JP2010286132A - Heat storage system - Google Patents

Heat storage system Download PDF

Info

Publication number
JP2010286132A
JP2010286132A JP2009138323A JP2009138323A JP2010286132A JP 2010286132 A JP2010286132 A JP 2010286132A JP 2009138323 A JP2009138323 A JP 2009138323A JP 2009138323 A JP2009138323 A JP 2009138323A JP 2010286132 A JP2010286132 A JP 2010286132A
Authority
JP
Japan
Prior art keywords
heat
storage system
heat storage
air
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009138323A
Other languages
Japanese (ja)
Other versions
JP5393269B2 (en
Inventor
Takashi Asano
浅野  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2009138323A priority Critical patent/JP5393269B2/en
Publication of JP2010286132A publication Critical patent/JP2010286132A/en
Application granted granted Critical
Publication of JP5393269B2 publication Critical patent/JP5393269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new heat storage system capable of improving the COP of a heat storage type air-conditioning system by using the waste heat of an underground electric power sub-station built in a site of a facility. <P>SOLUTION: In the heat storage system, warm air generated by waste heat generated in the underground electric power substation built in the site of the facility is made to contact with a heat exchanger of a heat pump chiller so as to suitably prevent dew formation on the surface of the heat exchanger regarded as a problem in a cold region. Since large heat energy can be extracted from the warm air, even in an environment where a night air temperature becomes is lowered to a freezing point or lower, heat energy necessary and sufficient for use for air conditioning in the daytime can be stored by using night electric power. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ヒートポンプチラーを使用した蓄熱システムに関し、より詳細には、地下変電所からの排熱を有効利用する蓄熱システムに関する。   The present invention relates to a heat storage system using a heat pump chiller, and more particularly to a heat storage system that effectively uses exhaust heat from an underground substation.

大都市部においては、年々電力需要が増大しており、これに対応するために変電所の増設が求められているが、各種施設の密集する商業地域においては、変電所用の土地を確保することが難しい。この点に鑑み、近年、施設の地下に変電所を建設することが広く行なわれている。   In metropolitan areas, demand for electric power is increasing year by year, and in order to respond to this demand, additional substations are required. In commercial areas where various facilities are concentrated, it is necessary to secure land for substations. Is difficult. In view of this point, in recent years, construction of substations in the basement of facilities has been widely performed.

このような地下変電所においては、防災上の観点から、変圧器の巻線の絶縁および冷却をSF6ガス(六フッ化硫黄)で行なうガス絶縁変圧器が採用されることが多い。当該ガス絶縁変圧器からの発生する熱は、風冷式の場合、空気を熱媒として大気中へ放熱される。   In such an underground substation, from the viewpoint of disaster prevention, a gas-insulated transformer that performs insulation and cooling of the transformer windings with SF6 gas (sulfur hexafluoride) is often employed. In the case of an air-cooled type, the heat generated from the gas-insulated transformer is radiated to the atmosphere using air as a heat medium.

一方、近年、電力消費量の平準化を企図して、電気料金の安い夜間電力を使用して地下の蓄熱水槽に貯留した水を昇温/冷却しておき、昼間に当該蓄熱水槽に貯留された温冷水を使用してビル内の空調を行なう蓄熱式空調システムが大都市部の商業地域において採用されはじめている。特開平10−19320号公報(特許文献1)は、安価な夜間電力を用いて、蓄熱水槽の水を加熱または冷却し、昼間にこれらの温冷水をビル内の冷暖房機器に供給する地域冷暖房システムを開示する。   On the other hand, in recent years, with the aim of leveling power consumption, water stored in an underground heat storage tank is heated / cooled using night electricity with low electricity charges, and stored in the heat storage tank in the daytime. Thermal storage air conditioning systems that use hot and cold water to air-condition buildings are beginning to be adopted in commercial areas in large cities. Japanese Patent Laid-Open No. 10-19320 (Patent Document 1) discloses a district cooling / heating system that uses cheap nighttime power to heat or cool water in a heat storage tank and supplies the hot / cold water to a cooling / heating device in a building during the day. Is disclosed.

ここで、仮に、特許文献1の蓄熱手段にヒートポンプチラーを採用することを想定した場合、冬期においては、夜間の外気温度が低いためCOP(成績係数:熱・冷熱量の、消費する電力量に対する割合)が悪化し、特に、寒冷地においては、ヒートポンプ蒸発器の表面温度が0℃以下になって頻繁に結霜が生じるため、デフロスト(除霜)等の保守コストが過大になるという問題がある。   Here, if it is assumed that a heat pump chiller is employed as the heat storage means of Patent Document 1, in winter, the outside air temperature at night is low, so COP (coefficient of performance: amount of heat / cold energy with respect to consumed electric energy) In particular, in cold regions, the surface temperature of the heat pump evaporator becomes 0 ° C. or lower, and frequent frost formation occurs. Therefore, there is a problem that maintenance costs such as defrost (defrosting) become excessive. is there.

特開平10−19320号公報Japanese Patent Laid-Open No. 10-19320

本発明は、上記従来技術における課題に鑑みてなされたものであり、本発明は、施設に近接して建設される地下変電所の排熱を利用して、蓄熱式空調システムのCOPを向上させることのできる新規な蓄熱システムを提供することを目的とする。   This invention is made | formed in view of the subject in the said prior art, and this invention improves COP of a thermal storage type | formula air conditioning system using the waste heat of the underground substation constructed close to a facility. It aims at providing the novel thermal storage system which can be used.

本発明者は、施設の敷地内に建設される地下変電所の排熱を利用して、蓄熱式空調システムに用いられる蓄熱式空調システムのCOPを向上させることのできる新規な蓄熱システムにつき鋭意検討した結果、地下変電所内で発生する排熱によって生じた暖気をヒートポンプチラーの熱交換器に接触させることによって、寒冷地において問題視されていた熱交換器表面の結霜が好適に防止され、加えて、当該暖気から多くの温熱エネルギーを抽出することができるため、夜間気温が氷点下になる環境においても、夜間電力を使用して、昼間の空調に供するための必要十分な温熱エネルギーを蓄熱することが可能になることを見出し、本発明に至ったのである。   The present inventor has intensively studied a new heat storage system that can improve the COP of a heat storage type air conditioning system used in a heat storage type air conditioning system by using the exhaust heat of an underground substation built on the site of a facility. As a result, by contacting the warm air generated by the exhaust heat generated in the underground substation with the heat exchanger of the heat pump chiller, frost formation on the surface of the heat exchanger, which has been regarded as a problem in cold regions, is preferably prevented and added. Therefore, it is possible to extract a large amount of thermal energy from the warm air, so that even in an environment where the night air temperature is below freezing, it is necessary to store enough thermal energy necessary for daytime air conditioning using night power. As a result, the present invention has been found.

すなわち、本発明によれば、地下変電所に近接する施設に設けられる蓄熱システムであって、ヒートポンプチラーと、前記ヒートポンプチラーと熱的に接続される蓄熱水槽とを含み、前記ヒートポンプチラーの熱交換器に対して、前記地下変電所内で発生する排熱によって生じた暖気を接触させることを特徴とする蓄熱システムが提供される。   That is, according to the present invention, a heat storage system provided in a facility adjacent to an underground substation, including a heat pump chiller and a heat storage water tank thermally connected to the heat pump chiller, and heat exchange of the heat pump chiller A heat storage system is provided in which warm air generated by exhaust heat generated in the underground substation is brought into contact with a storage device.

本発明においては、前記熱交換器は、カバーによって包囲された空間内に配置され、前記地下変電所内には空冷式のガス絶縁変圧器が配置されており、前記ガス絶縁変圧器からの排気が導入されるチャンバールームと前記カバーによって包囲された空間とが流路によって接続されるように構成することができる。   In the present invention, the heat exchanger is disposed in a space surrounded by a cover, an air-cooled gas-insulated transformer is disposed in the underground substation, and the exhaust from the gas-insulated transformer is exhausted. The chamber room to be introduced and the space surrounded by the cover can be connected by a flow path.

また、本発明においては、前記チャンバールームは、電動ダンパーを経て前記流路に接続されており、前記流路は、送風ファンを経て前記カバーによって包囲された空間に接続されるように構成することができ、前記電動ダンパーは、冬期運転モードにおいて開き、該電動ダンパーの開状態に連動して前記送風ファンが稼働するように制御することができる。さらに、本発明においては、前記蓄熱水槽は、前記施設の地下に設けることができ、前記施設の空調システムに熱的に接続することができる。   In the present invention, the chamber room is connected to the flow path via an electric damper, and the flow path is connected to a space surrounded by the cover via a blower fan. The electric damper can be controlled to open in the winter operation mode and to operate the blower fan in conjunction with the open state of the electric damper. Furthermore, in this invention, the said thermal storage tank can be provided in the basement of the said facility, and can be thermally connected to the air conditioning system of the said facility.

上述したように、本発明によれば、施設の敷地内に建設される地下変電所の排熱を利用して、蓄熱式空調システムのCOPを向上させることのできる新規な蓄熱システムが提供される。   As described above, according to the present invention, a novel heat storage system is provided that can improve the COP of a heat storage type air conditioning system using the exhaust heat of an underground substation constructed in the site of a facility. .

本実施形態の蓄熱システムを示す図。The figure which shows the thermal storage system of this embodiment.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。   Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings.

図1は、本発明の実施形態である蓄熱システム100を示す。図1に示す例においては、蓄熱システム100は、地下変電所200に近接するオフィスビル300に適用されている。地下変電所200は、大都市部の商業地域における土地不足に鑑みて、オフィスビル300の敷地の地下に建設されており、オフィスビル300をはじめ、近隣の施設に電力を供給している。本実施形態の蓄熱システム100は、概ね、ヒートポンプ機構によって水を加熱・冷却するためのヒートポンプチラー10と、オフィスビル300の地下に設けられた蓄熱水槽20と、地下変電所200からの排熱によって昇温された空気(暖気)をヒートポンプチラー10の熱交換器に接触させるための機構とを含んで構成されている。   FIG. 1 shows a heat storage system 100 according to an embodiment of the present invention. In the example shown in FIG. 1, the heat storage system 100 is applied to an office building 300 close to the underground substation 200. The substation 200 is constructed in the basement of the office building 300 in view of a shortage of land in a commercial area in a large city, and supplies power to the office building 300 and other nearby facilities. The heat storage system 100 of this embodiment is generally based on the heat pump chiller 10 for heating and cooling water by a heat pump mechanism, the heat storage water tank 20 provided in the basement of the office building 300, and the exhaust heat from the underground substation 200. And a mechanism for bringing the heated air (warm air) into contact with the heat exchanger of the heat pump chiller 10.

最初に、蓄熱システム100におけるヒートポンプチラー10の機能について説明する。本実施形態におけるヒートポンプチラー10は、ヒートポンプ機構によって水を加熱・冷却するものであり、好ましくは、スクリューヒートポンプチラーとすることができる。現在、電力会社は、蓄熱式空調システムを推奨しており、事業者は、電力会社と業務用蓄熱契約を結ぶことによって電気料金の大幅な割引を受けることができる。ヒートポンプチラー10は、安い夜間電力を使用して蓄熱水槽20に貯留される水を、例えば、夏期には8℃まで冷却し、冬期には60℃まで加温するように構成されている。   First, the function of the heat pump chiller 10 in the heat storage system 100 will be described. The heat pump chiller 10 in the present embodiment heats and cools water by a heat pump mechanism, and can be preferably a screw heat pump chiller. Currently, electric power companies recommend thermal storage air-conditioning systems, and businesses can receive significant discounts on electricity bills by signing commercial thermal storage contracts with electric power companies. The heat pump chiller 10 is configured to cool the water stored in the heat storage water tank 20 using cheap nighttime electricity to, for example, 8 ° C. in the summer and 60 ° C. in the winter.

具体的には、蓄熱水槽20内の水に温熱を蓄熱する運転モード(以下、冬期運転モードという)において、ヒートポンプチラー10は、以下のように作動する。すなわち、ヒートポンプチラー10内を実線矢印方向に循環する熱媒は、圧縮機12によって圧縮されて高温高圧になったのち、水冷式熱交換器14において放熱して液化する。液化した熱媒は、膨張弁16を通過後に減圧し、熱交換器18に導入される。なお、冬期運転モードにおいては、熱交換器18は蒸発器として機能する。   Specifically, in an operation mode (hereinafter referred to as winter operation mode) in which heat is stored in water in the heat storage water tank 20, the heat pump chiller 10 operates as follows. That is, the heat medium circulating in the direction of the solid arrow in the heat pump chiller 10 is compressed by the compressor 12 to become high temperature and high pressure, and then radiates and liquefies in the water-cooled heat exchanger 14. The liquefied heat medium is reduced in pressure after passing through the expansion valve 16 and introduced into the heat exchanger 18. In the winter operation mode, the heat exchanger 18 functions as an evaporator.

ヒートポンプチラー10の水冷式熱交換器14は、流路19,19によって蓄熱水槽20に熱的に接続されており、ヒートポンプチラー10の運転中、蓄熱水槽20に貯留された水は、ポンプ22によって水冷式熱交換器14に導入された後、再び、蓄熱水槽20に戻るように構成されている。よって、水冷式熱交換器14内で加熱された水は、流路19を経て蓄熱水槽20内に回収され、その結果、蓄熱水槽20内の水が加温される。   The water-cooled heat exchanger 14 of the heat pump chiller 10 is thermally connected to the heat storage water tank 20 by flow paths 19 and 19, and the water stored in the heat storage water tank 20 is operated by the pump 22 during operation of the heat pump chiller 10. After being introduced into the water-cooled heat exchanger 14, it is configured to return to the heat storage water tank 20 again. Therefore, the water heated in the water-cooled heat exchanger 14 is collected in the heat storage water tank 20 through the flow path 19, and as a result, the water in the heat storage water tank 20 is heated.

一方、蓄熱水槽20内の水に冷熱を蓄熱する運転モード(以下、夏期運転モードという)において、ヒートポンプチラー10は、以下のように作動する。すなわち、ヒートポンプチラー10内を破線矢印方向に循環する熱媒は、圧縮機12によって圧縮されて高温高圧になったのち、熱交換器18において放熱して液化する。なお、夏期運転モードにおいては、熱交換器18は凝縮器として機能する。   On the other hand, in the operation mode (hereinafter referred to as summer operation mode) in which cold energy is stored in the water in the heat storage water tank 20, the heat pump chiller 10 operates as follows. That is, the heat medium circulating in the direction of the broken line arrow in the heat pump chiller 10 is compressed by the compressor 12 to become high temperature and pressure, and then radiates and liquefies in the heat exchanger 18. In the summer operation mode, the heat exchanger 18 functions as a condenser.

熱交換器18において放熱して液化した熱媒が膨張弁16を通過後に減圧して気化する際、水冷式熱交換器14内で蓄熱水槽20から導入される水から気化熱を奪って、これを冷却する。水冷式熱交換器14内で冷却された水は、流路19を経て蓄熱水槽20内に回収され、その結果、蓄熱水槽20内の水が冷却される。   When the heat medium radiated and liquefied in the heat exchanger 18 is depressurized and vaporized after passing through the expansion valve 16, it takes heat of vaporization from the water introduced from the heat storage tank 20 in the water-cooled heat exchanger 14. Cool down. The water cooled in the water-cooled heat exchanger 14 is collected in the heat storage water tank 20 through the flow path 19, and as a result, the water in the heat storage water tank 20 is cooled.

なお、蓄熱水槽20はオフィスビル300内の各区画に備え付けられた空調装置と熱的に接続されている。具体的には、蓄熱水槽20内の蓄熱した水(温水/冷水)は、昼間、ポンプ30によって汲み上げられ、流路32を通って、オフィスビル300内の各区画に備え付けられた図示しない空調装置に導入されて空調に寄与した後、流路33を通って、再び、蓄熱水槽20に回収される。   The thermal storage tank 20 is thermally connected to an air conditioner provided in each section in the office building 300. Specifically, water stored in the heat storage tank 20 (hot water / cold water) is pumped up by the pump 30 in the daytime, passes through the flow path 32, and is provided in each section in the office building 300, not shown. After being introduced to the air conditioner and contributing to the air conditioning, it passes through the flow path 33 and is again collected in the heat storage water tank 20.

以上、蓄熱システム100におけるヒートポンプチラー10の機能について説明してきたが、ヒートポンプチラー10の熱交換器18は、冬期運転モードにおいては、熱媒の気化熱を周辺空気から奪うため、当該空気が冷却されて結露が生じ、これが熱交換器18の表面に付着する。夜間、気温が氷点下になる寒冷地においては、この結露が結霜となって固着し、熱交換器18の熱交換効率を悪化させると同時に、デフロストのためのコストが増大するという問題がある。本実施形態においては、地下変電所200から発生する排熱を利用して、この問題を解決する。以下、この点につき詳細に説明する。   Although the function of the heat pump chiller 10 in the heat storage system 100 has been described above, the heat exchanger 18 of the heat pump chiller 10 takes the heat of vaporization of the heat medium from the surrounding air in the winter operation mode, so that the air is cooled. As a result, condensation occurs and adheres to the surface of the heat exchanger 18. In a cold region where the temperature is below freezing at night, this condensation forms frost and sticks, deteriorating the heat exchange efficiency of the heat exchanger 18 and increasing the cost for defrosting. In the present embodiment, this problem is solved by utilizing exhaust heat generated from the underground substation 200. Hereinafter, this point will be described in detail.

最初に、地下変電所200の構成について説明する。図1に示す例においては、地下変電所200内には、複数のSF6ガス絶縁変圧器50が配置されている。SF6ガス絶縁変圧器50は、変圧器の巻線をSF6ガスで満たしたタンク内に密封し、当該タンクと空冷式熱交換器52とを熱的に接続することによって構成されている。本実施形態におけるSF6ガス絶縁変圧器50は、その冷却方式として風冷式を採用しており、SF6ガス絶縁変圧器50内で発生した排熱は、空冷式熱交換器52を介して、送風ファン54から送気される空気に伝熱される。   First, the configuration of the underground substation 200 will be described. In the example shown in FIG. 1, a plurality of SF6 gas insulated transformers 50 are arranged in the underground substation 200. The SF6 gas insulated transformer 50 is configured by sealing the transformer winding in a tank filled with SF6 gas and thermally connecting the tank and the air-cooled heat exchanger 52. The SF6 gas insulated transformer 50 in this embodiment employs an air cooling method as its cooling method, and the exhaust heat generated in the SF6 gas insulated transformer 50 is blown through the air-cooled heat exchanger 52. Heat is transferred to the air supplied from the fan 54.

一方、各SF6ガス絶縁変圧器50には、空冷熱交換器52を覆う形で排気ダクト56が配備されており、送風ファン54から送気された空気は、空冷熱交換器52を通過して排気ダクト56から回収されるように構成されている。その結果、SF6ガス絶縁変圧器50内で発生した熱は、送風に伴って生じる騒音を吸収するために設けられたサイレンサ60を経て、チャンバールーム62に導入される。なお、地下変電所200には、図示しない給気流路が接続されており、外気が地下変電所200内に導入されるように構成されている。チャンバールーム62に導入された暖気は、最終的に吹出し口64から屋外に放出される。   On the other hand, each SF6 gas insulated transformer 50 is provided with an exhaust duct 56 so as to cover the air cooling heat exchanger 52, and the air sent from the blower fan 54 passes through the air cooling heat exchanger 52. The exhaust duct 56 is configured to be recovered. As a result, the heat generated in the SF6 gas insulated transformer 50 is introduced into the chamber room 62 through the silencer 60 provided to absorb the noise generated by the blowing. Note that an air supply passage (not shown) is connected to the underground substation 200 so that outside air is introduced into the underground substation 200. The warm air introduced into the chamber room 62 is finally discharged to the outside from the outlet 64.

一方、本実施形態においては、ヒートポンプチラー10の熱交換器18は、カバー70によって包囲された空間内に配置されており、当該空間とチャンバールーム62とが、流路72によって接続されている。また、チャンバールーム62は、電動ダンパー74を経て流路72に接続されており、流路72は、送風ファン76を経てカバー70によって包囲された空間に接続されている。   On the other hand, in the present embodiment, the heat exchanger 18 of the heat pump chiller 10 is disposed in a space surrounded by the cover 70, and the space and the chamber room 62 are connected by a flow path 72. The chamber room 62 is connected to the flow path 72 via the electric damper 74, and the flow path 72 is connected to the space surrounded by the cover 70 via the blower fan 76.

本実施形態においては、冬期運転モードの際に、電動ダンパー74が開くように構成されており、電動ダンパー74の開状態に連動して送風ファン76が稼働するように構成されている。したがって、冬期運転モードの際には、地下変電所200から発生する排熱によって生じた暖気は、チャンバールーム62から流路72を経てカバー70内の熱交換器18に吹付けられる。その結果、熱交換器18に接触する空気の温度が、運転中、所定温度以上に保たれるため、寒冷地であっても、熱交換器18表面の結霜の形成が好適に防止され、加えて、当該暖気から多くの温熱エネルギーを抽出することができるため、COPが格段に向上する。   In the present embodiment, the electric damper 74 is configured to open during the winter operation mode, and the blower fan 76 is operated in conjunction with the open state of the electric damper 74. Therefore, in the winter operation mode, warm air generated by exhaust heat generated from the underground substation 200 is blown from the chamber room 62 to the heat exchanger 18 in the cover 70 via the flow path 72. As a result, the temperature of the air in contact with the heat exchanger 18 is maintained at a predetermined temperature or higher during operation, so that the formation of frost on the surface of the heat exchanger 18 is suitably prevented even in cold regions. In addition, since a large amount of thermal energy can be extracted from the warm air, the COP is significantly improved.

以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、その他、当業者が推考しうる実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   As described above, the present invention has been described with the embodiments. However, the present invention is not limited to the above-described embodiments, and other functions and effects of the present invention are within the scope of embodiments that can be considered by those skilled in the art. As long as it plays, it is included in the scope of the present invention.

以上、説明したように、本発明によれば、施設に近接して建設される地下変電所の排熱を利用して、蓄熱式空調システムのCOPを向上させることのできる新規な蓄熱システムが提供される。本発明の蓄熱システムは、特に寒冷地において、ビル空調のトータルコストの大幅な軽減に寄与することが期待される。   As described above, according to the present invention, a novel heat storage system capable of improving the COP of a heat storage type air conditioning system using the exhaust heat of an underground substation constructed close to a facility is provided. Is done. The heat storage system of the present invention is expected to contribute to a significant reduction in the total cost of building air conditioning, particularly in cold regions.

100…蓄熱システム、200…地下変電所、300…オフィスビル、10…ヒートポンプチラー、12…圧縮機、14…水冷式熱交換器、16…膨張弁、18…熱交換器、19…流路、20…蓄熱水槽、22…ポンプ、30…ポンプ、32…流路、33…流路、50…SF6ガス絶縁変圧器、52…空冷式熱交換器、54…送風ファン、56…排気ダクト、60…サイレンサ、62…チャンバールーム、64…吹出し口、70…カバー、72…流路、74…電動ダンパー、76…送風ファン DESCRIPTION OF SYMBOLS 100 ... Thermal storage system, 200 ... Underground substation, 300 ... Office building, 10 ... Heat pump chiller, 12 ... Compressor, 14 ... Water-cooled heat exchanger, 16 ... Expansion valve, 18 ... Heat exchanger, 19 ... Flow path, DESCRIPTION OF SYMBOLS 20 ... Thermal storage tank, 22 ... Pump, 30 ... Pump, 32 ... Channel, 33 ... Channel, 50 ... SF6 gas insulation transformer, 52 ... Air-cooled heat exchanger, 54 ... Blower fan, 56 ... Exhaust duct, 60 ... Silencer, 62 ... Chamber room, 64 ... Air outlet, 70 ... Cover, 72 ... Flow path, 74 ... Electric damper, 76 ... Blower fan

Claims (6)

地下変電所に近接する施設に設けられる蓄熱システムであって、
ヒートポンプチラーと、
前記ヒートポンプチラーと熱的に接続される蓄熱水槽と
を含み、
前記ヒートポンプチラーの熱交換器に対して、前記地下変電所内で発生する排熱によって生じた暖気を接触させることを特徴とする、
蓄熱システム。
A heat storage system installed in a facility near an underground substation,
A heat pump chiller,
A heat storage water tank thermally connected to the heat pump chiller,
The heat pump chiller heat exchanger is characterized by contacting warm air generated by exhaust heat generated in the underground substation,
Thermal storage system.
前記熱交換器は、カバーによって包囲された空間内に配置され、前記地下変電所内には空冷式のガス絶縁変圧器が配置されており、
前記ガス絶縁変圧器からの排気が導入されるチャンバールームと前記カバーによって包囲された空間とが流路によって接続される、請求項1に記載の蓄熱システム。
The heat exchanger is disposed in a space surrounded by a cover, and an air-cooled gas-insulated transformer is disposed in the underground substation,
The heat storage system according to claim 1, wherein a chamber room into which exhaust from the gas-insulated transformer is introduced and a space surrounded by the cover are connected by a flow path.
前記チャンバールームは、電動ダンパーを経て前記流路に接続されており、前記流路は、送風ファンを経て前記カバーによって包囲された空間に接続される、請求項1または2に記載の蓄熱システム。   The heat storage system according to claim 1 or 2, wherein the chamber room is connected to the flow path via an electric damper, and the flow path is connected to a space surrounded by the cover via a blower fan. 前記電動ダンパーは、冬期運転モードにおいて開き、該電動ダンパーの開状態に連動して前記送風ファンが稼働するように制御される、請求項1〜3のいずれか1項に記載の蓄熱システム。   The heat storage system according to any one of claims 1 to 3, wherein the electric damper is opened in a winter operation mode and is controlled such that the blower fan operates in conjunction with an open state of the electric damper. 前記蓄熱水槽は、前記施設の地下に設けられる、請求項1〜4のいずれか1項に記載の蓄熱システム。   The said thermal storage water tank is a thermal storage system of any one of Claims 1-4 provided in the basement of the said facility. 前記蓄熱水槽は、前記施設の空調システムに熱的に接続される、請求項1〜5のいずれか1項に記載の蓄熱システム。   The said thermal storage water tank is a thermal storage system of any one of Claims 1-5 thermally connected to the air conditioning system of the said facility.
JP2009138323A 2009-06-09 2009-06-09 Heat storage system Active JP5393269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138323A JP5393269B2 (en) 2009-06-09 2009-06-09 Heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138323A JP5393269B2 (en) 2009-06-09 2009-06-09 Heat storage system

Publications (2)

Publication Number Publication Date
JP2010286132A true JP2010286132A (en) 2010-12-24
JP5393269B2 JP5393269B2 (en) 2014-01-22

Family

ID=43541968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138323A Active JP5393269B2 (en) 2009-06-09 2009-06-09 Heat storage system

Country Status (1)

Country Link
JP (1) JP5393269B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288312A (en) * 1989-04-28 1990-11-28 Toshiba Corp Gas insulation transformer
JPH10223442A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Transforming apparatus cooling system and operation method thereof
JPH1116743A (en) * 1997-06-27 1999-01-22 Hitachi Ltd Gas-insulated transformer
JP2000018764A (en) * 1998-06-30 2000-01-18 Fukuchi Kenso:Kk Cooling/warming/hot water supplying apparatus utilizing ventilation exhaust heat
JP2001193952A (en) * 1999-12-28 2001-07-17 Ishikawajima Harima Heavy Ind Co Ltd Cold-and-hot-water circulation system pressure adjusting device of heating/cooling device
JP2001284134A (en) * 2000-03-30 2001-10-12 Toshiba Corp Indoor power transforming equipment
JP2004205185A (en) * 2002-12-25 2004-07-22 Kiitekku Kogyo Kk Heat pump device for highly efficient room heating and cooling combinedly using ventilation exhaust heat
JP2009127987A (en) * 2007-11-27 2009-06-11 Takasago Thermal Eng Co Ltd Building layout

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288312A (en) * 1989-04-28 1990-11-28 Toshiba Corp Gas insulation transformer
JPH10223442A (en) * 1997-02-07 1998-08-21 Hitachi Ltd Transforming apparatus cooling system and operation method thereof
JPH1116743A (en) * 1997-06-27 1999-01-22 Hitachi Ltd Gas-insulated transformer
JP2000018764A (en) * 1998-06-30 2000-01-18 Fukuchi Kenso:Kk Cooling/warming/hot water supplying apparatus utilizing ventilation exhaust heat
JP2001193952A (en) * 1999-12-28 2001-07-17 Ishikawajima Harima Heavy Ind Co Ltd Cold-and-hot-water circulation system pressure adjusting device of heating/cooling device
JP2001284134A (en) * 2000-03-30 2001-10-12 Toshiba Corp Indoor power transforming equipment
JP2004205185A (en) * 2002-12-25 2004-07-22 Kiitekku Kogyo Kk Heat pump device for highly efficient room heating and cooling combinedly using ventilation exhaust heat
JP2009127987A (en) * 2007-11-27 2009-06-11 Takasago Thermal Eng Co Ltd Building layout

Also Published As

Publication number Publication date
JP5393269B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
EP2540925B1 (en) Heat-insulating panel for use in buildings
JP2007303711A (en) Air conditioning system
CN103912947A (en) Hot pump system for fan coil and heat-recovery fresh-air air conditioning unit
JP2991337B1 (en) Unused heat source ice heat storage heat pump device
JP2008164237A (en) Heat pump system
JP2003279079A (en) Ice thermal accumulating system and heating method of ice thermal accumulating system
JP2006010137A (en) Heat pump system
JP3873259B1 (en) Heat storage device and air conditioner
JP5393269B2 (en) Heat storage system
JP4404731B2 (en) Air-conditioning system using geothermal heat
JP5911675B2 (en) Air conditioning system operation method, air conditioning system construction method, and air conditioning system
JPH10223442A (en) Transforming apparatus cooling system and operation method thereof
CN102393075A (en) Heat pump water heater evaporator chamber used for absorbing heat of compressor and preventing frosting
KR101846291B1 (en) cold water and hot water combined thermal storage system
KR101166858B1 (en) Space cooling, heating and domestic hot water systeme for the geosource heat pump heating and cooling
JP6781560B2 (en) Ventilator
JP2006317042A (en) Air-conditioning facility utilizing soil heat
CN202328800U (en) Heat pump water heater evaporator chamber for absorbing heat of compressor to prevent frosting
CN101586853A (en) The ice storage centralized air-conditioning system that has recuperation of heat
JPH06257799A (en) Personal ice storage cooling system
Petrosyan The Influence of the Properties of Thermal-Insulation Materials on the Thermomoist Indicators of a Building
Beggs The economics of ice thermal storage: tariff structure of electricity supply companies is the dominant factor in assessing the undoubted benefits in the viable energy conserving technology of ice thermal storage
JP6161735B2 (en) Outside air temperature sensitive air conditioner
JP3894320B2 (en) Zero energy system air conditioner installation method
KR200259092Y1 (en) Tank of heat accmulating type boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250