JP2011001198A - Method for producing plasma-proof fluoride sintered compact - Google Patents

Method for producing plasma-proof fluoride sintered compact Download PDF

Info

Publication number
JP2011001198A
JP2011001198A JP2009142911A JP2009142911A JP2011001198A JP 2011001198 A JP2011001198 A JP 2011001198A JP 2009142911 A JP2009142911 A JP 2009142911A JP 2009142911 A JP2009142911 A JP 2009142911A JP 2011001198 A JP2011001198 A JP 2011001198A
Authority
JP
Japan
Prior art keywords
hours
sintered body
caf
sintering
mgf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009142911A
Other languages
Japanese (ja)
Other versions
JP5185213B2 (en
Inventor
Tetsuyuki Nakamura
哲之 中村
Takuji Shigeoka
卓二 重岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daico Mfg Co Ltd
Original Assignee
Daico Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daico Mfg Co Ltd filed Critical Daico Mfg Co Ltd
Priority to JP2009142911A priority Critical patent/JP5185213B2/en
Publication of JP2011001198A publication Critical patent/JP2011001198A/en
Application granted granted Critical
Publication of JP5185213B2 publication Critical patent/JP5185213B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a fluoride sintered compact suitable for a component required for high plasma-proof characteristics in an apparatus for producing a silicon semiconductor, a compound semiconductor and the like.SOLUTION: The method for producing the fluoride sintered compact includes: a step to mix 1-5 wt.% of a high purity MgFpowder with a high purity CaFpowder and further add and mix 0.1-1 wt.% of a sintering auxiliary agent; a molding step at a press pressure of 0.2 MPa/cmor more using a mold and a press-molding machine; a step to temporarily sinter the molded material by heating at 600-700°C in the atmosphere; and a step to form a CaF-MgFbinary sintered compact having a dense structure by heating at 1,250-1,370°C for 6-12 hours in the atmosphere.

Description

本発明は、耐プラズマ性フッ化物焼結体の製造方法に関し、より詳細には、シリコンおよび化合物半導体製造工程などで用いられる耐プラズマ性部材に好適な緻密な構造を有するCaF2−MgF2二元系焼結体の製造方法に関する。 The present invention relates to a method for producing a plasma-resistant fluoride sintered body, and more specifically, CaF 2 -MgF 2 having a dense structure suitable for a plasma-resistant member used in silicon and compound semiconductor production processes. The present invention relates to a method for producing an original sintered body.

シリコン半導体とか化合物半導体の製造工程には、CVD、MOCVD、エッチング、クリーニング、アッシングなどの各工程で、フッ素とか塩素等のハロゲン系ガスのプラズマを発生させてシリコンまたはガリウムヒ素またはサファイアなどのウエハー(基板)表面の処理を行う各種のプラズマ処理工程がある。プラズマは極めて反応性が高いため、それらプラズマ処理装置のチャンバーや処理用治具等の装置部材には、耐プラズマ性に優れた材料が求められ、厳選して使用される。加えて、シリコンおよび化合物半導体の製造工程では、不純物金属等による汚染およびパーティクル汚染を回避することも極めて重要である。このため、上記プラズマ処理装置においては、優れた耐プラズマ性に加えて、汚染防止性に優れていることも強く要求される。さらには、これら装置部材には、高機械的強度、高耐熱性、高熱衝撃性、高放熱性、高誘電性など使用部位によってはおのおのに特有の性能(特性)が要求される。当然のことながら、加えて低価格であることも重要な選択要素となっている。   In the manufacturing process of silicon semiconductors and compound semiconductors, wafers of silicon, gallium arsenide, sapphire, etc. are generated by generating plasmas of halogen gases such as fluorine and chlorine in each process such as CVD, MOCVD, etching, cleaning, and ashing. There are various plasma processing steps for processing the substrate surface. Since plasma is extremely reactive, materials having excellent plasma resistance are required for apparatus members such as chambers and processing jigs of these plasma processing apparatuses, and are carefully selected and used. In addition, in the manufacturing process of silicon and compound semiconductors, it is extremely important to avoid contamination by impurity metals and particle contamination. For this reason, in the said plasma processing apparatus, in addition to the outstanding plasma resistance, it is also requested | required that it is excellent in anti-contamination property. Furthermore, these device members are each required to have specific performance (characteristics) depending on the use site such as high mechanical strength, high heat resistance, high thermal shock, high heat dissipation, and high dielectric properties. Of course, the low price is also an important option.

上記のようにプラズマ処理装置の構成部材には耐プラズマ性に優れた材料が求められるが、従来の材料としては、石英ガラス表面に耐プラズマ性に優れたイットリア(酸化イットリウム:Y2O3)をイオン化して成膜したり、真空蒸着したりしている。あるいは、耐プラズマ性に優れたアルミナ(Al2O3)の焼結体を用いたりしているが、いずれも耐プラズマ性を始めとする諸要求特性を十分満たしているとは言えない。 As described above, a material excellent in plasma resistance is required for the constituent members of the plasma processing apparatus. However, as a conventional material, yttria (yttrium oxide: Y 2 O 3 ) excellent in plasma resistance on a quartz glass surface is used. Is ionized to form a film, or vacuum deposition is performed. Alternatively, a sintered body of alumina (Al 2 O 3 ) having excellent plasma resistance is used, but none of them satisfy the required characteristics including plasma resistance.

ところで、フッ素系または塩素系の所謂ハロゲン系のプラズマに対する耐性を有するには、一般的には同じハロゲン系元素(フッ素、塩素、臭素、ヨウ素など)を含む化合物が化学的に安定であると推定される。それに加えて上記のプラズマ耐性以外の要求特性を加味すると、フッ化カルシウム(CaF2)などがこの装置部材の新しい材料の候補と目される。 By the way, it is generally estimated that a compound containing the same halogen element (fluorine, chlorine, bromine, iodine, etc.) is chemically stable in order to have resistance to fluorine-based or chlorine-based so-called halogen-based plasma. Is done. In addition, considering the required characteristics other than the above-mentioned plasma resistance, calcium fluoride (CaF 2 ) and the like are regarded as candidates for new materials for this device member.

そのCaF2は、天然鉱物としては蛍石と称されており、理化学辞典によると融点1418℃、沸点2500℃、密度3.18g/cm3、モース硬度4の立方晶系に属する蛍石構造と称される無色の結晶である。このため、高純度の単結晶体は光透過性に極めて優れ、従来からプリズム、レンズ等の光学部材として用いられてきた。最近ではさらに高純度化、結晶構造の改良などにより真空紫外域の透過率が飛躍的に高められ、真空紫外光を光源とする光学部材として、具体的には波長193nmのArFエキシマレーザーを光源とする縮小投影露光機用レンズ等の高級な光学部品に使用されるようになってきている。 The CaF 2 is a natural mineral called fluorite. According to the physics and chemistry dictionary, it has a melting point of 1418 ° C, a boiling point of 2500 ° C, a density of 3.18g / cm 3 and a Mohs hardness of 4 belonging to a cubic system. Colorless crystals. For this reason, high-purity single crystals are extremely excellent in light transmittance, and have been conventionally used as optical members such as prisms and lenses. Recently, the transmittance in the vacuum ultraviolet region has been drastically increased due to higher purity and improved crystal structure, and as an optical member using vacuum ultraviolet light as a light source, specifically, an ArF excimer laser with a wavelength of 193 nm is used as the light source. It has come to be used for high-grade optical parts such as lenses for reduction projection exposure machines.

その一方で、CaF2は耐プラズマ性に優れた材料であることも知られている。例えば、特許第3017528号公報(下記特許文献1)には、プラズマに曝されるAlまたはステンレス鋼を含む材料から成る電極表面に、イオンプレーティング゛法と蒸着法の併用によってCaF2のコーティング膜を形成し、耐プラズマ性を向上させ、電極が汚染源と成らないようにすることで、優れたプラズマ処理装置が得られることが開示されている。しかしながら、例えば、プラズマ処理装置のチャンバー内張り材のように表面積の大きい部材、とくに凹凸の多い複雑な形状の部材や大型品等に、CaF2を均一にコーティングすることは困難である。仮に、コーティング出来た場合であっても、その膜は剥離し易いという課題を有するものであった。 On the other hand, CaF 2 is also known to be a material with excellent plasma resistance. For example, Japanese Patent No. 3017528 (Patent Document 1) discloses a coating film of CaF 2 on an electrode surface made of a material containing Al or stainless steel that is exposed to plasma by a combination of an ion plating method and a vapor deposition method. It is disclosed that an excellent plasma processing apparatus can be obtained by forming the film, improving the plasma resistance, and preventing the electrode from becoming a contamination source. However, for example, it is difficult to uniformly coat CaF 2 on a member having a large surface area such as a chamber lining material of a plasma processing apparatus, in particular, a member having a large unevenness or a complicated shape or a large product. Even if it was possible to coat, the film had a problem that it was easy to peel off.

そこで、CaF2自体を耐プラズマ性部材として利用するため、光学部材に用いられている高純度のCaF2単結晶体をそのまま耐プラズマ性部材に研削加工することが考えられる。しかしながら、この場合、つぎのような種々の課題を有する。まずは、高純度の単結晶体を製造するには、高度な技術を馳駆し、多大な処理工数を要する原料の高純度化と、数ヶ月に及ぶ高温炉内での単結晶成長をさせねばならず、その結果、膨大な製造費を要し、著しく高価な材料となる。さらに、この材料は、単結晶なるが故に脆性であり、わずかな機械的衝撃でもキズが発生し易く、比較的軽度の衝撃でも割れを生ずる場合がある。また熱的衝撃には極めて弱く割れを生じ易くなるなど、取扱いには高度な知識と熟練の技能を要する。その結果、加工にも高度な技術と多大な工数を要し、著しく高価な加工となる。そのため、本用途への実用化には適さないものであった。 Therefore, in order to use CaF 2 itself as a plasma-resistant member, it is conceivable to grind the high-purity CaF 2 single crystal used for the optical member as it is to the plasma-resistant member. However, this case has the following various problems. First, in order to produce a high-purity single crystal, it is necessary to use advanced technology to improve the purity of raw materials that require a large number of processing steps, and to grow single crystals in a high-temperature furnace for several months. As a result, enormous manufacturing costs are required and the material becomes extremely expensive. Furthermore, this material is brittle because it is a single crystal, and is easily scratched even by a slight mechanical impact, and may be cracked even by a relatively mild impact. In addition, it is extremely weak against thermal shock and easily cracks, so it requires advanced knowledge and skill. As a result, the processing requires advanced technology and a great number of man-hours, and the processing becomes extremely expensive. Therefore, it was not suitable for practical use for this application.

光学部材に用いられている高純度のCaF2単結晶体をそのまま耐プラズマ性部材に用いるには、数々の問題点があることは上記した通りである。これを改良しようとしたのが、例えば特開2003-300777号公報(下記特許文献2)に開示され、光学部材用CaF2単結晶の切り出し屑など高純度のCaF2単結晶片を粉砕して得られた粉末を出発原料としてホットプレスによる加熱加圧法で緻密な焼結体とするものが示されている。 As described above, there are a number of problems in using the high-purity CaF 2 single crystal used for the optical member as it is for the plasma-resistant member. An attempt to improve this is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-300777 (the following Patent Document 2), in which high-purity CaF 2 single crystal pieces such as cutting scraps of CaF 2 single crystals for optical members are pulverized. It is shown that the obtained powder is used as a starting material to form a dense sintered body by a hot press method using hot pressing.

しかしながら、この製造方法では以下に示す種々の問題が生ずる。まず、元材料である光学部材用CaF2単結晶の切り出し屑の粉砕工程で不純物汚染の問題が生ずる。高純度の元材料を不純物汚染を生じさせずに粉砕して高純度のまま焼結用の出発材料とすることは不可能である。焼結用の出発材料とするにはかなり細かな粉状まで微粉砕することが必要であり、まずこの微粉砕の際の容器、粉砕用治具の構成材料が摩耗して出発材料に混入する汚染と、粉砕工程でのハンドリングに起因する環境起因の汚染が考えられる。 However, this manufacturing method has the following various problems. First, the problem of impurity contamination arises in the pulverization process of the cutting material of the CaF 2 single crystal for optical members, which is the original material. It is impossible to pulverize a high-purity original material without causing impurity contamination and use it as a starting material for sintering while maintaining a high purity. In order to use as a starting material for sintering, it is necessary to finely pulverize it into a fine powder. First, the constituent materials of the container and the jig for grinding are worn out and mixed into the starting material. Contamination and environmental pollution caused by handling in the grinding process are considered.

さらには、その微粉砕した微粉を焼結用の出発材料にするには、一般的には粒度調整工程が必要であり、空気分級とか篩いを用いて粗めの粒子と微細な粒子を除去し、緻密な焼結体に焼結し易い粒度分布に粒度を調整する必要がある。この工程でのハンドリングに起因する環境起因の汚染は避けられない。いずれのハンドリング工程も工程を経れば経るほど不純物汚染は進む。   Furthermore, in order to use the finely pulverized fine powder as a starting material for sintering, a particle size adjustment process is generally required, and coarse particles and fine particles are removed using air classification or sieving. It is necessary to adjust the particle size to a particle size distribution that is easy to sinter into a dense sintered body. Environmental pollution due to handling in this process is inevitable. Impurity contamination progresses as each handling process passes.

また、特開2003-300777号公報(下記特許文献2)の明細書中で、この出来上がった焼結体は粉末X線回折法の解析結果から元材料の単結晶と同等のX線回折ピーク強度およびピーク広がりを持っていると説明されており、単結晶性が高いものである。単結晶体は脆性材料であり、もろく成りやすい。また、ホットプレスによる加熱加圧法ではモールドが必要であり、このモールドと焼結体との熱膨張係数の差異に起因して加熱加圧後の冷却過程で焼結体内部に歪みが発生しやすい。さらに、単結晶体は本来耐衝撃性に劣り、時として割れを生ずることがある。また、ホットプレスによる加熱加圧法はバッチ処理となるため、生産性に劣り、高コストとなりがちである。   In addition, in the specification of Japanese Patent Application Laid-Open No. 2003-300777 (the following Patent Document 2), this finished sintered body has an X-ray diffraction peak intensity equivalent to the single crystal of the original material from the analysis result of the powder X-ray diffraction method. In addition, it has been explained that it has a peak broadening, and has high single crystallinity. Single crystals are brittle materials and tend to be brittle. In addition, a mold is required in the hot press method using hot press, and distortion is likely to occur inside the sintered body during the cooling process after heat and pressure due to the difference in thermal expansion coefficient between the mold and the sintered body. . Furthermore, single crystals are inherently inferior in impact resistance and sometimes crack. In addition, since the hot press method using hot press is batch processing, it tends to be inferior in productivity and expensive.

また、特開2004-83362号公報(下記特許文献3)には、Mgを含有する低純度の出発原料に、フッ化水素酸を用いてMg以外の不純物を除去する処理を施し、この後、高純度CaF2を沈殿させ、これを熱処理し、造粒し、その後成形し、焼結させてMgF2を含有するCaF2の焼結体を製造する方法とその焼結体の発明が開示されている。
しかしながらこの発明では、まず出発原料が低純度であり、したがって通常、不純物の種類、濃度が一定しない。そのためその都度分析を行い、その出発原料に合わせてフッ化水素酸を用いた純化処理の条件をその都度変える必要が有る。さらには、不純物の種類・その濃度など出発原料中の不純物の状況によっては沈殿処理法では純化が十分行えない場合も生じる。このため、純化処理後の中間生成物は、純度をはじめ物性が不安定となる。この製造方法では、純度を高められる可能性があるのはこの純化処理工程に限られ、結果的に、最終製品である焼結体の物性も不安定なものとなる。言い換えれば、良好な特性を有する焼結体を安定的に得ることは困難な方法と言わざるを得ない。
JP-A-2004-83362 (Patent Document 3) discloses that a low-purity starting material containing Mg is subjected to a treatment for removing impurities other than Mg using hydrofluoric acid. precipitated high purity CaF 2, which was heat-treated, granulated, and then molded, the invention of a method and a sintered body thereof for producing a sintered body of CaF 2 containing MgF 2 is disclosed by sintering ing.
However, in the present invention, the starting material is first of low purity, and therefore the type and concentration of impurities are usually not constant. Therefore, it is necessary to perform analysis each time, and to change the conditions of the purification treatment using hydrofluoric acid according to the starting material. Furthermore, depending on the state of impurities in the starting material, such as the type and concentration of impurities, the precipitation treatment method may not be able to sufficiently purify. For this reason, the intermediate product after the purification treatment becomes unstable in physical properties including purity. In this manufacturing method, the purity can be increased only in this purification treatment step, and as a result, the physical properties of the sintered product as the final product also become unstable. In other words, it is a difficult method to stably obtain a sintered body having good characteristics.

さらに、この製造方法では、焼結温度が常圧焼結工程、加圧焼結工程ともに高々800℃と低温であり、後述するようにCaF2−MgF2二元系状態図に示すように、固溶体を生じる980℃以上ではないことから固相間反応による固相焼結となる。固相焼結では、溶融相を経ないため粒子同士の結合力が弱く、また粒成長も不十分となり、強度の弱い焼結体となるといった課題がある。 Furthermore, in this production method, the sintering temperature is as low as 800 ° C. at most in both the normal pressure sintering step and the pressure sintering step, and as shown in the CaF 2 -MgF 2 binary phase diagram as described later, Since it is not 980 degreeC or more which produces a solid solution, it becomes solid phase sintering by reaction between solid phases. In solid-phase sintering, there is a problem that the bonding force between the particles is weak because the molten phase is not passed, the grain growth is insufficient, and the sintered body becomes weak.

上記したように、従来のCaF2単一成分の単結晶体、あるいはCaF2を主成分とする焼結体を耐プラズマ性部材に用いるには種々の課題がある。 As described above, there are various problems in using a conventional CaF 2 single-component single crystal body or a sintered body containing CaF 2 as a main component for a plasma-resistant member.

特許第3017528号公報Japanese Patent No. 3017528 特開2003-300777号公報Japanese Unexamined Patent Publication No. 2003-300777 特開2004-83362号公報JP 2004-83362 A

課題を解決するための手段及びその効果Means for solving the problems and their effects

本発明は上記課題に鑑みなされたものであって、シリコン半導体あるいは化合物半導体の製造工程におけるハロゲン系ガスのプラズマを発生させてウエハー表面の処理を行う各種のプラズマ処理工程に適する高い耐プラズマ性を有し、且つ汚染防止性、機械的強度、耐熱性、耐熱衝撃性、放熱性、誘電性などに優れ、しかも、高純度の単結晶体のような高価格品とはならない耐プラズマ性フッ化物焼結体の製造方法を提供することを目的としている。   The present invention has been made in view of the above problems, and has high plasma resistance suitable for various plasma processing processes in which a halogen-based gas plasma is generated in the manufacturing process of a silicon semiconductor or a compound semiconductor to process a wafer surface. Plasma-resistant fluoride that has excellent anti-contamination properties, mechanical strength, heat resistance, thermal shock resistance, heat dissipation, dielectric properties, etc., and does not become a high-priced product like high-purity single crystals It aims at providing the manufacturing method of a sintered compact.

上記目的を達成するために本発明に係る耐プラズマ性フッ化物焼結体の製造方法(1)は、高純度CaF2粉末に高純度MgF2粉末を1〜5wt.%混合し、さらに焼結助剤を0.1〜1wt.%添加して混合する工程、金型及びプレス成形機を用いてプレス圧0.2MPa/ cm2以上で成形する工程、その成形品を大気雰囲気中で600〜700℃に加熱して仮焼結を行う工程、大気雰囲気中で1250〜1370℃の温度範囲で6〜12時間加熱して緻密な構造のCaF2−MgF2二元系焼結体を形成する工程を含むことを特徴としている。 In order to achieve the above object, the method (1) for producing a plasma-resistant fluoride sintered body according to the present invention comprises mixing 1 to 5 wt.% Of high-purity MgF 2 powder with high-purity CaF 2 powder and further sintering. A step of adding 0.1 to 1 wt.% Of an auxiliary agent and mixing, a step of molding at a press pressure of 0.2 MPa / cm 2 or more using a mold and a press molding machine, and 600 to 600 of the molded product in an air atmosphere. A process of pre-sintering by heating to 700 ° C., heating in a temperature range of 1250 to 1370 ° C. for 6 to 12 hours to form a CaF 2 -MgF 2 binary sintered body having a dense structure It is characterized by including a process.

また、本発明に係る耐プラズマ性フッ化物焼結体の製造方法(2)は、上記耐プラズマ性フッ化物焼結体の製造方法(1)における焼結体形成工程に代えて、加熱雰囲気を不活性ガス雰囲気とし、1220〜1350℃の温度範囲で6〜12時間加熱して緻密な構造のCaF2−MgF2二元系焼結体を形成する工程を含むことを特徴としている。 Moreover, the manufacturing method (2) of the plasma-resistant fluoride sintered body according to the present invention replaces the sintered body forming step in the manufacturing method (1) of the plasma-resistant fluoride sintered body with a heating atmosphere. It is characterized by including a step of forming a CaF 2 -MgF 2 binary sintered body having a dense structure by heating in a temperature range of 1220 to 1350 ° C. for 6 to 12 hours in an inert gas atmosphere.

また、本発明に係る耐プラズマ性フッ化物焼結体の製造方法(3)は、上記耐プラズマ性フッ化物焼結体の製造方法(1)における焼結体形成工程に代えて、加熱雰囲気を10-2Pa以下の高真空とし、1205〜1330℃の温度範囲で6〜12時間加熱して緻密な構造のCaF2−MgF2二元系焼結体を形成する工程を含むことを特徴としている。 Moreover, the manufacturing method (3) of the plasma-resistant fluoride sintered body according to the present invention replaces the sintered body forming step in the manufacturing method (1) of the plasma-resistant fluoride sintered body with a heating atmosphere. It is characterized by including a step of forming a CaF 2 -MgF 2 binary sintered body having a dense structure by heating in a temperature range of 1205-1330 ° C. for 6-12 hours under a high vacuum of 10 −2 Pa or less. Yes.

焼結体の機械的強度は、粒子間の結合部のミクロ強度と、気泡の大きさ、形状、分布、数などの脱泡状態、換言すると、結合部および元の粒子の結合体(母体)の太さ、長さなどの形状(このことを一般的には焼結体の緻密さと言う)と、さらにはその母体の結晶構造(多結晶または単結晶または非晶質など)とに起因する脆性度によって決まってくる。   The mechanical strength of the sintered body is the micro-strength of the joint between the particles and the defoamed state such as the size, shape, distribution, number of bubbles, in other words, the joint of the joint and the original particle (matrix). Due to the shape, such as the thickness and length of the material (this is generally referred to as the denseness of the sintered body) and the crystal structure (polycrystalline, single crystal or amorphous) of the matrix It depends on the degree of brittleness.

本発明における基本的な技術的思想は、1)出発原料を二種類混合とすることによる溶融焼結条件の緩和、すなわち、一種類単味(原料処理技術領域では、単独、と同意語)と比して低温焼結を可能とすること、2)この焼結を、主として溶融反応による溶融焼結とし、焼結体を強固な粒子間結合力を有するものとすること、3)溶融焼結条件の適正化により緻密な焼結体とすること、4)前記2)、3)の併用により、機械的強度などにも優れた特性を有する耐プラズマ性フッ化物焼結体を製造すること、である。   The basic technical idea in the present invention is: 1) relaxation of the melt sintering condition by mixing two kinds of starting materials, that is, one kind of simple (in the raw material processing technology area, single and synonymous) 2) This sintering should be mainly melt-sintering by melting reaction, and the sintered body should have a strong inter-particle bonding force. 3) Melt-sintering To make a dense sintered body by optimizing the conditions, 4) to produce a plasma-resistant fluoride sintered body having excellent mechanical strength and the like by the combined use of 2) and 3), It is.

本発明に係る耐プラズマ性フッ化物焼結体の製造方法によれば、CaF2−MgF2二元系焼結体は、図1に示すCaF2−MgF2二元系状態図における固溶体を生ずる温度域である980℃以上の温度で焼結されるため、主として溶融反応による溶融焼結となる。この溶融焼結によって生じた焼結体は強固な粒子間の結合力を有し、結合部の機械的強度(ミクロ強度)はかなり高いものとなる。また、本発明に係る製造方法によれば、焼結体は、CaF2−MgF2の配合比、加熱雰囲気、加熱温度パターンなどの選定により、緻密度の高いものとなる。また、本発明に係る製造方法によれば、母体は焼結体であるため、その結晶構造は多結晶となり、単結晶と比較して脆性度は著しく向上する。 According to the method for producing a plasma-resistant fluoride sintered body according to the present invention, the CaF 2 -MgF 2 binary sintered body produces a solid solution in the CaF 2 -MgF 2 binary phase diagram shown in FIG. Since sintering is performed at a temperature of 980 ° C. or higher, which is the temperature range, melt sintering is mainly performed by a melt reaction. The sintered body produced by this melt sintering has a strong bonding force between particles, and the mechanical strength (micro strength) of the bonded portion is considerably high. Further, according to the manufacturing method of the present invention, the sintered body, the mixing ratio of CaF 2 MgF 2, the heating atmosphere, the selection of such heating temperature pattern, a higher denseness. Moreover, according to the manufacturing method according to the present invention, since the base is a sintered body, the crystal structure becomes polycrystalline, and the brittleness is remarkably improved as compared with a single crystal.

CaF2−MgF2二元系の状態図である。It is a phase diagram of CaF 2 -MgF 2 binary system. 仮焼結工程の加熱条件と仮焼結体の収縮率との関係を示す図である。It is a figure which shows the relationship between the heating conditions of a temporary sintering process, and the shrinkage rate of a temporary sintered compact. 大気雰囲気中での焼結工程の加熱条件と焼結体の生成状態との関係を示す図である。It is a figure which shows the relationship between the heating conditions of the sintering process in an atmospheric condition, and the production | generation state of a sintered compact. アルゴンガス雰囲気中での焼結工程の加熱条件と焼結体の生成状態との関係を示す図である。It is a figure which shows the relationship between the heating conditions of the sintering process in argon gas atmosphere, and the production | generation state of a sintered compact. 真空雰囲気中:10-3Paでの焼結工程の加熱条件と焼結体の生成状態との関係を示す図である。It is a figure which shows the relationship between the heating conditions of a sintering process by 10-3 Pa in a vacuum atmosphere, and the production | generation state of a sintered compact.

以下、本発明に係る耐プラズマ性フッ化物焼結体、より具体的には緻密な構造のCaF2−MgF2二元系焼結体の製造方法の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of a method for producing a plasma-resistant fluoride sintered body according to the present invention, more specifically, a CaF 2 -MgF 2 binary sintered body having a dense structure will be described with reference to the drawings.

本発明に係る耐プラズマ性フッ化物焼結体の製造方法は、高純度(純度99wt.%以上)のCaF2粉末に高純度(純度99wt.%以上)のMgF2粉末を1〜5wt.%の割合(内掛け)で混合し、さらに焼結助剤としてたとえばカルボキシメチルセルロース(CMC)溶液を前記混合物100に対し、0.1〜1wt.%添加(外掛け)、混練したものを出発原料とし、金型とプレス成形機を用いてプレス圧0.2MPa/ cm2以上で成形し、その成形体を大気雰囲気中で600〜700℃の温度範囲に加熱して仮焼結を行い、その仮焼結品を大気中または不活性雰囲気中または真空中で固溶体が適量生成する温度域で必要時間加熱し、その後冷却して緻密な構造のCaF2−MgF2二元系焼結体を製造する。 The method for producing a plasma-resistant fluoride sintered body according to the present invention comprises 1 to 5 wt.% Of MgF 2 powder of high purity (purity 99 wt.% Or more) added to CaF 2 powder of high purity (purity 99 wt.% Or more). In addition, a carboxymethyl cellulose (CMC) solution, for example, as a sintering aid is added to the mixture 100 in an amount of 0.1 to 1 wt. , Using a mold and a press molding machine at a press pressure of 0.2 MPa / cm 2 or more, and heating the molded body in an air atmosphere to a temperature range of 600 to 700 ° C. to perform preliminary sintering. The sintered product is heated for a required time in the temperature range where an appropriate amount of solid solution is formed in the air, in an inert atmosphere or in vacuum, and then cooled to produce a CaF 2 -MgF 2 binary sintered body having a dense structure. .

主原料のCaF2粉末への副原料であるMgF2粉末の混合の目的は、上記図1に示すように、CaF2単味では融点(図中では、1410℃と表記)が高く、且つ固溶体生成の温度領域が一部点線表記で不明瞭となっているのを、MgF2粉末を混合することによって、図1に示す状態図上の固溶体生成領域がより明瞭な範囲での焼結反応とすることにある。 The purpose of mixing the MgF 2 powder as the auxiliary material to CaF 2 powder of the main raw material, as shown in FIG. 1, (in the figure, 1410 ° C. the drawing) melting point in the CaF 2 plain is high, and a solid solution Part of the temperature range of formation is not clear in dotted line notation. By mixing MgF 2 powder, the solid solution generation region on the phase diagram shown in FIG. There is to do.

Caとは元素の周期律表の族が同じで周期が隣接し、特性が似通っていると推測されるMgのフッ素化合物であるMgF2を適量混合することによって、融点の低温化と固溶体の生成温度条件をより明確化することができ(MgF2の配合により、図1中の固溶体生成開始の温度領域表示線の右端部の点線領域から、左方に位置する中間配合比域の実線領域に近づける)、その結果、焼結温度条件の適正化が容易になる。 Ca is the same group of elements in the periodic table, but the periods are adjacent, and MgF 2 which is a Mg fluorine compound, which is presumed to have similar characteristics, is mixed to lower the melting point and form a solid solution. The temperature conditions can be further clarified (by mixing MgF 2 , from the dotted line area at the right end of the temperature area display line at the start of solid solution generation in FIG. 1 to the solid line area of the intermediate mixing ratio area located on the left side. As a result, it is easy to optimize the sintering temperature condition.

焼結助剤の選定は、前記のCMCとステアリン酸カルシウムとの2種類を選定し、それぞれの添加割合を変えて、これら焼結助剤の効果について試験を実施した。対比のため、焼結助剤を使わない試験もあわせて行った。   For the selection of the sintering aid, two types of CMC and calcium stearate were selected, and the ratio of each was changed, and the effect of these sintering aids was tested. For comparison, a test without using a sintering aid was also performed.

主原料のCaF2と副原料のMgF2との混合は、その混合比を0〜12.5wt.%の範囲で配合比を種々変化させて行った。ボールミルで半日混練したあと、焼結助剤二種類をおのおの0〜2wt.%の配合比で添加し、ポットミルを用いて一昼夜混練して出発原料とした。使用したボールミルは、内径280mm、長さ400mm、ボールは、φ5:1800g、φ10:1700g、φ20:3000g、φ30:2800gのアルミナ製ボールを使用した。ポットミルはアルミナ製で内径200mm、長さ250mmのものを使用した。その出発原料を内径160mm、同265mmおよび同375mmのうちのどれか1つの金型に入れ、一軸プレス機を用いて室温で加圧条件を種々変化させてプレス成形を行った。この成形体を大気雰囲気中で加熱温度550〜750℃、加熱時間3〜18時間の範囲で加熱条件を種々変化させて仮焼結を実施し、この仮焼結体の外観などを観察した後、事前の予備試験で良好な焼結条件と見込まれた大気雰囲気中で、室温から1300℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持した後、100℃までの冷却に6時間を掛け、焼結体の外観、内部の緻密化状況などを観察し、適正な原料配合、原料処理条件と仮焼結条件を調査した。 The mixing of the main raw material CaF 2 and the auxiliary raw material MgF 2 was carried out by varying the mixing ratio in the range of 0 to 12.5 wt.%. After kneading for half a day with a ball mill, two kinds of sintering aids were added at a mixing ratio of 0 to 2 wt.%, Respectively, and kneaded for a whole day and night using a pot mill to obtain a starting material. The ball mill used was an alumina ball having an inner diameter of 280 mm, a length of 400 mm, and a ball of φ5: 1800 g, φ10: 1700 g, φ20: 3000 g, and φ30: 2800 g. The pot mill was made of alumina and had an inner diameter of 200 mm and a length of 250 mm. The starting material was put into one of the molds having an inner diameter of 160 mm, 265 mm and 375 mm, and press molding was performed by changing the pressing conditions at room temperature using a single screw press. After preliminarily sintering the molded body in the atmosphere at various heating conditions in the range of a heating temperature of 550 to 750 ° C. and a heating time of 3 to 18 hours, and observing the appearance of the temporary sintered body In an air atmosphere, which was expected to have good sintering conditions in a preliminary test, the temperature was raised from room temperature to 1300 ° C. at a constant rate over 6 hours, held at the same temperature for 6 hours, and then cooled to 100 ° C. 6 hours were taken to observe the appearance of the sintered body, the state of internal densification, and the like, and the proper raw material composition, raw material processing conditions and pre-sintering conditions were investigated.

その結果、主原料CaF2への副原料MgF2の混合比は、1wt.%未満では焼結体の緻密化が不十分となり、5.1wt.%以上では焼結速度が速過ぎるためか、一部軟化を始めて焼結体の外観、具体的には外周部のエッジ付近が溶けて形状が崩れることがあった。これらのことから、MgF2の混合比の適正範囲は1〜5wt.%とした。焼結助剤二種類の効果に大差は無かったが、助剤無しでは成形体の形状維持性能が劣ること、また、配合比が1.1wt.%を超えると仮焼結体あるいは焼結体にその助剤の残留物とみられる着色が認められることがあった。これらのことから、焼結助剤の配合比の適正範囲は0.1〜1wt.%とした。 As a result, the mixing ratio of the auxiliary material MgF 2 in the main raw material CaF 2 is, 1 wt becomes insufficient densification of the sintered body is less than.%, Probably because the sintering speed is too fast at 5.1 wt.% Or more, In some cases, the appearance of the sintered body, specifically the vicinity of the edge of the outer peripheral portion, melted and the shape collapsed after partial softening. From these facts, the appropriate range of the mixing ratio of MgF 2 was set to 1 to 5 wt. There was no significant difference in the effect of the two types of sintering aids, but the shape maintenance performance of the molded product was poor without the aid, and when the compounding ratio exceeded 1.1 wt. In some cases, coloration that appears to be a residue of the auxiliaries was observed. For these reasons, the appropriate range of the mixing ratio of the sintering aid is set to 0.1 to 1 wt.

プレス圧が0.2MPa/ cm2未満ではハンドリング時に成形体が崩れて壊れ易く、一方、プレス圧が1.1MPa/ cm2以上では1MPa/ cm2弱の場合の仮焼結体、焼結体の性能に有意差が認められなかった。これらのことから、プレス圧の適正値は0.2MPa/ cm2以上とした。 Fragile and the molded body is broken during handling is less than the press pressure of 0.2 MPa / cm 2, whereas, presintered body in the case of 1 MPa / cm 2 a little less than a press pressure of 1.1 MPa / cm 2 or more, the sintered body There was no significant difference in performance. For these reasons, the appropriate value of the pressing pressure is set to 0.2 MPa / cm 2 or more.

成形体の大気雰囲気中の仮焼結条件の調査は図2に示すように、加熱温度が600℃未満では成形体の寸法と比して収縮がわずかであり、701℃以上ではその収縮速度が早く、収縮の制御が困難になることから、仮焼結温度の適正範囲は600〜700℃とした。その加熱時間の適正値は図2に示すように、600℃では収縮速度の評価から10〜11時間が最適であり、6〜12時間が適正であった。650℃では8〜10時間が最適であり、6〜12時間が適正であった。一方、700℃では7〜8時間が最適であり、6〜12時間が適正であった。この結果から、仮焼結の加熱条件は、大気雰囲気中で600〜700℃で6〜12時間加熱とした。   As shown in FIG. 2, the pre-sintering conditions in the air atmosphere of the molded product showed a slight shrinkage compared to the size of the molded product when the heating temperature was less than 600 ° C., and the shrinkage rate was higher than 701 ° C. Since the shrinkage control becomes difficult quickly, the appropriate range of the pre-sintering temperature was set to 600 to 700 ° C. As shown in FIG. 2, the appropriate value for the heating time was optimal at 10 to 11 hours from the evaluation of the shrinkage rate at 600 ° C., and 6 to 12 hours were appropriate. At 650 ° C., 8 to 10 hours was optimum, and 6 to 12 hours was appropriate. On the other hand, 7 to 8 hours were optimal at 700 ° C., and 6 to 12 hours were appropriate. From this result, the heating conditions for pre-sintering were heating at 600 to 700 ° C. for 6 to 12 hours in an air atmosphere.

耐プラズマ性フッ化物焼結体を製造するうえで最後の工程であり、しかも最も焼結体の性能に影響を与えると見られるのが焼結工程であり、ここまでの調査、試験などでその焼結工程直前までの適正条件が明らかになった。   The last step in manufacturing a plasma-resistant fluoride sintered body, and the most likely to affect the performance of the sintered body is the sintering process. Appropriate conditions until just before the sintering process were revealed.

この耐プラズマ性フッ化物焼結体の望ましいとみられる焼結機構は、以下の通りである。直前の仮焼結工程までの原料混合、粒度調整、混練、プレス、仮焼結などで、仮焼結体の粒子間の空隙は小さく、且つ、その空隙は集合せずにほぼ均一に分散しているとみられる(一次凝集過程の前半段階)。焼結工程の昇温過程で徐々に加熱温度が上昇し、仮焼結温度域(600〜700℃)あたりから粒子同士の集合がはじまり、次に固溶体が生成し始める980℃よりも少し低い温度域(一般的には、その温度から10%程度またはそれ以上低い温度域から始まると言われている)から固相間反応が始まり、それに伴い粒子同士の凝集が進行し、粒子間距離は短くなり空隙は小さくなる。ただし、空隙は依然として開気孔状態のままである(一次凝集過程の後半段階)。   The sintering mechanism considered desirable for this plasma-resistant fluoride sintered body is as follows. In the raw material mixing, particle size adjustment, kneading, pressing, pre-sintering etc. just before the pre-sintering process, the space between the particles of the pre-sintered body is small, and the space is almost uniformly dispersed without aggregation. (First half of the primary agglomeration process). The heating temperature gradually rises in the temperature rising process of the sintering process, and the temperature starts slightly from 980 ° C., where the aggregation of particles starts from around the pre-sintering temperature range (600 to 700 ° C.) and then the solid solution starts to form. The reaction between solid phases starts from the region (generally, it is said to start from a temperature range of about 10% or more from that temperature), and the aggregation of the particles proceeds along with it, and the distance between the particles is short The gap becomes smaller. However, the voids still remain open pores (second half of the primary aggregation process).

ここで、原料粒子のミクロな挙動について付記する。副原料であるMgF2粒子は主原料のCaF2粒子の周囲に在って、CaF2粒子との界面反応を進めて行くと推定される。加熱温度が980℃を超えたあたりからは、MgF2粒子が存在する界面あたりから溶融し始め、CaF2−MgF2二元系化合物の固溶体が生成し始める。この固溶体が粒子間の空隙を埋めて行き、一部では毛細管現象により微細な空隙も埋まるとおもわれる(二次凝集過程)。 Here, the micro behavior of the raw material particles will be described. It is presumed that the MgF 2 particles as the auxiliary material are present around the CaF 2 particles as the main material, and proceed with the interfacial reaction with the CaF 2 particles. When the heating temperature exceeds 980 ° C., it starts to melt from the interface where the MgF 2 particles exist, and a solid solution of CaF 2 —MgF 2 binary compound begins to be generated. It is thought that this solid solution fills the voids between the particles, and in part, fills the fine voids by capillary action (secondary aggregation process).

二次凝集過程の中で粒子間の空隙は小さくなり、空隙の全部または大半は粒子とか固溶体などに囲まれ、閉気孔(気泡)となるか、条件に依っては空隙(開気孔)を通じて脱ガスし、あるいは粒子とか固溶体の中にガスが浸透して脱ガスし、気泡とはならない場合(脱泡現象、と称す)とに分かれる。この粒子間の空隙が閉気孔、すなわち気泡になるか、あるいは脱ガスして気泡が生じないかは、焼結体の緻密化の達成度、ひいては焼結体の特性を決める大きな要素となる。とくに真空状態での焼結では、この固溶体による毛細管現象と脱泡現象とが促進され、気泡が残り難く、緻密化が容易になるとみられる。この様に全体を緻密化させるためには、前記の一次凝集過程と二次凝集過程とを各々の過程ごとに全体でほぼ同時にほぼ均一に進めることが重要である。   During the secondary agglomeration process, the voids between the particles become smaller, and all or most of the voids are surrounded by particles or solid solution to form closed pores (bubbles) or, depending on the conditions, desorb through the voids (open pores). Gas or gas penetrates into particles or solid solution to degas and does not become bubbles (referred to as defoaming phenomenon). Whether the voids between the particles become closed pores, that is, bubbles, or bubbles are not generated by degassing is a major factor in determining the degree of densification of the sintered body and, consequently, the characteristics of the sintered body. In particular, in sintering in a vacuum state, the capillary phenomenon and the defoaming phenomenon due to this solid solution are promoted, and bubbles are unlikely to remain, and it is considered that densification is easy. In order to densify the whole as described above, it is important that the primary agglomeration process and the secondary agglomeration process are almost uniformly advanced almost simultaneously for each process.

本発明では、主として一次凝集過程の前半段階に当たる仮焼結工程と、主として一次凝集過程の後半と二次凝集過程に当たる焼結工程とを分けて行うこととし、二つの凝集過程が焼結体全体をほぼ均一に進みやすくしている。しかしながら、このように仮焼結、焼結と工程を分けたからと言って加熱条件が適正でなければ、例えば、仮焼結工程で適正域を超えた高温で加熱したり、焼結工程の昇温段階で急速に加熱をしたり、同工程の保持温度が適正域を超えた高温であったりすると、焼結体の外周部と内部とで緻密化の程度に著しく差を生じる。このような状態になると、焼結体内部の緻密化過程で脱ガスが困難となり、とくに内部の緻密化が不十分となる。そこで、サイズに即した焼結工程の加熱温度パターンの適正化が重要となる。   In the present invention, the preliminary sintering process corresponding to the first half of the primary aggregation process and the sintering process corresponding to the second half of the primary aggregation process and the secondary aggregation process are performed separately. It is easy to proceed almost uniformly. However, if the heating conditions are not appropriate just because the process is divided into temporary sintering and sintering in this way, for example, heating is performed at a temperature exceeding the appropriate range in the preliminary sintering process, or the temperature of the sintering process is increased. When heating is performed rapidly in the temperature stage, or when the holding temperature in the same process is a high temperature exceeding the appropriate range, the degree of densification is significantly different between the outer peripheral portion and the inside of the sintered body. In such a state, degassing becomes difficult during the densification process inside the sintered body, and the internal densification becomes particularly insufficient. Therefore, it is important to optimize the heating temperature pattern in the sintering process according to the size.

前述のとおり、焼結工程直前までの適正条件が明らかになっており、この焼結工程に供される仮焼結品はその全体が既に一次凝集の前半段階まで進んだ状態になっている。ここで重要なことは、仮焼結体の全体が既にほぼ均一に一次凝集の途中まで進んでいることである。このため、焼結工程では一次凝集の残りと二次凝集がその全体でほぼ均一に進み易くなる。   As described above, the proper conditions until immediately before the sintering process have been clarified, and the preliminary sintered product used in this sintering process has already advanced to the first half of the primary aggregation. What is important here is that the entire pre-sintered body has already progressed almost uniformly to the middle of primary aggregation. For this reason, in the sintering process, the remaining primary agglomeration and the secondary agglomeration tend to proceed almost uniformly as a whole.

ここでは、仮焼結体のサイズと焼結条件の適正範囲について記すことにする。仮焼結体のサイズは、外径152mm、同253mm、同357mmで厚さは各々20mmである。焼結時の加熱雰囲気は大気中、不活性(アルゴン)ガス中、真空度10−2Pa以下の真空中、の三種類とした。 Here, the appropriate range of the size of the temporary sintered body and the sintering conditions will be described. The size of the temporary sintered body is 152 mm, 253 mm, and 357 mm in outer diameter, and each 20 mm in thickness. The heating atmosphere at the time of sintering was three types: air, inert (argon) gas, and vacuum with a vacuum degree of 10 −2 Pa or less.

加熱パターンのうち、まず昇温、降温条件はおのおの所要時間を4、6、8時間の3ケースで予備試験を行った結果、4時間では焼結体に小さな亀裂が発生し、その他は良好であったので6時間に設定した。   Of the heating patterns, first, the temperature rise and fall conditions were preliminarily tested in three cases of 4, 6, and 8 hours, respectively. As a result, small cracks occurred in the sintered body in 4 hours, and the others were good. It was set to 6 hours.

加熱保持温度、同時間については、まず保持温度を1100〜1390℃の範囲で変化させ、保持時間を3、6、9、12、15時間の5ケースで実施した。図3に示す大気中加熱では、1250℃未満の場合、保持時間に依らず緻密化が不十分であり、一方1371℃以上の場合、保持時間に依らず焼結速度が速過ぎて気泡が多く発生し、保持時間15時間以上では焼結体外周の一部が溶けて外観形状が崩れたことが有ったため、保持温度は1250〜1370℃、保持時間6〜12時間が適正条件であると判断した。   Regarding the heating holding temperature and the same time, first, the holding temperature was changed in the range of 1100 to 1390 ° C., and the holding time was carried out in 5 cases of 3, 6, 9, 12, and 15 hours. In the atmospheric heating shown in FIG. 3, when the temperature is lower than 1250 ° C., the densification is insufficient regardless of the holding time. On the other hand, when the temperature is 1371 ° C. or higher, the sintering speed is too high and there are many bubbles regardless of the holding time. When the holding time is 15 hours or more, the outer periphery of the sintered body has melted and the appearance shape has collapsed. Therefore, the holding temperature is 1250 to 1370 ° C., and the holding time is 6 to 12 hours. It was judged.

つぎに、アルゴンガス雰囲気中の加熱では図4に示すようになり、1220℃未満では保持時間に依らず、また、保持時間3時間では加熱温度に依らず緻密化が不十分であり、一方1351℃以上の場合、大気中加熱と同様に保持時間に依らず焼結速度が速過ぎて気泡が多く発生し、保持時間15時間以上では溶けて外観形状が崩れることがあったため、保持温度1220〜1350℃、保持時間6〜12時間が適正条件であると判断した。   Next, the heating in an argon gas atmosphere is as shown in FIG. 4, and if it is less than 1220 ° C., it does not depend on the holding time, and if the holding time is 3 hours, the densification is insufficient regardless of the heating temperature. When the temperature is higher than or equal to ° C., the sintering rate is too high regardless of the holding time, and many bubbles are generated regardless of the holding time. It was judged that 1350 ° C. and holding time of 6 to 12 hours were proper conditions.

不活性ガスはアルゴンに限らず、窒素、ネオンなどでも同様の効果が得られた。   The same effect was obtained not only with argon but also with nitrogen, neon, and the like.

真空中加熱では図5に示すようになり、1205℃未満の場合、保持時間に依らず、また保持時間3時間では加熱温度に依らず緻密化が不十分であり、一方1331℃以上の場合、大気中加熱と同様に焼結速度が速過ぎて気泡が多く発生し、保持時間15時間以上では溶けて外観形状が崩れることがあったため、保持温度1205〜1330℃、保持時間6〜12時間が適正条件であると判断した。   When heating in vacuum, as shown in FIG. 5, if it is less than 1205 ° C., it does not depend on the holding time, and if the holding time is 3 hours, it is insufficiently densified regardless of the heating temperature. Like the heating in the atmosphere, the sintering speed is too high and many bubbles are generated. If the holding time is 15 hours or more, the melt may be melted and the external shape may be destroyed. Therefore, the holding temperature is 1205 to 1330 ° C., the holding time is 6 to 12 hours. Judged to be the proper condition.

この焼結工程の加熱条件が適正範囲の場合、焼結体の出来上がり状態は常に全体が緻密であり、一般的なセラミックス焼結体などで局部的に見られる大きい空隙とか亀裂などの明らかな欠陥部位は、この焼結体には見られなかった。   When the heating conditions of this sintering process are in the proper range, the final state of the sintered body is always dense, and obvious defects such as large voids and cracks that are found locally in general ceramic sintered bodies The site was not found in this sintered body.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例によって制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not restrict | limited by the following Example.

高純度のCaF2粉末(主原料:平均粒径10μm、純度99wt.%以上)に同MgF2粉末(平均粒径10μm、純度99wt.%以上)を1.5wt.%混合し、ボールミルで12時間混練した。そのあと、さらに焼結助剤としてカルボキシメチルセルロース(CMC)溶液を前記混合物100に対し、0.2wt.%の割合で添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径160mmの金型を用いてプレス圧0.9MPa/ cm2でプレス成形し、成形体とした。その成形体を大気雰囲気中で680℃、7時間仮焼結を行い、外径152mm、厚さ20mmの仮焼結体とした。それを大気雰囲気中で室温から1365℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持し、この後取り出し温度と設定した100℃までの降温に6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外観の形状と重さから、外径145mm、厚さ19mm、嵩密度3.13g/cm3であり、焼結状態は良好であった。ここで言う“嵩密度”は、焼結体の外観が円板形状であるため、計測したその円板の外径と厚さから嵩体積を計算で求め、別に計測した重さを前記嵩体積で除して求める方法を採った。以下、同様に行うこととした。 Mix 1.5 wt.% Of the same MgF 2 powder (average particle size 10 μm, purity 99 wt.% Or more) with high purity CaF 2 powder (main raw material: average particle size 10 μm, purity 99 wt.% Or more). Kneaded for hours. Thereafter, a carboxymethyl cellulose (CMC) solution as a sintering aid was further added to the mixture 100 at a rate of 0.2 wt.% And mixed for 12 hours in a pot mill as a starting material. Using a 160 mm mold, press molding was performed at a press pressure of 0.9 MPa / cm 2 to obtain a molded body. The molded body was pre-sintered at 680 ° C. for 7 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 152 mm and a thickness of 20 mm. It is heated at a constant rate from room temperature to 1365 ° C. for 6 hours in the air atmosphere, held at the same temperature for 6 hours, and then cooled for 6 hours from the take-off temperature and the set temperature drop to 100 ° C., I took it out. The approximate dimensions of the sintered body were an outer diameter of 145 mm, a thickness of 19 mm, and a bulk density of 3.13 g / cm 3 from the appearance and weight, and the sintered state was good. The “bulk density” referred to here is a disk-like appearance of the sintered body, so the bulk volume is calculated from the measured outer diameter and thickness of the disk, and the separately measured weight is the bulk volume. I took the method of dividing by. Hereinafter, it was decided to carry out similarly.

上記の実施例1と同じ主原料にMg F2粉末を2.5wt.%混合し、ボールミルで同じく12時間混練した。そのあと、さらに焼結助剤としてステアリン酸カルシウムを0.7wt.%添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径265mmの金型を用いてプレス圧0.5MPa/ cm2でプレス成形し、成形体とした。その成形体を大気雰囲気中で650℃、10時間仮焼結を行い、外径253mm、厚さ20mmの仮焼結体とした。それをアルゴンガス雰囲気中で室温から1340℃まで6時間掛けて一定速度で昇温させ、同温度に8時間保持したあと、100℃までの降温に6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外径242mm、厚さ19mm、嵩密度3.14g/cm3であり、焼結状態は良好であった。 The same main raw material as in Example 1 above was mixed with 2.5 wt.% Of Mg F 2 powder and kneaded in a ball mill for 12 hours. After that, 0.7 wt.% Of calcium stearate was further added as a sintering aid and mixed for 12 hours in a pot mill as a starting material, using a uniaxial press machine and a mold with an inner diameter of 265 mm, a press pressure of 0.5 MPa / It was press-molded at cm 2 to obtain a molded body. The molded body was pre-sintered at 650 ° C. for 10 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 253 mm and a thickness of 20 mm. The temperature was raised from room temperature to 1340 ° C. over 6 hours in an argon gas atmosphere at a constant rate, held at the same temperature for 8 hours, cooled to 100 ° C. over 6 hours, cooled and taken out. The approximate dimensions of the sintered body were an outer diameter of 242 mm, a thickness of 19 mm, and a bulk density of 3.14 g / cm 3 , and the sintered state was good.

上記の実施例1と同じ主原料にMgF2粉末を4.5wt.%混合し、ボールミルで同じく12時間混練した。そのあと、さらに焼結助剤としてCMC溶液を1wt.%添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径375mmの金型を用いてプレス圧0.2MPa/ cm2でプレス成形し、成形体とした。その成形体を大気雰囲気中で620℃、11時間仮焼結を行い、外径357mm、厚さ20mmの仮焼結体とした。それを10−3Paの真空雰囲気中で室温から1220℃まで6時間掛けて一定速度で昇温させ、同温度に11時間保持したあと、100℃まで6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外径350mm、厚さ19mm、嵩密度3.11g/cm3であり、焼結状態は良好であった。 The same main raw material as in Example 1 was mixed with 4.5 wt.% MgF 2 powder and kneaded in a ball mill for 12 hours. After that, 1 wt.% Of CMC solution was further added as a sintering aid and mixed for 12 hours in a pot mill as a starting material, using a single screw press and a mold with an inner diameter of 375 mm and a press pressure of 0.2 MPa / cm 2. Was press-molded to obtain a molded body. The molded body was pre-sintered at 620 ° C. for 11 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 357 mm and a thickness of 20 mm. It was heated at a constant rate from room temperature to 1220 ° C. over 6 hours in a vacuum atmosphere of 10 −3 Pa, held at the same temperature for 11 hours, cooled to 100 ° C. over 6 hours, and taken out. The approximate dimensions of the sintered body were an outer diameter of 350 mm, a thickness of 19 mm, and a bulk density of 3.11 g / cm 3 , and the sintered state was good.

上記の実施例1と同じ主原料にMgF2粉末を3wt.%混合し、ボールミルで同じく12時間混練した。そのあと、さらに焼結助剤としてCMC溶液を0.6wt.%添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径265mmの金型を用いてプレス圧0.7MPa/ cm2でプレス成形し、成形体とした。その成形体を大気雰囲気中で620℃、9時間仮焼結を行い、外径253mm、厚さ20mmの仮焼結体とした。それを窒素ガス雰囲気中で室温から1320℃まで6時間掛けて一定速度で昇温させ、同温度に7時間保持したあと、100℃まで6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外径249mm、厚さ18.5mm、嵩密度3.16g/cm3であり、焼結状態は良好であった。 3 wt.% Of MgF 2 powder was mixed with the same main raw material as in Example 1 and kneaded in a ball mill for 12 hours. After that, 0.6 wt.% Of CMC solution was further added as a sintering aid and mixed in a pot mill for 12 hours as a starting material, using a uniaxial press machine and a mold with an inner diameter of 265 mm, a press pressure of 0.7 MPa / It was press-molded at cm 2 to obtain a molded body. The molded body was pre-sintered at 620 ° C. for 9 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 253 mm and a thickness of 20 mm. The temperature was raised from room temperature to 1320 ° C. over 6 hours in a nitrogen gas atmosphere at a constant rate, held at the same temperature for 7 hours, cooled to 100 ° C. over 6 hours, and taken out. The approximate dimensions of the sintered body were an outer diameter of 249 mm, a thickness of 18.5 mm, a bulk density of 3.16 g / cm 3 , and the sintered state was good.

上記の実施例1と同じ主原料にMgF2粉末を2wt.%混合し、ボールミルで同じく12時間混練した。そのあと、さらに焼結助剤としてステアリン酸カルシウムを3.5wt.%添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径160mmの金型を用いてプレス圧0.6MPa/ cm2でプレス成形し、成形体とした。その成形体を大気雰囲気中で630℃、10時間仮焼結を行い、外径152mm、厚さ20mmの仮焼結体とした。それを10−5Paの真空雰囲気中で室温から1210℃まで6時間掛けて一定速度で昇温させ、同温度に12時間保持したあと、100℃まで6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外径146mm、厚さ18.5mm、嵩密度3.15g/cm3であり、焼結状態は良好であった。 2 wt.% Of MgF 2 powder was mixed with the same main raw material as in Example 1 and kneaded in a ball mill for 12 hours. Then, 3.5 wt.% Calcium stearate as a sintering aid was further added and mixed for 12 hours in a pot mill as a starting material, using a uniaxial press machine and a mold with an inner diameter of 160 mm at a press pressure of 0.6 MPa / It was press-molded at cm 2 to obtain a molded body. The molded body was pre-sintered at 630 ° C. for 10 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 152 mm and a thickness of 20 mm. It was heated at a constant rate from room temperature to 1210 ° C. over 6 hours in a vacuum atmosphere of 10 −5 Pa, held at the same temperature for 12 hours, cooled to 100 ° C. over 6 hours, and taken out. The approximate dimensions of the sintered body were an outer diameter of 146 mm, a thickness of 18.5 mm, a bulk density of 3.15 g / cm 3 , and the sintered state was good.

上記の実施例1と同じ主原料にMgF2粉末を2.5wt.%混合し、ボールミルで同じく12時間混練した。そのあと、さらに焼結助剤としてCMC溶液を0.5wt.%添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径265mmの金型を用いてプレス圧0.3MPa/ cm2でプレス成形し、成形体とした。その成形体を大気雰囲気中で600℃、12時間仮焼結を行い、外径254mm、厚さ20.5mmの仮焼結体とした。それをアルゴンガス雰囲気中で室温から1325℃まで6時間掛けて一定速度で昇温させ、同温度に7時間保持したあと、100℃まで6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外径244mm、厚さ19mm、嵩密度3.12g/cm3であり、焼結状態は良好であった。 The same main raw material as in Example 1 was mixed with 2.5 wt.% Of MgF 2 powder and kneaded in a ball mill for 12 hours. After that, 0.5 wt.% Of CMC solution was further added as a sintering aid and mixed for 12 hours in a pot mill as a starting material, using a uniaxial press machine and a mold with an inner diameter of 265 mm and a press pressure of 0.3 MPa / It was press-molded at cm 2 to obtain a molded body. The molded body was pre-sintered at 600 ° C. for 12 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 254 mm and a thickness of 20.5 mm. It was heated at a constant rate from room temperature to 1325 ° C. over 6 hours in an argon gas atmosphere, held at the same temperature for 7 hours, cooled to 100 ° C. over 6 hours, and taken out. The approximate dimensions of the sintered body were an outer diameter of 244 mm, a thickness of 19 mm, and a bulk density of 3.12 g / cm 3 , and the sintered state was good.

比較例1Comparative Example 1

上記の実施例1と同じ主原料にMgF2粉末を6wt.%混合し、ボールミルで同じく12時間混練した。そのあと、さらに焼結助剤としてCMC溶液を0.2wt.%添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径160mmの金型を用いてプレス圧0.9MPa/ cm2プレス成形し、成形体とした。その成形体を大気雰囲気中で680℃、7時間仮焼結を行い、外径150mm、厚さ19.5mmの仮焼結体とした。それを大気雰囲気中で室温から1365℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持したあと、取り出し温度の100℃まで6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外径140〜150mm、厚さはおおよそ16mmであったが、外周部の一部は溶けて崩れたところが散見された。なお、嵩密度は形状が前述のとおり崩れたところがあり、計測出来ない状態であった。 6 wt.% Of MgF 2 powder was mixed with the same main raw material as in Example 1 and kneaded in a ball mill for 12 hours. After that, 0.2 wt.% Of CMC solution was further added as a sintering aid and mixed for 12 hours in a pot mill as a starting material, using a uniaxial press machine and a mold with an inner diameter of 160 mm at a press pressure of 0.9 MPa / cm 2 press molding was performed to obtain a molded body. The molded body was pre-sintered at 680 ° C. for 7 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 150 mm and a thickness of 19.5 mm. The temperature was raised from room temperature to 1365 ° C. over 6 hours in an air atmosphere at a constant rate, held at the same temperature for 6 hours, cooled to 100 ° C., the take-out temperature, over 6 hours, and taken out. The approximate dimensions of the sintered body were an outer diameter of 140 to 150 mm and a thickness of approximately 16 mm. However, some of the outer peripheral portion melted and collapsed. In addition, the bulk density was in a state where the shape could not be measured because the shape collapsed as described above.

比較例2Comparative Example 2

上記の実施例1と同じ主原料にMgF2粉末を1.5wt.%混合し、ボールミルで同じく12時間混練した。そのあと、さらに焼結助剤としてCMC溶液を0.2wt.%添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径160mmの金型を用いてプレス圧0.9MPa/ cm2でプレス成形し、成形体とした。その成形体を大気雰囲気中で750℃、13時間仮焼結を行い、外径147mm、厚さ18mmの仮焼結体とした。それを大気雰囲気中で室温から1365℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持したあと、取り出し温度の100℃まで6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外径144〜146mm、厚さはおおよそ17mm、嵩密度は2.97g/cm3と軽いものであった。焼結体内部を観察すると、サイズ1mm以上の大きい気泡が無数に存在していた。 The same main raw material as in Example 1 was mixed with 1.5 wt.% Of MgF 2 powder and kneaded in a ball mill for 12 hours. After that, 0.2 wt.% Of CMC solution was further added as a sintering aid and mixed for 12 hours in a pot mill as a starting material, using a uniaxial press machine and a mold with an inner diameter of 160 mm at a press pressure of 0.9 MPa / It was press-molded at cm 2 to obtain a molded body. The molded body was pre-sintered at 750 ° C. for 13 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 147 mm and a thickness of 18 mm. The temperature was raised from room temperature to 1365 ° C. over 6 hours in an air atmosphere at a constant rate, held at the same temperature for 6 hours, cooled to 100 ° C., the take-out temperature, over 6 hours, and taken out. The approximate dimensions of the sintered body were as follows: an outer diameter of 144 to 146 mm, a thickness of approximately 17 mm, and a bulk density of 2.97 g / cm 3 . When the inside of the sintered body was observed, numerous large bubbles having a size of 1 mm or more were present.

比較例3Comparative Example 3

上記の実施例1と同じ主原料粉末に、MgF2粉末を1.5wt.%混合し、ボールミルで同じく12時間混練した。そのあと、さらに焼結助剤としてCMC溶液を0.2wt.%添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径160mmの金型を用いてプレス圧0.9MPa/ cm2でプレス成形し、成形体とした。その成形体を大気雰囲気中で680℃、7時間仮焼結を行い、外径152mm、厚さ20mmの仮焼結体とした。それを大気雰囲気中で室温から1385℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持したあと、取り出し温度の100℃まで6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外径148〜150mm、厚さはおおよそ18mmであったが、外周の一部は溶けて崩れたところがあった。なお、嵩密度は形状が崩れており計測出来ない状態であった。 The same main raw material powder as in Example 1 was mixed with 1.5 wt.% MgF 2 powder and kneaded in a ball mill for 12 hours. After that, 0.2 wt.% Of CMC solution was further added as a sintering aid and mixed for 12 hours in a pot mill as a starting material, using a uniaxial press machine and a mold with an inner diameter of 160 mm at a press pressure of 0.9 MPa / It was press-molded at cm 2 to obtain a molded body. The molded body was pre-sintered at 680 ° C. for 7 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 152 mm and a thickness of 20 mm. The temperature was raised from room temperature to 1385 ° C. in an air atmosphere at a constant rate for 6 hours, held at the same temperature for 6 hours, cooled to the removal temperature of 100 ° C. for 6 hours, and taken out. The approximate dimensions of the sintered body were an outer diameter of 148 to 150 mm and a thickness of approximately 18 mm, but some of the outer periphery melted and collapsed. The bulk density was in a state where the shape was broken and measurement was impossible.

比較例4Comparative Example 4

上記の実施例1と同じ原料粉末を用い、MgF2粉末を1.5wt.%混合し、ボールミルで同じく12時間混練した。そのあと、さらに焼結助剤としてCMC溶液を0.2wt.%添加し、ポットミルで12時間混合したものを出発原料とし、一軸プレス機と内径160mmの金型を用いてプレス圧0.9MPa/ cm2でプレス成形し、成形体とした。その成形体を大気雰囲気中で570℃、8時間仮焼結を行い、外径159mm、厚さ21mmの仮焼結体としたが、周辺部の一部、とくに外周のエッジ部分が崩れやすく、外観から仮焼結による収縮が不十分であると判断出来る状態であった。それを大気雰囲気中で室温から1365℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持したあと、取り出し温度の100℃まで6時間掛けて冷却し、取り出した。焼結体の概略寸法は、外径154mm、厚さ19.5mmで、一部外周エッジ部に欠けが有るため嵩密度は概算値となるが、約2.90g/cm3であった。なお、内部に大きい空隙(気泡のように真球状ではなく、不定形である)が認められた。 Using the same raw material powder as in Example 1 above, MgF 2 powder was mixed at 1.5 wt.% And kneaded in a ball mill for 12 hours. After that, 0.2 wt.% Of CMC solution was further added as a sintering aid and mixed for 12 hours in a pot mill as a starting material, using a uniaxial press machine and a mold with an inner diameter of 160 mm at a press pressure of 0.9 MPa / It was press-molded at cm 2 to obtain a molded body. The molded body was pre-sintered at 570 ° C. for 8 hours in an air atmosphere to obtain a pre-sintered body having an outer diameter of 159 mm and a thickness of 21 mm. From the appearance, it was in a state where it could be judged that the shrinkage due to pre-sintering was insufficient. The temperature was raised from room temperature to 1365 ° C. over 6 hours in an air atmosphere at a constant rate, held at the same temperature for 6 hours, cooled to 100 ° C., the take-out temperature, over 6 hours, and taken out. The approximate dimensions of the sintered body were an outer diameter of 154 mm, a thickness of 19.5 mm, and some of the outer peripheral edge portions were chipped, so the bulk density was an approximate value, but was about 2.90 g / cm 3 . In addition, a large void (instead of a perfect sphere like a bubble and an indeterminate shape) was observed inside.

比較例5Comparative Example 5

上記の比較例4と同じ成形体を使用し、大気雰囲気中で680℃、7時間仮焼結を行い、外径152mm、厚さ20mmの仮焼結体とした。それを大気雰囲気中で室温から1235℃まで6時間掛けて一定速度で昇温させ、同温度に12時間保持したあと、取り出し温度の100℃まで6時間掛けて冷却し、取り出した。焼結体の寸法は、外径151mm、厚さ19mm、嵩密度は2.89g/cm3とかなり軽いものであった。焼結体内部を観察すると、大きさが中程度の気泡と小さい気泡が無数にあり、また母体の結合部が細めであったことから、焼結過程の二次凝集が十分には進んでいないと推測された。 Using the same molded body as in Comparative Example 4 above, preliminary sintering was performed in an air atmosphere at 680 ° C. for 7 hours to obtain a temporary sintered body having an outer diameter of 152 mm and a thickness of 20 mm. The temperature was raised from room temperature to 1235 ° C. over 6 hours in an air atmosphere at a constant rate, held at the same temperature for 12 hours, cooled to 100 ° C., the take-out temperature, and cooled for 6 hours. The dimensions of the sintered body were as light as 151 mm in outer diameter, 19 mm in thickness, and 2.89 g / cm 3 in bulk density. When the inside of the sintered body was observed, there were innumerable medium-sized and small bubbles, and the joint part of the base was narrow, so secondary aggregation in the sintering process did not progress sufficiently It was speculated.

比較例6Comparative Example 6

上記の比較例4と同じ成形体を使用し、大気雰囲気中で680℃、7時間仮焼結を行い、外径152mm、厚さ20mmの仮焼結体とした。それをアルゴンガス雰囲気中で室温から1360℃まで6時間掛けて一定速度で昇温させ、同温度に6時間保持したあと、取り出し温度の100℃まで6時間掛けて冷却し、取り出した。焼結体の外観は、外周部の一部が溶けて崩れかかったところが見られ、溶融が進み過ぎであった。寸法は、外径152〜154mm、厚さ17〜19mmで、嵩密度は計測不能であった。   Using the same molded body as in Comparative Example 4 above, preliminary sintering was performed in an air atmosphere at 680 ° C. for 7 hours to obtain a temporary sintered body having an outer diameter of 152 mm and a thickness of 20 mm. The temperature was raised from room temperature to 1360 ° C. over 6 hours in an argon gas atmosphere at a constant rate, held at the same temperature for 6 hours, cooled to 100 ° C., the take-out temperature, over 6 hours, and taken out. As for the appearance of the sintered body, a part of the outer peripheral portion melted and collapsed, and melting was progressing too much. The dimensions were an outer diameter of 152 to 154 mm, a thickness of 17 to 19 mm, and the bulk density was not measurable.

比較例7Comparative Example 7

上記の比較例4と同じ成形体を使用し、大気雰囲気中で680℃、7時間仮焼結を行い、外径152mm、厚さ20mmの仮焼結体とした。それを10−4Paの真空雰囲気中で室温から1340℃まで6時間掛けて一定速度で昇温させ、同温度に7時間保持したあと、取り出し温度の100℃まで6時間掛け冷却し、取り出した。焼結体の外観は、比較例6と同様に外周部の一部が溶けて崩れかったところが見られ、溶融が進み過ぎであった。 Using the same molded body as in Comparative Example 4 above, preliminary sintering was performed in an air atmosphere at 680 ° C. for 7 hours to obtain a temporary sintered body having an outer diameter of 152 mm and a thickness of 20 mm. It was heated at a constant rate from room temperature to 1340 ° C. over 6 hours in a vacuum atmosphere of 10 −4 Pa, held at the same temperature for 7 hours, then cooled to 100 ° C., the take-out temperature, over 6 hours, and taken out. . As for the appearance of the sintered body, a part of the outer peripheral portion melted and collapsed in the same manner as in Comparative Example 6, and the melting progressed too much.

Claims (3)

緻密な構造のCaF2−MgF2二元系焼結体からなる耐プラズマ性フッ化物焼結体の製造方法であって、
高純度CaF2粉末に高純度MgF2粉末を1〜5wt.%混合し、さらに焼結助剤を0.1〜1wt.%添加して混合する工程、
金型及びプレス成形機を用いてプレス圧0.2MPa/ cm2以上で成形する工程、
その成形品を大気雰囲気中で600〜700℃に加熱して仮焼結を行う工程、
大気雰囲気中で1250〜1370℃の温度範囲で6〜12時間加熱して緻密な構造のCaF2−MgF2二元系焼結体を形成する工程、
を含むことを特徴とする耐プラズマ性フッ化物焼結体の製造方法。
A method for producing a plasma-resistant fluoride sintered body comprising a CaF 2 -MgF 2 binary sintered body having a dense structure,
Step high purity MgF 2 powder with high-purity CaF 2 powder 1-5 wt.% Are mixed and mixed for an additional sintering aids 0.1 to 1 wt.% Additive to,
Forming at a press pressure of 0.2 MPa / cm 2 or more using a mold and a press molding machine;
A step of heating the molded product to 600 to 700 ° C. in an air atmosphere to perform preliminary sintering,
A step of forming a CaF 2 -MgF 2 binary sintered body having a dense structure by heating in an air atmosphere at a temperature range of 1250 to 1370 ° C. for 6 to 12 hours;
The manufacturing method of the plasma-resistant fluoride sintered compact characterized by including this.
請求項1記載のCaF2−MgF2二元系焼結体形成工程に代えて、加熱雰囲気を不活性ガス雰囲気とし、1220〜1350℃の温度範囲で6〜12時間加熱して緻密な構造のCaF2−MgF2二元系焼結体を形成する工程を含み、
その他の工程は、請求項1記載の各工程と同じであることを特徴とする耐プラズマ性フッ化物焼結体の製造方法。
In place of the CaF 2 -MgF 2 binary sintered body forming step according to claim 1, the heating atmosphere is an inert gas atmosphere, and the heating is performed in a temperature range of 1220 to 1350 ° C. for 6 to 12 hours. Including a step of forming a CaF 2 -MgF 2 binary sintered body,
The other process is the same as each process of Claim 1, The manufacturing method of the plasma-resistant fluoride sintered compact characterized by the above-mentioned.
請求項1記載の焼結体形成工程に代えて、加熱雰囲気を10-2Pa以下の高真空とし、1205〜1330℃の温度範囲で6〜12時間加熱して緻密な構造のCaF2−MgF2二元系焼結体を形成する工程を含み、
その他の工程は、請求項1記載の各工程と同じであることを特徴とする耐プラズマ性フッ化物焼結体の製造方法。
In place of the sintered body forming step according to claim 1, the heating atmosphere is set to a high vacuum of 10 −2 Pa or less, and heated in a temperature range of 120 to 1330 ° C. for 6 to 12 hours to form CaF 2 -MgF having a dense structure. 2 including the step of forming a binary sintered body,
The other process is the same as each process of Claim 1, The manufacturing method of the plasma-resistant fluoride sintered compact characterized by the above-mentioned.
JP2009142911A 2009-06-16 2009-06-16 Method for producing plasma-resistant fluoride sintered body Active JP5185213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009142911A JP5185213B2 (en) 2009-06-16 2009-06-16 Method for producing plasma-resistant fluoride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009142911A JP5185213B2 (en) 2009-06-16 2009-06-16 Method for producing plasma-resistant fluoride sintered body

Publications (2)

Publication Number Publication Date
JP2011001198A true JP2011001198A (en) 2011-01-06
JP5185213B2 JP5185213B2 (en) 2013-04-17

Family

ID=43559502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009142911A Active JP5185213B2 (en) 2009-06-16 2009-06-16 Method for producing plasma-resistant fluoride sintered body

Country Status (1)

Country Link
JP (1) JP5185213B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064978A (en) * 2014-09-24 2016-04-28 国立大学法人 筑波大学 MgF2-CaF2 BINARY SYSTEM SINTERED BODY FOR RADIATION MODERATOR AND METHOD FOR PRODUCING THE SAME
CN110981484A (en) * 2019-11-21 2020-04-10 天津津航技术物理研究所 Method for preparing nanoscale magnesium fluoride transparent ceramic by hot-pressing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5578507B2 (en) * 2009-11-05 2014-08-27 株式会社大興製作所 CaF2-MgF2 binary sintered body and method for producing plasma-resistant fluoride sintered body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072554A (en) * 1998-08-20 2000-03-07 Taiheiyo Cement Corp Fluoride ceramic sintered compact and its production
JP2000086344A (en) * 1998-09-14 2000-03-28 Kyocera Corp High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JP2000219574A (en) * 1999-01-27 2000-08-08 Taiheiyo Cement Corp Corrosion resistant member
JP2000233969A (en) * 1998-12-08 2000-08-29 Tosoh Corp Production of ito sputtering target and transparent electrically conductive film
JP2003115478A (en) * 2001-10-05 2003-04-18 Toshiba Ceramics Co Ltd Window member for plasma processor
JP2004083362A (en) * 2002-08-28 2004-03-18 Toshiba Ceramics Co Ltd Fluoride ceramic sintered compact, and method for manufacturing the same
JP2006206359A (en) * 2005-01-27 2006-08-10 Nikon Corp Calcium fluoride fine particle, calcium fluoride dried body, calcium fluoride sintered compact, calcium fluoride transparent sintered compact and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072554A (en) * 1998-08-20 2000-03-07 Taiheiyo Cement Corp Fluoride ceramic sintered compact and its production
JP2000086344A (en) * 1998-09-14 2000-03-28 Kyocera Corp High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JP2000233969A (en) * 1998-12-08 2000-08-29 Tosoh Corp Production of ito sputtering target and transparent electrically conductive film
JP2000219574A (en) * 1999-01-27 2000-08-08 Taiheiyo Cement Corp Corrosion resistant member
JP2003115478A (en) * 2001-10-05 2003-04-18 Toshiba Ceramics Co Ltd Window member for plasma processor
JP2004083362A (en) * 2002-08-28 2004-03-18 Toshiba Ceramics Co Ltd Fluoride ceramic sintered compact, and method for manufacturing the same
JP2006206359A (en) * 2005-01-27 2006-08-10 Nikon Corp Calcium fluoride fine particle, calcium fluoride dried body, calcium fluoride sintered compact, calcium fluoride transparent sintered compact and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064978A (en) * 2014-09-24 2016-04-28 国立大学法人 筑波大学 MgF2-CaF2 BINARY SYSTEM SINTERED BODY FOR RADIATION MODERATOR AND METHOD FOR PRODUCING THE SAME
CN110981484A (en) * 2019-11-21 2020-04-10 天津津航技术物理研究所 Method for preparing nanoscale magnesium fluoride transparent ceramic by hot-pressing method

Also Published As

Publication number Publication date
JP5185213B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5578507B2 (en) CaF2-MgF2 binary sintered body and method for producing plasma-resistant fluoride sintered body
JP5462423B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
JP5608257B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
WO2014167788A1 (en) Silica vessel for pulling up single crystal silicon and process for producing same
JPWO2010125739A1 (en) Silica container and method for producing the same
JP5185213B2 (en) Method for producing plasma-resistant fluoride sintered body
JP5969493B2 (en) Sputtering target and manufacturing method thereof
JP5711511B2 (en) CaF2-MgF2 binary sintered body and method for producing plasma-resistant fluoride sintered body
KR101945145B1 (en) Oxide sintered compact
US9580331B2 (en) CaF2 polycrystalline body, focus ring, plasma processing apparatus, and method for producing CaF2 polycrystalline body
TWI612186B (en) Polycrystalline CaF crucible member, member for plasma processing apparatus, plasma processing apparatus, and manufacturing method of focus ring
JP5497247B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
TWI773135B (en) Ceramic component, method of manufacturing the same, and focus ring
JP2003112963A (en) Alumina sintered compact, and production method therefor
JP2005139018A (en) Opaque silica glass molding and method for producing the same
JP2009234877A (en) Member used for plasma processing apparatus
JP2007223828A (en) Yttria ceramic sintered compact and method of manufacturing the same
JP2001233676A (en) Plasma corrosion-resistant member and method for producing the same
JP2003300777A (en) High purity calcium fluoride sintered compact and production method therefor
US9908282B2 (en) Method for producing a semiconductor using a vacuum furnace
CN115215541A (en) Glass, method for producing same, member and device using glass
WO2012104948A1 (en) Rectangular silica container for production of polycrystalline silicon ingot, porous silica plate and method for producing same
JP2023098596A (en) Alumina sintered body and manufacturing method thereof
KR20230079753A (en) A method for manufacturing Ceramics Powder Using Arc Melting
JP5608258B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5185213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250