JP2010531295A5 - - Google Patents

Download PDF

Info

Publication number
JP2010531295A5
JP2010531295A5 JP2010503277A JP2010503277A JP2010531295A5 JP 2010531295 A5 JP2010531295 A5 JP 2010531295A5 JP 2010503277 A JP2010503277 A JP 2010503277A JP 2010503277 A JP2010503277 A JP 2010503277A JP 2010531295 A5 JP2010531295 A5 JP 2010531295A5
Authority
JP
Japan
Prior art keywords
reaction chamber
chip
reagent
radiosynthesis
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010503277A
Other languages
Japanese (ja)
Other versions
JP2010531295A (en
Filing date
Publication date
Priority claimed from US11/895,636 external-priority patent/US7741121B2/en
Application filed filed Critical
Priority claimed from PCT/US2008/060267 external-priority patent/WO2008128201A1/en
Publication of JP2010531295A publication Critical patent/JP2010531295A/en
Publication of JP2010531295A5 publication Critical patent/JP2010531295A5/ja
Pending legal-status Critical Current

Links

Claims (39)

反応室;
前記反応室に接続された1つ以上のフローチャネル;
前記反応室の頂部に接続された1つ以上のベントであって、前記反応室からの無制限の溶媒蒸発を許容するように構成されているベント;及び
前記反応室内外への流通制御を実行するための1つ以上の一体型バルブとを備えてなる、
放射標識化化合物の放射合成のためのマイクロ流体チップ。
Reaction chamber;
One or more flow channels connected to the reaction chamber;
One or more vents connected to the top of the reaction chamber , the vent configured to allow unrestricted solvent evaporation from the reaction chamber ; and performing flow control to and from the reaction chamber One or more integral valves for
A microfluidic chip for radiosynthesis of radiolabeled compounds.
前記反応室が、圧力で嵌合されるチップの反応器部及び蓋部の内部に位置する、請求項1に記載のチップ。   The chip according to claim 1, wherein the reaction chamber is located inside a reactor part and a lid part of the chip fitted with pressure. 前記蓋部の少なくとも一部分が透明である、請求項2に記載のチップ。   The chip according to claim 2, wherein at least a part of the lid is transparent. 交換可能なコンポーネントを備え、コンピュータ数値制御(CNC)技術を用いて機械加工される、請求項1に記載のチップ。The chip of claim 1 comprising a replaceable component and machined using computer numerical control (CNC) technology. 前記反応器が1:1のアスペクト比を有する円筒形状を有するものである、請求項1に記載のチップ。The chip according to claim 1, wherein the reactor has a cylindrical shape having an aspect ratio of 1: 1. 六角形状を有する請求項1に記載のチップ。   The chip according to claim 1, which has a hexagonal shape. 前記反応室を加熱するためのヒータを更に備えてなり、前記ヒータが前記チップの底面にある開口を通して前記チップに連結されている請求項に記載のチップ。 Said reaction chamber Ri name further comprises a heater for heating, the heater according to claim 1 that is connected to the chip through an opening in the bottom surface of said chip chip. ヒータが前記開口部の側壁から空隙によって分離されている請求項に記載のチップ。 The chip according to claim 7 , wherein the heater is separated from the side wall of the opening by a gap. 前記ヒータが250ミクロンの部分によって前記反応室から分離されている請求項に記載のチップ。 The chip of claim 7 , wherein the heater is separated from the reaction chamber by a 250 micron portion. 前記部分がドープされたDCPD材料を含有してなる請求項に記載のチップ。 The chip of claim 9 , wherein the portion comprises a doped DCPD material. 前記反応室が円筒形状及び60μLの容量を有するものである請求項1に記載のチップ。 Chip of claim 1 wherein the reaction chamber is one having a capacity of cylindrical及beauty 6 0μL. 1つ以上のシリンジが少なくとも1つの流体又は気体を前記チップへ配送するために使用される請求項に記載のチップ。 The tip of claim 1 , wherein one or more syringes are used to deliver at least one fluid or gas to the tip. 流体及び気体の配送及び除去のネットワークと連絡するように更に改変されており、前記ネットワークが、プレフィルド個別バイアル及びプレパッケージカートリッジの少なくとも1つとともに作動するように、改変されており、且つ、前記カートリッジがチップとともに単回使用するために十分な、予め計量された量の試薬を含有している請求項1に記載のチップ。 Further modified to communicate with a network of fluid and gas delivery and removal, the network modified to work with at least one of prefilled individual vials and prepackaged cartridges, and the cartridge The tip of claim 1, wherein the tip contains a pre-weighed amount of reagent sufficient for a single use with the tip. 反応室からの無制限の溶媒蒸発を許容するように構成されているマイクロ流体チップ;
前記チップと流体連絡していて、少なくとも1つの試薬を含有する試薬源;
流体配送及び除去ネットワーク;
前記ネットワークの作動を制御するように改変された制御装置;及び
前記デバイスの1つ以上の放射線に不可欠のコンポーネントを遮蔽するための局所放射線遮蔽とを備えてなる、
放射標識化化合物の自動放射合成のための携帯型デバイス。
A microfluidic chip configured to allow unlimited solvent evaporation from the reaction chamber ;
A reagent source in fluid communication with the chip and containing at least one reagent;
Fluid delivery and removal network;
A controller modified to control the operation of the network; and a local radiation shield for shielding one or more radiation-critical components of the device;
Portable device for automated radiosynthesis of radiolabeled compounds.
前記反応室を監視するためのカメラを更に備え、更に温度監視が反応をリアルタイムで解析するための機械視覚システムで駆動されるフィードバックループを備えてなる請求項14に記載のデバイス。 15. The device of claim 14 , further comprising a camera for monitoring the reaction chamber, the temperature monitoring further comprising a feedback loop driven by a machine vision system for analyzing reactions in real time . 前記制御装置がプログラム可能な論理制御装置及びユーザインターフェースを備えてなる請求項14に記載のデバイス。 The device of claim 14 , wherein the controller comprises a programmable logic controller and a user interface. 前記ユーザインターフェースが、前記デバイスの手動操作及び自動操作のうちの少なくとも1つを実行するように、構成されている請求項16に記載のデバイス。 The device of claim 16 , wherein the user interface is configured to perform at least one of manual operation and automatic operation of the device. 放射線に曝露されることなしに、ユーザが試薬にアクセスできることを可能にする放射線遮蔽を更に備えてなる請求項14に記載のデバイス。15. The device of claim 14, further comprising a radiation shield that allows a user to access the reagent without being exposed to radiation. ユーザが放射線に曝露されることなしに、前記デバイスへ又は前記デバイスから放射性材料を移送するための補完的携帯型「差込」びんを更に備えてなる請求項14に記載のデバイス。The device of claim 14, further comprising a complementary portable “plug-in” bottle for transferring radioactive material to or from the device without the user being exposed to radiation. 反応室;Reaction chamber;
前記反応室に接続された1つ以上のフローチャネル;One or more flow channels connected to the reaction chamber;
前記反応室の頂部に接続された1つ以上のベントであって、前記反応室からの無制限の溶媒蒸発を許容するように構成されているベント;及びOne or more vents connected to the top of the reaction chamber, the vent configured to allow unlimited solvent evaporation from the reaction chamber; and
前記反応室内外への流通制御を実行するための1つ以上の一体型バルブとを備えてなり;One or more integrated valves for performing flow control into and out of the reaction chamber;
前記一体型バルブが、前記反応室の外側での試薬のプライミングを可能にする一以上のプランジャアセンブリを収容するように、構成されており;The integral valve is configured to receive one or more plunger assemblies that allow priming of reagents outside the reaction chamber;
前記バルブが試薬のプライミングを許容するダンベル型プランジャである;The valve is a dumbbell-type plunger that allows reagent priming;
放射標識化化合物の放射合成のためのマイクロ流体チップ。A microfluidic chip for radiosynthesis of radiolabeled compounds.
バルブプランジャがテフロンチップを備えてなる請求項20に記載のマイクロ流体チップ。21. The microfluidic chip according to claim 20, wherein the valve plunger comprises a Teflon chip. 前記バルブが密封をもたらし大きなチャネル断面積を可能にするO−リングを有するベントバルブである請求項20に記載のマイクロ流体チップ。21. The microfluidic chip of claim 20, wherein the valve is a vent valve having an O-ring that provides sealing and allows a large channel cross-sectional area. 前記バルブが300psiを超える高圧で反応を実行するように構成されている請求項20に記載のマイクロ流体チップ。21. The microfluidic chip of claim 20, wherein the valve is configured to perform a reaction at a high pressure greater than 300 psi. 1つ以上の試薬をマイクロ流体チップ内に導入し;、
ここで、チップは、
反応室と、
前記反応室へ接続された1つ以上のフローチャネルと、
前記反応室へ接続された1つ以上のベントであって、前記反応室からの無制限の溶媒蒸発を許容するように構成されているベントと、
前記反応室内外への流通制御を実施するための1つ以上の一体型バルブとを
備えてなり、
前記試薬を処理して放射標識化化合物を生成させ;そして
前記放射標識化化合物を収集することを含んでなる、
放射標識化化合物を放射合成するための方法。
Introducing one or more reagents into the microfluidic chip;
Where the chip is
A reaction chamber;
One or more flow channels connected to the reaction chamber;
One or more vents connected to the reaction chamber, the vent configured to allow unlimited solvent evaporation from the reaction chamber ;
One or more integrated valves for controlling the flow into and out of the reaction chamber,
Treating said reagent to produce a radiolabeled compound; and collecting said radiolabeled compound;
A method for radiosynthesis of radiolabeled compounds.
前記放射標識化化合物の放射合成がマイクロ流体チップを用いてバッチモードで遂行される請求項24に記載の方法。25. The method of claim 24, wherein radiosynthesis of the radiolabeled compound is performed in batch mode using a microfluidic chip. 試薬の導入が試薬の自己計量からなる請求項24に記載の方法。The method of claim 24, wherein the introduction of the reagent comprises a self-metering of the reagent. 放射標識化化合物の放射合成の工程段階が更に試薬の混合及び加熱並びに溶媒の交換を含む請求項24に記載の方法。25. The method of claim 24, wherein the process steps of radiosynthesis of the radiolabeled compound further comprise mixing and heating reagents and exchanging solvents. 試薬の加熱が、前記ベントを閉鎖し前記反応室をヒータで加熱することによる前記反応室の内容物の過熱を含んでなる請求項26に記載の方法。27. The method of claim 26, wherein heating the reagent comprises overheating the contents of the reaction chamber by closing the vent and heating the reaction chamber with a heater. 前記ヒータを適用するに先立って前記反応室を加圧することを含んでなる請求項28に記載の方法。29. The method of claim 28, comprising pressurizing the reaction chamber prior to applying the heater. 試薬の加熱及び沸騰が、試薬の混合を促進する請求項27に記載の方法。28. The method of claim 27, wherein heating and boiling of the reagent facilitates mixing of the reagent. 溶媒の効果的な蒸発を更に含んでなり、後続の乾燥段階なしに生成物残渣を生じる請求項24に記載の方法。25. The method of claim 24, further comprising effective evaporation of the solvent, resulting in a product residue without a subsequent drying step. 溶媒が、真空を適用することなしに、その沸点以下で蒸発させられる請求項24に記載の方法。25. The method of claim 24, wherein the solvent is evaporated below its boiling point without applying a vacuum. マイクロリットル規模のイオン交換床容量を有するマイクロ流体オフチップを必要とするF−18の濃縮方法であって、前記マイクロ流体チップが請求項1に記載のチップである方法。A method for concentrating F-18 requiring a microfluidic off-chip having a microliter scale ion exchange bed capacity, wherein the microfluidic chip is the chip of claim 1. フッ化物(F−18)溶液の捕捉及び放出が反対方向で起きる請求項33に記載の方法。34. The method of claim 33, wherein the capture and release of the fluoride (F-18) solution occurs in the opposite direction. フッ化物放出が小画分に分割されている請求項33又は34に記載の方法。35. A method according to claim 33 or 34, wherein the fluoride release is divided into small fractions. フッ化物が2mLの希薄HDilute H with 2 mL fluoride 22 1818 Oから捕捉され僅か5μLのKOnly 5 μL of K captured from O 22 COCO 3Three 溶液に移送される請求項35に記載の方法。36. The method of claim 35, wherein the method is transferred to a solution. 捕捉及び放出システムを組み込んで微視的環境から巨視的環境への[F−18]フッ化物イオンの効率的な輸送を、99%を超える効率で、行なう請求項33に記載の方法。34. The method of claim 33, wherein a capture and release system is incorporated to efficiently transport [F-18] fluoride ions from the microscopic environment to the macroscopic environment with an efficiency greater than 99%. 請求項1に記載のチップを備えてなる一体化デバイスを使用することを含んでなり、前記デバイスがイオン交換カラムと一体化されている、請求項37に記載の方法。38. The method of claim 37, comprising using an integrated device comprising the chip of claim 1, wherein the device is integrated with an ion exchange column. ターゲット水から開始し注射可能な放射性医薬品を産生する放射合成の全段階を自動的に遂行する、請求項38に記載の方法。40. The method of claim 38, wherein all steps of radiosynthesis are performed automatically starting from the target water and producing an injectable radiopharmaceutical.
JP2010503277A 2007-04-12 2008-04-14 Microfluidic Radiosynthesis System for Positron Emission Tomography Biomarkers (Related Application) This application is a US Provisional Application No. 60 / 923,086 filed Apr. 12, 2007, April 2007. U.S. Provisional Application No. 60 / 923,407 filed on Jan. 13, U.S. Patent Provisional Application No. 11 / 895,636, filed Aug. 23, 2007, and Jan. 2008 Claims priority based on US Provisional Patent Application No. 61 / 010,822, filed on Jan. 11, the contents of each of which are incorporated herein by reference in their entirety. Pending JP2010531295A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US92308607P 2007-04-12 2007-04-12
US92340707P 2007-04-13 2007-04-13
US11/895,636 US7741121B2 (en) 2006-08-24 2007-08-23 System for purification and analysis of radiochemical products yielded by microfluidic synthesis devices
US1082208P 2008-01-11 2008-01-11
PCT/US2008/060267 WO2008128201A1 (en) 2007-04-12 2008-04-14 Microfluidic radiosynthesis system for positron emission tomography biomarkers

Publications (2)

Publication Number Publication Date
JP2010531295A JP2010531295A (en) 2010-09-24
JP2010531295A5 true JP2010531295A5 (en) 2010-11-04

Family

ID=39589259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010503277A Pending JP2010531295A (en) 2007-04-12 2008-04-14 Microfluidic Radiosynthesis System for Positron Emission Tomography Biomarkers (Related Application) This application is a US Provisional Application No. 60 / 923,086 filed Apr. 12, 2007, April 2007. U.S. Provisional Application No. 60 / 923,407 filed on Jan. 13, U.S. Patent Provisional Application No. 11 / 895,636, filed Aug. 23, 2007, and Jan. 2008 Claims priority based on US Provisional Patent Application No. 61 / 010,822, filed on Jan. 11, the contents of each of which are incorporated herein by reference in their entirety.

Country Status (6)

Country Link
EP (1) EP2134461A1 (en)
JP (1) JP2010531295A (en)
KR (1) KR101176710B1 (en)
CN (1) CN102083525A (en)
CA (1) CA2684220A1 (en)
WO (1) WO2008128201A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7741121B2 (en) 2006-08-24 2010-06-22 Siemens Medical Solutions Usa, Inc. System for purification and analysis of radiochemical products yielded by microfluidic synthesis devices
JP5309312B2 (en) 2007-11-01 2013-10-09 Jfeテクノス株式会社 Microchip, microchip device and evaporation operation method using microchip
US20100093098A1 (en) * 2008-10-14 2010-04-15 Siemens Medical Solutions Nonflow-through appratus and mehod using enhanced flow mechanisms
US8110148B2 (en) 2008-11-06 2012-02-07 Siemens Medical Solutions Usa, Inc. Apparatus and method using rotary flow distribution mechanisms
JP5438351B2 (en) * 2009-03-30 2014-03-12 Jfeテクノス株式会社 Method and apparatus for dispensing labeled compound for PET using microchip
JP5431764B2 (en) * 2009-03-30 2014-03-05 Jfeテクノス株式会社 Method and apparatus for producing fluorine F-18 labeled compound using microchip
US8435454B2 (en) 2009-07-09 2013-05-07 Siemens Medical Solutions Usa, Inc. Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure
US8273300B2 (en) 2009-07-09 2012-09-25 Siemens Medical Solutions Usa, Inc. Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure
WO2011100737A2 (en) * 2010-02-15 2011-08-18 Siemens Medical Solutions Usa, Inc. Intuitive graphical user interface for carrying out chemical reactions
WO2012157920A2 (en) * 2011-05-13 2012-11-22 성균관대학교 산학협력단 Radioactive compound synthesis system having temperature-control unit
KR101293158B1 (en) * 2011-05-13 2013-08-12 성균관대학교산학협력단 Radioactive compound synthesizing module
KR101288866B1 (en) * 2011-05-13 2013-07-23 성균관대학교산학협력단 Remote control system for synthesizing radio-active compound
KR101347747B1 (en) * 2011-05-13 2014-01-06 성균관대학교산학협력단 Radioactive compound synthesizing apparatus having hot melt valve
KR101288867B1 (en) * 2011-05-13 2013-07-23 성균관대학교산학협력단 Radioactive compound synthesizing system having temperature regulating unit
US20130004414A1 (en) * 2011-06-30 2013-01-03 General Electric Company Devices and methods for reducing radiolysis of radioisotopes
EP2562150B1 (en) 2011-08-26 2014-10-15 FutureChemistry Holding B.V. A process and device for producing pet radiotracers
JP6014674B2 (en) 2011-09-30 2016-10-25 ジーイー・ヘルスケア・リミテッド Cassette simulator for synthesizer diagnosis
ITTO20120996A1 (en) * 2012-11-16 2014-05-17 Consiglio Nazionale Ricerche PROCEDURE AND PLANT FOR THE PRODUCTION OF 18F-FLUORURATE PET RADIOTRACS
JP5857075B2 (en) * 2012-12-26 2016-02-10 株式会社日立製作所 Biomolecule labeling reaction container, reaction apparatus and reaction method using the same
US9907867B2 (en) 2013-09-26 2018-03-06 General Electric Company Systems, methods and apparatus for manufacturing radioisotopes
GB201405591D0 (en) 2014-03-28 2014-05-14 Ge Healthcare Ltd Heatseal
KR101689321B1 (en) * 2014-05-30 2017-01-02 성균관대학교산학협력단 Interface for radioactive compound synthesizing apparatus and operating method thereof
KR101903695B1 (en) * 2016-11-28 2018-10-04 가천대학교 산학협력단 F-18 radiosynthesis module with nitrogen heater
CN109254018B (en) * 2018-09-11 2021-12-07 华中科技大学同济医学院附属协和医院 Pharmacokinetic imaging detection system for radiopharmaceuticals
EP3972655A4 (en) * 2019-05-22 2022-07-06 The Regents of University of California Automated ultra-compact microdroplet radiosynthesizer

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698303B2 (en) * 1985-04-25 1994-12-07 住友重機械工業株式会社 Micro reaction and preparative equipment
JP3298882B2 (en) 1992-05-01 2002-07-08 トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルベニア Micromachined detection structure
DE69406945T2 (en) 1993-10-18 1998-03-12 Ici Plc CATALYTIC PROCEDURE
US6599484B1 (en) 2000-05-12 2003-07-29 Cti, Inc. Apparatus for processing radionuclides
AU2002211389A1 (en) 2000-10-03 2002-04-15 California Institute Of Technology Microfluidic devices and methods of use
GB0206117D0 (en) * 2002-03-15 2002-04-24 Imaging Res Solutions Ltd Use of microfabricated devices
AU2003223937A1 (en) 2002-05-17 2003-12-02 University Of Copenhagen An elisa measuring de novo peptide-mhc interaction
US7186383B2 (en) * 2002-09-27 2007-03-06 Ast Management Inc. Miniaturized fluid delivery and analysis system
WO2005057589A2 (en) 2003-11-05 2005-06-23 Board Of Regents, The University Of Texas System Multi-purpose automated radiotracer synthesizer
EP1689675A2 (en) * 2003-12-03 2006-08-16 GE Healthcare Limited Method and apparatus for synthesis of 11c| phosgen using concentrated 11c| carbon monoxide with uv light
US8076464B2 (en) * 2003-12-24 2011-12-13 Ge Healthcare Limited Methods for carbon isotope labeling synthesis of ketones and amines by Suzuki coupling reactions using carbon-isotope monoxide
JP2008522795A (en) 2004-12-03 2008-07-03 カリフォルニア インスティチュート オブ テクノロジー Microfluidic device with chemical reaction circuit
US20070031492A1 (en) 2005-08-02 2007-02-08 Dischino Douglas D Remote controlled synthesis system
JP2009507193A (en) 2005-09-02 2009-02-19 カリフォルニア インスティチュート オブ テクノロジー Method and apparatus for mechanical actuation of valves in fluidic devices
ES2379921T3 (en) 2005-09-29 2012-05-07 Siemens Medical Solutions Usa, Inc. Microfluidic chip that can synthesize radiolabelled molecules on a scale suitable for imaging in humans with positron emission tomography
GB0524851D0 (en) 2005-12-06 2006-01-11 Ge Healthcare Ltd Radiolabelling method using polymers
CA2640752A1 (en) * 2006-02-03 2007-08-16 Arkadij Elizarov A microfluidic method and structure with an elastomeric gas-permeable gasket

Similar Documents

Publication Publication Date Title
JP2010531295A5 (en)
KR101176710B1 (en) Microfluidic radiosynthesis system for positron emission tomography biomarkers
CA2823918C (en) Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure
Wang et al. Performing multi-step chemical reactions in microliter-sized droplets by leveraging a simple passive transport mechanism
EP3523047B1 (en) Device and method for microscale chemical reactions
US7829032B2 (en) Fully-automated microfluidic system for the synthesis of radiolabeled biomarkers for positron emission tomography
KR101221483B1 (en) Apparatus and method for synthesis of F-18 labelled radiopharmaceuticals
US8071035B2 (en) Microfluidic radiosynthesis system for positron emission tomography biomarkers
US8273300B2 (en) Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure
Wang et al. Ultra-compact, automated microdroplet radiosynthesizer
JP2009510454A5 (en)
Keng et al. Emerging technologies for decentralized production of PET tracers
US20220251025A1 (en) Automated ultra-compact microdroplet radiosynthesizer
WO2019137954A1 (en) Digital reactionware
US20120108858A1 (en) Method and device for manufacturing of radiopharmaceuticals
KR20110084954A (en) Nonflow-through apparatus and method using enhanced flow mechanisms
US20220152230A1 (en) Devices and methods for radiopharmaceutical synthesis
JP6892765B2 (en) Multi-drug synthesizer
KR100272977B1 (en) Automatic apparatus for ri production by solvent extraction using phase sensor and a method of ri extraction thereby
EP4159305A2 (en) Microfluidics-based nanoparticle synthesis system, and device and method using the same
Wang Radiochemistry in microdroplets: technologies and applications
NO20101757A1 (en) Apparatus and method for conducting chemical reactions and processes