JP2010517307A - Dielectric cap layer - Google Patents

Dielectric cap layer Download PDF

Info

Publication number
JP2010517307A
JP2010517307A JP2009547410A JP2009547410A JP2010517307A JP 2010517307 A JP2010517307 A JP 2010517307A JP 2009547410 A JP2009547410 A JP 2009547410A JP 2009547410 A JP2009547410 A JP 2009547410A JP 2010517307 A JP2010517307 A JP 2010517307A
Authority
JP
Japan
Prior art keywords
cap layer
silicon
nitrogen
dielectric cap
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009547410A
Other languages
Japanese (ja)
Other versions
JP5679662B2 (en
Inventor
ベルヤンスキー・マイケル・ピー
ボニーラ・グリゼルダ
リュー・シャオ・ヒュー
グエン・ソン・バン
ショウ・トーマス・エム
ショバ・ホサドゥルガ・ケー
ヤン・デウォン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2010517307A publication Critical patent/JP2010517307A/en
Application granted granted Critical
Publication of JP5679662B2 publication Critical patent/JP5679662B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

【課題】 誘電体キャップ層(100)を提供する。
【解決手段】 1つの実施例において、誘電体キャップ層(100)は、硬化処理の間の紫外線照射を実質的に遮断する光学的バンドギャップ(例えば、約3.0電子−ボルトよりも大きい)を有し、電子ドナー、二重結合電子を有する窒素を含む誘電体材料(108)を含む。誘電体キャップ層(100)は、高モジュラスを示し、そしてナノ電子デバイスに例えば銅及び低k誘電体を形成する後工程(BEOL)におけるUV光を使用する超低誘電率(ULK)材料のポストキュア処理のもとで安定であり、膜及びデバイスのクラックを減少し、そして信頼性を改善する。
【選択図】図1
A dielectric cap layer (100) is provided.
In one embodiment, a dielectric cap layer (100) has an optical band gap (eg, greater than about 3.0 eV) that substantially blocks ultraviolet radiation during the curing process. And a dielectric material (108) comprising an electron donor and nitrogen having double bond electrons. The dielectric cap layer (100) exhibits a high modulus and post of ultra low dielectric constant (ULK) material using UV light in post processing (BEOL) to form, for example, copper and low k dielectrics in nanoelectronic devices. It is stable under curing, reduces film and device cracks, and improves reliability.
[Selection] Figure 1

Description

本発明は、概略的には集積回路(IC)チップの製造に関し、更に具体的にいうならば、超低誘電率(ULK)の中間レベルの誘電体のための誘電体キャップ層に関する。   The present invention relates generally to the manufacture of integrated circuit (IC) chips, and more specifically to a dielectric cap layer for ultra-low dielectric constant (ULK) intermediate level dielectrics.

従来のICチップにおいては、デバイスの後工程(back−end−of−line, BEOL)層内にデバイスへの及びデバイスからの電気的接続を与えるための相互接続金属体としてアルミニウム及びアルミニウム合金が使用されてきた。過去においてはアルミニウムを主体とする金属体が金属相互接続体として使用された金属であったが、アルミニウムは、ICチップの回路密度及び動作速度の増大及びデバイスの寸法がナノメートルの寸法まで減少することに対する要求事項をもはや満たさなくなっている。かくして、銅はアルミニウムに比べて抵抗率が低くそしてエレクトロマイグレーションによる故障を受けにくいために、銅がアルミニウムに代わって使用されてきた。   Conventional IC chips use aluminum and aluminum alloys as interconnect metal bodies to provide electrical connection to and from the device in the back-end-of-line (BEOL) layer of the device It has been. In the past, aluminum-based metal bodies were the metals used as metal interconnects, but aluminum reduces the circuit density and operating speed of IC chips and device dimensions to nanometer dimensions. Is no longer meeting the requirements. Thus, copper has been used in place of aluminum because copper has a lower resistivity than aluminum and is less susceptible to failure due to electromigration.

銅を使用することに関する1つの問題点は、処理ステップが進むにつれて銅が周囲の誘電体材料内に拡散することである。銅の拡散を防止するために、銅の相互接続体は保護用のバリア層を使用することにより絶縁されることができる。このようなバリア層は、例えば銅の相互接続体の側壁及び底部に沿って設けられるタンタル、チタン若しくはタングステン又はこれらの合金からなる導電性の拡散バリア層を含む。層の相互接続体の上面には、キャップ・バリア層が設けられる。このようなキャップ・バリア層は、例えば窒化シリコン(Si)のような種々な誘電体材料を含む。 One problem with using copper is that copper diffuses into the surrounding dielectric material as processing steps progress. To prevent copper diffusion, copper interconnects can be insulated by using a protective barrier layer. Such barrier layers include, for example, conductive diffusion barrier layers made of tantalum, titanium or tungsten or alloys thereof provided along the sidewalls and bottom of the copper interconnect. A cap barrier layer is provided on the top surface of the layer interconnect. Such cap barrier layers include various dielectric materials such as silicon nitride (Si 3 N 4 ).

上述のような銅の金属接続体及びキャップ層を利用する従来のBEOL相互接続は、例えばトランジスタのような論理回路素子を含む下側基板を含む。基板の上に中間レベルの誘電体材料(ILD)層が設けられる。ILD層は基板上に重なる。ILD層は例えば二酸化シリコン(SiO)から形成される。しかしながら最新の相互接続構造では、ILD層は低k(低誘電率)の重合熱硬化性材料であるのが望ましい。基板及びILD層の間に接着促進層が配置され得る。窒化シリコン(Si)層が、ILD層の上に随意選択的に配置され得る。一般的に窒化シリコン層は、ハード・マスク層又は研磨停止層として知られている。少なくとも1つの導電体がILD層内に埋め込まれる。導電体は、最新の相互接続では銅が代表的であるが、これの代わりにアルミニウムまたは他の導電材料が使用され得る。導電体が銅である場合、拡散バリア層がILD層及び銅の導電体の間に配置されるのが望ましい。代表的には、拡散バリア・ライナは、タンタル、チタン、タングステン又はこれらの窒化物である。 Conventional BEOL interconnects utilizing copper metal connectors and cap layers as described above include a lower substrate that includes logic circuit elements such as transistors. An intermediate level dielectric material (ILD) layer is provided on the substrate. The ILD layer overlies the substrate. The ILD layer is made of, for example, silicon dioxide (SiO 2 ). However, in modern interconnect structures, it is desirable that the ILD layer be a low k (low dielectric constant) polymeric thermoset material. An adhesion promoting layer may be disposed between the substrate and the ILD layer. A silicon nitride (Si 3 N 4 ) layer may optionally be disposed on the ILD layer. In general, the silicon nitride layer is known as a hard mask layer or a polish stop layer. At least one conductor is embedded in the ILD layer. The conductor is typically copper in modern interconnects, but aluminum or other conductive material may be used instead. If the conductor is copper, it is desirable that a diffusion barrier layer be disposed between the ILD layer and the copper conductor. Typically, the diffusion barrier liner is tantalum, titanium, tungsten or nitrides thereof.

通常、化学−機械研磨(CMP)ステップにより導電体の上面はハード・マスク窒化物層の上面と同一平面(コプレーナともいう)にされる。代表的には窒化シリコンであるキャップ層が導体及びハード・マスク層の上に配置される。キャップ層は、後続の処理ステップの間に導体からの銅が周囲の誘電体材料内に拡散するのを防止する拡散バリアとして働く。例えば窒化シリコンのような高密度プラズマ(HDP)化学蒸着(CVD)膜(フィルム)は、これがキャップ層の相互接続表面に沿う銅原子の移動をより効果的に停止するので、プラズマ増強(PE)CVD膜に比べて優れたエレクトロマイグレーション耐性を与える。 Typically, the top surface of the conductor is flush with the top surface of the hard mask nitride layer (also called a coplanar) by a chemical-mechanical polishing (CMP) step. A cap layer, typically silicon nitride, is disposed over the conductor and hard mask layer. The cap layer serves as a diffusion barrier that prevents copper from the conductor from diffusing into the surrounding dielectric material during subsequent processing steps. For example, high density plasma (HDP) chemical vapor deposition (CVD) films (films) such as silicon nitride more effectively stop the movement of copper atoms along the interconnect surface of the cap layer, so that plasma enhanced (PE) Provides superior electromigration resistance compared to CVD films.

最近、銅の相互接続体に対して超低誘電率(ULK)の誘電体材料(即ち、k<3.0)が、低k2相又は重合熱硬化性誘電体材料の代わりに使用されるようになった。これらの誘電体材料は、紫外線(UV)照射又は電子ビーム(Eビーム)照射を使用するポスト・キュア・ステップを使用することを必要とする。例えばポスト・キュア(硬化後)UV照射により、キャップ層内の応力が増大しそしてキャップ層及びULK層の両方にクラックが生じる。キャップ層にどのようなクラックが生じても、継ぎ目を介するILD層への銅の拡散を引き起こし、キャップ層の下に銅の塊を形成する。このような銅の塊は、隣接する相互接続線相互間の漏洩電流に基づく短絡を引き起こす。又、UVまたはEビーム照射あるいはその両方は、特に後続の誘電体材料の付着、金属膜形成及び化学―機械研磨の間に、パターン化された銅ライン上で例えば応力の増大、層の剥離及びふくらみの増大のような他の損傷を引き起こす。 Recently, ultra-low dielectric constant (ULK) dielectric materials (ie, k <3.0) have been used instead of low k2 phase or polymerized thermoset dielectric materials for copper interconnects. Became. These dielectric materials require the use of a post cure step that uses ultraviolet (UV) irradiation or electron beam (E beam) irradiation. For example, post cure (post cure) UV irradiation increases the stress in the cap layer and causes cracks in both the cap layer and the ULK layer. Any cracking in the cap layer causes copper to diffuse into the ILD layer through the seam, forming a copper mass under the cap layer. Such a copper mass causes a short circuit based on leakage current between adjacent interconnect lines. Also, UV or E-beam irradiation or both can cause, for example, increased stress, delamination and layering on patterned copper lines, especially during subsequent dielectric material deposition, metal film formation and chemical-mechanical polishing. Causes other damage such as increased bulge.

上述の観点から、UV照射またはEビーム照射に対する安定性が高い誘電体材料に対する必要性が生じてきた。 In view of the above, a need has arisen for dielectric materials that are highly stable to UV or E-beam irradiation.

誘電体材料のキャップ及びこれに関連する方法について説明する。1つの実施例において、誘電体キャップ層は、硬化処理の間の紫外線放射を実質的に遮断する光学的バンドギャップ(例えば約3.0電子−ボルトより大きい)を有しそして電子ドナー、二重結合電子(electron donor,double bond eletrons)を有する窒素を含む誘電体材料を含む。この誘電体キャップ層は、高モジュラス(high modulus)を示しそして例えばナノ電子デバイスのための銅及び低k材料を使用する後工程(BEOL)におけるULKのポストUVキュア(硬化)処理のもとで安定であり、膜及びデバイスのクラックを減少しそして信頼性を改善する。 A dielectric material cap and associated methods are described. In one embodiment, the dielectric cap layer has an optical band gap (eg, greater than about 3.0 electrons-volt) that substantially blocks ultraviolet radiation during the curing process and an electron donor, dual A dielectric material including nitrogen having electron donors (double bond eletrons) is included. This dielectric cap layer exhibits high modulus and under ULK post UV cure treatment in a post-process (BEOL) using, for example, copper and low-k materials for nanoelectronic devices. It is stable, reduces film and device cracks and improves reliability.

本発明の第1の態様は、硬化処理の間、紫外線照射を実質的に遮断する光学的バンドギャップを有しそして電子ドナー、二重結合電子を有する窒素を含む誘電体材料の誘電体キャップ層を提供する。 A first aspect of the present invention is a dielectric cap layer of a dielectric material having an optical band gap that substantially blocks ultraviolet radiation during the curing process and comprising an electron donor, nitrogen having double bond electrons I will provide a.

本発明の第2の態様は、中間レベルの誘電体層(ILD)を形成するステップと、紫外線照射を実質的に遮断する光学的バンドギャップを有し電子ドナー、二重結合電子を有する窒素を含む誘電体材料の層をILDの上に形成するステップと、紫外線照射を使用して誘電体材料層を硬化するステップとを含む誘電体キャップを形成する方法を提供する。 A second aspect of the present invention comprises the steps of forming an intermediate level dielectric layer (ILD), an electron donor having an optical band gap that substantially blocks ultraviolet radiation, and nitrogen having double bond electrons. A method of forming a dielectric cap is provided that includes forming a layer of dielectric material comprising an ILD over the ILD and curing the dielectric material layer using ultraviolet radiation.

本発明の第3の態様は、(a)硬化処理の間、紫外線照射を実質的に遮断するための約3.0電子−ボルト(eV)よりも大きい光学的バンドギャップと、(b)電子ドナー、二重結合電子を有する窒素と、(c)炭素成分とを有する窒化シリコンを主体とする誘電体材料を含む誘電体キャップ層を提供する。 A third aspect of the present invention provides: (a) an optical band gap greater than about 3.0 electrons-volt (eV) for substantially blocking ultraviolet radiation during the curing process; and (b) electrons. Provided is a dielectric cap layer including a dielectric material mainly composed of silicon nitride having a donor, nitrogen having a double bond electron, and (c) a carbon component.

本発明の例示的な態様は、上述の問題点及びその他の問題点を解決するために示される。 Illustrative aspects of the invention are presented to solve the above and other problems.

本発明の上述の特徴及び他の特徴は、本発明の種々な実施例を示す図面を参照して説明する以下の本発明の種々な態様に関する説明から明らかになるであろう。 The foregoing and other features of the present invention will become apparent from the following description of various aspects of the invention which will be described with reference to the drawings, which illustrate various embodiments of the invention.

本発明の実施例に従う誘電体キャップ層を示す図である。FIG. 4 is a diagram illustrating a dielectric cap layer according to an embodiment of the present invention. 誘電体キャップ層を形成する方法の実施例を示す図である。It is a figure which shows the Example of the method of forming a dielectric material cap layer.

図に示す寸法は必ずしも正しくないことに注目されたい。図は本発明の代表的な態様のみを示すものであり、従って本発明の範囲を限定するものではない。図において、同じ参照番号は同じものを示す。 Note that the dimensions shown are not necessarily correct. The figures show only representative embodiments of the invention and therefore do not limit the scope of the invention. In the figures, the same reference numerals indicate the same items.

図1を参照すると、誘電体キャップ層100及びこれに関連する方法が示されている。誘電体キャップ層100は、例えば、高速マイクロプロセッサ、アプリケーション固有の集積回路、メモリ記憶デバイス及び多層化されたバリア層を有する関連する電子回路構造を含む超大規模集積回路(ULSI)及びマイクロ電子集積回路(IC)における相互接続構造において使用される。概略的にいうと、誘電体キャップ層は、紫外線(UV)またはEビームあるいはその両方を使用する硬化処理が行われる後工程(BEOL)構造の相互接続金属体を保護するために使用される非常に安定なキャッピング・バリア層である。 Referring to FIG. 1, a dielectric cap layer 100 and associated methods are shown. Dielectric cap layer 100 may be, for example, a very large scale integrated circuit (ULSI) and microelectronic integrated circuit including a high speed microprocessor, application specific integrated circuit, memory storage device, and associated electronic circuit structure having a multilayered barrier layer. Used in interconnect structures in (IC). Generally speaking, the dielectric cap layer is used to protect post-process (BEOL) structure interconnect metal bodies that are cured using ultraviolet (UV) and / or E-beam. It is a highly stable capping barrier layer.

誘電体キャップ層100は、中間レベルの誘電体層(ILD)104内の例えば銅(Cu)又はアルミニウム(Al)である導電体102を覆って形成され得る。ILD104は、例えば、多孔性の水素添加(ハイドロジェネーテッド)シリコン・オキシカーバイド(p−SiCOH、即ち、多孔性SiCOH)、p−SiCOHを含むスピン・オン型の低k誘電体または有機及び無機ポリマのような周知の若しくは他の超低誘電率(ULK)材料で形成され得る。1つの実施例において、誘電体キャップ層100は、硬化処理の間、紫外線照射を実質的に遮断する光学的バンドギャップを有し電子ドナー、二重結合電子を有する窒素を含む誘電体材料108を含む。本明細書でいう光学的バンドギャップは、材料を通過するに必要な光のエネルギー・レベルを指す。1つの実施例において、誘電体材料108は、約3.0電子−ボルト(eV)(即ち、これのプラス・マイナス0.5eVの範囲)よりも大きい光学的バンドギャップを有する。光学的バンドギャップは、例えば光学的露光技法を使用して測定され得る。1つの例において、光学的バンドギャップは、J.A.WoollmanのVUV−VASE装置を使用して測定され得る。光学的に一定なバンドギャップ・データ・フィット(data fits)は、400−800nmの範囲で非常にわずかな吸収を生じるコーシー(Cauchy)とウルバッハ(Urbach)の吸収裾(absorption tail)の組み合わせであった。消極レベル(depolarization lebels)は、低く(理想的な膜を示した)、そして例えば表面の非一様性及び表面の粗さのような共通モデルの改善はモデル・フィット(model fits)を改善しない。リニアなブラッグマン(Bruggman)、及びコーシーをオプションとするマクセル−ガーネット(Maxwell−Garnet)モデルが、バンドギャップ結果を得るために使用された。上述の光学的バンドギャップ測定技術は例示的なものでこれに限定されないことに注目されたい。 The dielectric cap layer 100 may be formed over the conductor 102, for example copper (Cu) or aluminum (Al), in an intermediate level dielectric layer (ILD) 104. The ILD 104 may be, for example, a porous hydrogenated silicon oxycarbide (p-SiCOH, ie, porous SiCOH), a spin-on low-k dielectric containing p-SiCOH, or organic and inorganic It can be formed of known or other ultra low dielectric constant (ULK) materials such as polymers. In one embodiment, the dielectric cap layer 100 comprises a dielectric material 108 comprising an optical donor having an optical bandgap that substantially blocks ultraviolet radiation during the curing process, and nitrogen having double bond electrons. Including. As used herein, optical bandgap refers to the energy level of light required to pass through a material. In one embodiment, dielectric material 108 has an optical band gap greater than about 3.0 electron-volts (eV) (ie, its plus or minus 0.5 eV range). The optical band gap can be measured using, for example, optical exposure techniques. In one example, the optical band gap is A. It can be measured using a Woolman VUV-VASE instrument. Optically constant bandgap data fits are a combination of Cauchy and Urbach absorption tails that produce very little absorption in the 400-800 nm range. It was. Depolarization levels are low (representing an ideal film) and common model improvements such as surface non-uniformity and surface roughness do not improve model fits . Linear Bruggman and Maxwell-Garnet models with Cauchy as an option were used to obtain bandgap results. It should be noted that the optical bandgap measurement technique described above is exemplary and not limiting.

本発明の実施例に従う誘電体材料は、上に示した光学的バンドギャップ及び電子ドナー、二重結合電子を有する窒素そして誘電体材料としての機能を実現する他の材料を使用することができる。本発明の実施例においては、誘電体材料108は、例えば窒化シリコン(Si)、窒化ホウ素(BN)、シリコン・ボロン・ナイトライド(SiBN)、シリコン・ボロン・ナイトライド・カーボン(SiB)及びカーボン・ボロン・ナイトライド(CB)であり、ここで、各成分のx及びyの値は、上記光学的バンドギャップ及び電子ドナー、二重結合電子を有する窒素を達成するに必要な比率に依存して変動する。上述のように、誘電体キャップ層100の幾つかの実施例は、炭素(C)の成分を含むが、これは必ずしも必要ではない。炭素を含む実施例においては、炭素は材料中の約1%乃至約40原子組成%(% by atomic composition)の範囲である。高い光学的バンドギャップ(即ち、約3.0eVよりも高い)及び銅拡散バリア特性(これは、拡散を減少するための銅―窒素錯体を形成する適切な窒素結合の存在を意味する)を有するセラミック特性の材料108との任意のイオン結合が本発明の範囲内であると考えられる。 Dielectric materials according to embodiments of the present invention can use the optical band gap and electron donor shown above, nitrogen with double bond electrons, and other materials that function as a dielectric material. In an embodiment of the present invention, dielectric material 108 may be, for example, silicon nitride (Si x N y ), boron nitride (BN x ), silicon boron nitride (SiBN x ), silicon boron nitride carbon. (SiB x N y C z ) and carbon boron nitride (CB x N y ), where the x and y values of each component are the optical band gap and electron donor, double bond electrons Varies depending on the ratio required to achieve nitrogen with As mentioned above, some embodiments of the dielectric cap layer 100 include a carbon (C) component, but this is not necessary. In embodiments that include carbon, the carbon ranges from about 1% to about 40 atomic percent composition of the material (% by atomic composition). Has a high optical band gap (ie, higher than about 3.0 eV) and copper diffusion barrier properties (which means the presence of suitable nitrogen bonds to form a copper-nitrogen complex to reduce diffusion) Any ionic bonds with the ceramic material 108 are considered within the scope of the present invention.

1つの実施例において、誘電体材料108は、高温で酸素(O)と接触したときに酸素拡散バリア110を形成することにより高温における酸化を防止するシリコン−窒素(SiN)、窒素−シリコン−炭素(NSiC)及びシリコン−炭素−窒素(SiCN)ボンディング構造の1つからなる。この場合、酸素拡散バリア110は、シリコン−窒素−酸素(SiNO)、窒素−シリコン−酸素−炭素(NSiOC)又は酸素−シリコン−窒素−炭素(OSiNC)であり得る。これらの場合において、酸素(O)は、酸素拡散バリア110の約1乃至約20原子組成%である。高温とは、誘電体が使用されている集積回路(IC)チップの最大動作温度、例えば、120℃(+/−5℃)よりも高い。 In one embodiment, the dielectric material 108 is silicon-nitrogen (SiN), nitrogen-silicon-, which prevents oxidation at high temperatures by forming an oxygen diffusion barrier 110 when in contact with oxygen (O 2 ) at high temperatures. It consists of one of carbon (NSiC) and silicon-carbon-nitrogen (SiCN) bonding structures. In this case, the oxygen diffusion barrier 110 may be silicon-nitrogen-oxygen (SiNO), nitrogen-silicon-oxygen-carbon (NSiOC), or oxygen-silicon-nitrogen-carbon (OSiNC). In these cases, oxygen (O 2 ) is about 1 to about 20 atomic composition percent of oxygen diffusion barrier 110. High temperature is higher than the maximum operating temperature of an integrated circuit (IC) chip in which a dielectric is used, for example, 120 ° C. (+/− 5 ° C.).

他の実施例において、誘電体材料108は、高温で酸素(O)に接触したときに酸素拡散バリア110を形成することにより高温における酸化を防止する四面体ボンディング構造(tetrahedral bonding structure)を含む。ここで再び、酸素拡散バリア110は、シリコン−窒素−酸素(SiNO)、窒素−シリコン−酸素−炭素(NSiOC)又は酸素−シリコン−窒素−炭素(OSiNC)を含むことができる。又、高温とは、誘電体が使用されている集積回路(IC)チップの最大動作温度、例えば、120℃(+/−5℃)よりも高い。 In other embodiments, the dielectric material 108 includes a tetrahedral bonding structure that prevents oxidation at high temperatures by forming an oxygen diffusion barrier 110 when in contact with oxygen (O 2 ) at high temperatures. . Here again, the oxygen diffusion barrier 110 may comprise silicon-nitrogen-oxygen (SiNO), nitrogen-silicon-oxygen-carbon (NSiOC), or oxygen-silicon-nitrogen-carbon (OSiNC). The high temperature is higher than the maximum operating temperature of an integrated circuit (IC) chip using a dielectric, for example, 120 ° C. (+/− 5 ° C.).

他の実施例において、誘電体材料108は、紫外線(UV)照射120又はEビーム照射122に曝されたときに、約200MPaよりも高い圧縮応力を有する。 In other embodiments, the dielectric material 108 has a compressive stress greater than about 200 MPa when exposed to ultraviolet (UV) radiation 120 or E-beam radiation 122.

誘電体キャップ層100は、前述の光学的バンドギャップ及び電子ドナー、二重結合電子を有する窒素を達成するように周知の技術を使用して形成され得る。本発明の実施例では、誘電体キャップ層100を形成する方法が提供される。ILD104は、例えば堆積のような周知の技術で形成される。前述のように、ILD104は、例えば、多孔性の水素添加シリコン・オキシカーバイド(p−SiCOH、即ち、多孔性SiCOH)、p−SiCOHを含むスピン・オン型の低k誘電体または有機及び無機ポリマのような周知の若しくは他の超低誘電率(ULK)材料で形成され得る。導電体102は、例えば通常のダマシン・プロセスを使用してILD104内に形成され得る。 The dielectric cap layer 100 may be formed using well-known techniques to achieve the aforementioned optical band gap and electron donor, nitrogen with double bond electrons. In an embodiment of the present invention, a method for forming a dielectric cap layer 100 is provided. The ILD 104 is formed by a known technique such as deposition. As described above, the ILD 104 may be, for example, a porous hydrogenated silicon oxycarbide (p-SiCOH, or porous SiCOH), a spin-on low-k dielectric or organic and inorganic polymer containing p-SiCOH. May be formed of known or other ultra low dielectric constant (ULK) materials such as Conductor 102 may be formed in ILD 104 using, for example, a conventional damascene process.

以下に詳細に説明するように、誘電体材料108はILD104を覆って形成され、そしてこの誘電体材料108は、紫外線照射を実質的に遮断する光学的バンドギャップ及び電子ドナー、二重結合電子を有する窒素を有する。上述のように、光学的バンドギャップは、例えば約3.0電子−ボルト(eV)よりも大きい。誘電体材料108を形成するプロセスは、使用する材料によって変わる。1つの実施例において、誘電体材料108は、窒化シリコン(Si)で有り、ここで、x=1乃至3であり、y=1乃至4である。この場合、図2に示すように、誘電体材料層108の形成方法は、平行プレート型プラズマ増強化学蒸着(PECVD)反応器130内に前駆物質を与えることを含む。平行プレート型反応器130は、約85cm及び約750cmの間の基板チャック(基板支持体)134の導電性領域(即ち、下側電極)132,並びに基板110及び上部電極136の間の約1cmと約12cmの間のギャップGを有する。基板チャック134の導電性領域132がXの係数だけ変化されると、基板チャック134に印加されるRFパワー(高周波電力)も又Xの係数だけ変化する。前駆物質は、(a)(i)シランと、(ii)ジシランと、(iii)シリコン(Si)、窒素(N)及び水素(H)の原子、並びにヘリウム(He)及びアルゴン(Ar)から成る群から選択された不活性キャリアを含む窒素含有シリコン前駆物質とから成る群から選択されたシリコンを主体とする前駆物質と、(b)窒素含有前駆物質とを含み得る。代わりに、気相又は液相のアミノシラン・グループの材料も又使用され得る。窒素含有前駆物質の1つの例は、アンモニア(NH)であるが、例えば、三弗化窒素(NF)、ヒドラジン(N)又は窒素(N)のような他の物質もあり得る。約0.45MHzと約200MHzの間の周波数の第1高周波(RF)電力が、電極134及び136の一方に印加される。第1高周波(RF)電力密度は、例えば、約0.1W/cmと約5.0W/cmの間に、そして約50Wと1000Wの間にセットされ得る。随意的に、上記第1高周波(RF)電力よりも低い約0.04W/cmと約3W/cmの間に、そして約20Wと600Wの間にセットされた、第2高周波(RF)電力が電極134及び136の一方に印加され得る。 As described in detail below, a dielectric material 108 is formed over the ILD 104, and the dielectric material 108 contains optical band gaps and electron donors, double bond electrons that substantially block ultraviolet radiation. Have nitrogen. As described above, the optical band gap is greater than, for example, about 3.0 electron-volts (eV). The process of forming the dielectric material 108 varies depending on the material used. In one embodiment, the dielectric material 108 is silicon nitride (Si x N y ), where x = 1 to 3 and y = 1 to 4. In this case, as shown in FIG. 2, the method of forming dielectric material layer 108 includes providing a precursor in a parallel plate plasma enhanced chemical vapor deposition (PECVD) reactor 130. Parallel plate reactor 130, conductive regions of the substrate chuck (substrate support) 134 between about 85cm 2 and about 750 cm 2 (i.e., lower electrode) of about between 132 and substrate 110 and the upper electrode 136 With a gap G between 1 cm and about 12 cm. When the conductive region 132 of the substrate chuck 134 is changed by a factor of X, the RF power (high frequency power) applied to the substrate chuck 134 also changes by the factor of X. The precursors are (a) (i) silane, (ii) disilane, (iii) silicon (Si), nitrogen (N) and hydrogen (H) atoms, and helium (He) and argon (Ar). A silicon-based precursor selected from the group consisting of a nitrogen-containing silicon precursor containing an inert carrier selected from the group consisting of: (b) a nitrogen-containing precursor. Alternatively, gas phase or liquid phase aminosilane group materials may also be used. One example of a nitrogen-containing precursor is ammonia (NH 3 ), although other materials such as nitrogen trifluoride (NF 3 ), hydrazine (N 2 H 4 ), or nitrogen (N 2 ) are also possible. possible. A first radio frequency (RF) power having a frequency between about 0.45 MHz and about 200 MHz is applied to one of the electrodes 134 and 136. The first radio frequency (RF) power density, for example, may be set between about 0.1 W / cm 2 and about 5.0 W / cm 2, and between about 50W and 1000W. Optionally, to the first radio frequency (RF) between the lower about 0.04 W / cm 2 to about 3W / cm 2 than the power, and is set between about 20W and 600W, the second radio frequency (RF) Power can be applied to one of the electrodes 134 and 136.

1つの実施例において、基板温度は約100℃と約425℃の間にセットされ得る。例えば、ヘリウム(He)又はアルゴン(Ar)のような不活性ガスの流量は、約10sccm(standard cubic centimeters)と約5000sccmの間にセットされる。反応器130内の圧力は、約100mTorrよ約10000mTorrの間にセットされ、そして1000−1700mTorrの圧力が望ましいことが判った。 In one example, the substrate temperature can be set between about 100 ° C. and about 425 ° C. For example, the flow rate of an inert gas such as helium (He) or argon (Ar) is set between about 10 sccm (standard cubic centimeters) and about 5000 sccm. The pressure in reactor 130 was set between about 100 mTorr and about 10,000 mTorr, and a pressure of 1000-1700 mTorr was found desirable.

紫外線照射120を使用して誘電体材料108を硬化した結果、誘電体キャップ層100が形成される。しかしながら、紫外線照射120を使用する硬化処理の間に、約3.0eVよりも高いエネルギー・レベルを有する照射だけが誘電体キャップ層100を透過する可能性がある。 As a result of curing the dielectric material 108 using ultraviolet radiation 120, the dielectric cap layer 100 is formed. However, during a curing process using ultraviolet radiation 120, only radiation having an energy level higher than about 3.0 eV may penetrate the dielectric cap layer 100.

上述の実施例に関して、付着ステップに使用される条件が、誘電体キャップ層100に望まれる最終的な誘電率に依存して変動され得ることに注目されたい。 Note that with respect to the above-described embodiments, the conditions used for the deposition step can be varied depending on the final dielectric constant desired for the dielectric cap layer 100.

上述の材料及び方法は集積回路チップの製造において使用される。結果的にもたらされる集積回路チップは、ロウ・ウエハ(即ち、パッケージ前の多数のチップを有するシングル・ウエハ)の形で、ベア・ダイとして又はパッケージされた形で製造者から販売される。後者の場合、チップは、シングル・チップ・パッケージ(例えば、マザーボード又はより高いレベルのキャリアに固定された配線を有するプラスチック・キャリア)又はマルチチップ・パッケージ(例えば、片面又は両面の表面相互配線又は内部に埋め込まれた相互配線を有するセラミック・キャリア)にマウントされる。いずれの場合にも、チップは、(a)例えば、マザーボードのような中間製品又は(b)最終製品の部分として、他のチップ、個別回路素子または他の信号処理デバイスあるいはこれらと集積化される。最終製品は、玩具及び他のロウ・エンドの用途から表示装置、キーボードまたは他の入力装置及び中央処理プロセッサを有する高級コンピュータ製品に至る集積回路チップを含む任意の製品である。 The materials and methods described above are used in the manufacture of integrated circuit chips. The resulting integrated circuit chip is sold by the manufacturer in the form of a raw wafer (ie, a single wafer with multiple chips prior to packaging), as a bare die or in packaged form. In the latter case, the chip can be a single chip package (eg, a plastic carrier with wiring fixed to a motherboard or higher level carrier) or a multi-chip package (eg, single or double sided surface interconnect or internal Mounted on a ceramic carrier having interconnects embedded therein. In any case, the chip is integrated with other chips, individual circuit elements or other signal processing devices or as part of (a) an intermediate product, for example a mother board or (b) an end product. . The final product is any product that includes integrated circuit chips, ranging from toy and other low end applications to high-end computer products with display devices, keyboards or other input devices and a central processing processor.

本発明の種々な態様に関する上述の説明は、本発明を説明するためのものである。これらは本発明を限定するものではなく、多くの変形が可能である。本発明の範囲から逸脱することなくこのような変形が可能であることが当業者により明らかであろう。 The above description of various aspects of the invention is provided to illustrate the invention. These do not limit the present invention and many variations are possible. It will be apparent to those skilled in the art that such modifications can be made without departing from the scope of the invention.

本発明は、半導体デバイスの分野特に半導体デバイスで使用される。誘電体キャップ層において有益である。 The present invention is used in the field of semiconductor devices, particularly semiconductor devices. Useful in dielectric cap layers.

100 誘電体キャップ層
102 導電体
104 中間レベルの誘電体層(ILD)
108 誘電体材料
110 酸素拡散バリア
120 紫外線照射
122 Eビーム照射
130 PECVD反応器
132 導電性領域
134 基板チャック
136 上部電極
100 Dielectric Cap Layer 102 Conductor 104 Intermediate Level Dielectric Layer (ILD)
108 Dielectric material 110 Oxygen diffusion barrier 120 UV irradiation 122 E-beam irradiation 130 PECVD reactor 132 Conductive region 134 Substrate chuck 136 Upper electrode

Claims (11)

硬化処理の間に紫外線を実質的に遮断する光学的バンドギャップと、電子ドナー、二重結合電子を有する窒素とを有する誘電体材料(108)からなる誘電体キャップ層(100)。   A dielectric cap layer (100) comprising a dielectric material (108) having an optical band gap that substantially blocks ultraviolet radiation during the curing process, and nitrogen having electron donors and double bond electrons. 前記光学的バンドギャップが、3.0電子−ボルト(eV)よりも大きい、請求項1に記載の誘電体キャップ層(100)。 The dielectric cap layer (100) of claim 1, wherein the optical bandgap is greater than 3.0 electrons-volt (eV). 前記誘電体材料(108)が、高温での酸素(O)との接触時に酸素拡散バリアを形成することにより高温での酸化を防止するためのシリコン−窒素(SiN)、窒素−シリコン−炭素(NSiC)及びシリコン−炭素−窒素(SiCN)ボンディング構造から成る群から選択された1つを含む、請求項1に記載の誘電体キャップ層(100)。 Silicon-nitrogen (SiN), nitrogen-silicon-carbon for preventing the oxidation at high temperature by forming an oxygen diffusion barrier when the dielectric material (108) is in contact with oxygen (O 2 ) at high temperature The dielectric cap layer (100) of claim 1, comprising one selected from the group consisting of (NSiC) and silicon-carbon-nitrogen (SiCN) bonding structures. 前記酸素拡散バリアが、シリコン−窒素−酸素(SiNO)、窒素−シリコン−酸素−炭素(NSiOC)及び酸素−シリコン−窒素−炭素(OSiNC)から成る群から選択された1つを含む、請求項3に記載の誘電体キャップ層(100)。   The oxygen diffusion barrier comprises one selected from the group consisting of silicon-nitrogen-oxygen (SiNO), nitrogen-silicon-oxygen-carbon (NSiOC), and oxygen-silicon-nitrogen-carbon (OSiNC). 4. The dielectric cap layer (100) according to 3. 前記高温が、前記誘電体材料が使用されている集積回路チップ(IC)の最大動作温度よりも高い、請求項3に記載の誘電体キャップ層(100)。 The dielectric cap layer (100) of claim 3, wherein the high temperature is higher than a maximum operating temperature of an integrated circuit chip (IC) in which the dielectric material is used. 前記高温が120℃よりも高い、請求項5に記載の誘電体キャップ層(100)。   The dielectric cap layer (100) of claim 5, wherein the high temperature is greater than 120C. 前記誘電体材料(108)が、高温での酸素(O)との接触時に酸素拡散バリアを形成することにより高温での酸化を防止するための四面体ボンディング構造を含む、請求項1に記載の誘電体キャップ層(100)。 It said dielectric material (108) comprises a tetrahedral bonding structure to prevent oxidation at high temperatures by forming an oxygen diffusion barrier at the time of contact with oxygen (O 2) at elevated temperature, according to claim 1 Dielectric cap layer (100). 前記酸素拡散バリアが、シリコン−窒素−酸素(SiNO)、窒素−シリコン−酸素−炭素(NSiOC)及び酸素−シリコン−窒素−炭素(OSiNC)から成る群から選択された1つを含む、請求項7に記載の誘電体キャップ層(100)。   The oxygen diffusion barrier comprises one selected from the group consisting of silicon-nitrogen-oxygen (SiNO), nitrogen-silicon-oxygen-carbon (NSiOC), and oxygen-silicon-nitrogen-carbon (OSiNC). The dielectric cap layer (100) of claim 7. 前記高温が、前記誘電体キャップ層(100)が使用されている集積回路チップ(IC)の最大動作温度よりも高い、請求項7に記載の誘電体キャップ層(100)。 The dielectric cap layer (100) of claim 7, wherein the high temperature is higher than a maximum operating temperature of an integrated circuit chip (IC) in which the dielectric cap layer (100) is used. 前記誘電体材料(108)が、窒化シリコン(Si)、窒化ホウ素(BN)、シリコン・ボロン・ナイトライド(SiBN)、シリコン・ボロン・ナイトライド・カーボン(SiB)及びカーボン・ボロン・ナイトライド(CB)から成る群から選択された1つである、請求項1に記載の誘電体キャップ層(100)。 The dielectric material (108) is silicon nitride (Si x N y ), boron nitride (BN x ), silicon boron nitride (SiBN x ), silicon boron nitride carbon (SiB x N y C). The dielectric cap layer (100) of claim 1, wherein the dielectric cap layer (100) is one selected from the group consisting of z ) and carbon boron nitride (CB x N y ). 前記誘電体材料(108)が、紫外線照射(UV)又はEビーム照射に曝されたときに200MPaよりも大きな圧縮応力を有する、請求項1に記載の誘電体キャップ層(100)。   The dielectric cap layer (100) of claim 1, wherein the dielectric material (108) has a compressive stress greater than 200 MPa when exposed to ultraviolet radiation (UV) or E-beam radiation.
JP2009547410A 2007-01-24 2008-01-24 Dielectric cap layer Expired - Fee Related JP5679662B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/626,552 2007-01-24
US11/626,552 US20080173985A1 (en) 2007-01-24 2007-01-24 Dielectric cap having material with optical band gap to substantially block uv radiation during curing treatment, and related methods
PCT/US2008/051870 WO2008091985A2 (en) 2007-01-24 2008-01-24 Dielectric cap having material with optical band gap to substantially block uv radiation during curing treatment, and related methods

Publications (2)

Publication Number Publication Date
JP2010517307A true JP2010517307A (en) 2010-05-20
JP5679662B2 JP5679662B2 (en) 2015-03-04

Family

ID=39640433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009547410A Expired - Fee Related JP5679662B2 (en) 2007-01-24 2008-01-24 Dielectric cap layer

Country Status (7)

Country Link
US (2) US20080173985A1 (en)
EP (1) EP2111637A4 (en)
JP (1) JP5679662B2 (en)
KR (1) KR20090101212A (en)
CN (1) CN101919049B (en)
TW (1) TW200849393A (en)
WO (1) WO2008091985A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532297A (en) * 2011-09-09 2014-12-04 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Carbon-rich carbon boron nitride dielectric film, electronic device including the same, and method of forming the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637396B2 (en) * 2008-12-01 2014-01-28 Air Products And Chemicals, Inc. Dielectric barrier deposition using oxygen containing precursor
US8889235B2 (en) 2009-05-13 2014-11-18 Air Products And Chemicals, Inc. Dielectric barrier deposition using nitrogen containing precursor
JP5615207B2 (en) * 2011-03-03 2014-10-29 株式会社東芝 Manufacturing method of semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165441A (en) * 1984-09-07 1986-04-04 Mitsubishi Electric Corp Treatment method for plasma silicon nitride insulation film
JP2002009256A (en) * 2000-06-19 2002-01-11 Fujitsu Ltd Semiconductor device and its manufacturing method
WO2004073047A2 (en) * 2003-02-05 2004-08-26 Advanced Micro Devices, Inc. Uv-blocking layer for reducing uv-induced charging of sonos dual-bit flash memory devices in beol processing
JP2005217412A (en) * 2004-01-28 2005-08-11 Samsung Electronics Co Ltd Method for wiring in semiconductor element and wiring structure
JP2006019327A (en) * 2004-06-30 2006-01-19 Fujitsu Ltd Semiconductor device
JP2006128593A (en) * 2004-09-29 2006-05-18 Sony Corp Nonvolatile memory device and method for producing the same
JP2006165573A (en) * 2004-12-09 2006-06-22 Asm Japan Kk Forming method and equipment of interlayer connection of semiconductor device
JP2006344956A (en) * 2005-06-08 2006-12-21 Samsung Electronics Co Ltd Semiconductor integrated circuit device and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433931B1 (en) * 1997-02-11 2002-08-13 Massachusetts Institute Of Technology Polymeric photonic band gap materials
US6165891A (en) * 1999-11-22 2000-12-26 Chartered Semiconductor Manufacturing Ltd. Damascene structure with reduced capacitance using a carbon nitride, boron nitride, or boron carbon nitride passivation layer, etch stop layer, and/or cap layer
US6261945B1 (en) * 2000-02-10 2001-07-17 International Business Machines Corporation Crackstop and oxygen barrier for low-K dielectric integrated circuits
US20030134495A1 (en) * 2002-01-15 2003-07-17 International Business Machines Corporation Integration scheme for advanced BEOL metallization including low-k cap layer and method thereof
US7125792B2 (en) * 2003-10-14 2006-10-24 Infineon Technologies Ag Dual damascene structure and method
KR100743745B1 (en) * 2004-01-13 2007-07-27 동경 엘렉트론 주식회사 Method for manufacturing semiconductor device and film-forming system
US7030468B2 (en) * 2004-01-16 2006-04-18 International Business Machines Corporation Low k and ultra low k SiCOH dielectric films and methods to form the same
US7052932B2 (en) * 2004-02-24 2006-05-30 Chartered Semiconductor Manufacturing Ltd. Oxygen doped SiC for Cu barrier and etch stop layer in dual damascene fabrication
US7049247B2 (en) * 2004-05-03 2006-05-23 International Business Machines Corporation Method for fabricating an ultralow dielectric constant material as an intralevel or interlevel dielectric in a semiconductor device and electronic device made
US20060113675A1 (en) * 2004-12-01 2006-06-01 Chung-Liang Chang Barrier material and process for Cu interconnect
US7217648B2 (en) * 2004-12-22 2007-05-15 Taiwan Semiconductor Manufacturing Company, Ltd. Post-ESL porogen burn-out for copper ELK integration

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165441A (en) * 1984-09-07 1986-04-04 Mitsubishi Electric Corp Treatment method for plasma silicon nitride insulation film
JP2002009256A (en) * 2000-06-19 2002-01-11 Fujitsu Ltd Semiconductor device and its manufacturing method
WO2004073047A2 (en) * 2003-02-05 2004-08-26 Advanced Micro Devices, Inc. Uv-blocking layer for reducing uv-induced charging of sonos dual-bit flash memory devices in beol processing
JP2005217412A (en) * 2004-01-28 2005-08-11 Samsung Electronics Co Ltd Method for wiring in semiconductor element and wiring structure
JP2006019327A (en) * 2004-06-30 2006-01-19 Fujitsu Ltd Semiconductor device
JP2006128593A (en) * 2004-09-29 2006-05-18 Sony Corp Nonvolatile memory device and method for producing the same
JP2006165573A (en) * 2004-12-09 2006-06-22 Asm Japan Kk Forming method and equipment of interlayer connection of semiconductor device
JP2006344956A (en) * 2005-06-08 2006-12-21 Samsung Electronics Co Ltd Semiconductor integrated circuit device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532297A (en) * 2011-09-09 2014-12-04 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Carbon-rich carbon boron nitride dielectric film, electronic device including the same, and method of forming the same

Also Published As

Publication number Publication date
KR20090101212A (en) 2009-09-24
US20140302685A1 (en) 2014-10-09
EP2111637A2 (en) 2009-10-28
WO2008091985A3 (en) 2008-10-02
WO2008091985A2 (en) 2008-07-31
US20080173985A1 (en) 2008-07-24
TW200849393A (en) 2008-12-16
CN101919049B (en) 2012-09-05
CN101919049A (en) 2010-12-15
JP5679662B2 (en) 2015-03-04
EP2111637A4 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
US7737052B2 (en) Advanced multilayer dielectric cap with improved mechanical and electrical properties
JP5482881B2 (en) Semiconductor device and manufacturing method of semiconductor device
US7239017B1 (en) Low-k B-doped SiC copper diffusion barrier films
US7948083B2 (en) Reliable BEOL integration process with direct CMP of porous SiCOH dielectric
TWI402887B (en) Structures and methods for integration of ultralow-k dielectrics with improved reliability
KR101625231B1 (en) Engineered interconnect dielectric caps having compressive stress and interconnect structures containing same
US9040411B2 (en) Advanced low k cap film formation process for nano electronic devices
US8129269B1 (en) Method of improving mechanical properties of semiconductor interconnects with nanoparticles
US8889544B2 (en) Dielectric protection layer as a chemical-mechanical polishing stop layer
JP2005311366A (en) Semiconductor interconnection structure and method for manufacturing the same
US7456093B2 (en) Method for improving a semiconductor device delamination resistance
US6518646B1 (en) Semiconductor device with variable composition low-k inter-layer dielectric and method of making
JP5679662B2 (en) Dielectric cap layer
JP2011082308A (en) Method of manufacturing semiconductor apparatus
JP2006024641A (en) Semiconductor device and its manufacturing method
US20120235304A1 (en) Ultraviolet (uv)-reflecting film for beol processing
US20050062164A1 (en) Method for improving time dependent dielectric breakdown lifetimes
JP2010287653A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130912

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141030

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5679662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees