JP2010508440A - Recovery of non-ferrous metals from zinc and lead industry byproducts using electrothermal smelting in submerged plasma - Google Patents

Recovery of non-ferrous metals from zinc and lead industry byproducts using electrothermal smelting in submerged plasma Download PDF

Info

Publication number
JP2010508440A
JP2010508440A JP2009535006A JP2009535006A JP2010508440A JP 2010508440 A JP2010508440 A JP 2010508440A JP 2009535006 A JP2009535006 A JP 2009535006A JP 2009535006 A JP2009535006 A JP 2009535006A JP 2010508440 A JP2010508440 A JP 2010508440A
Authority
JP
Japan
Prior art keywords
slag
zinc
residue
oxidizing gas
gas mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009535006A
Other languages
Japanese (ja)
Other versions
JP5183638B2 (en
Inventor
ヴァン カンプ マウリッツ
フェルグーツ ペーター
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore NV SA
Original Assignee
Umicore NV SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore NV SA filed Critical Umicore NV SA
Publication of JP2010508440A publication Critical patent/JP2010508440A/en
Application granted granted Critical
Publication of JP5183638B2 publication Critical patent/JP5183638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/28Obtaining zinc or zinc oxide from muffle furnace residues
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B4/00Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
    • C22B4/005Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys using plasma jets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/16Dry methods smelting of sulfides or formation of mattes with volatilisation or condensation of the metal being produced
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/226Remelting metals with heating by wave energy or particle radiation by electric discharge, e.g. plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本発明は、亜鉛含有残留物からの、特に亜鉛及び鉛産業の副産物、例えば針鉄鉱及びジャロサイトからの、非鉄金属の回収のための単工程の乾式製錬法に関する。Zn、Fe及びSを含有する産業Zn残留物からの金属の回収のための方法は、Znはヒューミングされ、Feはスラグにされ、かつSはSO2に酸化される場合において、Znのヒューミング、Feのスラグ形成及びSの酸化が、酸化性ガス混合物を生じる少なくとも1つの液中プラズマトーチを含有する炉中で前記残留物を溶錬することによって、及び固体還元剤をその溶融物に供給することによって、単工程法で実施されることを特徴とすることを定義する。その方法は、Sの酸化及びFeのスラグ化を達成する一方で、同時に金属、例えばSの還元及びヒューミングを達成する。The present invention relates to a single-step dry smelting process for the recovery of non-ferrous metals from zinc-containing residues, in particular from zinc and lead industry by-products such as goethite and jarosite. A method for the recovery of metals from industrial Zn residues containing Zn, Fe and S is that Zn is fumed, Fe is slag, and S is oxidized to SO 2. By smelting the residue in a furnace containing at least one submerged plasma torch, wherein ming, Fe slag formation and S oxidation produce an oxidizing gas mixture, and a solid reducing agent into the melt. By defining, it is characterized by being performed in a single step process. The method achieves S oxidation and Fe slagging, while at the same time achieving reduction and fuming of metals such as S.

Description

本発明は、亜鉛含有残留物からの、特に亜鉛及び鉛産業の副産物、例えば針鉄鉱及びジャロサイトからの、非鉄金属の回収のための単工程の乾式製錬法に関する。   The present invention relates to a single-step dry smelting process for the recovery of non-ferrous metals from zinc-containing residues, in particular from zinc and lead industry by-products such as goethite and jarosite.

廃棄物を含有する重金属、例えば浸出残留物及びEAF−ダストの埋め立てによる環境影響の高められた理解、並びにますます厳しくなる環境法に関して、冶金学界は、経済及び環境に優しい方法でそれら材料を加工することができる技術の開発のために励んでいる。過去に、いくつかの電熱製錬法が、開発され、かつそれら材料を加工するために操作されている。それらは、高温製錬における重金属の還元及び揮発に基づく。現存の方法の概要を簡単に次に示す。   With an increased understanding of the environmental impacts of waste-containing heavy metals such as leachable residues and EAF-dust landfills, and increasingly stringent environmental laws, the metallurgical community is processing these materials in an economical and environmentally friendly manner Encouraging for the development of technology that can be. In the past, several electrothermal smelting methods have been developed and operated to process the materials. They are based on the reduction and volatilization of heavy metals in high temperature smelting. A brief overview of existing methods follows.

ウェルツ(Waelz)法は、EAF−ダスト及び亜鉛の浸出残留物の処理のためのおそらく最も広く使用される方法である。残留物、コークス、及びフラックスの乾燥混合物は、大きい回転炉に供給され、かつ1200〜1300℃まで加熱される。亜鉛フェライトが分解され、かつ揮発性種、例えばZn及びPbSがヒューミングされる。前記のヒューミングは、浴の上で再酸化されて、排ガスから濾過されうる固体粒子を形成する。回収されたZnO粒子は、例えば、湿式製錬のZn流れ図における焼成のための代用として使用されうる。しかしながら、ウェルツ法において使用される回転炉は、高い出資及び操作費用を有する大きい装置である。さらに、そのエネルギー効率は、むしろ低く、かつコークス消費は、高い。   The Weelz method is probably the most widely used method for the treatment of leaching residues of EAF-dust and zinc. The dry mixture of residue, coke, and flux is fed to a large rotary furnace and heated to 1200-1300 ° C. Zinc ferrite is decomposed and volatile species such as Zn and PbS are fumed. The fuming is reoxidized on the bath to form solid particles that can be filtered from the exhaust gas. The recovered ZnO particles can be used, for example, as a substitute for firing in a hydrometallurgical Zn flow diagram. However, the rotary furnace used in the Wertz process is a large device with high capital and operating costs. Furthermore, its energy efficiency is rather low and coke consumption is high.

残留物を含有する重金属を加工するための他のアプローチは、高炉技術である。現在では滅多に使用されないが、日本において未だ広く適用されている。ウェルツ法として、その残留物が、フラックスで乾燥及び混合されるべきであり、追加のブリケッティング操作が、さらに要求される。大量の塊コークスが、還元剤及び熱源として添加される。他の亜鉛ヒューミング法と同様に、重金属は、ヒューミングされ、かつ後燃焼される。分離マット及びスラグ相が生じるが、しかしマット相は、鉄で強く希薄され、高価な金属、例えばCu及び貴金属の比較的低い濃度を有する大量のマットを導く。ZnOヒューミングは、ウェルツ法におけるように処理されうる。   Another approach for processing heavy metals containing residues is blast furnace technology. Although rarely used today, it is still widely applied in Japan. As the Welts method, the residue should be dried and mixed with the flux, further requiring additional briquetting operations. Large quantities of coke are added as a reducing agent and heat source. Similar to other zinc fuming methods, heavy metals are fumed and post-combusted. Separation mats and slag phases occur, but the mat phases are strongly diluted with iron, leading to large amounts of mats with relatively low concentrations of expensive metals such as Cu and noble metals. ZnO fuming can be processed as in the Welts process.

例えばSKF Plasmadust(登録商標)法におけるコークス充填層反応器は、粒子における亜鉛含有残留物及びEAFダストを処理するための第三の装置である。この方法において、酸化物の廃棄物は、前記の炉の底部における羽口を介して、微粉炭及びスラグ形成体と共に、粉体で注入される。エネルギーは、該羽口に連結されたプラズマトーチによって提供される。亜鉛ヒューミングを含有する上昇ガスは、さらに、充填コークス床中で還元及び冷却され、かつ該亜鉛は、スプラッシュコンデンサー中で回収される。高いエネルギー要求は、安価な電気での領域における経済的に実行可能な方法のみをもたらす。他の主な欠点は、供給材料が、前記羽口を介して、粉体で注入されるべきであることである。   For example, a coke packed bed reactor in the SKF Plasmamadst® process is a third device for treating zinc-containing residues and EAF dust in particles. In this method, oxide waste is injected in powder together with pulverized coal and slag formers through the tuyeres at the bottom of the furnace. Energy is provided by a plasma torch connected to the tuyere. The rising gas containing zinc fuming is further reduced and cooled in a packed coke bed, and the zinc is recovered in a splash condenser. High energy requirements only result in economically viable methods in the area of cheap electricity. Another major drawback is that the feed material should be injected in powder via the tuyere.

鉛溶鉱炉スラグは、通常、従来のバッチスラグヒューミング操作において処理される。その方法は、水冷却ジャケット中で実施され、かつ羽口を介して溶融スラグ中へ微粉炭及び空気の注入を含む。亜鉛、鉛及びいくつかの他の元素は、該スラグからヒューミングされ、かつ前記の浴を再酸化させて、濾過装置において得られた酸化粒子を生じる。   Lead blast furnace slag is typically processed in a conventional batch slag fuming operation. The method is carried out in a water cooling jacket and involves the injection of pulverized coal and air through the tuyere into the molten slag. Zinc, lead and some other elements are fumed from the slag and reoxidize the bath to produce oxidized particles obtained in the filtration device.

ランス炉(Isasmelt(登録商標)又はAusmelt(登録商標))を浸水させた上部の吹込成形は、廃棄物を含有する亜鉛を処理するためにも使用されうる。乾燥させた残留物、炭及びフラックスは、最初の浸水ランス炉の溶錬炉中へ供給されて、亜鉛及び鉛の部分をスラグから取り除き、かつ硫黄を取り除く。溶融スラグは、二番目の浸水ランス炉のヒューミング炉中へ連続的に溢流させて、該スラグから亜鉛及び鉛を、3%までのレベルまで十分に取り除く。該スラグにおける少量の亜鉛でさえ、適しているが、しかし著しく増加された操作費用と関連する。要求される炭の量は、非常に多い。2つの炉のための要求は、著しく投資費用をさらに増加する。   The upper blow molding submerged in a lance furnace (Issmelt (R) or Ausmelt (R)) can also be used to treat zinc containing waste. The dried residue, charcoal and flux are fed into the smelting furnace of the first submerged lance furnace to remove zinc and lead parts from the slag and to remove sulfur. The molten slag continuously overflows into the second submerged lance furnace's fuming furnace to sufficiently remove zinc and lead from the slag to a level of up to 3%. Even small amounts of zinc in the slag are suitable, but are associated with significantly increased operating costs. The amount of charcoal required is very large. The requirement for two furnaces significantly increases the investment costs.

電力を使用する種々の方法は、残留物を含有する亜鉛を加工するためにも開発されている。スラグ抵抗炉において、その供給物は、上部から溶融浴中で注入される。該スラグ自体が、電気伝導によって加熱される。電磁気撹拌は、該浴を均一に保つ。還元剤の添加は、該スラグから亜鉛ヒューミングを生じ、その際その亜鉛は、凝縮後にその金属の形で回収される。   Various methods using electric power have also been developed for processing zinc containing residues. In a slag resistance furnace, the feed is injected into the molten bath from the top. The slag itself is heated by electrical conduction. Electromagnetic stirring keeps the bath uniform. The addition of a reducing agent results in zinc fuming from the slag, where the zinc is recovered in the form of its metal after condensation.

残留物を含有する亜鉛を処理する最後の方法は、DCアーク炉を使用することであり、その際その熱は、前記浴に電極から電気アークを移動することによって生じさせる。Enviroplas(登録商標)法は、例えば、鉛溶鉱炉スラグ、EAFダスト、及び中性浸出残留物を処理する。還元剤、例えば原料炭、木炭又は他の炭質材料は、湿分が低く、かつ揮発物は、亜鉛及び鉛を還元並びに揮発するために再度使用される。約1450℃の高いタッピング温度は、該スラグにおける低い残留亜鉛濃度を確実にするが、しかし耐火物ライニングが急速に劣化することももたらす。   The last method of treating the zinc containing residue is to use a DC arc furnace, where the heat is generated by transferring an electric arc from the electrode to the bath. The Enviroplas® process treats, for example, lead blast furnace slag, EAF dust, and neutral leaching residues. Reducing agents, such as raw coal, charcoal or other carbonaceous material, are low in moisture and volatiles are used again to reduce and volatilize zinc and lead. A high tapping temperature of about 1450 ° C. ensures a low residual zinc concentration in the slag, but also leads to a rapid deterioration of the refractory lining.

前記の方法は、全て、1つ以上の以下の欠点をこうむる:
− 特定の供給物準備、例えば乾燥、研摩、ハロゲン除去、ブリケッティングの必要性、
− 比較的低い温度で操作される場合の低いヒューミング率、
− 高温で操作される場合の速い耐火物ライニングの劣化、
− 低いマットの程度、
− 複数の単位操作の必要性、
− 高いエネルギー消費、
− 多量のCO2の発生、
− 高い投資及び/又は操作費用。
All of the above methods suffer from one or more of the following drawbacks:
-The need for specific feed preparations, such as drying, polishing, halogen removal, briquetting,
-Low huming rate when operated at relatively low temperatures,
-Fast refractory lining degradation when operated at high temperatures,
-Low mat degree,
-The need for multiple unit operations,
-High energy consumption,
- of a large amount of CO 2 generation,
-High investment and / or operating costs.

大部分の前記の欠点を克服する新しい方法が提案される。その方法は、液中プラズマ火炎の酸化と、固体還元剤のスラグの上部への添加とを組合せた、単工程のみを要求する。   A new method is proposed that overcomes most of the above disadvantages. The method requires only a single step that combines the oxidation of a submerged plasma flame and the addition of a solid reducing agent to the top of the slag.

Znがヒューミングされ、Feがスラグにされ、かつSがSO2に酸化される、Zn、Fe及びSを含有する産業Zn残留物からの金属の回収のための本発明の方法は、Znのヒューミング、Feのスラグ形成、及びSの酸化が、酸化性ガス混合物を生じる少なくとも1つの液中プラズマトーチを含有する炉中で前記残留物を溶錬することによって、及び固体還元剤をその溶融物に供給することによって、単工程法で実施されることを特徴とする。 The method of the present invention for recovery of metals from industrial Zn residues containing Zn, Fe and S, wherein Zn is fumed, Fe is slag, and S is oxidized to SO 2 Humming, Fe slag formation, and S oxidation, by melting the residue in a furnace containing at least one submerged plasma torch resulting in an oxidizing gas mixture, and melting the solid reducing agent It is characterized in that it is carried out in a single-step method by supplying it to an object.

少なくとも1つの液中プラズマトーチは、有利には、酸化性ガス混合物が、スラグ相中へ注入されるために、無移送タイプである。   The at least one submerged plasma torch is advantageously of the non-transfer type because the oxidizing gas mixture is injected into the slag phase.

酸化性ガス混合物における遊離酸素量を、少なくとも大部分のS及びFeの酸化のための化学量論的要求に、及び固形還元剤量を、少なくとも大部分のZnの還元のための化学量論的要求に適応するために有用である。   The amount of free oxygen in the oxidizing gas mixture is at least stoichiometrically required for the oxidation of most S and Fe, and the amount of solid reducing agent is at least stoichiometrically for the reduction of most Zn. Useful to adapt to requirements.

好ましい一実施態様において、前記の酸化性ガス混合物は、空気とガス状炭化水素との混合物を前記のプラズマトーチに供給することによって生じる。   In a preferred embodiment, the oxidizing gas mixture is produced by supplying a mixture of air and gaseous hydrocarbons to the plasma torch.

前記の方法は、In及び/又はGeを含有する産業Zn残留物を処理するために特に有用であり、それら金属のヒューミングによって揮発(valorization)をもたらす。それは、特に針鉄鉱を処理するためにも適応される。   The method described above is particularly useful for treating industrial Zn residues containing In and / or Ge, resulting in volatilization by the fuming of these metals. It is especially adapted for treating goethite.

該方法は、Cuが、産業Zn残留物で及び/又は固体還元剤で存在する場合に最も有用である。当業者に公知の方法で酸化性ガス混合物を適用することは、有利には、40質量%より多い、又はより有利には50質量%より多いCuを含むCuマット相の形成を導く。   The method is most useful when Cu is present in an industrial Zn residue and / or in a solid reducing agent. Applying the oxidizing gas mixture in a manner known to the person skilled in the art advantageously leads to the formation of a Cu mat phase comprising more than 40% by weight or more advantageously more than 50% by weight of Cu.

液中プラズマ技術を使用する方法は、既にEP1670960号において挙げられており、参照をもって本明細書に組み込まれたものとする。   The method of using the in-liquid plasma technique has already been mentioned in EP 1670960 and is incorporated herein by reference.

液中プラズマ反応器において、1つ以上の無移送DCプラズマトーチを、高輝度熱源として使用する。始動中に、該反応器を、それらが浸漬されるまで、プラズマ羽口によって溶融される、スラグで満たす。その方法の間、該プラズマを、スラグ層中で連続して生じさせる。プラズマガス注入によって生じた気泡は、より高い乱流槽をもたらす。その供給物は、上部から入れられ、かつ全く準備を必要としない。湿った供給材料は、有利には許容できる。さらに炉は、凍結型のライニングのコンセプトを使用する。炉壁は、水冷され、かつ飛沫スラグは、熱の損失を低減する分離外被をもたらす該壁上で凝固する。該スラグ組成物は、該スラグの液相線温度が該スラグの過度の過熱を防ぐための高さであるべきであることを意味する、その加工を高温で、密な凍結型のライニングで実施することができる方法で選択される。その高い操作温度は、耐火れんがの劣化の問題なしに速いヒューミング速度を可能にする。   In a submerged plasma reactor, one or more no-transfer DC plasma torches are used as a high intensity heat source. During startup, the reactors are filled with slag that is melted by the plasma tuyere until they are immersed. During the process, the plasma is generated continuously in the slag layer. Bubbles generated by plasma gas injection result in a higher turbulence tank. The feed is entered from the top and requires no preparation. A wet feed is advantageously acceptable. In addition, the furnace uses the concept of a freezing lining. The furnace wall is water cooled and the splash slag solidifies on the wall resulting in a separation envelope that reduces heat loss. The slag composition is processed at high temperature and in a dense freeze-type lining, meaning that the liquidus temperature of the slag should be high to prevent excessive overheating of the slag Selected in a way that can be. Its high operating temperature allows a fast fume speed without the problem of refractory brick degradation.

固体還元剤、例えば炭、コークス、電子スクラップ、もしくは自動車の破砕機の残留物は、供給物に添加され、又は還元剤、例えば天然ガス、LPGTもしくは油は、羽口を介して供給される。全ての前記の他の方法に関する限りでは、還元環境のみが、亜鉛ヒューミングの高い収率を得るために使用されうることが、一般に認められ、及びさらに熱力学によって必然的に決められる。しかしながら、公知の方法は、Fe及び硫黄の過剰量を含有する、劣った質のCuマットをもたらす。   Solid reductant, such as charcoal, coke, electronic scrap, or automobile crusher residue is added to the feed, or reductant, such as natural gas, LPGT or oil, is fed through the tuyere. As far as all the other methods are concerned, it is generally accepted and further inevitably determined by thermodynamics that only a reducing environment can be used to obtain a high yield of zinc fuming. However, known methods result in poor quality Cu mats containing excess Fe and sulfur.

現在、液中プラズマトーチを介して供給された酸化性ガスが、亜鉛ヒューミング率をわずかに作用することが判明している。予期せず、通常還元雰囲気を要求する高いヒューミング率に影響することなく、殆どの硫黄を除去し、かつ従って高いマットの程度を生じることが、十分に酸化しているプラズマガスの使用を可能にする。これは熱力学的予想に矛盾しているが、この操作の方法が、固体還元剤の近くでは還元しているが、しかし気泡の近くでは酸化している、種々の局所的な熱力学的領域をもたらすとみなされる。それらの明らかに区別される領域は、1つの単炉中で共存しうる。結果として、該方法は、高いヒューミング率を達成し、高い程度のマット及び綺麗な廃棄することができるスラグを生じることに成功する。その発見は、その工程の操作における追加の自由度を表す:プラズマ火炎における過剰酸素量は、自由に調整されることができ、目的の相の組成物に達するために要求される必須の過剰酸素量のみを提供する。これは、空気の混合物及び還元剤、例えばメタン又はあらゆる他の炭化水素化合物の制限量を使用することによって実現されうる。   Currently, it has been found that the oxidizing gas supplied via the submerged plasma torch has a slight effect on the zinc fuming rate. Unexpectedly, removing most sulfur without affecting the high fuming rate that normally requires a reducing atmosphere, and thus producing a high matte level, allows the use of a fully oxidized plasma gas To. This is inconsistent with thermodynamic predictions, but the various methods of local thermodynamics where the method of operation is reducing near the solid reducing agent but oxidizing near the bubbles. Is considered to bring Those distinct areas can coexist in a single furnace. As a result, the method achieves a high fuming rate and succeeds in producing a high degree of mat and clean slag that can be discarded. The discovery represents an additional degree of freedom in the operation of the process: the amount of excess oxygen in the plasma flame can be adjusted freely and the required excess oxygen required to reach the desired phase composition Provide quantity only. This can be achieved by using a mixture of air and a reducing agent such as methane or any other hydrocarbon compound.

典型的に、所望の相組成物は、供給材料の組成物に依存する。多量の銅が供給物中に存在する場合に、高い程度のマットが、通常所望される。従って、マットを過酸化し、その結果転化しないように処理しなければならない。メタンの前記のプラズマガスへの添加は、それらの条件において、遊離酸素の量を制限するために有用である。前記供給物が、例えば金属鉄を含有する場合に、前記の方法で金属鉄を酸化することが好ましくてよく、その際要求される酸素は、その時プラズマ火炎によって主に提供される。メタンは、この場合添加されない。   Typically, the desired phase composition will depend on the composition of the feedstock. A high degree of mat is usually desired when large amounts of copper are present in the feed. Therefore, the mat must be treated so as to be oxidized and not converted as a result. Addition of methane to the plasma gas is useful in these conditions to limit the amount of free oxygen. If the feed contains, for example, metallic iron, it may be preferred to oxidize metallic iron in the manner described above, the oxygen required being then provided mainly by the plasma flame. Methane is not added in this case.

この技術で針鉄鉱又は他の亜鉛残留物を加工することからの他の有益な結果は、さらにZn、In及びGeのような元素をヒューミングすることである。それらは、後の加工工程において揮発されうる。典型的に亜鉛残留物において少量で存在する貴金属は、マット及びヒューミング中で回収されてよい。他の生成物、例えばパラゲータイト、ジャロサイト及び抽出残留物は、好適な方法であってもよい。   Another beneficial result from processing goethite or other zinc residues with this technique is to further fuming elements such as Zn, In and Ge. They can be volatilized in later processing steps. Precious metals that are typically present in small amounts in the zinc residue may be recovered in mats and fuming. Other products, such as paragite, jarosite and extraction residue may be suitable methods.

該方法を、次の実施例でさらに説明する。   The method is further illustrated in the following example.

比較例
出発溶融物を、鉛溶鉱炉(LBF)スラグと以前の試験から再利用されたスラグとの混合物を溶融することによって製造する。そして針鉄鉱を、固体還元剤としてプラスチックスクラップと共にその浴へ供給する。中性プラズマガスを使用し、渦巻きガスとして空気100m3/h、メタン10m3/h、及び窒素16m3/hを提供する。その方法を、上記のように実施する。第1表は、供給物及び生産材料の組成物並びに量を示す。その試験は、製造されたスラグにおいて非常に低い亜鉛濃度をもたらしたが、マットの程度は低かった。
Comparative Example A starting melt is produced by melting a mixture of lead blast furnace (LBF) slag and slag recycled from previous tests. The goethite is then fed to the bath along with plastic scrap as a solid reducing agent. Use neutral plasma gas is provided as a vortex gas air 100 m 3 / h, methane 10 m 3 / h, and the nitrogen 16m 3 / h. The method is performed as described above. Table 1 shows the composition and amount of feed and production materials. The test resulted in a very low zinc concentration in the produced slag, but the degree of matte was low.

Figure 2010508440
Figure 2010508440

本発明による実施例
同様の試験を、今度は酸化プラズマガスで実施し、渦巻きガスとして空気100m3/h、及び窒素16m3/hを提供した。メタンは注入されなかった。第2表は、供給物及び生産材料の組成物並びに量を示す。この場合において、得られたスラグは、より多くのZnをわずかに含有するのみであるが、一方で非常に高いマットの程度を達成することが明らかである。これは、さらに、供給物の量と比較して、より低い製造されたマットの量で示される。
A test similar to the example according to the invention was then carried out with oxidizing plasma gas, providing 100 m 3 / h of air and 16 m 3 / h of nitrogen as the swirl gas. Methane was not injected. Table 2 shows the composition and amount of feed and production materials. In this case, it is clear that the resulting slag contains only a little more Zn, while achieving a very high matte degree. This is further indicated by the lower amount of mat produced compared to the amount of feed.

そのヒューミングにおけるInの富化の説明も、明らかにする。第2表は、In富化された煙塵をもたらす、インジウムのヒューミングを示す。ヒューミングドInは、他の加工工程において経済的に回収されうる。同様の揮発を、場合によりGeのために実施する。Agと共に他の貴金属を、マット中で、及び煙塵中で回収する。それは、公知の方法を使用して揮発されうる。   The explanation of In enrichment in the humming will also be clarified. Table 2 shows the indium fuming resulting in In-enriched dust. Fumed In can be recovered economically in other processing steps. Similar volatilization is optionally performed for Ge. Other precious metals with Ag are recovered in the mat and in the dust. It can be volatilized using known methods.

Figure 2010508440
Figure 2010508440

Claims (8)

Znがヒューミングされ、Feがスラグにされ、かつSがSO2に酸化される、Zn、Fe及びSを含有する産業Zn残留物からの金属の回収方法であって、Znのヒューミング、Feのスラグ形成及びSの酸化が、酸化性ガス混合物を生じる少なくとも1つの液中プラズマトーチを有する炉中で前記残留物を溶錬することによって、及び固体還元剤をその溶融物に供給することによって、単工程法で実施されることを特徴とする方法。 A method for recovering metal from an industrial Zn residue containing Zn, Fe and S, wherein Zn is fumed, Fe is slag, and S is oxidized to SO 2 , comprising Zn fuming, Fe Slag formation and oxidation of S by smelting the residue in a furnace having at least one submerged plasma torch resulting in an oxidizing gas mixture and by supplying a solid reducing agent to the melt A method characterized in that it is carried out in a single process. 少なくとも1つの液中プラズマトーチが、無移送タイプであり、かつ前記の酸化性ガス混合物が、スラグ相中へ注入されることを特徴とする、請求項1に記載の方法。   The method according to claim 1, characterized in that at least one submerged plasma torch is of the non-transfer type and the oxidizing gas mixture is injected into the slag phase. 前記の酸化性ガス混合物における遊離酸素の量を、少なくとも大部分のS及びFeの酸化のための化学量論的要求に適応させ、かつ前記の固形酸化剤の量を、少なくとも大部分のZnの還元のための化学量論的要求に適応させる、請求項1又は2に記載の方法。   The amount of free oxygen in the oxidizing gas mixture is adapted to the stoichiometric requirement for oxidation of at least most of the S and Fe, and the amount of solid oxidant is adjusted to at least most of Zn. 3. A process according to claim 1 or 2, adapted to the stoichiometric demand for reduction. 前記の酸化性ガス混合物を、前記のプラズマトーチに空気とガス状炭化水素との混合物を供給することによって生じさせる、請求項1から3までのいずれか1項に記載の方法。   4. A method according to any one of claims 1 to 3, wherein the oxidizing gas mixture is generated by supplying a mixture of air and gaseous hydrocarbons to the plasma torch. 前記の産業Zn残留物が、In及び/又はGeを含有し、これらの金属をヒューミングすることによって揮発をもたらす、請求項1から4までのいずれか1項に記載の方法。   The method according to claim 1, wherein the industrial Zn residue contains In and / or Ge and causes volatilization by fuming these metals. 該産業Zn残留物が、針鉄鉱である、請求項1から5までのいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, wherein the industrial Zn residue is goethite. 前記の産業Zn残留物又は固体還元剤が、Cuを含有し、Cuマット相の形成を導く、請求項1から6までのいずれか1項に記載の方法。   7. A method according to any one of claims 1 to 6, wherein the industrial Zn residue or solid reducing agent contains Cu and leads to the formation of a Cu matte phase. 前記の酸化性ガス混合物が、40質量%より多い、又は有利には、50質量%より多いCuを含有するCuマットを得るために適応される、請求項7に記載の方法。   8. A method according to claim 7, wherein the oxidizing gas mixture is adapted to obtain a Cu mat containing more than 40% by weight, or advantageously more than 50% by weight of Cu.
JP2009535006A 2006-11-02 2007-10-18 Recovery of non-ferrous metals from zinc and lead industry byproducts using electrothermal smelting in submerged plasma Active JP5183638B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP06022807.9 2006-11-02
EP06022807 2006-11-02
US85682106P 2006-11-06 2006-11-06
US60/856,821 2006-11-06
PCT/EP2007/009023 WO2008052661A1 (en) 2006-11-02 2007-10-18 Recovery of non-ferrous metals from by-products of the zinc and lead industry using electric smelting with submerged plasma

Publications (2)

Publication Number Publication Date
JP2010508440A true JP2010508440A (en) 2010-03-18
JP5183638B2 JP5183638B2 (en) 2013-04-17

Family

ID=38965770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009535006A Active JP5183638B2 (en) 2006-11-02 2007-10-18 Recovery of non-ferrous metals from zinc and lead industry byproducts using electrothermal smelting in submerged plasma

Country Status (5)

Country Link
EP (1) EP2082070A1 (en)
JP (1) JP5183638B2 (en)
AU (1) AU2007315330B2 (en)
CA (1) CA2668506C (en)
WO (1) WO2008052661A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535883A (en) * 2012-09-21 2015-12-17 ヴァル’イース・リサイクリング・ソリューションズ・アクチボラグ Plasma induced transpiration
JP2017526820A (en) * 2014-08-14 2017-09-14 ユミコア Process for melting lithium ion batteries

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101906542B (en) * 2010-08-11 2011-11-02 云南蓝湾矿业有限公司 Method for recovering germanium from flyash by wet process
ITRM20130205A1 (en) * 2013-04-05 2014-10-06 Ecotec Gestione Impianti S R L PROCEDURE FOR THE EXTRACTION OF SULFUR AND METALS, IN THE FORM OF OXIDES, USABLE IN THE WAELTZ PROCESS, BY SLUDGE CONTAINING COMPOUNDS OF SULFUR AND OF THESE METALS
CN104232944B (en) * 2014-09-05 2015-06-24 韶关凯鸿纳米材料有限公司 Process for comprehensively recycling indium from ammonia leaching residues and co-producing zinc oxide
PT3277852T (en) 2015-04-03 2021-06-21 Metallo Belgium Improved slag from non-ferrous metal production
ITUB20154943A1 (en) * 2015-10-28 2017-04-28 Ecotec Gestione Impianti S R L Process for the preparation of a concentrate containing metals, rare metals and rare earths from residues generated in the zinc production chain, and thus obtainable concentrate.
ES2887206T3 (en) * 2015-10-14 2021-12-22 Ecotec Gestione Impianti S R L Method for producing a concentrate containing metals, rare metals and rare earth metals from waste generated in the zinc production chain and concentrate obtained by said method
ITUB20154661A1 (en) * 2015-10-14 2017-04-14 Ecotec Gestione Impianti S R L Process for the preparation of a concentrate containing metals, rare metals and rare earths from residues generated in the zinc production chain, and thus obtainable concentrate.
BE1027793B1 (en) 2019-11-22 2021-06-23 Metallo Belgium Improved Fumigation Furnace with Plasma Induction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158336A (en) * 1981-03-10 1982-09-30 Skf Steel Eng Ab Heavy metal selective reduction
JPH04507265A (en) * 1989-08-24 1992-12-17 オースメルト ピーティーワイ.リミテッド Smelting of metallurgical waste containing iron compounds and toxic elements
WO2005031014A1 (en) * 2003-09-29 2005-04-07 Umicore Process and apparatus for recovery of non-ferrous metals from zinc residues

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO135428C (en) * 1974-03-21 1977-04-05 Norske Zinkkompani As

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158336A (en) * 1981-03-10 1982-09-30 Skf Steel Eng Ab Heavy metal selective reduction
JPH04507265A (en) * 1989-08-24 1992-12-17 オースメルト ピーティーワイ.リミテッド Smelting of metallurgical waste containing iron compounds and toxic elements
WO2005031014A1 (en) * 2003-09-29 2005-04-07 Umicore Process and apparatus for recovery of non-ferrous metals from zinc residues

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535883A (en) * 2012-09-21 2015-12-17 ヴァル’イース・リサイクリング・ソリューションズ・アクチボラグ Plasma induced transpiration
JP2017526820A (en) * 2014-08-14 2017-09-14 ユミコア Process for melting lithium ion batteries

Also Published As

Publication number Publication date
JP5183638B2 (en) 2013-04-17
AU2007315330A1 (en) 2008-05-08
EP2082070A1 (en) 2009-07-29
CA2668506A1 (en) 2008-05-08
WO2008052661A1 (en) 2008-05-08
AU2007315330B2 (en) 2012-09-27
CA2668506C (en) 2013-05-28

Similar Documents

Publication Publication Date Title
JP5183638B2 (en) Recovery of non-ferrous metals from zinc and lead industry byproducts using electrothermal smelting in submerged plasma
CN101827951B (en) Recovery of residues containing copper and other valuable metals
JP5336472B2 (en) Recycling method for high zinc and sulfate content residues
KR101145957B1 (en) Process and apparatus for recovery of non-ferrous metals from zinc residues
JP4967576B2 (en) Method for purifying copper smelting furnace slag
KR102176989B1 (en) Plasma induced fuming
US7905941B2 (en) Recovery of non-ferrous metals from by-products of the zinc and lead industry using electric smelting with submerged plasma
JP2023063362A (en) Noble metal recovery method
CA2219645C (en) Process for reducing the electric steelworks dusts and facility for implementing it
JP2010275568A (en) Co-refining method for zinc and lead, and zinc-lead co-refining apparatus
JP2009209405A (en) Method for smelting copper-containing dross
JP2009041052A (en) Method for smelting copper-containing dross by using slag-fuming furnace
JP2009167469A (en) Method for treating copper-containing dross
US3091524A (en) Metallurgical process
JP3365557B2 (en) Method for melting oxide-based slag and combustion residue, and apparatus for performing the method
JP4274069B2 (en) Reuse method of copper alloy and mat obtained by slag fuming method
EP0216618A2 (en) Recovery of volatile metal values from metallurgical slags
WO1997000333A1 (en) The processing of zinc bearing materials in a dc arc furnace
JP2006176858A (en) Slag fuming method
JP2003231925A (en) Method for collecting valuable metal
UA44078A (en) METHOD OF EXTRACTION OF ZINC FROM MATERIALS CONTAINING IRON AND ZINC OXIDES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100812

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130115

R150 Certificate of patent or registration of utility model

Ref document number: 5183638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250