JP2010286656A - Display image correction method and image display device - Google Patents

Display image correction method and image display device Download PDF

Info

Publication number
JP2010286656A
JP2010286656A JP2009140305A JP2009140305A JP2010286656A JP 2010286656 A JP2010286656 A JP 2010286656A JP 2009140305 A JP2009140305 A JP 2009140305A JP 2009140305 A JP2009140305 A JP 2009140305A JP 2010286656 A JP2010286656 A JP 2010286656A
Authority
JP
Japan
Prior art keywords
correction
correction coefficient
direction correction
gradation
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009140305A
Other languages
Japanese (ja)
Other versions
JP5279625B2 (en
Inventor
Masatoshi Haruhara
正敏 春原
Kazuhiro Takegawa
和宏 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku Electric Co Ltd
Original Assignee
Totoku Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku Electric Co Ltd filed Critical Totoku Electric Co Ltd
Priority to JP2009140305A priority Critical patent/JP5279625B2/en
Publication of JP2010286656A publication Critical patent/JP2010286656A/en
Application granted granted Critical
Publication of JP5279625B2 publication Critical patent/JP5279625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To drastically reduce the number of correction data stored for three-dimensional correction. <P>SOLUTION: The image display device includes: a horizontal direction correction factor LUT (12) for storing and outputting a horizontal direction correction factor Kx corresponding to a horizontal position x; a vertical direction correction factor LUT (22) for storing and outputting a vertical direction correction factor Ky corresponding to a vertical position y; a gray level direction correction factor LUT (32) for storing and outputting a gray level direction correction factor Kp corresponding to a gamma-corrected gray level value P(z); a correction arithmetic operation unit (40) for performing correction to satisfy a three-dimensionally-corrected gray level value Q(x, y, z)=äKx(x)×Ky(y)×Kp(P(z))+1-Kp(P(z))}×(P(z)); and an image display unit (2) for displaying an image based on the three-dimensionally-corrected gray level value Q. Thus, circuit scale is reduced and adjustment man-hour for setting the correction data is drastically reduced. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、表示画像補正方法および画像表示装置に関し、更に詳しくは、表示装置の画面上の輝度むらや色むらを補正するための表示画像補正方法および画像表示装置に関する。   The present invention relates to a display image correction method and an image display device, and more particularly to a display image correction method and an image display device for correcting luminance unevenness and color unevenness on a screen of the display device.

従来、表示装置の画面における画素の水平位置xおよび垂直位置yおよび階調値(信号レベル)zに対応した補正用データを用いて階調値を補正する三次元補正を行って、表示装置の画面上の輝度むらや色むらを補正する技術が知られている(例えば特許文献1の[0044]参照)。   Conventionally, three-dimensional correction for correcting gradation values using correction data corresponding to the horizontal position x, vertical position y, and gradation value (signal level) z of a pixel on the screen of the display device has been performed. A technique for correcting luminance unevenness and color unevenness on the screen is known (see, for example, [0044] of Patent Document 1).

特開平11−109927号公報Japanese Patent Laid-Open No. 11-109927

上記の従来技術では、画素の水平位置xおよび垂直位置yおよび階調値zに応じた補正用データを予め記憶していた(例えば特許文献1の図7参照)。
しかし、例えば基準となる水平位置が100点、基準となる垂直位置が75点、基準となる階調値が5点とすると、記憶する補正用データの数は100×75×5=37500個となり、非常に多くのメモリ容量を必要とし、回路構成が大規模になる問題点があった。また、補正用データを設定するための調整工数が非常に多くかかる問題点があった。
そこで、本発明の目的は、三次元補正を行うために記憶する補正用データの数を大幅に低減でき、回路構成が小規模で済むと共に補正用データを設定するための調整工数を大幅に節減することが出来る表示画像補正方法および画像表示装置を提供することにある。
In the prior art described above, correction data corresponding to the horizontal position x, vertical position y, and gradation value z of the pixel is stored in advance (see, for example, FIG. 7 of Patent Document 1).
However, for example, assuming that the reference horizontal position is 100 points, the reference vertical position is 75 points, and the reference gradation value is 5 points, the number of correction data to be stored is 100 × 75 × 5 = 37500. However, there is a problem that a very large memory capacity is required and the circuit configuration becomes large. In addition, there is a problem that the number of adjustment steps for setting the correction data is very large.
Accordingly, an object of the present invention is to greatly reduce the number of correction data to be stored for performing three-dimensional correction, and the circuit configuration is small, and the adjustment man-hour for setting correction data is greatly reduced. It is an object of the present invention to provide a display image correction method and an image display device that can be used.

第1の観点では、本発明は、画像における画素の水平位置xに対応した水平方向補正係数Kx(x)と、垂直位置yに対応した垂直方向補正係数Ky(y)と、階調値zまたはガンマ補正後階調値P(z)に対応した階調方向補正係数Kp(P)とを記憶しておき、三次元補正後階調値Q(x,y,z)={Kx(x)×Ky(y)×Kp(P(z))+1−Kp(P(z))}×(P(z))となるように補正することを特徴とする表示画像補正方法を提供する。
上記第1の観点による表示画像補正方法では、表示画面における画素の水平位置および垂直位置および階調値に対応した補正用データにより階調値を補正する三次元補正を行うことが出来る。そして、例えば基準となる水平位置が100点、基準となる垂直位置が75点、基準となる階調値が5点とすると、記憶する補正用データ(=補正係数)の数は100+75+5=180個となり、三次元補正を行うために記憶する補正用データの数を大幅に低減することが出来て、回路構成が小規模で済むと共に予め補正用データを設定するための調整工数を節減することが出来る。
In a first aspect, the present invention relates to a horizontal direction correction coefficient Kx (x) corresponding to a horizontal position x of a pixel in an image, a vertical direction correction coefficient Ky (y) corresponding to a vertical position y, and a gradation value z. Alternatively, a tone direction correction coefficient Kp (P) corresponding to the tone value P (z) after gamma correction is stored, and the tone value Q (x, y, z) after three-dimensional correction = {Kx (x ) × Ky (y) × Kp (P (z)) + 1−Kp (P (z))} × (P (z)).
In the display image correction method according to the first aspect, three-dimensional correction can be performed in which the gradation value is corrected by correction data corresponding to the horizontal position and vertical position of the pixel on the display screen and the gradation value. For example, assuming that the reference horizontal position is 100 points, the reference vertical position is 75 points, and the reference gradation value is 5 points, the number of correction data (= correction coefficients) to be stored is 100 + 75 + 5 = 180. As a result, the number of correction data stored for three-dimensional correction can be greatly reduced, and the circuit configuration can be reduced, and the adjustment man-hours for setting correction data in advance can be reduced. I can do it.

第2の観点では、本発明は、前記第1の観点による表示画像補正方法において、画面中心部ではKx=1,Ky=1とすることを特徴とする表示画像補正方法を提供する。
上記第2の観点による表示画像補正方法では、画面中心部の輝度が不変となるため、画面中心部に色彩輝度計を当てて行うキャリブレーション(輝度や色やガンマ特性の校正)に影響を与えず、三次元補正とキャリブレーションの順序や組み合わせが自在となる。
In a second aspect, the present invention provides the display image correction method according to the first aspect, wherein Kx = 1 and Ky = 1 at the center of the screen.
In the display image correction method according to the second aspect described above, the luminance at the center of the screen remains unchanged, which affects the calibration performed by applying a color luminance meter to the center of the screen (calibration of luminance, color, and gamma characteristics). First, the order and combination of three-dimensional correction and calibration are free.

第3の観点では、本発明は、画像における画素の水平位置xに対応した水平方向補正係数Kxを記憶し出力する水平方向補正係数出力手段と、垂直位置yに対応した垂直方向補正係数Kyを記憶し出力する垂直方向補正係数出力手段と、階調値zまたはガンマ補正後階調値P(z)に対応した階調方向補正係数Kp(P)を記憶し出力する階調方向補正係数出力手段と、三次元補正後階調値Q(x,y,z)={Kx(x)×Ky(y)×Kp(P(z))+1−Kp(P(z))}×(P(z))となるように補正演算を行う補正演算手段と、三次元補正後階調値Qを基に画像を表示する画像表示手段とを具備したことを特徴とする画像表示装置を提供する。
上記第3の観点による画像表示装置では、上記第1の観点による表示画像補正方法を好適に実施できる。
In a third aspect, the present invention relates to a horizontal direction correction coefficient output means for storing and outputting a horizontal direction correction coefficient Kx corresponding to the horizontal position x of the pixel in the image, and a vertical direction correction coefficient Ky corresponding to the vertical position y. The vertical direction correction coefficient output means for storing and outputting, and the gradation direction correction coefficient output for storing and outputting the gradation direction correction coefficient Kp (P) corresponding to the gradation value z or the gradation value P (z) after gamma correction Means and three-dimensional corrected gradation value Q (x, y, z) = {Kx (x) × Ky (y) × Kp (P (z)) + 1−Kp (P (z))} × (P (Z)) There is provided an image display device characterized by comprising correction calculation means for performing correction calculation so as to satisfy (z)) and image display means for displaying an image based on the three-dimensional corrected gradation value Q. .
In the image display device according to the third aspect, the display image correction method according to the first aspect can be suitably implemented.

第4の観点では、本発明は、前記第3の観点による画像表示装置において、画面中心部ではKx=1,Ky=1とすることを特徴とする画像表示装置を提供する。
上記第4の観点による画像表示装置では、上記第2の観点による表示画像補正方法を好適に実施できる。
In a fourth aspect, the present invention provides the image display device according to the third aspect, wherein Kx = 1 and Ky = 1 at the center of the screen.
In the image display device according to the fourth aspect, the display image correction method according to the second aspect can be suitably implemented.

本発明の表示画像補正方法および画像表示装置によれば、三次元補正を行うために記憶する補正用データの数を大幅に低減することが出来る。これにより、回路構成が小規模で済むと共に、予め補正用データを設定するための調整工数を節減することが出来る。   According to the display image correction method and the image display apparatus of the present invention, the number of correction data stored for performing three-dimensional correction can be greatly reduced. As a result, the circuit configuration can be reduced, and the number of adjustment steps for setting correction data in advance can be reduced.

実施例1に係る画像表示装置の構成を示すブロック図である。1 is a block diagram illustrating a configuration of an image display device according to Embodiment 1. FIG. 水平方向補正係数Kxと垂直方向補正係数Kyと階調方向補正係数Kpとを例示するグラフである。It is a graph which illustrates horizontal direction correction coefficient Kx, vertical direction correction coefficient Ky, and gradation direction correction coefficient Kp. 水平方向補正係数Kxと垂直方向補正係数Kyと階調方向補正係数Kpの数値例を例示する概念図である。It is a conceptual diagram which illustrates the numerical example of the horizontal direction correction coefficient Kx, the vertical direction correction coefficient Ky, and the gradation direction correction coefficient Kp. ガンマ補正後階調値Pに対する画面上の輝度変化率J(P)を例示するグラフである。It is a graph which illustrates the luminance change rate J (P) on the screen with respect to the gradation value P after gamma correction. 水平方向補正係数Kxと垂直方向補正係数Kyの設定過程を説明するための数値例図である。It is a numerical example figure for demonstrating the setting process of the horizontal direction correction coefficient Kx and the vertical direction correction coefficient Ky. 階調方向補正係数Kpの設定過程を説明するための数値例図である。It is a numerical example figure for demonstrating the setting process of the gradation direction correction coefficient Kp. 階調方向補正係数Kpの設定過程を説明するためのグラフである。It is a graph for demonstrating the setting process of the gradation direction correction coefficient Kp. 階調値50%のベタ画像を入力した場合の三次元補正の効果を説明する数値例図である。It is a numerical example figure explaining the effect of three-dimensional correction when a solid image with a gradation value of 50% is input. 階調値75%のベタ画像を入力した場合の三次元補正の効果を説明する数値例図である。It is a numerical example figure explaining the effect of three-dimensional correction when a solid image with a gradation value of 75% is input. 実施例2に係る画像表示装置の構成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of an image display device according to a second embodiment.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

−実施例1−
図1は、実施例1に係る画像表示装置100を示すブロック図である。
この画像表示装置100には、階調値zに対してガンマ補正を行いガンマ補正後階調値P(z)を出力するガンマ補正部1と、水平同期信号とクロック信号を基に画像における画素の水平位置xを出力する水平位置出力回路11と、水平位置xに対応した水平方向補正係数Kxを記憶し出力する水平方向補正係数LUT(LookUpTable)12と、垂直同期信号と水平同期信号を基に画像における画素の垂直位置yを出力する垂直位置出力回路21と、垂直位置yに対応した垂直方向補正係数Kyを記憶し出力する垂直方向補正係数LUT22と、ガンマ補正後階調値P(z)に対応した階調方向補正係数Kpを記憶し出力する階調方向補正係数LUT32と、三次元補正後階調値Q(x,y,z)={Kx(x)×Ky(y)×Kp(P(z))+1−Kp(P(z))}×(P(z))となるように補正演算を行う補正演算器40と、三次元補正後階調値Qを基に画像を表示する画像表示器2とを具備してなる。
Example 1
FIG. 1 is a block diagram illustrating an image display apparatus 100 according to the first embodiment.
The image display apparatus 100 includes a gamma correction unit 1 that performs gamma correction on a gradation value z and outputs a gradation value P (z) after gamma correction, and a pixel in an image based on a horizontal synchronization signal and a clock signal. A horizontal position output circuit 11 for outputting the horizontal position x, a horizontal direction correction coefficient LUT (LookUpTable) 12 for storing and outputting a horizontal direction correction coefficient Kx corresponding to the horizontal position x, a vertical synchronization signal and a horizontal synchronization signal. The vertical position output circuit 21 for outputting the vertical position y of the pixel in the image, the vertical direction correction coefficient LUT22 for storing and outputting the vertical direction correction coefficient Ky corresponding to the vertical position y, and the gamma-corrected gradation value P (z ), And a gradation direction correction coefficient LUT32 that stores and outputs the gradation direction correction coefficient Kp corresponding to), and a three-dimensional corrected gradation value Q (x, y, z) = {Kx (x) × Ky (y) × Kp (P (z)) + 1−Kp (P (z))} × (P (z)) A correction calculator 40 that performs a correction calculation and an image based on the three-dimensional corrected gradation value Q. And an image display 2 for displaying.

図2の(a)に、水平方向補正係数Kxを例示する。
水平方向補正係数Kxは、0≦Kx<2の値で、画面中央部の水平位置XcではKx=1である。後述するように、三次元補正を行わないで特定階調値のベタ画面を表示させた表示画面の二次元輝度分布特性から算出する。
FIG. 2A illustrates the horizontal direction correction coefficient Kx.
The horizontal direction correction coefficient Kx is a value of 0 ≦ Kx <2, and Kx = 1 at the horizontal position Xc in the center of the screen. As will be described later, the calculation is made from the two-dimensional luminance distribution characteristics of a display screen on which a solid screen having a specific gradation value is displayed without performing three-dimensional correction.

図2の(b)に、垂直方向補正係数Kyを例示する。
垂直方向補正係数Kyは、0≦Ky<2の値で、画面中央部の垂直位置YcではKy=1である。後述するように、三次元補正を行わないで特定階調値のベタ画面を表示させた表示画面の二次元輝度分布特性から算出する。
FIG. 2B illustrates the vertical correction coefficient Ky.
The vertical direction correction coefficient Ky is a value of 0 ≦ Ky <2, and Ky = 1 at the vertical position Yc in the center of the screen. As will be described later, the calculation is made from the two-dimensional luminance distribution characteristics of a display screen on which a solid screen having a specific gradation value is displayed without performing three-dimensional correction.

図2の(c)に、階調方向補正係数Kpを例示する。
階調方向補正係数Kpは、0から70程度の値で、所定階調値Zcに対応するガンマ補正後階調値Pc=P(Zc)ではKp=1である。後述するように、ガンマ補正後階調値Pに対する画面の輝度変化率を用いて算出した値を基本として画像表示器2の階調特性や製品要求仕様や総合的な画質品位などを勘案して決める。
FIG. 2C illustrates the gradation direction correction coefficient Kp.
The gradation direction correction coefficient Kp is a value of about 0 to 70, and Kp = 1 for the post-gamma correction gradation value Pc = P (Zc) corresponding to the predetermined gradation value Zc. As will be described later, considering the gradation characteristics of the image display 2, the product requirement specifications, the overall image quality, etc. based on the value calculated using the luminance change rate of the screen with respect to the gradation value P after gamma correction. Decide.

図3の(a)に、基準となる水平位置を5点としたときの水平方向補正係数Kxの数値例を例示する。
図3の(b)に、基準となる垂直位置を5点としたときの垂直方向補正係数Kyの数値例を例示する。
図3の(c)に、基準となる階調値を5点としたときの階調方向補正係数Kpの数値例を例示する。
FIG. 3A illustrates a numerical example of the horizontal direction correction coefficient Kx when the reference horizontal position is 5 points.
FIG. 3B illustrates a numerical example of the vertical direction correction coefficient Ky when the reference vertical position is five points.
FIG. 3C illustrates a numerical example of the gradation direction correction coefficient Kp when the reference gradation value is 5 points.

図4は、ガンマ補正後階調値P(z)に対する輝度変化率J(P)=ΔL/ΔPを例示したグラフである。なお、ΔPはガンマ補正後階調値変化分(またはガンマ補正後階調値変化量)であり、ΔLはΔPに対する輝度変化分(または輝度変化量)である。
階調値z=50%に対応するガンマ補正後階調値P(50%)の時にJ(P)=0.96で、階調値z=75%に対応するガンマ補正後階調値P(75%)の時にJ(P)=1.56で、階調値z=100%に対応するガンマ補正後階調値P(100%)の時にJ(P)=2.20になっている。
FIG. 4 is a graph illustrating the luminance change rate J (P) = ΔL / ΔP with respect to the gradation value P (z) after gamma correction. ΔP is a change in gradation value after gamma correction (or a change in gradation value after gamma correction), and ΔL is a change in luminance (or a change in luminance) with respect to ΔP.
When the gradation value P after gamma correction corresponding to the gradation value z = 50% is P (50%), J (P) = 0.96, and the gradation value P after gamma correction corresponding to the gradation value z = 75%. J (P) = 1.56 at (75%), and J (P) = 2.20 at the gradation value P (100%) after gamma correction corresponding to the gradation value z = 100%. Yes.

次に、図5を参照して、水平方向補正係数Kxおよび垂直方向補正係数Kyの設定方法を説明する。
(1)補正演算器40を作動させない状態とし、図5の(a)に示すような階調値z=50%のベタ画像の信号を与え、表示画面の5×5の点での輝度を2次元輝度測定器などで測定し、画面中心で得られた輝度値を100として各点の輝度値を正規化し、図5の(b)に示す如き三次元補正前の輝度分布L(x,y)を得る。なお、説明簡単化のため、輝度分布における点数を5×5個としているが、実際には数千個以上ある。
Next, a method for setting the horizontal direction correction coefficient Kx and the vertical direction correction coefficient Ky will be described with reference to FIG.
(1) The correction computing unit 40 is not operated, a solid image signal having a gradation value z = 50% as shown in FIG. 5A is given, and the luminance at a 5 × 5 point on the display screen is set. The luminance value obtained at the center of the screen is normalized with the luminance value obtained at the center of the screen as 100, and the luminance distribution L (x, x, 3) before three-dimensional correction as shown in FIG. y) is obtained. For simplicity of explanation, the number of points in the luminance distribution is 5 × 5, but there are actually several thousand or more.

(2)現在の輝度LのE%の輝度補正量を加えれば輝度が100%になるとすれば、
L(x,y)+L(x,y)×E(x,y)/100=100
であるから、これを変形すると、
E(x,y)=100×(100−L(x,y))/L(x,y)
となる。
上式により、図5の(c)に示す如き必要な輝度補正量E(x,y)を求める。
(2) If the luminance correction amount of E% of the current luminance L is added and the luminance becomes 100%,
L (x, y) + L (x, y) × E (x, y) / 100 = 100
Therefore, if this is transformed,
E (x, y) = 100 × (100−L (x, y)) / L (x, y)
It becomes.
The required brightness correction amount E (x, y) as shown in FIG.

(3)ガンマ補正後階調値PをK倍すれば輝度LがE%だけ変化するものとすれば、差分(K−1)に図4の輝度変化率J(P)を掛けた値がEになればよいから、
(K−1)×J(P)×100=E(x,y)
となる。これを変形すれば、
K(x,y)=E(x,y)/(100×J(P))+1
となる。ここで、階調値z=50%のベタ画像の信号を与えているから図4よりJ(P(50%))=0.96であり、
K(x,y)=E(x,y)/96+1
となる。
上式により、図5の(d)に示す如き仮のガンマ補正後階調値乗率K(x,y)を求める。
(3) If the gradation L after gamma correction is multiplied by K and the luminance L changes by E%, a value obtained by multiplying the difference (K-1) by the luminance change rate J (P) in FIG. I just need to be E
(K-1) * J (P) * 100 = E (x, y)
It becomes. If this is transformed,
K (x, y) = E (x, y) / (100 × J (P)) + 1
It becomes. Here, since a solid image signal having a gradation value z = 50% is given, J (P (50%)) = 0.96 from FIG.
K (x, y) = E (x, y) / 96 + 1
It becomes.
From the above equation, a provisional gamma-corrected gradation value multiplication factor K (x, y) as shown in FIG.

(4)次式により仮のガンマ補正後階調値乗率K(x,y)から水平方向補正係数Kx(x)と垂直方向補正係数Ky(y)を算出する。なお、一般的表記はK(x,y),Kx(x),Ky(y)であるが、簡易表記としてK11〜K55,Kx1〜Kx5,Ky1〜Ky5を用いている。
Kx1=√((K11+K12+K13+K14+K15)/5)
Kx2=√((K22+K23+K24)/3)
Kx3=√(K33)
Kx4=√((K42+K43+K44)/3)
Kx5=√((K51+K52+K53+K54+K55)/5)
Ky1=√((K11+K21+K31+K41+K51)/5)
Ky2=√((K22+K32+K42)/3)
Ky3=√(K33)
Ky4=√((K24+K34+K44)/3)
Ky5=√((K15+K25+K35+K45+K55)/5)
上式は、図5の(e)に示すように、画面中央に近い位置の仮のガンマ補正後階調値乗率Kほど大きなウエイトを持たせたものである。また、三次元補正時に水平方向補正係数Kxと垂直方向補正係数Kyとを乗算するため、それぞれの係数は平方根にしている。
以上により、図5の(f)に示す如き水平方向補正係数Kx(x)と垂直方向補正係数Ky(y)とを求め、水平方向補正係数LUT12と垂直方向補正係数LUT22とを設定する。
(4) The horizontal direction correction coefficient Kx (x) and the vertical direction correction coefficient Ky (y) are calculated from the temporary gamma-corrected gradation value multiplication factor K (x, y) by the following equation. The general notation is K (x, y), Kx (x), Ky (y), but K11 to K55, Kx1 to Kx5, and Ky1 to Ky5 are used as simple notation.
Kx1 = √ ((K11 + K12 + K13 + K14 + K15) / 5)
Kx2 = √ ((K22 + K23 + K24) / 3)
Kx3 = √ (K33)
Kx4 = √ ((K42 + K43 + K44) / 3)
Kx5 = √ ((K51 + K52 + K53 + K54 + K55) / 5)
Ky1 = √ ((K11 + K21 + K31 + K41 + K51) / 5)
Ky2 = √ ((K22 + K32 + K42) / 3)
Ky3 = √ (K33)
Ky4 = √ ((K24 + K34 + K44) / 3)
Ky5 = √ ((K15 + K25 + K35 + K45 + K55) / 5)
As shown in FIG. 5E, the above equation is such that a temporary weight value after the gamma correction at a position near the center of the screen is given a greater weight. Further, since the horizontal direction correction coefficient Kx and the vertical direction correction coefficient Ky are multiplied at the time of three-dimensional correction, each coefficient is set to a square root.
Thus, the horizontal direction correction coefficient Kx (x) and the vertical direction correction coefficient Ky (y) as shown in FIG. 5F are obtained, and the horizontal direction correction coefficient LUT12 and the vertical direction correction coefficient LUT22 are set.

(5)階調方向補正係数Kp(P)は、仮の階調方向補正係数Kp’(P)を、
Kp’(P)=J(特定のガンマ補正後階調値)/J(P)
により求めて、それを経験的に修正して決定する。
例えば、特定のガンマ補正後階調値をP(50%)にすると、図4からJ(P(50%))=0.96であるから、
Kp’(P)=0.96/J(P)
となり、図6の(a)に示す如き仮の階調方向補正係数Kp’が得られる。
この仮の階調方向補正係数Kp’を、画像表示器2の階調特性や画像表示装置100の製品要求仕様や総合的な画質の品位などを勘案して修正し、図6の(b)に示す如き階調方向補正係数Kpを決定し、階調方向補正係数LUT32を設定する。
(5) The gradation direction correction coefficient Kp (P) is a temporary gradation direction correction coefficient Kp ′ (P),
Kp ′ (P) = J (specific gradation value after gamma correction) / J (P)
And determine it by empirically correcting it.
For example, if a specific gradation value after gamma correction is P (50%), J (P (50%)) = 0.96 from FIG.
Kp ′ (P) = 0.96 / J (P)
Thus, a provisional gradation direction correction coefficient Kp ′ as shown in FIG. 6A is obtained.
The provisional gradation direction correction coefficient Kp ′ is corrected in consideration of the gradation characteristics of the image display device 2, the product requirement specifications of the image display device 100, the quality of the overall image quality, and the like, as shown in FIG. Is determined, and the gradation direction correction coefficient LUT32 is set.

図7の(a)は仮の階調方向補正係数Kp’を表し、図7の(b)は階調方向補正係数Kpを表している。ガンマ補正後階調値Pの中央部分(中間的な輝度になる部分)では仮の階調方向補正係数Kp’をそのまま階調方向補正係数Kpとするが、両端部分(暗い輝度になる部分と明るい輝度になる部分)を修正している。これは、画像表示器2が液晶パネルの場合、低輝度領域では表示むらの傾向が著しく異なり制御も困難なため補正をほとんど行わないこととし、高輝度領域では補正により最大輝度が犠牲になることを少なくするために補正量を下げている。   FIG. 7A shows the provisional gradation direction correction coefficient Kp ′, and FIG. 7B shows the gradation direction correction coefficient Kp. In the central part of the gradation value P after gamma correction (the part where the intermediate brightness is obtained), the temporary gradation direction correction coefficient Kp ′ is used as it is as the gradation direction correction coefficient Kp. The bright brightness area) has been corrected. This is because when the image display 2 is a liquid crystal panel, the tendency of display unevenness is remarkably different in the low luminance region and control is difficult, so that the correction is hardly performed, and the maximum luminance is sacrificed by the correction in the high luminance region. The amount of correction has been lowered to reduce the amount.

上記のように水平方向補正係数LUT12,垂直方向補正係数LUT22,階調方向補正係数LUT32を設定した画像表示装置100において、補正演算器40を作動させ、図5の(a)に示すような階調値z=50%のベタ画像の信号を与えると、図8の(a)に示す如きガンマ補正後階調値乗率G(x,y,50%)を用いた三次元補正Q=G×Pが行われる。この結果、図8の(b)に示す如き輝度分布になり、輝度むらを補正できる。   In the image display device 100 in which the horizontal direction correction coefficient LUT12, the vertical direction correction coefficient LUT22, and the gradation direction correction coefficient LUT32 are set as described above, the correction arithmetic unit 40 is operated, and the floor as shown in FIG. When a solid image signal having a tone value z = 50% is given, a three-dimensional correction Q = G using a gamma-corrected tone value multiplication factor G (x, y, 50%) as shown in FIG. XP is performed. As a result, the luminance distribution as shown in FIG. 8B is obtained, and the luminance unevenness can be corrected.

また、図9の(a)に示すような階調値z=75%のベタ画像の信号を与えると、三次元補正前は図9の(b)に示す如き輝度分布になったが、図9の(c)に示す如きガンマ補正後階調値乗率G(x,y,75%)を用いた三次元補正Q=G×Pが行われる結果、図9の(d)に示す如き輝度分布になり、輝度むらを補正できる。   Further, when a signal of a solid image having a gradation value z = 75% as shown in FIG. 9A is given, the luminance distribution as shown in FIG. 9B is obtained before the three-dimensional correction. As a result of performing the three-dimensional correction Q = G × P using the post-gamma correction gradation value multiplication factor G (x, y, 75%) as shown in FIG. 9C, as shown in FIG. 9D. It becomes a luminance distribution, and luminance unevenness can be corrected.

実施例1の画像表示装置100によれば次の効果が得られる。
(a)輝度むらを補正できる。カラー表示の場合は同様に色むらを補正できる。
(b)三次元補正を行うために記憶する補正用データの数を大幅に低減することが出来るので、LUT12,22,32の回路構成が小規模で済むと共に補正用データを設定するための調整工数を節減することが出来る。。
(c)従来は補正用データを設定するために階調ごとに2次元輝度データを測定する必要があったが、1つの特定階調の2次元輝度データを測定するだけでよいため、この点でも調整工数を節減することが出来る。
(d)画面中心部の輝度を不変として画面周辺部の補正を行うので、画面中心に色彩輝度計を当てて行うキャリブレーション(輝度や色やガンマ特性の校正)とは独立して調整が可能であり、輝度むら調整とキャリブレーションの順序や組み合わせが自在となる。
According to the image display device 100 of the first embodiment, the following effects can be obtained.
(A) Brightness unevenness can be corrected. In the case of color display, color unevenness can be corrected similarly.
(B) Since the number of correction data stored for performing three-dimensional correction can be greatly reduced, the circuit configuration of the LUTs 12, 22, and 32 can be reduced, and adjustment for setting correction data is possible. Man-hours can be saved. .
(C) Conventionally, it has been necessary to measure two-dimensional luminance data for each gradation in order to set correction data. However, since it is only necessary to measure two-dimensional luminance data of one specific gradation, this point But adjustment man-hours can be saved.
(D) Since the brightness at the center of the screen remains unchanged, the periphery of the screen is corrected, so adjustment is possible independent of calibration (calibration of brightness, color, and gamma characteristics) performed by applying a color luminance meter to the center of the screen Therefore, the order and combination of brightness unevenness adjustment and calibration can be freely performed.

−実施例2−
図10は、実施例2に係る画像表示装置100’を示すブロック図である。
この画像表示装置100’は、階調値zに応じて階調方向補正係数Kpを出力する階調方向補正係数LUT32’を用いている。階調値zとガンマ補正後階調値Pとは1:1に対応するため、このような構成も可能である。
-Example 2-
FIG. 10 is a block diagram illustrating an image display apparatus 100 ′ according to the second embodiment.
The image display apparatus 100 ′ uses a gradation direction correction coefficient LUT 32 ′ that outputs a gradation direction correction coefficient Kp according to the gradation value z. Since the gradation value z and the gradation value P after gamma correction correspond to 1: 1, such a configuration is also possible.

−実施例3−
カラー表示の場合は、R,G,Bそれぞれについて三次元補正を行うことにより、輝度むらの補正に加えて色むらも補正することが出来る。
-Example 3-
In the case of color display, by performing three-dimensional correction for each of R, G, and B, color unevenness can be corrected in addition to luminance unevenness correction.

本発明の表示画像補正装置および画像表示装置は、特にCCFLや拡散シートや液晶の塗布むら等に起因した液晶パネルの輝度むらや色むらを補正して画像を表示するのに有用である。   The display image correction apparatus and the image display apparatus of the present invention are particularly useful for displaying an image by correcting luminance unevenness and color unevenness of a liquid crystal panel caused by CCFL, diffusion sheet, liquid crystal application unevenness, and the like.

1 ガンマ補正部
2 画像表示器
11 水平位置出力回路
12 水平方向補正係数LUT
21 垂直位置出力回路
22 垂直方向補正係数LUT
32,32’ 階調方向補正係数LUT
40 補正演算器
100,100’ 画像表示装置
DESCRIPTION OF SYMBOLS 1 Gamma correction part 2 Image display 11 Horizontal position output circuit 12 Horizontal direction correction coefficient LUT
21 Vertical position output circuit 22 Vertical correction coefficient LUT
32, 32 'gradation direction correction coefficient LUT
40 Correction calculator 100, 100 'Image display device

Claims (4)

画像における画素の水平位置xに対応した水平方向補正係数Kx(x)と、垂直位置yに対応した垂直方向補正係数Ky(y)と、階調値zまたはガンマ補正後階調値P(z)に対応した階調方向補正係数Kp(P)とを記憶しておき、三次元補正後階調値Q(x,y,z)={Kx(x)×Ky(y)×Kp(P(z))+1−Kp(P(z))}×(P(z))となるように補正することを特徴とする表示画像補正方法。 The horizontal direction correction coefficient Kx (x) corresponding to the horizontal position x of the pixel in the image, the vertical direction correction coefficient Ky (y) corresponding to the vertical position y, and the gradation value z or the gradation value P (z after gamma correction) ) And the gradation direction correction coefficient Kp (P) corresponding to the three-dimensional corrected gradation value Q (x, y, z) = {Kx (x) × Ky (y) × Kp (P (Z)) + 1-Kp (P (z))} × (P (z)). 請求項1に記載の表示画像補正方法において、画面中心部ではKx=1,Ky=1とすることを特徴とする表示画像補正方法。 2. The display image correction method according to claim 1, wherein Kx = 1 and Ky = 1 at the center of the screen. 画像における画素の水平位置xに対応した水平方向補正係数Kxを記憶し出力する水平方向補正係数出力手段と、垂直位置yに対応した垂直方向補正係数Kyを記憶し出力する垂直方向補正係数出力手段と、階調値zまたはガンマ補正後階調値P(z)に対応した階調方向補正係数Kp(P)を記憶し出力する階調方向補正係数出力手段と、三次元補正後階調値Q(x,y,z)={Kx(x)×Ky(y)×Kp(P(z))+1−Kp(P(z))}×(P(z))となるように補正演算を行う補正演算手段と、三次元補正後階調値Qを基に画像を表示する画像表示手段とを具備したことを特徴とする画像表示装置。 Horizontal direction correction coefficient output means for storing and outputting the horizontal direction correction coefficient Kx corresponding to the horizontal position x of the pixel in the image, and vertical direction correction coefficient output means for storing and outputting the vertical direction correction coefficient Ky corresponding to the vertical position y A gradation direction correction coefficient output means for storing and outputting a gradation direction correction coefficient Kp (P) corresponding to the gradation value z or the gradation value P (z) after gamma correction, and a gradation value after three-dimensional correction Q (x, y, z) = {Kx (x) × Ky (y) × Kp (P (z)) + 1−Kp (P (z))} × (P (z)) An image display device comprising: correction calculation means for performing image display; and image display means for displaying an image based on the three-dimensional corrected gradation value Q. 請求項3に記載の画像表示装置において、画面中心部ではKx=1,Ky=1とすることを特徴とする画像表示装置。 4. The image display device according to claim 3, wherein Kx = 1 and Ky = 1 at the center of the screen.
JP2009140305A 2009-06-11 2009-06-11 Display image correction method and image display apparatus Active JP5279625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009140305A JP5279625B2 (en) 2009-06-11 2009-06-11 Display image correction method and image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009140305A JP5279625B2 (en) 2009-06-11 2009-06-11 Display image correction method and image display apparatus

Publications (2)

Publication Number Publication Date
JP2010286656A true JP2010286656A (en) 2010-12-24
JP5279625B2 JP5279625B2 (en) 2013-09-04

Family

ID=43542400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009140305A Active JP5279625B2 (en) 2009-06-11 2009-06-11 Display image correction method and image display apparatus

Country Status (1)

Country Link
JP (1) JP5279625B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109927A (en) * 1997-10-03 1999-04-23 Sony Corp Non-linear correcting circuit and picture display device using such circuit
JP2000284773A (en) * 1999-01-29 2000-10-13 Matsushita Electric Ind Co Ltd Picture display device
JP2004120400A (en) * 2002-09-26 2004-04-15 Fuji Photo Film Co Ltd Image processing method, apparatus and program thereof
JP2006115500A (en) * 2004-10-12 2006-04-27 Seiko Epson Corp High-speed low memory paper color suppression algorithm
JP2007281938A (en) * 2006-04-07 2007-10-25 Fujifilm Corp Parameter provision apparatus, color conversion system, parameter provision program and color conversion program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109927A (en) * 1997-10-03 1999-04-23 Sony Corp Non-linear correcting circuit and picture display device using such circuit
JP2000284773A (en) * 1999-01-29 2000-10-13 Matsushita Electric Ind Co Ltd Picture display device
JP2004120400A (en) * 2002-09-26 2004-04-15 Fuji Photo Film Co Ltd Image processing method, apparatus and program thereof
JP2006115500A (en) * 2004-10-12 2006-04-27 Seiko Epson Corp High-speed low memory paper color suppression algorithm
JP2007281938A (en) * 2006-04-07 2007-10-25 Fujifilm Corp Parameter provision apparatus, color conversion system, parameter provision program and color conversion program

Also Published As

Publication number Publication date
JP5279625B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
CN111316348B (en) Compensation techniques for display panels
CN101231830B (en) Method for generating LCD device gamma correction table
CN111243512B (en) Gray-scale data compensation method and device and driving chip
CN111754942B (en) Brightness compensation method, device and equipment of display device and display device
JP7068905B2 (en) Gradation correction data creation device, gradation correction device, electronic device and gradation correction data creation method
JP2022141657A (en) Electronic display color accuracy compensation
TWI227992B (en) Gray level conversion method and display device
JP2011039477A (en) Method for control of improving luminance uniformity, luminance calibrating controller, and display device
KR20160059021A (en) Display panel driving device and display device having the same
JP2015031874A (en) Display device, control method of display device, and program
KR20190052737A (en) Display device and method for generating compensating data of the same
JP2006145577A (en) Color conversion matrix generating apparatus, color conversion matrix generating program, and image display device
US10311769B2 (en) Image processing providing uniformity correction data generation for color signals
KR20040011711A (en) Method and apparatus to control power of the address data for plasma display panel and a plasma display panel device having that apparatus
CN113920917A (en) Display panel compensation method and compensation device
JP2008268376A (en) Adjustment method, adjustment system, display apparatus, adjusting device, and computer program
KR20190045439A (en) Display device and method of driving the same
JP5279625B2 (en) Display image correction method and image display apparatus
KR20160031597A (en) Method of testing display apparatus and display apparatus tested by the same
KR20210039822A (en) Display apparatus and the control method thereof
CN115035857A (en) Display control method and device and electronic equipment
US20170092186A1 (en) Display panel driving apparatus performing spatial gamma mixing, method of driving display panel using the same and display apparatus having the same
JP2001357394A (en) System for generating color non-uniformity correction data and picture display device
JP5268146B2 (en) Display unevenness reproduction method and display device
JP6188341B2 (en) Correction value generating apparatus and control method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350