingot, the thickness of the mold is 50 mm or more. 研磨加工後の表面粗さRaが1μm以下であることを特徴とする請求項8ないし請求項11のいずれか1項に記載の耐摩耗性部材の製造方法。 The method for producing a wear-resistant member according to any one of claims 8 to 11, wherein the surface roughness Ra after polishing is 1 µm or less.
JP2009145846A 2009-06-18 2009-06-18 High hardness corrosion resistant wear resistant alloy material, wear resistant member using the same, and method for producing the same Active JP5567792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145846A JP5567792B2 (en) 2009-06-18 2009-06-18 High hardness corrosion resistant wear resistant alloy material, wear resistant member using the same, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145846A JP5567792B2 (en) 2009-06-18 2009-06-18 High hardness corrosion resistant wear resistant alloy material, wear resistant member using the same, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011001606A true JP2011001606A (en) 2011-01-06
JP5567792B2 JP5567792B2 (en) 2014-08-06

Family

ID=43559796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145846A Active JP5567792B2 (en) 2009-06-18 2009-06-18 High hardness corrosion resistant wear resistant alloy material, wear resistant member using the same, and method for producing the same

Country Status (1)

Country Link
JP (1) JP5567792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068961A (en) * 2009-09-28 2011-04-07 Toshiba Corp PESTLE AND MORTAR FOR MOLDING TABLET USING Ni-Cr-Al SYSTEM ALLOY
US11898227B2 (en) * 2019-10-11 2024-02-13 Schlumberger Technology Corporation Hard nickel-chromium-aluminum alloy for oilfield services apparatus and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145142A (en) * 1979-04-26 1980-11-12 Toshiba Corp Alloy and watch case with superior decoration property and corrosion resistance
JPH01127640A (en) * 1987-11-10 1989-05-19 Toshiba Corp Alloy member for decoration
JP2001062594A (en) * 1999-08-26 2001-03-13 Toshiba Corp Alloy for pressurization molding die
JP2006105262A (en) * 2004-10-05 2006-04-20 Thk Co Ltd Rolling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145142A (en) * 1979-04-26 1980-11-12 Toshiba Corp Alloy and watch case with superior decoration property and corrosion resistance
JPH01127640A (en) * 1987-11-10 1989-05-19 Toshiba Corp Alloy member for decoration
JP2001062594A (en) * 1999-08-26 2001-03-13 Toshiba Corp Alloy for pressurization molding die
JP2006105262A (en) * 2004-10-05 2006-04-20 Thk Co Ltd Rolling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068961A (en) * 2009-09-28 2011-04-07 Toshiba Corp PESTLE AND MORTAR FOR MOLDING TABLET USING Ni-Cr-Al SYSTEM ALLOY
US11898227B2 (en) * 2019-10-11 2024-02-13 Schlumberger Technology Corporation Hard nickel-chromium-aluminum alloy for oilfield services apparatus and methods

Also Published As

Publication number Publication date
JP5567792B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
KR101659704B1 (en) Process for setting the thermal conductivity of a steel and use of tool steel
CN100382939C (en) Sharp edged cutting tools
CN101258259B (en) A maraging steel article and method of manufacture
CN104152744A (en) Low-cost medium-high-strength corrosion-resistant titanium alloy and processing method thereof
JP2009074173A (en) Ultra-hard composite material and method for manufacturing the same
JP2006322042A (en) Nitrided steel with superhigh hardness and high abrasion resistance
CN111386164B (en) High-hardness 3D printing steel product
HUE025779T2 (en) Steel, process for the manufacture of a steel blank and process for the manufacture of a component of the steel
JP5502976B2 (en) Manufacturing method of high hardness, high corrosion resistance and high wear resistance alloy
CN103388108A (en) Material with high wear resistance
KR20150059120A (en) Method for producing plastic moulds out of martensitic chrome steel and plastic mould
KR101893172B1 (en) Metal Powder for 3D Metal Printer and Shear Mold Using the same
CN114131047B (en) Gradient stainless steel material and laser near-net forming manufacturing method thereof
JP5567792B2 (en) High hardness corrosion resistant wear resistant alloy material, wear resistant member using the same, and method for producing the same
JP5522854B2 (en) Cold tool steel and manufacturing method thereof
JP4357160B2 (en) Sputtering target, hard coating using the same, and hard film coating member
JP5547937B2 (en) Tableting punch and die using Ni-Cr-Al alloy
JP5268771B2 (en) Method for producing sputtering target, method for forming hard film using the same, and hard film coated member
CN110106420B (en) Co-based high-temperature alloy and preparation method and application thereof
WO2022210221A1 (en) Composite member, product, and method for producing composite member
CN111235481B (en) Casting alloy for plastic mold and preparation method thereof
CN105274444A (en) Steel for cold working tool
US20220299097A1 (en) Sintered gear
CN111155026A (en) Alloy for plastic mold and preparation method thereof
CN107794464A (en) A kind of steel for engraving knife die and preparation method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140620

R150 Certificate of patent or registration of utility model

Ref document number: 5567792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150