JP2010513766A - Large turbocharged diesel engine with SCR reactor - Google Patents

Large turbocharged diesel engine with SCR reactor Download PDF

Info

Publication number
JP2010513766A
JP2010513766A JP2009540606A JP2009540606A JP2010513766A JP 2010513766 A JP2010513766 A JP 2010513766A JP 2009540606 A JP2009540606 A JP 2009540606A JP 2009540606 A JP2009540606 A JP 2009540606A JP 2010513766 A JP2010513766 A JP 2010513766A
Authority
JP
Japan
Prior art keywords
exhaust gas
turbine
engine
turbocharger
scr reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009540606A
Other languages
Japanese (ja)
Other versions
JP4592816B2 (en
Inventor
ニールス キエントルプ
Original Assignee
エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド filed Critical エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド
Publication of JP2010513766A publication Critical patent/JP2010513766A/en
Application granted granted Critical
Publication of JP4592816B2 publication Critical patent/JP4592816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/20Control of the pumps by increasing exhaust energy, e.g. using combustion chamber by after-burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

本発明は、排気ガス駆動式タービン(6)および前記タービンによって駆動される コンプレッサ(9)を有し、かつエンジンのシリンダに給気を供給するターボ過給機を備える大型ターボ過給型ディーゼルエンジン(1)に関する。エンジン(1)には、排気ガス中のNOxをN2およびH2Oに還元するための、タービン(6)の下流のSCR反応器(20)が備えられる。加熱ユニット(19)は、ターボ過給機タービン(6)の高圧側において排気ガスの温度を上昇させ、SCR反応器(20)を入る排気ガスの温度が、少なくとも330℃になるようにする。排気ガス流の一部は、ターボ過給機タービン(6)の上流で分岐され、パワータービン(31)に誘導される。エンジンの全体的な燃料効率は、加熱ユニット(19)およびSCR反応器(20)がターボ過給機タービン(6)の低圧側に配置されるエンジンよりも改善される。
【選択図】図1
The present invention relates to a large turbocharged diesel engine having an exhaust gas driven turbine (6) and a compressor (9) driven by the turbine, and comprising a turbocharger for supplying air to an engine cylinder. Regarding (1). The engine (1) is equipped with an SCR reactor (20) downstream of the turbine (6) for reducing NO x in the exhaust gas to N 2 and H 2 O. The heating unit (19) raises the temperature of the exhaust gas on the high pressure side of the turbocharger turbine (6) so that the temperature of the exhaust gas entering the SCR reactor (20) is at least 330 ° C. A part of the exhaust gas flow is branched upstream of the turbocharger turbine (6) and guided to the power turbine (31). The overall fuel efficiency of the engine is improved over engines where the heating unit (19) and the SCR reactor (20) are located on the low pressure side of the turbocharger turbine (6).
[Selection] Figure 1

Description

本発明は、船舶のメインエンジンのような大型ターボ過給型ディーゼルエンジンであって、排気ガスからNOxを浄化するための選択的触媒還元(Selective Catalytic Reduction; SCR)反応器を装備する大型ターボ過給型ディーゼルエンジンに関する。 The present invention is a large turbocharged diesel engine such as a main engine of a ship, which is equipped with a selective catalytic reduction (SCR) reactor for purifying NO x from exhaust gas. It relates to a supercharged diesel engine.

環境問題に関する一般の認識は、急速に高まりつつある。国際海洋機構(International Maritime Organisation; IMO)において、海上における大気汚染という形の排出抑制に関して継続的に議論されている。世界の様々な各地における当局は、同様の措置をとっている。例として、審議中の、米国環境保護庁(Environmental Protection Agency; EPA)法案が挙げられる。   Public awareness of environmental issues is growing rapidly. In the International Maritime Organization (IMO), there are ongoing discussions on emission control in the form of air pollution at sea. Authorities in various parts of the world are taking similar measures. An example is the United States Environmental Protection Agency (EPA) bill under discussion.

排気ガス中のNOxは、1次的還元方法および/または2次的還元方法によって還元可能である。1次的方法は、エンジン燃焼プロセスに直接影響を及ぼす方法である。実際の還元の程度は、エンジン型および還元方法に依存するが、10%から50%を上回る程度まで変動する。2次的方法は、エンジン自体の一部ではない設備を使用して、エンジン性能をその燃料最適化設定から変更せずに排出レベルを減少させる手段である。現在までの最も有効な2次的方法は、NOxを除去する選択的触媒還元(Selective Catalytic Reduction; SCR)方法である。この方法により、触媒コンバータに入る前にアンモニアまたは尿素を排気ガスに添加することによって、NOxレベルを95%以上減少させることが可能になる。 NO x in the exhaust gas can be reduced by a primary reduction method and / or a secondary reduction method. The primary method is a method that directly affects the engine combustion process. The actual degree of reduction depends on the engine type and reduction method, but varies from 10% to over 50%. The secondary method is a means of reducing emissions levels using equipment that is not part of the engine itself without changing engine performance from its fuel optimization settings. The most effective secondary process to date, selective catalytic reduction for removing NO x; a (Selective Catalytic Reduction SCR) method. This method makes it possible to reduce the NO x level by more than 95% by adding ammonia or urea to the exhaust gas before entering the catalytic converter.

SCR反応器は、いくつかの層の触媒を有する。触媒容積、ひいては反応器のサイズは、触媒の活性、つまり必要とされるNOx還元のレベルに依存する。触媒の構造は典型的にはモノリシック構造、つまり、壁面に触媒活性を有するチャネルが多数並列配置される触媒ブロック構造を有する。 The SCR reactor has several layers of catalyst. The catalyst volume, and thus the reactor size, depends on the activity of the catalyst, ie the level of NO x reduction required. The catalyst structure typically has a monolithic structure, that is, a catalyst block structure in which a number of channels having catalytic activity are arranged in parallel on the wall surface.

排気ガスの温度は、燃料の硫黄含有量に依存して、少なくとも280℃〜350℃であるはずである。NOxをN2およびH2Oへ効果的に変換するためには、SCR反応器の入口において、硫黄含有量が高い場合は温度が高いことが必要とされ、硫黄含有量が低い場合は温度が低くてもよい。 The temperature of the exhaust gas should be at least 280 ° C to 350 ° C, depending on the sulfur content of the fuel. In order to effectively convert NO x to N 2 and H 2 O, a high temperature is required at the inlet of the SCR reactor when the sulfur content is high, and a temperature when the sulfur content is low. May be low.

典型的には、ターボ過給機のタービンの高圧側における排気ガスは、約350℃〜450℃の温度を有し、一方、ターボ過給機のタービンの低圧側における排気ガスは、約250〜300℃の温度を有する。   Typically, the exhaust gas on the high pressure side of the turbocharger turbine has a temperature of about 350 ° C. to 450 ° C., while the exhaust gas on the low pressure side of the turbocharger turbine is about 250 to It has a temperature of 300 ° C.

このため、HFOで動作する既知の大型2サイクルディーゼルエンジンにおいては、ターボ過給機のタービンの高圧側にSCR反応器が装備されている。しかしながら、これらの反応器が、約4バールの圧力に耐えられることが求められ、かつ約20℃から400℃の間の温度変化に曝されなければならない超大型のパイプおよび容器を含むことから、タービンの高圧側におけるSCR反応器の構造は、かなり複雑になっている。熱膨張および熱固定によって、設計上大きな問題が生じている。   For this reason, in known large two-cycle diesel engines operating with HFO, an SCR reactor is equipped on the high pressure side of the turbocharger turbine. However, because these reactors are required to withstand a pressure of about 4 bar and contain very large pipes and vessels that must be exposed to temperature changes between about 20 ° C. and 400 ° C. The structure of the SCR reactor on the high pressure side of the turbine is quite complex. Thermal expansion and heat setting presents significant design issues.

これらの問題を回避するために、ターボ過給機のタービンの低圧側にSCR反応器を移動するという提案がある。   In order to avoid these problems, there is a proposal to move the SCR reactor to the low pressure side of the turbocharger turbine.

複合サイクル運転を備える全体的な燃料効率が高い最先端のエンジンシステム、いわゆる、「ホット(高温)」エンジンは、ターボ過給機のタービンの低圧側における排気ガス温度が、従来のエンジンの250℃とは対照的に、約290℃〜300℃となる。「ホット」エンジンにおける排気ガス温度の上昇は、排気弁の開放のタイミングおよびターボ過給機の整合性を変更することによって得られている。この変更によって、エンジン自体の効率は約50%から約48.7%に低下する。エンジン効率低下を補償するために、排気ガス加熱式蒸気ボイラを利用して、ターボ過給機タービンの下流またはSCR反応器の下流に設けられる蒸気タービンを駆動し、排気ガス中のエネルギーの一部を回復しようとすることが知られている。排気ガスボイラで提供された蒸気で駆動された蒸気発生器によって生成されるエネルギー量は、クランク軸におけるエンジン出力の約7.7%である。さらに、ターボ過給機のタービンは、排気ガスがさらに加熱されると、有意にさらに多くのエネルギーを受ける。しかしながら、ターボ過給機は、追加のエネルギーを必要としない。高圧側における排気ガスの追加のエネルギーは、「ホット」エンジン概念の内にあり、利用もされる。この利用は、トランスミッションを介してターボ過給器の軸を発電器に接続することによって、またはターボ過給機タービンの高圧側における排気ガスの一部を分岐して、分岐した排気ガスの部分を使用し、発電器に接続されるパワータービン(ガスタービン)を駆動することによって実現される。パワータービンによって駆動される発電器によって生成されるエネルギー量は、クランク軸におけるエンジン出力の約4.4%である。したがって、「ホット」エンジンの全体的な燃料効率は、
48.7 + ((7.7+4.4) * 0.487) = 54.6%
となる。
A state-of-the-art engine system with combined cycle operation and high overall fuel efficiency, the so-called “hot” engine, has an exhaust gas temperature on the low pressure side of the turbocharger turbine that is 250 ° C. of conventional engines. In contrast, it is about 290 ° C to 300 ° C. The increase in exhaust gas temperature in a “hot” engine has been obtained by changing the timing of opening the exhaust valve and the consistency of the turbocharger. This change reduces the efficiency of the engine itself from about 50% to about 48.7%. In order to compensate for a decrease in engine efficiency, an exhaust gas heated steam boiler is used to drive a steam turbine provided downstream of the turbocharger turbine or downstream of the SCR reactor, and a part of the energy in the exhaust gas. It is known to try to recover. The amount of energy produced by the steam generator driven by the steam provided by the exhaust gas boiler is about 7.7% of the engine output at the crankshaft. Furthermore, the turbocharger turbine receives significantly more energy as the exhaust gas is further heated. However, turbochargers do not require additional energy. The additional energy of the exhaust gas on the high pressure side is within the “hot” engine concept and is also utilized. This can be achieved by connecting the turbocharger shaft to the generator via a transmission, or branching off some of the exhaust gas on the high pressure side of the turbocharger turbine and It is realized by driving a power turbine (gas turbine) that is used and connected to a generator. The amount of energy produced by the generator driven by the power turbine is about 4.4% of the engine output at the crankshaft. Therefore, the overall fuel efficiency of a “hot” engine is
48.7 + ((7.7 + 4.4) * 0.487) = 54.6%
It becomes.

しかしながら、「ホット」エンジンであっても、排気ガスの温度は、タービンの低圧側にSCR反応器を配置するには不十分である。ターボ過給機のタービンの低圧側にSCR反応器を配置可能にするためには、タービンから出る排気ガスの温度を、290℃〜300℃から約330℃に上昇させなければならない。これは、バーナー等の加熱ユニットによって実現され得る。しかしながら、バーナーによって温度を40℃上昇させるには、エンジンの全体的な燃料消費量が4.6%増加する(増加した4.6%分の燃料が、加熱ユニットにおいて燃焼される)。この追加エネルギーの一部は、SCR反応器の下流にある排気ガス加熱式ボイラおよび蒸気タービンにおいて約25%の効率で回復可能である。ターボ過給機タービンの低圧側における排気ガス温度の上昇により、蒸気タービンの出力は、エンジン出力の7.7%から10.8%に上昇する(蒸気タービンの効率は、27.9%である)。下流SCR反応器を有するシステムの全体効率は、
(48.7 + ((10.8+4.4) * 0.487)) / 1.046 = 53.6%
となる。
However, even with “hot” engines, the temperature of the exhaust gas is insufficient to place the SCR reactor on the low pressure side of the turbine. In order to be able to place the SCR reactor on the low pressure side of the turbocharger turbine, the temperature of the exhaust gas leaving the turbine must be increased from 290 ° C to 300 ° C to about 330 ° C. This can be achieved by a heating unit such as a burner. However, increasing the temperature by 40 ° C. with the burner increases the overall fuel consumption of the engine by 4.6% (the increased 4.6% fuel is burned in the heating unit). Some of this additional energy can be recovered with an efficiency of about 25% in the exhaust gas heated boiler and steam turbine downstream of the SCR reactor. As the exhaust gas temperature rises on the low pressure side of the turbocharger turbine, the output of the steam turbine increases from 7.7% to 10.8% of the engine output (the efficiency of the steam turbine is 27.9%). The overall efficiency of a system with a downstream SCR reactor is
(48.7 + ((10.8 + 4.4) * 0.487)) / 1.046 = 53.6%
It becomes.

したがって、全体的な燃料効率はターボ過給機タービンの高圧側におけるSCR反応器と比べて、54.6%から53.5%に下降する。燃料効率のこのような低下は、非常に望ましくなく、近年における燃料効率の進歩の大部分が無効になってしまう。   The overall fuel efficiency is therefore reduced from 54.6% to 53.5% compared to the SCR reactor on the high pressure side of the turbocharger turbine. Such a decrease in fuel efficiency is highly undesirable and negates most of the fuel efficiency advances in recent years.

したがって、本発明の目的は、高燃料効率で、ターボ過給機のタービンの低圧側にSCR反応器を有する大型2サイクルディーゼルエンジンを提供することにある。本目的は、請求項1に記載の大型2サイクルディーゼルエンジン、すなわち、給気をシリンダに供給するターボ過給機であって、排気ガス駆動式タービン(6)および前記タービンにより駆動されるコンプレッサ(9)を備えるターボ過給機と;前記シリンダから前記タービン(6)の入口に排気ガスを導く第1の排気管(5)と;流入する排気ガスが所定の温度以上であれば該排気ガス中のNOxをN2およびH2Oに効率的に還元するSCR変換器又はSCR反応器(20)と;前記タービン(6)の出口から前記SCR変換器(20)の入口に排気ガスを導く第2の排気管(7)と;前記SCR変換器(20)の出口からさらに大気中へと排気ガスを導く第3の排気管(22)と;を備える大型2サイクルターボ過給型ディーゼルエンジン(1)であって、前記SCR変換器(20)の前記入口において排気ガスを少なくとも前記所定温度とするべく前記タービン(6)の上流で排気ガスを加熱する加熱ユニット(19)を備え、さらに、前記加熱ユニット(19)の下流であるが、前記タービン(6)の上流の地点において前記第1の排気管(5)から分岐される排気ガスによって駆動されるパワータービン(31)、または、前記ターボ過給機の軸(8)からの機械的動力取出装置を備えることを特徴とする、大型ターボ過給型ディーゼルエンジンによって、達成される。 Accordingly, it is an object of the present invention to provide a large two-cycle diesel engine with high fuel efficiency and having an SCR reactor on the low pressure side of a turbocharger turbine. The object is to provide a large two-cycle diesel engine according to claim 1, i.e. a turbocharger for supplying supply air to a cylinder, an exhaust gas driven turbine (6) and a compressor driven by said turbine ( A turbocharger comprising 9); a first exhaust pipe (5) for guiding exhaust gas from the cylinder to the inlet of the turbine (6); and if the inflowing exhaust gas is above a predetermined temperature, the exhaust gas the NO x in the SCR converter or SCR reactor efficiently reduced to N 2 and H 2 O (20); the inlet to the exhaust gas in the SCR converter from the outlet of the turbine (6) (20) A large two-cycle turbocharged diesel equipped with: a second exhaust pipe (7) for guiding; and a third exhaust pipe (22) for guiding exhaust gas from the outlet of the SCR converter (20) to the atmosphere. Engine (1), said SC A heating unit (19) for heating the exhaust gas upstream of the turbine (6) so as to bring the exhaust gas to at least the predetermined temperature at the inlet of the converter (20), and further downstream of the heating unit (19) However, the power turbine (31) driven by the exhaust gas branched from the first exhaust pipe (5) at a point upstream of the turbine (6) or the shaft (8 of the turbocharger) This is achieved by a large turbocharged diesel engine characterized in that it comprises a mechanical power take-off device.

ターボ過給機のタービンの高圧側に加熱ユニットを配置する場合、SCR反応器の入口において必要な排気ガス温度を達成するために、5.9%の燃料消費の増加が必要となるが、一方、ターボ過給機のタービンの低圧側に加熱ユニットを配置する場合、必要とされる燃料消費の増加は4.6%のみである。ところが本発明者は、SCR変換器の入口に近い、直感的には論理的に正しいと思われる下流の位置ではなく、タービンの上流に加熱ユニットを配置することによって、全体的な燃料効率を改善可能であるという洞察に達した。これは、たとえ加熱ユニットが必要とする燃料の量が増加するにしても、タービンの高圧側における排気管から分岐される排気ガスによって駆動されるパワータービンにおいて、排気ガスの温度を上昇させるために用いたエネルギーを100%の効率で回復可能であるとの洞察からである。   When a heating unit is placed on the high pressure side of the turbocharger turbine, a 5.9% increase in fuel consumption is required to achieve the required exhaust gas temperature at the SCR reactor inlet, If a heating unit is arranged on the low pressure side of the turbocharger turbine, the increase in fuel consumption required is only 4.6%. However, the inventor improves overall fuel efficiency by placing a heating unit upstream of the turbine, rather than a downstream location that is intuitively logically correct, close to the inlet of the SCR converter. Reached the insight that it was possible. This is to increase the temperature of the exhaust gas in a power turbine driven by the exhaust gas branched from the exhaust pipe on the high pressure side of the turbine, even if the amount of fuel required by the heating unit increases. From the insight that the energy used can be recovered with 100% efficiency.

好ましくは、SCR反応器の下流の排気管に配置される排気ガスボイラを備え、また、エンジンは、前記排気ガスボイラによって生成される蒸気によって駆動される蒸気タービンをさらに備えてもよく、これによって全体的な燃料効率がさらに増加する。   Preferably, an exhaust gas boiler is disposed in the exhaust pipe downstream of the SCR reactor, and the engine may further comprise a steam turbine driven by steam generated by the exhaust gas boiler, thereby Fuel efficiency is further increased.

好ましくは、パワータービンまたは機械動力取出装置を使用して、発電機を駆動する。   Preferably, a power turbine or mechanical power take off device is used to drive the generator.

エンジンは、パワータービンによって、またはターボ過給機の軸からの動力取出装置によって駆動される発電機をさらに備えてもよい。   The engine may further comprise a generator driven by a power turbine or by a power take off device from a turbocharger shaft.

前記加熱ユニットは、バーナーであることが可能である。   The heating unit can be a burner.

タービンの高圧側における排気ガスの潜在的膨張エネルギーの約20%は、タービンから転換または誘導される。   About 20% of the potential expansion energy of the exhaust gas on the high pressure side of the turbine is converted or derived from the turbine.

好ましくは、バーナーの作動および/または強さは、SCR反応器の入口の温度センサ、またはその入口より上流の温度センサに応答して、コントローラによって制御される。   Preferably, the operation and / or strength of the burner is controlled by the controller in response to a temperature sensor at the inlet of the SCR reactor or a temperature sensor upstream from the inlet.

上記大型ターボ過給型ディーゼルエンジンに関するさらなる目的、特徴、利点、および特性は、詳細な説明より明らかになるであろう。   Further objects, features, advantages, and characteristics of the large turbocharged diesel engine will become apparent from the detailed description.

本説明の以下の詳細な部分において、図示される例示的実施形態を参照して、本発明についてより詳細に説明する。
本発明の第1の実施形態に従う内燃エンジンの吸気システムおよび排気システムの図を示す。 本発明の第2の実施形態に従う内燃エンジンの吸気システムおよび排気システムの図を示す。
In the following detailed portion of the description, the invention will be described in more detail with reference to the illustrated exemplary embodiments.
1 shows a diagram of an intake system and an exhaust system of an internal combustion engine according to a first embodiment of the present invention. FIG. 4 shows a diagram of an intake system and an exhaust system of an internal combustion engine according to a second embodiment of the present invention.

詳細な説明Detailed description

以下の詳細な説明において、本発明は、好適な実施形態によって説明される。図1は、クロスヘッド型大型ターボ過給型2サイクルディーゼルエンジン1を示し、これは、吸気システムおよび排気システムを備える。エンジン1は、給気受け2および排気ガス受け3を有する。燃焼室に属する排気弁は、4によって示される。エンジン1は、例えば、外航船のメインエンジンとして、または発電所の発電器を駆動するための固定エンジンとして使用され得る。エンジンの全出力は、例えば、5,000kWから110,000kWの範囲であるが、本発明は、例えば、1,000kWの出力を有する4サイクルディーゼルエンジンにおいても使用され得る。   In the following detailed description, the present invention will be described by means of preferred embodiments. FIG. 1 shows a crosshead type large turbocharged two-cycle diesel engine 1 comprising an intake system and an exhaust system. The engine 1 has an air supply receiver 2 and an exhaust gas receiver 3. The exhaust valve belonging to the combustion chamber is indicated by 4. The engine 1 can be used, for example, as a main engine for ocean-going ships or as a stationary engine for driving a power plant generator. The total output of the engine is, for example, in the range of 5,000 kW to 110,000 kW, but the present invention can also be used in, for example, a 4-cycle diesel engine having an output of 1,000 kW.

給気は、給気受け2から個々のシリンダの掃気ポート(図示せず)へと導かれる。排気弁4が開放すると、排気ガスが、第1の排気管を通って排気受け3に流入し、さらに進んで、第1の排気管5からターボ過給機のタービン6へ流入し、そこから、排気ガスは、第2の排気管7を通って流出する。軸8によって、タービン6は、吸気口10を介して供給されるコンプレッサ9を駆動する。コンプレッサ9は、給気受け2に通じる給気管11に加圧給気を供給する。   The supply air is guided from the supply receiver 2 to scavenging ports (not shown) of the individual cylinders. When the exhaust valve 4 is opened, the exhaust gas flows into the exhaust receiver 3 through the first exhaust pipe, and further proceeds to flow into the turbine 6 of the turbocharger from the first exhaust pipe 5 and from there. The exhaust gas flows out through the second exhaust pipe 7. By means of the shaft 8, the turbine 6 drives a compressor 9 that is supplied via an inlet 10. The compressor 9 supplies pressurized air to the air supply pipe 11 that communicates with the air supply receiver 2.

管11における吸気は、給気(約200℃でコンプレッサから出る給気)を30℃から80℃の間の温度に冷却するためにインタークーラー12を通過する。   The intake air in the tube 11 passes through the intercooler 12 in order to cool the supply air (supply air leaving the compressor at about 200 ° C.) to a temperature between 30 ° C. and 80 ° C.

冷却された給気は、電気モータ17によって駆動される、低負荷状態または部分負荷状態の給気流を加圧する補助ブロア16を経由して、給気受け2へと導かれる。より高負荷状態では、ターボ過給機のコンプレッサ9が十分に圧縮された掃気を供給するので、補助ブロア16は逆止め弁15によってバイパスされる。   The cooled supply air is guided to the supply air receiver 2 via an auxiliary blower 16 that is driven by an electric motor 17 and pressurizes a supply airflow in a low load state or a partial load state. In higher load conditions, the auxiliary blower 16 is bypassed by the check valve 15 because the turbocharger compressor 9 supplies a sufficiently compressed scavenge.

第1の排気管5における排気ガスの温度を上昇させるために、加熱ユニット19が第1の排気管5に配置される。つまり、タービン6の上流に配置される。加熱ユニット19は、好ましくはバーナー等の加熱ユニットの形式である。第1の排気ガス管5における排気ガスは、ターボ過給機のタービン6から出る排気ガスの温度が少なくとも330℃になるように加熱されなければならない。   A heating unit 19 is disposed in the first exhaust pipe 5 in order to increase the temperature of the exhaust gas in the first exhaust pipe 5. That is, it is arranged upstream of the turbine 6. The heating unit 19 is preferably in the form of a heating unit such as a burner. The exhaust gas in the first exhaust gas pipe 5 must be heated so that the temperature of the exhaust gas leaving the turbocharger turbine 6 is at least 330 ° C.

タービン6を出る際の排気ガスが約290℃〜300℃である、大型2サイクルディーゼル「ホット」エンジンでは、第1の排気管5における排気ガスに加えられる温度上昇は、約50℃である。この大型2サイクルディーゼルエンジンにおいて、ターボ過給機タービンの高圧側で排気ガスを加熱するための加熱ユニット19によって使用される追加燃料の量は、エンジン自体の燃料消費の約5.8%である。   In a large two-cycle diesel “hot” engine where the exhaust gas leaving the turbine 6 is about 290 ° C. to 300 ° C., the temperature rise applied to the exhaust gas in the first exhaust pipe 5 is about 50 ° C. In this large two-cycle diesel engine, the amount of additional fuel used by the heating unit 19 for heating the exhaust gas on the high pressure side of the turbocharger turbine is about 5.8% of the fuel consumption of the engine itself.

ターボ過給機のタービンを出る際の排気ガス温度が約250℃である従来の大型2サイクルディーゼルエンジンでは、第1の排気管5における排気ガスの温度上昇は、約100℃でなければならない。   In a conventional large two-cycle diesel engine in which the exhaust gas temperature when exiting the turbocharger turbine is about 250 ° C., the temperature rise of the exhaust gas in the first exhaust pipe 5 must be about 100 ° C.

管30は、加熱ユニット19の下流であるが、タービン6の上流である排気管5から分岐する。管30は、排気ガスの一部(大型2サイクルディーゼルエンジンにおける約20%)を追加のパワータービン31に導く。追加のパワータービン31は発電機32を駆動する。パワータービン31は、大型2サイクルディーゼルエンジン1の出力の7.0%にほぼ相当する出力を有する。   The pipe 30 is downstream of the heating unit 19 but branches off from the exhaust pipe 5 which is upstream of the turbine 6. The pipe 30 leads a part of the exhaust gas (about 20% in a large two-cycle diesel engine) to an additional power turbine 31. The additional power turbine 31 drives a generator 32. The power turbine 31 has an output approximately equivalent to 7.0% of the output of the large two-cycle diesel engine 1.

このようにして、排気ガス流動における余剰エネルギーは、電力、つまり高エクセルギーを有するエネルギーに変換される。パワータービン31に分岐される排気ガスの量は、管30における変流量調節器(図示せず)によって調節可能である。パワータービン31を出る排気ガスは、SCR反応器の上流におけるタービン6の低圧側において主要排気ガス流に再び導かれる。   In this way, surplus energy in the exhaust gas flow is converted into electric power, that is, energy having high exergy. The amount of exhaust gas branched into the power turbine 31 can be adjusted by a variable flow rate regulator (not shown) in the pipe 30. The exhaust gas leaving the power turbine 31 is redirected to the main exhaust gas stream on the low pressure side of the turbine 6 upstream of the SCR reactor.

第2の排気管7は、タービン6の出口からSCR反応器20の入口へと排気ガスを導く。SCR反応器20の入口における排気ガスの温度が十分に高い場合、つまり、典型的には約330℃を上回る場合、排気ガス中のNOxは、N2およびH2Oに変換される。 The second exhaust pipe 7 guides exhaust gas from the outlet of the turbine 6 to the inlet of the SCR reactor 20. If the temperature of the exhaust gas at the inlet of the SCR reactor 20 is sufficiently high, ie typically above about 330 ° C., NO x in the exhaust gas is converted to N 2 and H 2 O.

第3の排気管22は、SCR反応器20の出口からボイラ25の入口に給気を導く。第4の排気管27は、ボイラ25の出口からサイレンサー28の入口へと排気ガスを導く。第5の排気管29は、サイレンサー28の出口から大気へと排気ガスを導く。   The third exhaust pipe 22 guides air supply from the outlet of the SCR reactor 20 to the inlet of the boiler 25. The fourth exhaust pipe 27 guides exhaust gas from the outlet of the boiler 25 to the inlet of the silencer 28. The fifth exhaust pipe 29 guides exhaust gas from the outlet of the silencer 28 to the atmosphere.

ボイラ25は、排気ガス流における熱を使用して、圧力下で(過熱)蒸気を生成する。管34は、ボイラ25によって生成された蒸気を蒸気タービン37に導く。蒸気タービン37は発電機35を駆動する。蒸気タービンは、大型2サイクルディーゼルエンジンの出力の約10.8%に相当する出力パワーを有する。   The boiler 25 uses heat in the exhaust gas stream to generate steam under pressure (superheated). The pipe 34 guides the steam generated by the boiler 25 to the steam turbine 37. The steam turbine 37 drives the generator 35. The steam turbine has an output power corresponding to about 10.8% of the output of a large two-cycle diesel engine.

図2は、本発明の代替実施形態を示す。本実施形態は、パワータービンが、ターボ過給機からの動力取出装置と置換されること以外は、第1の実施形態に実質的に対応する。ここで、トランスミッション36は、ターボ過給機の軸8を発電機33に接続する。   FIG. 2 shows an alternative embodiment of the present invention. This embodiment substantially corresponds to the first embodiment except that the power turbine is replaced with a power take-off device from the turbocharger. Here, the transmission 36 connects the shaft 8 of the turbocharger to the generator 33.

大型2サイクルディーゼルエンジン1の燃料効率は、48.7%である。両実施形態における全体的な燃料効率は、
(48.7 + ((10.8+7.0) * 0.487)) / 1.058 = 54.2%
となる。
The fuel efficiency of the large two-cycle diesel engine 1 is 48.7%. The overall fuel efficiency in both embodiments is
(48.7 + ((10.8 + 7.0) * 0.487)) / 1.058 = 54.2%
It becomes.

タービン6の高圧側に加熱ユニット19を備える本発明に従うエンジンは、タービン6の低圧側に加熱ユニットを備え、かつ燃料効率が53.6%である背景技術に記載したエンジンよりも明らかに高い、54.2%の燃料効率を有する。
〔実施例〕
The engine according to the invention comprising a heating unit 19 on the high pressure side of the turbine 6 is clearly higher than the engine described in the background art comprising a heating unit on the low pressure side of the turbine 6 and fuel efficiency of 53.6%. It has a fuel efficiency of 54.2%.
〔Example〕

1.高圧側にSCRを有する高温エンジン(従来技術)
2.ターボ過給機タービンの低圧側にバーナーを設置
3.ターボ過給機タービンの高圧側にバーナーを設置

Figure 2010513766
1. High temperature engine with SCR on the high pressure side (prior art)
2. 2. Install a burner on the low pressure side of the turbocharger turbine. Install a burner on the high pressure side of the turbocharger turbine
Figure 2010513766

したがって、ターボ過給機タービンの高圧側にSCR反応器を設置するという、実装において構造上多くの問題を有する「ホット」エンジンに比べて少しだけの燃料効率の低下を受け入れるだけで、ターボ過給機タービン6の低圧側にSCR反応器を設置するという構造上の利点を享受することが可能となる。   Therefore, the turbocharger is only required to accept a slight reduction in fuel efficiency compared to a “hot” engine, which has many structural problems in its implementation, such as installing an SCR reactor on the high pressure side of the turbocharger turbine. It is possible to enjoy the structural advantage of installing the SCR reactor on the low pressure side of the machine turbine 6.

本発明の両実施形態において、ボイラ25によって生成される蒸気は、加熱など、蒸気タービンを駆動する以外の目的で使用され得る。   In both embodiments of the present invention, the steam generated by the boiler 25 may be used for purposes other than driving the steam turbine, such as heating.

各々の実施形態には、第2の排気管7における排気ガスの温度を測定するために、SCR反応器20の入口近傍に配置される温度センサ(図示せず)が設けられることが可能である。温度センサの信号は、コントローラ(図示せず)に通信される。コントローラは加熱ユニット19を制御する。コントローラは、第2の排気ガス管7における排気ガスの温度が十分高くない場合は、加熱ユニット19の働きを活発にし、第2の排気ガス管7における排気ガスの温度が、SCR反応器の効率的な動作に関する最低温度を上回る場合には、加熱ユニット19の働きを低下させる。   Each embodiment may be provided with a temperature sensor (not shown) disposed near the inlet of the SCR reactor 20 in order to measure the temperature of the exhaust gas in the second exhaust pipe 7. . The temperature sensor signal is communicated to a controller (not shown). The controller controls the heating unit 19. The controller activates the heating unit 19 when the temperature of the exhaust gas in the second exhaust gas pipe 7 is not sufficiently high, and the temperature of the exhaust gas in the second exhaust gas pipe 7 determines the efficiency of the SCR reactor. If the minimum temperature for typical operation is exceeded, the function of the heating unit 19 is reduced.

両実施形態は、いわゆる加湿空気エンジン(図示せず)、例えば、非常に高い絶対水分(蒸気)含有量を有する給気/掃気で動作するエンジンとして構成可能である。本発明の本変形例において、給気温は、(従来のエンジンにおける37℃とは対照的に)約60℃から90℃とされ、絶対湿度は、約40g/kgから80g/kg、つまり「非加湿空気」モータの水分(蒸気)含有量の約4倍から8倍とされる。加湿はスクラバー(図示せず)に比較的温かい水を注入することによって行うことができる。加湿によって、給気/掃気のエネルギー含有量、ひいては排気ガスのエネルギー含有量が、著しく増加する。給気中のエネルギーの増加は、次の2つの原因により得られる。
・ インタークーラーによって給気/掃気から差し引かれるエネルギー量、つまり、インタークーラーによって生成される「廃」エネルギーの量を減少させることによって。
・ エンジンの冷却システムからの湯で温められた水分を注入する、つまり、「廃エネルギー」を含有する水分を注入することによって。
Both embodiments can be configured as a so-called humidified air engine (not shown), for example an engine operating with charge / scavenging with a very high absolute moisture (steam) content. In this variant of the invention, the air supply temperature is about 60 ° C. to 90 ° C. (as opposed to 37 ° C. in conventional engines) and the absolute humidity is about 40 g / kg to 80 g / kg, ie “non- About 4 to 8 times the moisture (steam) content of the “humidified air” motor. Humidification can be performed by injecting relatively warm water into a scrubber (not shown). Humidification significantly increases the energy content of the supply / scavenging and thus the energy content of the exhaust gas. The increase in energy during supply is obtained by the following two causes.
• By reducing the amount of energy deducted from the supply / scavenging by the intercooler, ie the amount of “waste” energy generated by the intercooler.
• Injecting water warmed with hot water from the engine's cooling system, that is, by injecting water containing “waste energy”.

排気ガス中に増えたエネルギーは、パワータービンにおいて比較的効率的に回復可能であり、これによって、上述の実施例に示される全体的な燃料効率よりもさらに高い効率を得ることが可能である。   The increased energy in the exhaust gas can be recovered relatively efficiently in the power turbine, thereby obtaining a higher efficiency than the overall fuel efficiency shown in the above embodiments.

請求項において使用される用語の「備える」は、その他の要素またはステップを除外しない。請求項における単数形の用語は、複数形を除外しない。請求項で使用される引用符号は、範囲を限定するものとして解釈されないものとする。   The term “comprising”, used in the claims, does not exclude other elements or steps. The singular terms in the claims do not exclude the plural. Any reference signs used in the claims shall not be construed as limiting the scope.

以上、装置および方法に関する好適な実施形態について、これらが開発された環境を参照して説明してきたが、これらは、本発明の原理を単に例証しているだけではない。他の実施形態又は構成が、本発明の精神および添付の請求項の範囲を逸脱することなく作られるであろう。   While preferred embodiments of the apparatus and method have been described above with reference to the environment in which they were developed, they are not merely illustrative of the principles of the present invention. Other embodiments or configurations may be made without departing from the spirit of the invention and the scope of the appended claims.

Claims (7)

給気をシリンダに供給するターボ過給機であって、排気ガス駆動式タービン(6)および前記タービンにより駆動されるコンプレッサ(9)を備えるターボ過給機と、
前記シリンダから前記タービン(6)の入口に排気ガスを導く第1の排気管(5)と、
流入する排気ガスが所定の温度以上であれば該排気ガス中のNOxをN2およびH2Oに効率的に還元するSCR変換器(20)と、
前記タービン(6)の出口から前記SCR変換器(20)の入口に排気ガスを導く第2の排気管(7)と、
前記SCR変換器(20)の出口からさらに大気中へと排気ガスを導く第3の排気管(22)と、
を備える大型2サイクルターボ過給型ディーゼルエンジン(1)であって、
前記SCR変換器(20)の前記入口において排気ガスを少なくとも前記所定温度とするべく、前記タービン(6)の上流で排気ガスを加熱する加熱ユニット(19)を備え、さらに、
・ 前記加熱ユニット(19)の下流であるが、前記タービン(6)の上流の地点において前記第1の排気管(5)から分岐される排気ガスによって駆動されるパワータービン(31)、または、
・ 前記ターボ過給機の軸(8)からの機械的動力取出装置、
を備えることを特徴とする、エンジン。
A turbocharger for supplying supply air to a cylinder, comprising an exhaust gas driven turbine (6) and a compressor (9) driven by said turbine;
A first exhaust pipe (5) for guiding exhaust gas from the cylinder to the inlet of the turbine (6);
An SCR converter (20) that efficiently reduces NO x in the exhaust gas to N 2 and H 2 O if the inflowing exhaust gas is equal to or higher than a predetermined temperature;
A second exhaust pipe (7) for guiding exhaust gas from the outlet of the turbine (6) to the inlet of the SCR converter (20);
A third exhaust pipe (22) for guiding exhaust gas from the outlet of the SCR converter (20) further into the atmosphere;
A large two-cycle turbocharged diesel engine (1) with
A heating unit (19) for heating the exhaust gas upstream of the turbine (6) so that the exhaust gas is at least at the predetermined temperature at the inlet of the SCR converter (20);
A power turbine (31) driven by exhaust gas that is downstream of the heating unit (19) but is branched from the first exhaust pipe (5) at a point upstream of the turbine (6), or
A mechanical power take-off device from the turbocharger shaft (8),
An engine comprising:
前記SCR反応器(20)の下流の前記排気管に配される排気ガスボイラ(25)をさらに備える、請求項1に記載のエンジン。   The engine according to claim 1, further comprising an exhaust gas boiler (25) disposed in the exhaust pipe downstream of the SCR reactor (20). 前記排気ガスボイラ(25)によって生成される蒸気によって駆動される蒸気タービン(37)をさらに備える、請求項2に記載のエンジン。   The engine according to claim 2, further comprising a steam turbine (37) driven by steam generated by the exhaust gas boiler (25). 前記パワータービン(31)によって、または前記ターボ過給機の前記軸(8)からの前記動力取出装置によって駆動される発電機(32)をさらに備える、請求項1に記載のエンジン。   The engine according to claim 1, further comprising a generator (32) driven by the power turbine (31) or by the power take-off device from the shaft (8) of the turbocharger. 前記加熱ユニット(19)はバーナーである、請求項1に記載のエンジン。   The engine according to claim 1, wherein the heating unit (19) is a burner. 前記タービン(6)の高圧側における排気ガスの潜在的膨張エネルギーの約20%は、前記タービンから転換または誘導される、請求項1に記載のエンジン。   The engine according to claim 1, wherein about 20% of the potential expansion energy of the exhaust gas on the high pressure side of the turbine (6) is converted or derived from the turbine. 前記バーナーの作動および/または強さは、前記SCR反応器(20)の入口の温度センサ、またはその入口より上流の温度センサに応答して、コントローラによって制御される、請求項5に記載のエンジン。   Engine according to claim 5, wherein the operation and / or strength of the burner is controlled by a controller in response to a temperature sensor at the inlet of the SCR reactor (20) or upstream from the inlet. .
JP2009540606A 2007-05-03 2007-05-03 Large turbocharged diesel engine with SCR reactor Active JP4592816B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/003915 WO2008135059A1 (en) 2007-05-03 2007-05-03 Large supercharged diesel engine with scr reactor

Publications (2)

Publication Number Publication Date
JP2010513766A true JP2010513766A (en) 2010-04-30
JP4592816B2 JP4592816B2 (en) 2010-12-08

Family

ID=38961103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009540606A Active JP4592816B2 (en) 2007-05-03 2007-05-03 Large turbocharged diesel engine with SCR reactor

Country Status (4)

Country Link
JP (1) JP4592816B2 (en)
KR (1) KR101118661B1 (en)
CN (1) CN101553648B (en)
WO (1) WO2008135059A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039063A1 (en) * 2010-09-24 2012-03-29 三菱重工業株式会社 Control method and device for turbine generator
WO2014065397A1 (en) * 2012-10-26 2014-05-01 三菱重工業株式会社 Internal combustion engine system, ship provided with same, and method for operating internal combustion engine system
CN105910125A (en) * 2015-12-31 2016-08-31 南通亚泰工程技术有限公司 Waste gas boiler with SCR
WO2017195516A1 (en) * 2016-05-13 2017-11-16 株式会社デンソー Vehicle engine system
JP2018508704A (en) * 2014-12-22 2018-03-29 アルファ−ラヴァル・コーポレート・アーベー Exhaust gas treatment system and exhaust gas treatment method, ship equipped with exhaust gas treatment system, and use of exhaust gas treatment system

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275954A (en) * 2009-05-29 2010-12-09 Mitsubishi Heavy Ind Ltd Internal combustion engine with denitration part
JP5138643B2 (en) * 2009-07-28 2013-02-06 三菱重工業株式会社 Turbine generator, turbine generator control method, control device, and ship equipped with the turbine generator
FI125813B (en) * 2009-08-28 2016-02-29 Wã Rtsilã Finland Oy COMBUSTION ENGINE DEVICE
JP5155980B2 (en) * 2009-10-23 2013-03-06 三菱重工業株式会社 Turbo compound system and operation method thereof
JP2011111975A (en) * 2009-11-26 2011-06-09 Mitsubishi Heavy Ind Ltd Steam turbine power generation system and ship provided with same
KR101367114B1 (en) * 2009-12-08 2014-02-26 대우조선해양 주식회사 De-NOx system for treating exhaust gas
JP2011144766A (en) * 2010-01-15 2011-07-28 Mitsubishi Heavy Ind Ltd Exhaust gas denitration system and ship equipped therewith, and control method for the exhaust gas denitration system
JP5630025B2 (en) * 2010-01-25 2014-11-26 いすゞ自動車株式会社 Diesel engine exhaust purification device and exhaust purification method
DK177631B1 (en) * 2010-05-10 2014-01-06 Man Diesel & Turbo Deutschland Large two-stroke diesel engine with exhaust gas purification system
JP5167326B2 (en) * 2010-11-05 2013-03-21 三菱重工業株式会社 Engine exhaust energy recovery device
JP5701203B2 (en) 2011-12-27 2015-04-15 三菱重工業株式会社 Electric supercharger using waste heat of internal combustion engine
DE102012009318B4 (en) * 2012-05-10 2021-05-06 MAN Energy Solutions, branch of MAN Energy Solutions SE, Germany Diesel engine and method for increasing the performance of an existing diesel engine
FI20125820A (en) 2012-07-30 2014-01-31 Waertsilae Finland Oy COMBUSTION ENGINE
CN102787889A (en) * 2012-08-14 2012-11-21 天津大学 Diesel engine exhaust waste heat double-effect recovery system
JP2013029111A (en) * 2012-09-28 2013-02-07 Mitsubishi Heavy Ind Ltd Power generation method, turbine power generator, method of controlling turbine power generator, control device, and ship including the turbine power generator
CN102979614A (en) * 2012-11-16 2013-03-20 宁夏送变电工程公司 Preheating device of tension and tractive equipment
DK177616B1 (en) * 2012-12-03 2013-12-09 Man Diesel & Turbo Deutschland Large, slow-moving, turbocharged, two-stroke internal two-stroke internal combustion engine with cross heads and steam turbine
CN105324563A (en) * 2013-04-15 2016-02-10 法雷奥电机控制系统公司 Method for improving the energy efficiency of a drive system
JP5675932B2 (en) * 2013-10-31 2015-02-25 三菱重工業株式会社 Power generation method, turbine generator, turbine generator control method, control apparatus, and ship equipped with the turbine generator
KR101496043B1 (en) 2013-10-31 2015-02-25 현대중공업 주식회사 SCR System for Diesel Engine
KR20150092917A (en) * 2014-02-06 2015-08-17 현대중공업 주식회사 SCR System for Diesel Engine
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
CN104314649A (en) * 2014-09-30 2015-01-28 东风商用车有限公司 Exhaust gas bypass power turbine system
DK179038B1 (en) * 2015-11-02 2017-09-11 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A two-stroke internal combustion engine with a SCR reactor located downstream of the exhaust gas receiver
CN107642400A (en) * 2017-09-06 2018-01-30 哈尔滨工程大学 The fan forced system of diesel exhaust cogeneration
CN107642399A (en) * 2017-09-06 2018-01-30 哈尔滨工程大学 The fan forced Surge Prevention System of diesel exhaust cogeneration
IT201800010899A1 (en) * 2018-12-07 2020-06-07 Fpt Motorenforschung Ag METHOD AND DEVICE FOR THE THERMAL MANAGEMENT OF AN AFTER-TREATMENT SYSTEM (ATS) OF EXHAUST GAS OF AN INTERNAL COMBUSTION ENGINE
DK180561B1 (en) * 2020-03-06 2021-06-24 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland An internal combustion engine configured for determining specific emissions and a method for determining specific emissions of an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111310U (en) * 1982-01-26 1983-07-29 日産自動車株式会社 Exhaust purification device for internal combustion engine with supercharger
JPH10252517A (en) * 1997-03-14 1998-09-22 Hino Motors Ltd Braking and auxiliary power device of internal combustion engine
JPH116602A (en) * 1997-06-13 1999-01-12 Isuzu Ceramics Kenkyusho:Kk Structure of heat exchanger
JP2004346794A (en) * 2003-05-21 2004-12-09 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10247989A1 (en) * 2002-10-15 2004-04-29 Robert Bosch Gmbh Exhaust gas cleaning of an internal combustion engine and method for cleaning its exhaust gases
JP4103539B2 (en) * 2002-10-23 2008-06-18 トヨタ自動車株式会社 Control device for internal combustion engine provided with turbocharger with generator
ITMI20032606A1 (en) * 2003-12-29 2005-06-30 Iveco Spa METHOD FOR CHECKING TEMPERATURE OF EXHAUST GAS IN MOTOR SYSTEM AND MOTOR SYSTEM
US20060283181A1 (en) * 2005-06-15 2006-12-21 Arvin Technologies, Inc. Swirl-stabilized burner for thermal management of exhaust system and associated method
US7237381B2 (en) * 2005-04-25 2007-07-03 Honeywell International, Inc. Control of exhaust temperature for after-treatment process in an e-turbo system
KR101238728B1 (en) * 2006-04-12 2013-03-05 맨 디젤 앤드 터보 필리얼 아프 맨 디젤 앤드 터보 에스이 티스크랜드 A large turbocharged diesel engine with energy recovery arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111310U (en) * 1982-01-26 1983-07-29 日産自動車株式会社 Exhaust purification device for internal combustion engine with supercharger
JPH10252517A (en) * 1997-03-14 1998-09-22 Hino Motors Ltd Braking and auxiliary power device of internal combustion engine
JPH116602A (en) * 1997-06-13 1999-01-12 Isuzu Ceramics Kenkyusho:Kk Structure of heat exchanger
JP2004346794A (en) * 2003-05-21 2004-12-09 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039063A1 (en) * 2010-09-24 2012-03-29 三菱重工業株式会社 Control method and device for turbine generator
WO2014065397A1 (en) * 2012-10-26 2014-05-01 三菱重工業株式会社 Internal combustion engine system, ship provided with same, and method for operating internal combustion engine system
JP2014084853A (en) * 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd Internal combustion engine system, ship having the system, and operational method for the internal combustion engine system
KR20150027796A (en) * 2012-10-26 2015-03-12 미츠비시 쥬고교 가부시키가이샤 Internal combustion engine system, ship provided with same, and method for operating internal combustion engine system
KR101660655B1 (en) 2012-10-26 2016-09-27 미츠비시 쥬고교 가부시키가이샤 Internal combustion engine system, ship provided with same, and method for operating internal combustion engine system
JP2018508704A (en) * 2014-12-22 2018-03-29 アルファ−ラヴァル・コーポレート・アーベー Exhaust gas treatment system and exhaust gas treatment method, ship equipped with exhaust gas treatment system, and use of exhaust gas treatment system
US10533473B2 (en) 2014-12-22 2020-01-14 Alfa Laval Corporate Ab Exhaust gas treatment system and method, as well as ship comprising, and use of, such a system
CN105910125A (en) * 2015-12-31 2016-08-31 南通亚泰工程技术有限公司 Waste gas boiler with SCR
WO2017195516A1 (en) * 2016-05-13 2017-11-16 株式会社デンソー Vehicle engine system

Also Published As

Publication number Publication date
KR101118661B1 (en) 2012-03-06
KR20090087002A (en) 2009-08-14
CN101553648A (en) 2009-10-07
CN101553648B (en) 2011-08-17
JP4592816B2 (en) 2010-12-08
WO2008135059A1 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4592816B2 (en) Large turbocharged diesel engine with SCR reactor
CN103256127B (en) For running the method from ignition internal combustion engine
US8091357B2 (en) System for recovering engine exhaust energy
EP1036270B1 (en) Arrangement for a combustion engine
US20080209889A1 (en) Internal Combustion Engine Featuring Exhaust Gas Aftertreatment and Method For the Operation Thereof
JP2011236892A (en) Large-scale two-cycle diesel engine including exhaust emission control system
KR101674237B1 (en) Internal combustion engine arrangement
CN101749105A (en) Internal-combustion engine having exhaust-driven turbo charger
US8495876B2 (en) Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
US20110154819A1 (en) System for recovering engine exhaust energy
CN102425488A (en) Adjustable two-stage supercharging sequential system applied to V-shaped diesel engine
JP5918722B2 (en) Diesel engine and method for improving output of the diesel engine
WO2014022208A1 (en) System and method of using a turbo alternator in an exhaust gas system to generate power
JP4562098B2 (en) Humidified diesel engine
CN107060989B (en) Three stage of the three turbocharger sequential turbocharging device and its control method of function are realized with EGR
KR101071874B1 (en) Engine system using vortex tube
KR101071873B1 (en) Recirculating exhaust gas system using vortex tube
CN105863792A (en) Turbocharged combustion engine with an externally ignited combustion motor and method for operating such a combustion engine
KR101845487B1 (en) Large two-stroke turbocharged compression ignited internal combustion engine with an exhaust gas purification system
CN111561400B (en) System and method for controlling emissions of a spark-ignition internal combustion engine of a motor vehicle
RU207444U1 (en) Military Tracked Diesel Engine with Boost Control Device
CN109973207A (en) A kind of internal-combustion engine system
Wang et al. Effect of High and Low Pressure EGR on Diesel Engine Matched with Mechanical Turbo-compound
CN110439681A (en) A kind of in-line five cylinders diesel engine
KR20180050258A (en) Large two-stroke turbocharged compression ignited internal combustion engine with an exhaust gas purification system

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100315

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4592816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250