JP2010287504A - Silver coated superconductive particle powder and superconductive cable - Google Patents

Silver coated superconductive particle powder and superconductive cable Download PDF

Info

Publication number
JP2010287504A
JP2010287504A JP2009141478A JP2009141478A JP2010287504A JP 2010287504 A JP2010287504 A JP 2010287504A JP 2009141478 A JP2009141478 A JP 2009141478A JP 2009141478 A JP2009141478 A JP 2009141478A JP 2010287504 A JP2010287504 A JP 2010287504A
Authority
JP
Japan
Prior art keywords
silver
particle powder
superconducting
coated
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009141478A
Other languages
Japanese (ja)
Inventor
Nariya Kobayashi
斉也 小林
Yasuo Kakihara
康男 柿原
Tsunehisa Kyodo
倫久 京藤
Mikio Takano
幹夫 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2009141478A priority Critical patent/JP2010287504A/en
Publication of JP2010287504A publication Critical patent/JP2010287504A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Bi2223 superconductive particle powder having a high critical current density (J<SB>c</SB>) and a superconductive cable using the Bi2223 superconductive particle powder. <P>SOLUTION: The silver coated Bi2223 superconductive particle powder is obtained by coating silver powder of nano order on the particle surface of Bi2223 superconductive particle powder or by coating a silver thin film on the Bi2223 superconductive particle powder by a sputtering or CVD method; and the superconductive cable can be manufactured by using the silver coated Bi2223 superconductive particle powder. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、高い臨界電流密度(J)を持つBi系超伝導ケーブルの提供を目的とする。 An object of the present invention is to provide a Bi-based superconducting cable having a high critical current density ( Jc ).

近年、地球環境の問題によりエネルギー利用の高効率化や新エネルギー創出の技術開発に脚光があたっている。   In recent years, due to global environmental problems, attention has been focused on the development of technologies for improving the efficiency of energy use and creating new energy.

エネルギー利用の高効率化の一つとして、超伝導ケーブルの実用化研究が日米欧で行われている。   As one way to increase the efficiency of energy use, research into the practical use of superconducting cables is being conducted in Japan, the US and Europe.

ケーブル用の超伝導体としては、Bi2223(BiSrCaCu)、Bi2212(BiSrCaCu)、YBCO(Y−Ba−Cu−O)、MgBが特に研究開発が進められている。 The superconductor cables, Bi2223 (Bi 2 Sr 2 Ca 2 Cu 3 O x), Bi2212 (Bi 2 Sr 2 Ca 1 Cu 2 O x), YBCO (Y-Ba-Cu-O), MgB 2 Research and development are in progress.

このうちBi2223がもっともTが高く、液体窒素下での超伝導状態の発現が十分に起こるため、ケーブル化への期待が寄せられている。近年、実用化に向けた実証試験研究も活発に行われている。 Among these, Bi2223 has the highest Tc , and the superconducting state is sufficiently generated under liquid nitrogen. In recent years, empirical research for practical application has been actively conducted.

Bi2223をケーブルに加工するとき、一般に銀あるいは銀を含んだ管にBi2223粉末を入れ圧延成形後、これをシース化し、さらに圧延成形する、という方法がとられている。   When Bi2223 is processed into a cable, generally, a method is adopted in which Bi2223 powder is put into silver or a tube containing silver, rolled and formed into a sheath, and then rolled.

超伝導ケーブルにおいて特性を比較するために必要な情報として臨界電流密度(J)がある。ケーブル化していないBi2223多結晶バルクとしてのJは〜100A/mm程度とわずかであり、これが実用化のための大きな障壁のひとつとなっている。 Information necessary for comparing characteristics in a superconducting cable is critical current density ( Jc ). J c as Bi2223 polycrystalline bulk that is not cabled is only a ~100A / mm 2 approximately, which is one of the major barriers to practical use.

特開2007−87813号公報JP 2007-87813 A 特開2004−119248号公報JP 2004-119248 A 特開平11−139824号公報JP-A-11-139824 特開平4−104985号公報JP-A-4-104985

上記特許文献1乃至4記載の技術では、未だBi2223ケーブルの高J化は十分とは言い難いものである。 In the above Patent Documents 1 to 4 described techniques, in which hardly yet Bi2223 high J c of the cable is sufficient and says.

即ち、特許文献1(特開2007−87813号公報)および特許文献2(特開2004−119248号公報)では、(Bi,Pb)2223が含まれるBi2212が記載されているが、非超伝導相を多量に含有しており高T相(2223)の体積分率低下が低下している。 That is, in Patent Document 1 (Japanese Patent Laid-Open No. 2007-87813) and Patent Document 2 (Japanese Patent Laid-Open No. 2004-119248), Bi2212 including (Bi, Pb) 2223 is described. Is contained in a large amount, and the decrease in the volume fraction of the high Tc phase (2223) is reduced.

また、特許文献3(特開平11−139824号公報)では、Bi2223生成のための熱処理条件の最適化による高J化について記載されているが、不純物相(非超伝導相)を含有するものであり、得られたケーブルは高いJを有するとは言い難いものである。 Further, those containing Patent Document 3, (JP-A-11-139824 JP), are described for high J c of by optimization of heat treatment conditions for the production Bi-2223-based, an impurity phase (non-superconducting phases) , and the resulting cable are those hard to say that having a high J c.

また、特許文献4(特開平4−104985号公報)では、超伝導体の表面に種々の酸化物などを付着させることが記載されているが、Agをより緊密に付着させることは考慮されていない。   Further, Patent Document 4 (Japanese Patent Laid-Open No. 4-104985) describes that various oxides and the like are adhered to the surface of the superconductor, but it is considered that Ag is adhered more closely. Absent.

そこで、本発明では、安定的且つ量産可能な高JのBi2223粒子粉末及び該Bi2223粒子粉末を用いたケーブルの提供を目的とする。 Therefore, in the present invention, and an object thereof is to provide a cable using a Bi2223 particles and the Bi2223 particles as stable and mass-produced high J c.

Bi2223相からなる超伝導粒子粉末の粒子表面を、別に用意したナノオーダーの銀粒子で被覆することによって、上記問題を克服できる。   The above problem can be overcome by coating the surface of the superconducting particle powder comprising Bi2223 phase with separately prepared nano-order silver particles.

あるいは、Bi2223粒子粉末の粒子表面を、スパッタリングや化学気相成長法などによる銀薄膜で被覆することによって、上記問題を克服できる。   Alternatively, the above problem can be overcome by coating the particle surface of Bi2223 particle powder with a silver thin film by sputtering or chemical vapor deposition.

即ち、本発明は、Bi系超伝導粒子粉末の粒子表面を平均粒子径が1〜100nmの銀粒子で被覆した銀被覆超伝導粒子粉末であって、該銀被覆超伝導粒子粉末の臨界電流密度(J)が190A/mm以上であることを特徴とする銀被覆超伝導粒子粉末である(本発明1)。 That is, the present invention is a silver-coated superconducting particle powder in which the surface of a Bi-based superconducting particle powder is coated with silver particles having an average particle diameter of 1 to 100 nm, and the critical current density of the silver-coated superconducting particle powder is (J c ) is a silver-coated superconducting particle powder characterized by being 190 A / mm 2 or more (Invention 1).

また、本発明は、Bi系超伝導粒子粉末の粒子表面を銀薄膜で被覆した銀被覆超伝導粒子粉末であって、該銀被覆超伝導粒子粉末の臨界電流密度(J)が190A/mm以上であることを特徴とする銀被覆超伝導粒子粉末である(本発明2)。 The present invention also relates to a silver-coated superconducting particle powder in which the surface of a Bi-based superconducting particle powder is coated with a silver thin film, and the critical current density (J c ) of the silver-coated superconducting particle powder is 190 A / mm. It is a silver-coated superconducting particle powder characterized by being 2 or more (Invention 2).

また、本発明は、本発明1又は2記載の銀被覆超伝導粒子粉末を用いた超伝導ケーブルである(本発明3)。   Moreover, this invention is a superconducting cable using the silver covering superconducting particle powder of this invention 1 or 2 (this invention 3).

本発明に係る銀被覆超伝導粒子粉末を用いることで高Jのケーブルが得られる。 By using the silver-coated superconductive particle powder according to the present invention, a high Jc cable can be obtained.

先ず、本発明に係る銀被覆超伝導粒子粉末について述べる。   First, the silver-coated superconductive particle powder according to the present invention will be described.

本発明に用いるBi系超伝導粒子粉末の組成は、一般に次の化学組成式、
式:(Bi.Pb)SrCaCuΔ
式:BiSrCaCuΔ
にて表されるBi2223相に相当する組成でよい。
The composition of the Bi-based superconducting particle powder used in the present invention generally has the following chemical composition formula:
Formula: (Bi.Pb) 2 Sr 2 Ca 2 Cu 3 O Δ
Formula: Bi 2 Sr 2 Ca 2 Cu 3 O Δ
A composition corresponding to the Bi2223 phase represented by

超伝導粒子粉末の粒子サイズとしては特に限定されないが、0.1〜500μm、好ましくは0.5〜200μmの平均粒子径をもつ粒子粉末、あるいは、これら平均粒子径の範囲内の2点以上の粒子同士を任意の重量で混合した粒子粉末のいずれでもよい。   The particle size of the superconductive particle powder is not particularly limited, but it is 0.1 to 500 μm, preferably a particle powder having an average particle size of 0.5 to 200 μm, or two or more points within the range of these average particle sizes. Any of the particle | grains powder which mixed particle | grains by arbitrary weight may be sufficient.

本発明1に係る銀被覆超伝導粒子粉末は、前記Bi系超伝導粒子粉末の粒子表面を平均粒子径が1〜100nmの銀粒子で被覆したものである。   The silver-coated superconducting particle powder according to the present invention 1 is obtained by coating the particle surface of the Bi-based superconducting particle powder with silver particles having an average particle diameter of 1 to 100 nm.

本発明1に用いるBi系超伝導粒子粉末の粒子表面を被覆する銀粒子の平均粒子径は1〜100nmが好ましい。銀粒子の粒子サイズが100nmを超える場合には線材加工時にBi系超伝導粒子粉末の嵩密度が上がらないこと、また、Bi系超伝導粒子粉末の粒子表面を十分に被覆できないことにより、高Jケーブルが得られないため好ましくない。より好ましい銀粒子の平均粒子径は1〜80nmである。 As for the average particle diameter of the silver particle which coat | covers the particle | grain surface of Bi type | system | group superconducting particle powder used for this invention 1, 1-100 nm is preferable. When the particle size of the silver particles exceeds 100 nm, the bulk density of the Bi-based superconducting particle powder does not increase during wire processing, and the particle surface of the Bi-based superconducting particle powder cannot be sufficiently covered. Since c cable cannot be obtained, it is not preferable. A more preferable average particle diameter of silver particles is 1 to 80 nm.

被覆する前の銀粒子の状態としては、水系・有機溶媒系分散スラリーや乾粉でもよく、好ましくは分散スラリーの状態である。分散スラリー中の銀濃度は、特に限定されないが、1〜30wt%でよい。
また、分散スラリーの溶媒は、水、グリセリン、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、テトラエチレングリコール、メタノール、エタノール、イソプロパノール、1−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、1−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、2−メチル−2−ブタノール、3−メチル−2−ブタノール、2,2−ジメチル−1−プロパノール、1−オクタノール、1−デカノール、cis−9−オクタデセン−1−オール、シクロヘキサノール、メチルシクロヘキサノール、2−エチルヘキサノール、ヘキサン二酸、2−イソプロピル−5−メチルシクロヘキサノール、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、フェノール、テルピネオール、プレノール、イソ吉草酸、セネシオ酸、チグリン酸、3−メチル−3−ブテン−2−オール、アンゲリカ酸、ゲラニオール、ネロール、ファルネソール、ネロリドール、シネオール、1,2,4−ブタントリオール、ベンジルアルコール、ポリビニルアルコール水溶液、n−ヘキサン、シクロヘキサン、トルエン、ホルマリン、クロロホルム、ベンゼン、ヘプタン、オクタン、ノナン、デカンなどが挙げられ、このうち少なくとも1種類が使用されればよい。
The state of the silver particles before coating may be an aqueous / organic solvent-based dispersion slurry or dry powder, and is preferably in the state of a dispersion slurry. Although the silver concentration in a dispersion | distribution slurry is not specifically limited, 1-30 wt% may be sufficient.
The solvent of the dispersion slurry is water, glycerin, ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, tetraethylene glycol, methanol, ethanol, isopropanol, 1-propanol, 1-butanol, 2-butanol, 2-methyl- 1-propanol, 2-methyl-2-propanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-2-butanol , 3-methyl-2-butanol, 2,2-dimethyl-1-propanol, 1-octanol, 1-decanol, cis-9-octadecen-1-ol, cyclohexanol, methylcyclohexanol, 2-ethylhexanol, hexane Diacid 2-isopropyl-5-methylcyclohexanol, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, phenol, terpineol, prenol, isovaleric acid, senecioic acid, tiglic acid, 3-methyl-3-butene- 2-ol, angelic acid, geraniol, nerol, farnesol, nerolidol, cineol, 1,2,4-butanetriol, benzyl alcohol, polyvinyl alcohol aqueous solution, n-hexane, cyclohexane, toluene, formalin, chloroform, benzene, heptane, Examples include octane, nonane, and decane, and at least one of them may be used.

銀粒子を溶媒中で分散させるための分散剤の限定はされないが、ポリビニルアルコール、ポリアクリル酸ソーダ、ポリエチレングリコール、セルロース、ショ糖、オレイン酸、オレイン酸ソーダ、オレイルアミン、ステアリン酸、ステアリン酸ソーダなどを利用できる。   The dispersant for dispersing silver particles in a solvent is not limited, but polyvinyl alcohol, sodium polyacrylate, polyethylene glycol, cellulose, sucrose, oleic acid, sodium oleate, oleylamine, stearic acid, sodium stearate, etc. Can be used.

本発明1において、Bi系超伝導粒子粉末をナノオーダーの銀粒子で被覆する方法は、特に限定されないが、例えばBi系超伝導粒子粉末と銀分散溶媒とをライカイ機で混合しながら、溶媒を揮発させることによって得られる。その他の被覆方法としては、銀分散溶媒を溶媒で希釈し、そこにBi系超伝導粒子粉末を添加し、よく混合後、エバポレータにて溶媒を揮発させることでも得ることができる。生産に見合った方法を選択すればよい。乾燥は、例えば被覆処理後に通風乾燥機で100℃にて行えばよい。分散溶媒によって適宜温度などの条件を選択すればよい。また、塗布・乾燥後に熱処理を行ってもよい。熱処理により、よりBi系超伝導粒子粉末表面への銀被覆が理想的な状態になる。熱処理は、例えば空気中で200℃にて2h行えばよい。   In the present invention 1, the method of coating the Bi-based superconducting particle powder with nano-order silver particles is not particularly limited. For example, while mixing the Bi-based superconducting particle powder and the silver-dispersed solvent with a lyi machine, It is obtained by volatilization. As another coating method, it can also be obtained by diluting a silver dispersion solvent with a solvent, adding Bi-based superconducting particle powder thereto, mixing well, and then evaporating the solvent with an evaporator. You can choose the method that suits your production. For example, the drying may be performed at 100 ° C. with a ventilation dryer after the coating treatment. Conditions such as temperature may be appropriately selected depending on the dispersion solvent. Moreover, you may heat-process after application | coating and drying. The heat treatment makes the silver coating on the surface of the Bi-based superconducting particles more ideal. For example, the heat treatment may be performed in air at 200 ° C. for 2 hours.

Bi系超伝導粒子粉末と被覆する銀とは、(被覆銀重量)/(Bi2223超伝導粒子粉末重量)で表される重量比で、特に限定はされないが、0.001〜2wt%、好ましくは0.005〜1.5wt%である。ケーブル化の方法や条件などによって、最適な比率を選択すればよい。   Bi-based superconducting particle powder and coated silver are weight ratios expressed by (coating silver weight) / (Bi2223 superconducting particle powder weight), although not particularly limited, 0.001 to 2 wt%, preferably 0.005 to 1.5 wt%. The optimum ratio may be selected according to the method and conditions of cable formation.

本発明1に係る銀被覆超伝導粒子粉末の臨界電流密度(J)は190A/mm以上、好ましくは220A/mm以上、より好ましくは、250A/mm以上である。 The critical current density (J c ) of the silver-coated superconducting particle powder according to the present invention 1 is 190 A / mm 2 or more, preferably 220 A / mm 2 or more, more preferably 250 A / mm 2 or more.

本発明2に係る銀被覆超伝導粒子粉末は、Bi系超伝導粒子粉末の粒子表面を銀薄膜で被覆したものである。   The silver-coated superconducting particle powder according to the present invention 2 is obtained by coating the particle surface of a Bi-based superconducting particle powder with a silver thin film.

本発明2に係るBi系超伝導粒子粉末表面を銀で被覆する手法として、特に限定されないが、スパッタや化学気相成長法(CVD)などを用いればよい。   The method for coating the Bi-based superconducting particle powder surface according to the present invention 2 with silver is not particularly limited, but sputtering, chemical vapor deposition (CVD), or the like may be used.

Bi系超伝導粒子粉末と被覆する銀とは、(被覆した銀重量)/(Bi系超伝導粒子粉末重量)で表される重量比で、0.001〜2wt%、好ましくは0.005〜1.5wt%である。ケーブル化の方法や条件などによって、最適な比率を選択すればよい。   Bi-based superconducting particle powder and coated silver are 0.001 to 2 wt%, preferably 0.005 in a weight ratio represented by (weight of coated silver) / (weight of Bi-based superconducting particle powder). 1.5 wt%. The optimum ratio may be selected according to the method and conditions of cable formation.

本発明2において、スパッタリングによりBi系超伝導粒子粉末の被覆法としては、粉末スパッタリング法を採用することが好ましい。粉末スパッタリング法は特開2006−96953号公報又は特開2002−157918号公報で開示されているような手法を参考にして行なうことが出来る。粉末スパッタリングを行なう装置は通常市販されている装置を用いることが出来る。
通常の操作としては、Bi系超伝導粒子粉末を粉末スパッタリング装置の回転式チャンバー内に導入後、減圧排気を行なう。その後、アルゴンガスなどの通常用いられるスパッタリングガスを導入し、1×10−3〜1×10−2Torrの範囲内に圧力を調整する。電力を付加しプラズマを励起させ銀ターゲットをスパッタリングし、銀をBi系超伝導粒子粉末に被覆する。所望の厚みになるまでスパッタリングを行なった後、粉末を取り出すことで、銀で被覆されたBi系超伝導粒子粉末を得ることが出来る。
In the second aspect of the present invention, it is preferable to employ a powder sputtering method as a method for coating Bi-based superconducting particles by sputtering. The powder sputtering method can be performed with reference to a method disclosed in Japanese Patent Application Laid-Open No. 2006-96953 or Japanese Patent Application Laid-Open No. 2002-157918. The apparatus which performs powder sputtering can use the apparatus marketed normally.
As a normal operation, the Bi-based superconducting particle powder is introduced into a rotary chamber of a powder sputtering apparatus and then evacuated under reduced pressure. Thereafter, a commonly used sputtering gas such as argon gas is introduced, and the pressure is adjusted within a range of 1 × 10 −3 to 1 × 10 −2 Torr. Power is applied to excite plasma to sputter a silver target, and silver is coated on Bi-based superconducting particle powder. After performing sputtering to a desired thickness, the powder is taken out to obtain Bi-based superconducting particle powder coated with silver.

本発明2に係るその他の真空蒸着法としては、CVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)、熱CVD、プラズマCVD、光CVDなどを用いて行なうことも出来る。CVD法としては、例えば、特開平7−215981号公報などに開示されている化合物を用いて行なうことも出来る。   Other vacuum deposition methods according to the second aspect of the present invention can be performed using CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), thermal CVD, plasma CVD, photo-CVD, or the like. As the CVD method, for example, a compound disclosed in Japanese Patent Application Laid-Open No. 7-215981 can be used.

被覆する銀の厚みは0.05〜1μmが好ましく、より好ましくは0.05〜0.15μmである。被覆する銀の厚みが0.05μmより薄いと導電性が不十分となり好ましくない。被覆する銀の厚みが1μmより厚い場合でも十分な導電性は得られるが、スパッタリング時間が無駄に長くなるため生産性の観点から好ましくない。   The thickness of silver to be coated is preferably 0.05 to 1 μm, more preferably 0.05 to 0.15 μm. If the thickness of the silver to be coated is less than 0.05 μm, the conductivity becomes insufficient, which is not preferable. Even when the thickness of the silver to be coated is thicker than 1 μm, sufficient conductivity can be obtained, but it is not preferable from the viewpoint of productivity because the sputtering time becomes unnecessarily long.

本発明2に係る銀被覆超伝導粒子粉末の臨界電流密度(J)は190A/mm以上、好ましくは220A/mm以上、より好ましくは250A/mm以上である。 The critical current density (J c ) of the silver-coated superconducting particle powder according to the present invention 2 is 190 A / mm 2 or more, preferably 220 A / mm 2 or more, more preferably 250 A / mm 2 or more.

本発明3に係る銀被覆超伝導粒子粉末を用いた超伝導ケーブルは、本発明1又は2の銀被覆超伝導粒子粉末を用いて、一般に知られているように、金属シースに充填する工程、原材料を充填した金属シースを塑性加工して線材を形成する工程、該線材を束ね合うことによって素線を作製する工程、素線をさらに素線挿入用金属パイプ内に挿入し多芯構造を形成する工程、さらに、該多芯構造体を伸線加工しテープ形状の線材を形成する工程を経ることで得られる。   The superconducting cable using the silver-coated superconducting particle powder according to the present invention 3 is a step of filling a metal sheath using the silver-coated superconducting particle powder of the present invention 1 or 2 as generally known, A process of forming a wire by plastic processing of a metal sheath filled with raw materials, a process of producing a strand by bundling the wire, and inserting a strand into a metal pipe for strand insertion to form a multi-core structure And a step of drawing the multi-core structure to form a tape-shaped wire.

本発明3に係る銀被覆超伝導粒子粉末の臨界電流密度(J)は190A/mm以上、好ましくは220A/mm以上、より好ましくは250A/mm以上である。 The critical current density (J c ) of the silver-coated superconducting particle powder according to the present invention 3 is 190 A / mm 2 or more, preferably 220 A / mm 2 or more, more preferably 250 A / mm 2 or more.

<作用>
本発明に係る銀被覆超伝導粒子粉末を用いることによって、Bi系超伝導粒子粉末粒子同士の接触部分での抵抗、粒子間の結合欠損による損失が起こりにくく、さらに銀被覆はしているもののBi系超伝導粒子粉末の含有量も多いことから、超伝導状態を壊さずに超伝導電流は、偏在することなく、バルク若しくはケーブルのいずれの箇所でも、抵抗や損失なくBi系超伝導粒子粉末粒子間を流れることができるので、従来では得られなかったような大きな臨界電流密度(J)を得ることができると本発明者らは推測している。さらには、本発明に係る銀被覆超伝導粒子粉末を用いることで、高い臨界電流密度(J)を持つケーブルが得られる。
<Action>
By using the silver-coated superconducting particle powder according to the present invention, resistance at the contact portion between Bi-based superconducting particle powder particles, loss due to bond deficiency between the particles is less likely to occur, and Bi is coated. Since the superconducting particle powder content is large, the superconducting current is not unevenly distributed without breaking the superconducting state, and the Bi-based superconducting particle powder particles are not distributed in the bulk or the cable without any resistance or loss. The present inventors presume that a large critical current density (J c ) that could not be obtained in the past can be obtained. Furthermore, a cable having a high critical current density (J c ) can be obtained by using the silver-coated superconducting particle powder according to the present invention.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

Bi系超伝導粒子粉末を被覆する銀の粒子サイズは、透過型電子顕微鏡(TEM:日本電子(株)、JEM−1200EXII)を用いて測定した。粒子120個をランダマイズに選び粒子サイズを計測して平均値を求めた。   The particle size of the silver coating the Bi-based superconducting particle powder was measured using a transmission electron microscope (TEM: JEOL Ltd., JEM-1200EXII). The average value was obtained by selecting 120 particles for randomization and measuring the particle size.

Bi系超伝導粒子粉末の平均粒子径及び銀被覆超伝導粒子粉末の状態確認は、走査型電子顕微鏡(SEM:(株)日立ハイテクノロジーズ、S−4800型FE−SEM(TYPE−I))で測定した。粒子120個をランダマイズに選び粒子サイズを計測して平均値を求めた。   The average particle diameter of the Bi-based superconducting particle powder and the state confirmation of the silver-coated superconducting particle powder are confirmed by a scanning electron microscope (SEM: Hitachi High-Technologies Corporation, S-4800 FE-SEM (TYPE-I)). It was measured. The average value was obtained by selecting 120 particles for randomization and measuring the particle size.

Bi系超伝導粒子粉末の生成相は、粉末X線回折装置(XRD:株式会社リガク、RINT 2500)で測定した。   The production phase of the Bi-based superconductive particle powder was measured with a powder X-ray diffractometer (XRD: Rigaku Corporation, RINT 2500).

Bi系超伝導粒子粉末の組成分析及び銀の被覆量は、試料を酸で溶解し、プラズマ発光分光分析装置(ICP:セイコー電子工業(株)、SPS4000)を用い分析して求めた。   The composition analysis of the Bi-based superconducting particle powder and the coating amount of silver were obtained by dissolving the sample with an acid and analyzing it using a plasma emission spectrometer (ICP: Seiko Electronics Co., Ltd., SPS4000).

銀で被覆されたBi系超伝導粒子粉末の臨界電流密度(J)は次のようにして測定した。 The critical current density (J c ) of the Bi-based superconducting particle powder coated with silver was measured as follows.

まず、銀被覆Bi2223超伝導粒子粉末を、3ton/cmにて直径20mmφ、厚さ1.0mmのペレット状成形体を作製した。続けて3ton/cmの圧力をかけたままの状態で焼成した後、室温まで急冷した。この多結晶体を短冊状に切り出して、四端子法によって77Kでの臨界電流密度(J)を求めた。 First, a pellet-shaped molded body having a diameter of 20 mmφ and a thickness of 1.0 mm was prepared from silver-coated Bi2223 superconductive particle powder at 3 ton / cm 2 . Subsequently, after firing with 3 ton / cm 2 pressure applied, it was rapidly cooled to room temperature. This polycrystal was cut into strips, and the critical current density (J c ) at 77 K was determined by the four probe method.

《Bi2223超伝導粒子粉末の調整》
Bi2223超伝導粒子粉末は、以下の3つの方法で作製した。
<< Preparation of Bi2223 superconductive particle powder >>
Bi2223 superconducting particle powder was produced by the following three methods.

(ア) Bi(アルドリッチ・シグマ製試薬、純度99.999%)、SrCO(アルドリッチ・シグマ製試薬、純度99.9%)、CaCO(アルドリッチ・シグマ製試薬、純度99.0%)、CuO(アルドリッチ・シグマ製試薬、純度99.5%)を原料として用いた。Bi:Sr:Ca:Cuの原子比が2.1:2.0:2.0:3.1となるように各原料を秤量し、メノウ乳鉢にて30分間粉砕・混合した。このとき、エタノールやIPA、MEK、2(−2−メトキシエトキシ)エタノールを適宜微量加えながら行った。その後、300kg/cmで直径30mmφ、厚さ15mmのペレット状に成形し、750℃にて2h仮焼後、メノウ乳鉢で粉砕し、続いて2ton/cmにて直径30mmφ、厚さ8.5mmのペレット状成形体を作製し820℃にて6h仮焼し、メノウ乳鉢で再び15分間粉砕した。さらに、3ton/cmにて直径30mmφ、厚さ5mmのペレット状成形体を作製し、844℃にて24h、O/N=20/80vol%雰囲気下で焼成することでBi2223超伝導粒子粉末を得た。
得られた粉末をICPで分析したところ、Bi:Sr:Ca:Cu=2.1:2.0:2.0:3.1と仕込み組成と同じであった。平均粒子径は45μmであった。生成相はXRDのリートベルト解析より98%がBi2223相であり、ほぼ単相と判断した。
(A) Bi 2 O 3 (Aldrich Sigma reagent, purity 99.999%), SrCO 3 (Aldrich Sigma reagent, purity 99.9%), CaCO 3 (Aldrich Sigma reagent, purity 99.0) %), CuO (Aldrich Sigma reagent, purity 99.5%) was used as a raw material. Each raw material was weighed so that the atomic ratio of Bi: Sr: Ca: Cu was 2.1: 2.0: 2.0: 3.1, and pulverized and mixed in an agate mortar for 30 minutes. At this time, ethanol, IPA, MEK, and 2 (-2-methoxyethoxy) ethanol were appropriately added in minute amounts. Thereafter, it was formed into a pellet having a diameter of 30 mmφ and a thickness of 15 mm at 300 kg / cm 2 , calcined at 750 ° C. for 2 hours, and then pulverized in an agate mortar, followed by 2 ton / cm 2 with a diameter of 30 mmφ and a thickness of 8. A 5 mm pellet shaped body was prepared, calcined at 820 ° C. for 6 hours, and ground again in an agate mortar for 15 minutes. Furthermore, a Bi2223 superconducting particle was produced by producing a pellet-shaped molded body having a diameter of 30 mmφ and a thickness of 5 mm at 3 ton / cm 2 and firing in an atmosphere of 844 ° C. for 24 h and O 2 / N 2 = 20/80 vol%. A powder was obtained.
When the obtained powder was analyzed by ICP, Bi: Sr: Ca: Cu = 2.1: 2.0: 2.0: 3.1, which was the same as the charged composition. The average particle size was 45 μm. From the XRD Rietveld analysis, 98% was the Bi2223 phase, and the product phase was judged to be almost single phase.

(イ) Bi(アルドリッチ・シグマ製試薬、純度99.999%)、PbO(アルドリッチ・シグマ製試薬、純度99.999%)SrCO(アルドリッチ・シグマ製試薬、純度99.9%)、CaCO(アルドリッチ・シグマ製試薬、純度99.0%)、CuO(アルドリッチ・シグマ製試薬、純度99.5%)を原料として用いた。Bi:Pb:Sr:Ca:Cuの原子比が1.8:0.4:2.0:2.0:3.2となるように各原料を秤量し、メノウ乳鉢にて30分間粉砕・混合した。このとき、エタノールやIPA、MEK、2(−2−メトキシエトキシ)エタノールなどを適宜微量加えながら行った。その後、300kg/cmで直径30mmφ、厚さ15mmのペレット状に成形し、720℃にて2h仮焼後、続いて2ton/cmにて直径30mmφ、厚さ8.5mmのペレット状成形体を作製し820℃にて6h仮焼し、メノウ乳鉢で再び15分間粉砕した。さらに、3ton/cmにて直径30mmφ、厚さ5mmのペレット状成形体を作製し、844℃にて24h、O/N=20/80vol%雰囲気下で焼成することでBi2223超伝導粒子粉末を得た。得られた粉末をICPで分析したところ、Bi:Pb:Sr:Ca:Cu=1.8:0.4:2.0:2.0:3.2と仕込み組成と同じであった。平均粒子径は28μmであった。生成相はXRDよりBi2223相単相であった。 (Ii) Bi 2 O 3 (Aldrich Sigma reagent, purity 99.999%), PbO (Aldrich Sigma reagent, purity 99.999%) SrCO 3 (Aldrich Sigma reagent, purity 99.9%) , CaCO 3 (Aldrich Sigma reagent, purity 99.0%), CuO (Aldrich Sigma reagent, purity 99.5%) were used as raw materials. Each raw material is weighed so that the atomic ratio of Bi: Pb: Sr: Ca: Cu is 1.8: 0.4: 2.0: 2.0: 3.2, and ground in an agate mortar for 30 minutes. Mixed. At this time, ethanol, IPA, MEK, 2 (-2-methoxyethoxy) ethanol, etc. were added while adding a trace amount appropriately. Thereafter, it was molded into a pellet with a diameter of 30 mmφ and a thickness of 15 mm at 300 kg / cm 2 , calcined at 720 ° C. for 2 hours, and then a pellet with a diameter of 30 mmφ and a thickness of 8.5 mm at 2 ton / cm 2 . And calcined at 820 ° C. for 6 hours and ground again in an agate mortar for 15 minutes. Furthermore, a Bi2223 superconducting particle was produced by producing a pellet-shaped molded body having a diameter of 30 mmφ and a thickness of 5 mm at 3 ton / cm 2 and firing in an atmosphere of 844 ° C. for 24 h and O 2 / N 2 = 20/80 vol%. A powder was obtained. When the obtained powder was analyzed by ICP, Bi: Pb: Sr: Ca: Cu = 1.8: 0.4: 2.0: 2.0: 3.2, which was the same as the charged composition. The average particle size was 28 μm. The produced phase was a Bi2223 phase single phase from XRD.

(ウ) Bi(CHCOO)(アルドリッチ・シグマ製試薬、純度99.99%)、Pb(CHCOO)・3HO(アルドリッチ・シグマ製試薬、純度99.99%)、Ba(CHCOO)(アルドリッチ・シグマ製試薬、純度99.0%)、Sr(CHCOO)・xHO(アルドリッチ・シグマ製試薬、純度99.995%)、Ca(CHCOO)・HO(アルドリッチ・シグマ製試薬、純度99.0%)、Cu(CHCOO)・xHO(アルドリッチ・シグマ試薬、純度99.0%)を原料として用いた。Bi:Pb:Ba:Sr:Ca:Cuの原子比が1.8:0.4:0.045:2.0:2.0:3.2、全原料重量で250gとなるように各原料を秤量し、メノウ乳鉢で軽く粉砕・混合した。これを蒸発皿に移し、水、エチレングリコールと、全金属モル濃度の8倍相当のクエン酸を加えよくかき混ぜながら220℃まで昇温してゲルを得た。続けて、よく混ぜながら、370℃まで昇温し黒色様粉末を得た。30分間ライカイ機で粉砕した粉末を2ton/cmにて直径30mmφ、厚さ8.5mmのペレット状成形体を作製して、アルゴン気流中にて787℃で仮焼し、さらに、ライカイ機で30分間粉砕後、3ton/cmにて直径30mmφ、厚さ5mmのペレット状成形体を作製し、O/N=20/80vol%雰囲気下で焼成することでBi2223超伝導粒子粉末を得た。得られた粉末をICPで分析したところ、Bi:Pb:Ba:Sr:Ca:Cu=1.8:0.4:0.045:2.0:2.0:3.2と仕込み組成と同じであった。平均粒子径は22μmであった。生成相はXRDよりBi2223相単相であった。 (C) Bi (CH 3 COO) 3 ( Aldrich Sigma reagent, 99.99% purity), Pb (CH 3 COO) 2 · 3H 2 O ( Aldrich Sigma reagent, 99.99% purity), Ba (CH 3 COO) 2 (Aldrich Sigma reagent, purity 99.0%), Sr (CH 3 COO) 2 xH 2 O (Aldrich Sigma reagent, purity 99.995%), Ca (CH 3 COO ) 2 · H 2 O (Aldrich Sigma reagent, purity 99.0%), Cu (CH 3 COO) 2 × H 2 O (Aldrich Sigma reagent, purity 99.0%) were used as raw materials. Each raw material so that the atomic ratio of Bi: Pb: Ba: Sr: Ca: Cu is 1.8: 0.4: 0.045: 2.0: 2.0: 3.2, and the total raw material weight is 250 g. Were weighed and lightly pulverized and mixed in an agate mortar. This was transferred to an evaporating dish, and water, ethylene glycol, and citric acid corresponding to 8 times the total metal molar concentration were added and heated to 220 ° C. while stirring well to obtain a gel. Subsequently, while mixing well, the temperature was raised to 370 ° C. to obtain a black-like powder. A powder formed by pulverizing for 30 minutes with a laika machine is used to produce a pellet-shaped molded body having a diameter of 30 mmφ and a thickness of 8.5 mm at 2 ton / cm 2 , and calcined at 787 ° C. in an argon stream. After pulverization for 30 minutes, a pellet-shaped formed body having a diameter of 30 mmφ and a thickness of 5 mm was prepared at 3 ton / cm 2 and fired in an O 2 / N 2 = 20/80 vol% atmosphere to obtain Bi2223 superconductive particle powder. It was. When the obtained powder was analyzed by ICP, Bi: Pb: Ba: Sr: Ca: Cu = 1.8: 0.4: 0.045: 2.0: 2.0: 3.2 It was the same. The average particle size was 22 μm. The produced phase was a Bi2223 phase single phase from XRD.

《ナノオーダーの銀粒子、銀粒子分散体の調整》
(I) 1Lのビーカーに硝酸銀160g、ブチルアミン151.2g、メタノール800mlを加え、2時間攪拌しA液を調製した。別に10Lのビーカーにアスコルビン酸248.8gを取り、水1600mlを加え攪拌して溶解し、続いてメタノール800mlを加えB液を調製した。B液をよく攪拌しているところにA液を5時間かけて滴下した。滴下終了後、3.5h攪拌を継続した。攪拌終了後、30分間静置し固形物を沈降させた。上澄みをデカンテーションにより取り除いた後、新たに水2000mlを加え、攪拌、静置、デカンテーションにより上澄み液を取り除いた。この精製操作を3回繰り返した。沈降した固形物を乾燥機中で乾燥し、水分を除去してナノオーダーの銀粒子を得た。この銀粒子に対して200gのトルエンを加えて、アルミナ製ボールミルにてジルコニアビーズを用いて30h粉砕することで銀ナノ粒子25%分散体を作製した。得られた銀粒子の一次粒子は80nmであった。
<Preparation of nano-order silver particles and silver particle dispersion>
(I) To a 1 L beaker, 160 g of silver nitrate, 151.2 g of butylamine and 800 ml of methanol were added, and stirred for 2 hours to prepare solution A. Separately, 248.8 g of ascorbic acid was taken into a 10 L beaker, 1600 ml of water was added and dissolved by stirring, and then 800 ml of methanol was added to prepare solution B. The liquid A was added dropwise to the place where the liquid B was well stirred over 5 hours. After completion of dropping, stirring was continued for 3.5 hours. After completion of stirring, the mixture was allowed to stand for 30 minutes to precipitate the solid. After removing the supernatant by decantation, 2000 ml of water was newly added, and the supernatant was removed by stirring, standing, and decantation. This purification operation was repeated three times. The precipitated solid was dried in a drier to remove moisture and obtain nano-order silver particles. 200 g of toluene was added to the silver particles, and the mixture was pulverized with zirconia beads for 30 hours in an alumina ball mill to prepare a 25% silver nanoparticle dispersion. The primary particle of the obtained silver particle was 80 nm.

(II) ビーカーに硝酸銀4.0g、トルエン50ml、オレイルアミン9.4gを秤取り、室温にて攪拌して硝酸銀を溶解した。続いて、アスコルビン酸8.3gを加えて2h攪拌した。反応溶液の色は黒みがかった黄色を呈していた。続いて、アセトンとメタノール−水混合溶液を用いて、銀ナノ粒子を凝集沈殿させ、上澄み溶液をデカンテーションにより取り除くことで余分な塩やアミンを取り除いた。精製操作を3回繰り返した後、凝集物を減圧乾燥させた。続いてトルエン3.92gを加えて銀ナノ粒子の25%分散体を作製した。得られた銀粒子の一次粒子は8nmであった。 (II) 4.0 g of silver nitrate, 50 ml of toluene and 9.4 g of oleylamine were weighed in a beaker and stirred at room temperature to dissolve the silver nitrate. Subsequently, 8.3 g of ascorbic acid was added and stirred for 2 hours. The reaction solution had a blackish yellow color. Subsequently, silver nanoparticles were agglomerated and precipitated using a mixed solution of acetone and methanol-water, and the supernatant solution was removed by decantation to remove excess salts and amines. After the purification operation was repeated three times, the aggregate was dried under reduced pressure. Subsequently, 3.92 g of toluene was added to prepare a 25% dispersion of silver nanoparticles. The primary particle of the obtained silver particle was 8 nm.

《Bi2223超伝導粒子粉末への銀被覆》
(A) 上記で得られた(ア)のBi2223超伝導粒子粉末50g、上記(I)の銀粒子分散体3.2gをそれぞれ秤取り、(ア)をライカイ機で粉砕・混合しているところに60分間かけて(I)を滴下した。その後、防爆乾燥機で70℃にて2h乾燥し、さらに、空気中で250℃にて4h熱処理を行うことで、銀被覆Bi2223超伝導粒子粉末を得た。得られた粉末の銀被覆量は、(被覆銀重量)/(Bi2223超伝導粒子粉末重量)にて1.6%であった。
<< Silver coating on Bi2223 superconductive particle powder >>
(A) The Bi2223 superconducting particle powder (a) obtained above (50 g) and the silver particle dispersion (3.2 g) (I) above were weighed, and (a) was pulverized and mixed with a reiki machine. (I) was added dropwise over 60 minutes. Then, it dried for 2 hours at 70 degreeC with the explosion-proof dryer, and also silver-coated Bi2223 superconducting particle powder was obtained by performing heat processing in air at 250 degreeC for 4 hours. The silver coating amount of the obtained powder was 1.6% in terms of (coating silver weight) / (Bi2223 superconducting particle powder weight).

(B) 上記で得られた(イ)のBi2223超伝導粒子粉末50g、上記(II)の銀粒子分散体0.2gをそれぞれ秤取り、(ア)をライカイ機で粉砕・混合しているところに30分間かけて(II)を滴下した。その後、防爆乾燥機で70℃にて2h乾燥し、さらに、空気中で200℃にて4h熱処理を行うことで、銀被覆Bi2223超伝導粒子粉末を得た。得られた粉末の銀被覆量は、(被覆銀重量)/(Bi2223超伝導粒子粉末重量)にて0.1%であった。 (B) 50 g of the Bi2223 superconducting particle powder obtained in (a) and 0.2 g of the silver particle dispersion (II) obtained above are respectively weighed, and (a) is pulverized and mixed with a likai machine. (II) was added dropwise over 30 minutes. Then, it dried for 2 hours at 70 degreeC with the explosion-proof dryer, and also silver-coated Bi2223 superconducting particle powder was obtained by performing heat processing for 4 hours at 200 degreeC in the air. The silver coating amount of the obtained powder was 0.1% in terms of (coating silver weight) / (Bi2223 superconducting particle powder weight).

(C) 上記で得られた(ウ)のBi2223超伝導粒子粉末50g、上記(II)の銀粒子分散体2.2gをそれぞれ秤取った。秤量した(II)にトルエンを2.2g加え、(ア)をライカイ機で粉砕・混合しているところに60分間かけて滴下した。その後、防爆乾燥機で70℃にて2h乾燥し、さらに、空気中で180℃にて4h熱処理を行うことで、銀被覆Bi2223超伝導粒子粉末を得た。得られた粉末の銀被覆量は、(被覆銀重量)/(Bi2223超伝導粒子粉末重量)にて1.1%であった。 (C) 50 g of the Bi2223 superconductive particle powder obtained in (c) and 2.2 g of the silver particle dispersion (II) obtained above were respectively weighed. 2.2 g of toluene was added to the weighed (II), and (A) was added dropwise over 60 minutes to the place where it was pulverized and mixed with a lykai machine. Then, it dried for 2 hours at 70 degreeC with the explosion-proof dryer, and also silver-coated Bi2223 superconducting particle powder was obtained by performing heat processing for 4 hours at 180 degreeC in the air. The silver coating amount of the obtained powder was 1.1% in terms of (coating silver weight) / (Bi2223 superconducting particle powder weight).

(D) 上記で得られた(ウ)のBi2223超伝導粒子粉末50gを、粉末スパッタリング装置(戸田工業(株)にて自家製作装置)の回転式チャンバー内に導入し、チャンバー内を排気した後、スパッタリングガスとしてArを導入して、5×10−3Torrに調整した。回転式チャンバーを10rpmで回転させながら、投入電力1kWでスパッタリング処理を100分間行なった。得られた粉末の銀被覆量は、(被覆銀重量)/(Bi2223超伝導粒子粉末重量)にて0.07%であった。 (D) After introducing 50 g of the Bi2223 superconducting particle powder obtained in (c) above into a rotary chamber of a powder sputtering apparatus (homemade production apparatus by Toda Kogyo Co., Ltd.) and exhausting the inside of the chamber Then, Ar was introduced as a sputtering gas and adjusted to 5 × 10 −3 Torr. While rotating the rotary chamber at 10 rpm, the sputtering process was performed for 100 minutes with an input power of 1 kW. The silver coating amount of the obtained powder was 0.07% in terms of (coating silver weight) / (Bi2223 superconducting particle powder weight).

実施例1
上記(A)の銀被覆Bi2223超伝導粒子粉末を用いて臨界電流密度(J)の測定を行った。まず、(A)の粉末を3ton/cmにて直径20mmφ、厚さ1.0mmのペレット状成形体を作製した。続けて3ton/cmの圧力をかけたままの状態で空気中にて848℃で24h焼成し急冷した。得られた試料を短冊状に切り出して、77Kでの臨界電流密度(J)を測定した結果、192A/mmであった。
Example 1
The critical current density ( Jc ) was measured using the silver-coated Bi2223 superconducting particle powder (A). First, a pellet-shaped molded body having a diameter of 20 mmφ and a thickness of 1.0 mm was produced from the powder of (A) at 3 ton / cm 2 . Subsequently, it was baked in air at 848 ° C. for 24 hours under a pressure of 3 ton / cm 2 and rapidly cooled. The obtained sample was cut into a strip shape, and the critical current density (J c ) at 77 K was measured. As a result, it was 192 A / mm 2 .

実施例2
上記(B)の銀被覆Bi2223超伝導粒子粉末を用いて臨界電流密度(J)の測定を行った。実施例1同様に作製した試料を短冊状に切り出して、77Kでの臨界電流密度(J)を測定した結果、222A/mmであった。
Example 2
The critical current density ( Jc ) was measured using the silver-coated Bi2223 superconductive particle powder of (B) above. A sample produced in the same manner as in Example 1 was cut into a strip shape, and the critical current density (J c ) at 77 K was measured. As a result, it was 222 A / mm 2 .

実施例3
上記(C)の銀被覆Bi2223超伝導粒子粉末を用いて臨界電流密度(J)の測定を行った。実施例1同様に作製した試料を短冊状に切り出して、77Kでの臨界電流密度(J)を測定した結果、233A/mmであった。
Example 3
The critical current density ( Jc ) was measured using the silver-coated Bi2223 superconductive particle powder of (C) above. A sample produced in the same manner as in Example 1 was cut into a strip shape, and the critical current density (J c ) at 77 K was measured. As a result, it was 233 A / mm 2 .

実施例4
上記(D)の銀被覆Bi2223超伝導粒子粉末を用いて臨界電流密度(J)の測定を行った。実施例1同様に作製した試料を短冊状に切り出して、77Kでの臨界電流密度(J)を測定した結果、239A/mmであった。
Example 4
The critical current density ( Jc ) was measured using the silver-coated Bi2223 superconducting particle powder (D). A sample produced in the same manner as in Example 1 was cut into a strip shape, and the critical current density (J c ) at 77 K was measured. As a result, it was 239 A / mm 2 .

実施例5
上記(C)の銀被覆Bi2223超伝導粒子粉末を用いて臨界電流密度(J)の測定を行った。まず、(A)の粉末を2.8ton/cmにて直径20mmφ、厚さ1.0mmのペレット状成形体を作製した。続けて2.8ton/cmの圧力をかけたままの状態で844℃にて24h、O/N=20/80vol%雰囲気下で焼成し急冷した。得られた試料を短冊状に切り出して、77Kでの臨界電流密度(J)を測定した結果、251A/mmであった。
Example 5
The critical current density ( Jc ) was measured using the silver-coated Bi2223 superconductive particle powder of (C) above. First, a pellet-shaped molded body having a diameter of 20 mmφ and a thickness of 1.0 mm was produced from the powder of (A) at 2.8 ton / cm 2 . Subsequently, it was baked in an atmosphere of 844 ° C. for 24 hours under an O 2 / N 2 = 20/80 vol% state with a pressure of 2.8 ton / cm 2 being applied, and then rapidly cooled. The obtained sample cut into strips, critical current density (J c) results of measuring the at 77K, was 251A / mm 2.

実施例6
上記(C)の銀被覆Bi2223超伝導粒子粉末を脱気した後、外径25mmφ、内径22mmφの銀パイプに充填し、外径が20mmφになるよう伸線加工した。これを外径23mmφ、内径22mmφのパイプに入れ、周囲に高抵抗体材料粉末としてSr11を充填した。これを外径が1.5mmφになるまで伸線加工した。さらにこの線60本を束ねて外径14.5mmφ、内径14.1mmφの銀パイプに嵌合し、外径が1.2mmになるまで伸線加工した。次に、これを厚さ0.25mmになるまで圧延加工することでテープ状の線材を得た。これを845℃で30h焼成することで銀被覆Bi2223超伝導粒子粉末を用いた超伝導ケーブルを得た。これの77Kにおける臨界電流密度(J)を測定したところ248A/mmであった。
Example 6
After degassing the silver-coated Bi2223 superconducting particle powder of (C) above, it was filled in a silver pipe having an outer diameter of 25 mmφ and an inner diameter of 22 mmφ, and was drawn to an outer diameter of 20 mmφ. This was put into a pipe having an outer diameter of 23 mmφ and an inner diameter of 22 mmφ, and Sr 6 V 2 O 11 was filled as a high-resistance material powder around the periphery. This was drawn until the outer diameter became 1.5 mmφ. Further, the 60 wires were bundled and fitted into a silver pipe having an outer diameter of 14.5 mmφ and an inner diameter of 14.1 mmφ, and was drawn until the outer diameter became 1.2 mm. Next, the tape-shaped wire was obtained by rolling this until it became thickness 0.25mm. This was baked at 845 ° C. for 30 hours to obtain a superconducting cable using silver-coated Bi2223 superconducting particle powder. Was 248A / mm 2 was measured critical current density (J c) in which the 77K.

実施例7
上記(D)の銀被覆Bi2223超伝導粒子粉末を実施例6同様にして超伝導ケーブルを作製した。これの77Kにおける臨界電流密度(J)を測定したところ250A/mmであった。
Example 7
A superconducting cable was produced in the same manner as in Example 6 using the silver-coated Bi2223 superconducting particle powder of (D) above. Was 250A / mm 2 was measured critical current density (J c) in which the 77K.

比較例1
上記(ア)のBi2223超伝導粒子粉末を用いて実施例1同様に77Kにおける臨界電流密度(J)を測定したところ115A/mmであった。
Comparative Example 1
When the critical current density (J c ) at 77 K was measured in the same manner as in Example 1 using the Bi2223 superconductive particle powder of (a) above, it was 115 A / mm 2 .

比較例2
上記(イ)のBi2223超伝導粒子粉末を用いて実施例1同様に77Kにおける臨界電流密度(J)を測定したところ156A/mmであった。
Comparative Example 2
When the critical current density (J c ) at 77 K was measured using the Bi2223 superconducting particle powder of (a) above in the same manner as in Example 1, it was 156 A / mm 2 .

比較例3
上記(ウ)のBi2223超伝導粒子粉末を用いて実施例1同様に77Kにおける臨界電流密度(J)を測定したところ143A/mmであった。
Comparative Example 3
When the critical current density (J c ) at 77 K was measured in the same manner as in Example 1 using the Bi2223 superconductive particle powder of (c) above, it was 143 A / mm 2 .

比較例4
上記(ウ)のBi2223超伝導粒子粉末を用いて実施例6同様にBi超伝導粒子粉末を用いた超伝導ケーブルを得た。これの77Kにおける臨界電流密度(J)を測定したところ187A/mmであった。
Comparative Example 4
A superconducting cable using Bi superconducting particle powder was obtained in the same manner as in Example 6 using the Bi2223 superconducting particle powder of (c) above. Was 187A / mm 2 was measured critical current density (J c) in which the 77K.

今回開示された実施の形態及び実施例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内の全ての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、高い臨界電流密度(J)を持つことから、超伝導体、特に超伝導ケーブルとして非常に有用である。 Since the present invention has a high critical current density ( Jc ), it is very useful as a superconductor, particularly a superconducting cable.

Claims (3)

Bi系超伝導粒子粉末の粒子表面を平均粒子径が1〜100nmの銀粒子で被覆した銀被覆超伝導粒子粉末であって、該銀被覆超伝導粒子粉末の臨界電流密度(J)が190A/mm以上であることを特徴とする銀被覆超伝導粒子粉末。 A Bi-based silver-coated superconducting particles having an average particle diameter of the particle surface of the superconducting particles are coated with silver particles 1 to 100 nm, the critical current density of the silver-coated superconducting particles (J c) is 190A / Mm 2 or more Silver-coated superconductive particle powder, Bi系超伝導粒子粉末の粒子表面を銀薄膜で被覆した銀被覆超伝導粒子粉末であって、該銀被覆超伝導粒子粉末の臨界電流密度(J)が190A/mm以上であることを特徴とする銀被覆超伝導粒子粉末。 The particle surface of the Bi-based superconducting particles a silver-coated superconducting particles coated with silver thin film, the critical current density of the silver-coated superconducting particles (J c) is 190A / mm 2 or more Silver coated superconducting particle powder. 請求項1又は2記載の銀被覆超伝導粒子粉末を用いた超伝導ケーブル。

A superconducting cable using the silver-coated superconducting particle powder according to claim 1.

JP2009141478A 2009-06-12 2009-06-12 Silver coated superconductive particle powder and superconductive cable Pending JP2010287504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009141478A JP2010287504A (en) 2009-06-12 2009-06-12 Silver coated superconductive particle powder and superconductive cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009141478A JP2010287504A (en) 2009-06-12 2009-06-12 Silver coated superconductive particle powder and superconductive cable

Publications (1)

Publication Number Publication Date
JP2010287504A true JP2010287504A (en) 2010-12-24

Family

ID=43543050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009141478A Pending JP2010287504A (en) 2009-06-12 2009-06-12 Silver coated superconductive particle powder and superconductive cable

Country Status (1)

Country Link
JP (1) JP2010287504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181587A1 (en) * 2012-06-01 2013-12-05 University Of Houston System Superconductor and method for superconductor manufacturing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181587A1 (en) * 2012-06-01 2013-12-05 University Of Houston System Superconductor and method for superconductor manufacturing
US10453590B2 (en) 2012-06-01 2019-10-22 University Of Houston System Superconductor and method for superconductor manufacturing

Similar Documents

Publication Publication Date Title
TW201249751A (en) Method for producing conductive mayenite compound
Jiang et al. Effects of precursor powder particle size on critical current density and microstructure of Bi-2223/Ag tapes
JP2010287504A (en) Silver coated superconductive particle powder and superconductive cable
Joo et al. Effects of thermomechanical treatment on phase development and properties of Ag-sheathed Bi (Pb)-Sr-Ca-Cu-O superconducting tapes
Hong-Liang et al. Enhancement of critical current density in graphite doped MgB2 wires
Huang et al. Significantly Improving the Flux Pinning of YBa2Cu3O7‐δ Superconducting Coated Conductors via BaHfO3 Nanocrystal Addition Using Multistep Film Growth Method
Deng et al. Influence of low temperature–low oxygen pressure post-annealing on critical current density of Bi (Pb) 2223/Ag superconductors
Matsushima et al. Variations of superconducting transition temperature in YbBa2Cu3O7-δ ceramics by Gd substitution
US6265354B1 (en) Method of preparing bismuth oxide superconductor
CN102557115A (en) Preparation method of spherical tin-doped indium oxide nanopowder
Fujii et al. Effect of additions of Ca compounds to the filling powder on the reduction of MgO and the critical current density properties of ex situ processed MgB2 tapes
Fujii et al. Improved critical current densities in ex situ processed MgB2 tapes fabricated with chemically treated powder
JP2007149416A (en) Oxide superconducting material, its manufacturing method, superconducting wire rod, and superconducting apparatus
Holesinger et al. The effects of variable oxygen partial pressures during Bi-2223 tape processing
Jung et al. Synthesis of SiO x Powder Using DC Arc Plasma
JPH0193465A (en) Method and composition for forming superconductive ceramic and superconductive products
JP4982975B2 (en) Agglomerated raw material powder and method for producing the same, superconducting wire and method for producing the same, and superconducting equipment
Marlina et al. Fabrication of SS316-Sheathed BPSCCO Superconducting Wire with the Addition of Carbon Nanotubes
Deng et al. Fabrication of Bi-2223 superconducting thick films via a non-vacuum method on silver foil substrates
Hwang et al. Study on the improved Jc (B) performance of polyacrylic acid-doped MgB2 bulks
Peng et al. Materials Express
Rukang et al. Characterization of a new Fe-1222 layered cuprate, FeSr2 (LnCe) 2Cu2Oy
WangA et al. Improved critical current property in MgB2/Fe tapes by acetone doping
Przybylski et al. Transmission electron microscopy of Tl-1223 films on lanthanum aluminate
Hosono et al. New Superconducting Phase of Li $ _x $(C $ _6 $ H $ _ {16} $ N $ _2 $) $ _y $ Fe $ _ {2-z} $ Se $ _2 $ with $ T_\textrm {c} $= 41 K Obtained through the Post-Annealing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130731