JP2010285092A - Start-up determination device for hybrid vehicle - Google Patents

Start-up determination device for hybrid vehicle Download PDF

Info

Publication number
JP2010285092A
JP2010285092A JP2009140926A JP2009140926A JP2010285092A JP 2010285092 A JP2010285092 A JP 2010285092A JP 2009140926 A JP2009140926 A JP 2009140926A JP 2009140926 A JP2009140926 A JP 2009140926A JP 2010285092 A JP2010285092 A JP 2010285092A
Authority
JP
Japan
Prior art keywords
temperature
battery
hybrid vehicle
engine
power battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009140926A
Other languages
Japanese (ja)
Other versions
JP5310286B2 (en
Inventor
Tomonaga Sugimoto
智永 杉本
Hiroshi Arita
寛志 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009140926A priority Critical patent/JP5310286B2/en
Publication of JP2010285092A publication Critical patent/JP2010285092A/en
Application granted granted Critical
Publication of JP5310286B2 publication Critical patent/JP5310286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a start-up determination device for hybrid vehicle with high temperature-estimation accuracy in an internal combustion engine 35. <P>SOLUTION: This start-up determination device for hybrid vehicle includes: a battery temperature measuring part 42 for measuring a temperature of a high-voltage battery 31 for supplying electric power to an electric motor 33; a time estimation part for estimating a stop time until restarting a vehicle system after stopped, based on the temperature of the high-voltage battery 31 measured by the battery temperature measuring part 42 when stopping the vehicle system of the hybrid vehicle, and based on the temperature of the high-voltage battery 31 measured by the battery temperature measuring part 42 when restarting the vehicle system; and a temperature estimation part for estimating a temperature of the internal combustion engine 35, based on the stop time estimated by the time estimation part, in the hybrid vehicle using the internal combustion engine 35 and the electric motor 33 for running. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関と電動機とを組合わせて走行するハイブリッド車両において、電動機へ電力を供給する強電バッテリの温度に基づいて、車両システムの起動許可の判断を行うハイブリッド車両用起動判断装置に関する。   The present invention relates to a hybrid vehicle start-up determination device that determines start permission of a vehicle system based on the temperature of a high-power battery that supplies power to the motor in a hybrid vehicle that travels in combination with an internal combustion engine and a motor.

従来から、エンジンの低温始動時には、エンジンのオイル粘性の上昇などに伴い、常温駆動の場合と比較して高い始動トルクを必要とする。しかし、一般に、低温時のバッテリ出力は常温時に比較して小さくなり、エンジン始動に支障を来す場合がある。   Conventionally, when the engine is started at a low temperature, a higher starting torque is required as compared with the case of normal temperature driving due to an increase in the oil viscosity of the engine. However, generally, the battery output at a low temperature is smaller than that at a normal temperature, which may hinder engine starting.

そこで、特許文献1では、エンジンの温度センサにより検出されたエンジン温度とバッテリ温度センサにより検出されたバッテリ温度が所定温度よりも低い場合、加温手段を用いてエンジン及びバッテリを加温するハイブリッド自動車が提案されている。特許文献1によれば、エンジンの低温始動時に非常用のスタータ電動機を用いることなく、低温始動性を向上することができるとされている。   Therefore, in Patent Document 1, when the engine temperature detected by the engine temperature sensor and the battery temperature detected by the battery temperature sensor are lower than a predetermined temperature, the hybrid vehicle warms the engine and the battery using the heating means. Has been proposed. According to Patent Document 1, it is said that cold startability can be improved without using an emergency starter motor at the time of cold start of the engine.

特開2001−234840号公報JP 2001-234840 A

ところで、アイドルストップを採用したハイブリッド車両では、低温時には電池出力が低下するためにエンジン出力に頼る必要がある。しかし、低温時にはエンジンフリクションが大きく、且つ電池出力が低くクランキングトルクも制限されており、エンジンがかかりにくい状態であるために、確実にエンジン始動できた後に車両システムの起動許可を出している。   By the way, in the hybrid vehicle which employ | adopted the idle stop, since a battery output falls at low temperature, it is necessary to depend on an engine output. However, since the engine friction is large at low temperatures, the battery output is low and the cranking torque is limited, and the engine is difficult to start, the vehicle system is permitted to start after the engine has been reliably started.

ここで、低温の判断はエンジンの冷却水温度で判断しているが、このエンジン水温センサ系が故障している場合、高めのフェールセーフ値(F/S値)をそのまま適用してしまうため低温判断ができず、車両システムの起動許可を誤判定してしまう場合があった。そして、エンジンフリクションが大きい状態でエンジン始動を試みることが起こりうる。この場合、強電バッテリのエネルギー(駆動用モータ動力)を活用するため、モータ負荷が必要以上に継続して大きくなることで、強電バッテリ上がりが発生し、再始動不可となるという問題が起こりうる。   Here, the low temperature is determined by the cooling water temperature of the engine. However, if this engine water temperature sensor system is broken, a higher fail-safe value (F / S value) is applied as it is. In some cases, the determination cannot be made, and the vehicle system activation permission is erroneously determined. An attempt to start the engine with a large amount of engine friction may occur. In this case, since the high-power battery energy (drive motor power) is utilized, the motor load continuously increases more than necessary, which may cause a problem that the high-power battery runs out and cannot be restarted.

本発明は、このような従来の課題に鑑みてなされたものであり、その目的は、内燃機関の温度推定精度が高いハイブリッド車両用起動判断装置を提供することである。   The present invention has been made in view of such a conventional problem, and an object of the present invention is to provide a start determination device for a hybrid vehicle having high temperature estimation accuracy of an internal combustion engine.

本発明の特徴は、内燃機関と電動機とを組合わせて走行するハイブリッド車両において、電動機へ電力を供給する強電バッテリの温度を測定するバッテリ温度測定部と、ハイブリッド車両の車両システムを停止した時にバッテリ温度計測部が測定した強電バッテリの温度と、車両システムを再び起動した時にバッテリ温度計測部が測定した強電バッテリの温度とに基づいて、車両システムを停止してから再び起動するまでの停止時間を推定する時間推定部と、時間推定部により推定された停止時間に基づいて、内燃機関の温度を推定する温度推定部とを備えるハイブリッド車両用起動判断装置であることを要旨とする。   A feature of the present invention is that, in a hybrid vehicle that travels by combining an internal combustion engine and an electric motor, a battery temperature measuring unit that measures the temperature of a high-power battery that supplies electric power to the electric motor, and a battery when the vehicle system of the hybrid vehicle is stopped Based on the temperature of the high-power battery measured by the temperature measurement unit and the temperature of the high-power battery measured by the battery temperature measurement unit when the vehicle system is started again, the stop time from when the vehicle system is stopped to when it is started again is calculated. The gist of the invention is a hybrid vehicle start-up determination device including a time estimation unit to be estimated and a temperature estimation unit to estimate the temperature of the internal combustion engine based on the stop time estimated by the time estimation unit.

本発明の特徴によれば、内燃機関の冷却水の温度を測定する水温センサが故障してもそのセンサ出力を代用できる推定値を精度良く求めることができる。若しくは上記の水温センサが無く場合でも低温条件での内燃機関の始動可否を適切に判断することができる。   According to the feature of the present invention, even if a water temperature sensor for measuring the temperature of the cooling water of the internal combustion engine fails, an estimated value that can substitute the sensor output can be obtained with high accuracy. Alternatively, whether or not the internal combustion engine can be started under a low temperature condition can be appropriately determined even when the above-described water temperature sensor is not provided.

本発明の特徴において、ハイブリッド車両用起動判断装置が、ハイブリッド車両の外気温を測定する外気温度測定部を更に備え、時間推定部が、外気温度測定部が測定した外気温を考慮して、推定した停止時間に補正を加えてもよい。これにより、強電バッテリの温度下降は冷却条件(環境温度)との温度差により影響を受けるため、これを考慮することにより内燃機関の温度推定精度を向上することができる。   In the feature of the present invention, the start determination device for a hybrid vehicle further includes an outside air temperature measurement unit that measures the outside air temperature of the hybrid vehicle, and the time estimation unit estimates the air temperature in consideration of the outside air temperature measured by the outside air temperature measurement unit. Correction may be made to the stopped time. As a result, the temperature drop of the high-power battery is affected by the temperature difference from the cooling condition (environmental temperature), so that the temperature estimation accuracy of the internal combustion engine can be improved by taking this into consideration.

本発明の特徴において、時間推定部が、前回の車両システム起動中に使用した強電バッテリの充放電積算値が大きいほど、長い停止時間を推定しても構わない。このようにして、強電バッテリの比熱及び内部温度上昇ディレイを考慮することにより、強電バッテリ温度変化に基づいた内燃機関の温度推定精度を更に向上させることができる。   In the characteristics of the present invention, the time estimation unit may estimate a longer stop time as the charge / discharge integrated value of the high-power battery used during the previous vehicle system activation is larger. In this way, by taking into account the specific heat of the high-power battery and the internal temperature rise delay, the temperature estimation accuracy of the internal combustion engine based on the high-power battery temperature change can be further improved.

以上説明したように、本発明によれば、内燃機関の温度推定精度が高いハイブリッド車両用起動判断装置を提供することができる。   As described above, according to the present invention, it is possible to provide a start determination device for a hybrid vehicle with high temperature estimation accuracy of the internal combustion engine.

本発明の実施の形態に係わるハイブリッド車両の主要な構成を示すブロック図である。It is a block diagram which shows the main structures of the hybrid vehicle concerning embodiment of this invention. 図1のハイブリッド車両用起動判断装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the starting judgment apparatus for hybrid vehicles of FIG. イグニッション・オフ後の強電バッテリ31の温度上昇と強電バッテリ31の充放電積算量(絶対値)との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature rise of the high-power battery 31 after ignition off, and the charge / discharge integrated amount (absolute value) of the high-power battery 31. イグニッション・オフ後の強電バッテリ31の温度上昇とイグニッションをオフしてから強電バッテリ31が最高電池温度まで到達するまでの所要時間(温度上昇所要時間)との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature rise of the high-power battery 31 after the ignition is turned off and the required time (temperature rise required time) from when the ignition is turned off until the high-power battery 31 reaches the maximum battery temperature. 強電バッテリ31の劣化状態とイグニッション・オフ後の強電バッテリ31の温度上昇の補正量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the deterioration state of the high-power battery 31, and the correction amount of the temperature rise of the high-power battery 31 after the ignition is turned off. 「強電バッテリ冷却時間」に「強電バッテリ冷却風温度」を乗じた量とイグニッション・オフ後の強電バッテリ31の温度上昇の補正量との関係の一例示すグラフである。It is a graph which shows an example of the relationship between the quantity which multiplied "high electric battery cooling time" by "high electric battery cooling wind temperature", and the correction amount of the temperature rise of the high electric battery 31 after ignition off. 「外気温」とイグニッション・オフ後の強電バッテリ31の温度上昇の補正量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between "outside temperature" and the correction amount of the temperature rise of the high-power battery 31 after ignition off. イグニッション・オフ後の強電バッテリ31の温度上昇と「外気温」と「冷却所要時間」との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the temperature rise of the high-power battery 31 after the ignition is turned off, “outside air temperature”, and “required cooling time”. イグニッション・オフ所要時間(停止時間)と「外気温」と「エンジン水温」との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between ignition off required time (stop time), "outside temperature", and "engine water temperature". 本発明の実施の形態及び比較例に係わるタイミングチャートの一例を示す図である。It is a figure which shows an example of the timing chart concerning embodiment of this invention and a comparative example.

以下図面を参照して、本発明の実施の形態を説明する。図面の記載において同一部分には同一符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same parts are denoted by the same reference numerals.

図1を参照して、本発明の実施の形態に係わるハイブリッド車両及びハイブリッド車両用起動判断装置の主要な構成を説明する。なお、図1において、細い破線は強電の接続を
示し、細い実線は弱電の接続を示し、太い実線は動力の接続を示し、一点破線は油圧の接続を示す。
With reference to FIG. 1, main configurations of a hybrid vehicle and a hybrid vehicle activation determination device according to an embodiment of the present invention will be described. In FIG. 1, a thin broken line indicates a strong electric connection, a thin solid line indicates a weak electric connection, a thick solid line indicates a power connection, and a one-dot broken line indicates a hydraulic connection.

ハイブリッド車両は、内燃機関の一例としてのエンジン35と、電動機の一例としての駆動用モータ33とを組合わせて走行する車両であって、車両全体を制御するCPU11と、エンジン35の始動をサポートする発電機34と、駆動用モータ33へ電力を供給する強電バッテリ31と、エンジン35の発生トルク及び回転数に応じて強電バッテリ31の電気エネルギーを駆動用モータ33へ供給するインバータ32と、CPU11の動作電源を提供する補助バッテリ12と、強電バッテリ31のエネルギーを12V程度へ変換して補助バッテリ12へ供給するDC/DCコンバータ43と、エンジン35の温度を検出する水温センサ44と、強電バッテリ31の温度を検出するバッテリ温度センサ(バッテリ温度計測部)42と、強電バッテリ31を冷却する冷却風の温度を検出する冷却風温度センサ45と、車両システムがおかれた環境の温度を検出する外気温センサ(外気温度測定部)46と、各タイヤ51a〜51dに対して設けられた機械ブレーキ22a〜22dと、ブレーキアクチュエータ21と、遊星歯車機構を有するトランスミッション(T/A)36とを備える。   The hybrid vehicle is a vehicle that travels in combination with an engine 35 as an example of an internal combustion engine and a drive motor 33 as an example of an electric motor, and supports the CPU 11 that controls the entire vehicle and the start of the engine 35. A generator 34, a high-power battery 31 that supplies power to the drive motor 33, an inverter 32 that supplies electric energy of the high-power battery 31 to the drive motor 33 according to the generated torque and rotation speed of the engine 35, and the CPU 11 An auxiliary battery 12 that provides an operating power source, a DC / DC converter 43 that converts the energy of the high-power battery 31 to about 12 V and supplies the battery to the auxiliary battery 12, a water temperature sensor 44 that detects the temperature of the engine 35, and the high-power battery 31 A battery temperature sensor (battery temperature measuring unit) 42 for detecting the temperature of the For the cooling air temperature sensor 45 that detects the temperature of the cooling air that cools the terry 31, the outside air temperature sensor (outside air temperature measuring unit) 46 that detects the temperature of the environment in which the vehicle system is placed, and the tires 51a to 51d Mechanical brakes 22a to 22d, a brake actuator 21, and a transmission (T / A) 36 having a planetary gear mechanism.

CPU11は、強電バッテリ31の充電状態(SOC)や温度、劣化状態を含む様々な状態をモニタし、これらの状態に応じて入出力可能な電力量を算出する。そして、算出した電力量をもとにインバータ32を制御することにより、駆動用モータ33及び発電機34を動作させるとともに、エンジン35を制御する。なお、駆動用モータ33とエンジン35との駆動力配分も制御する。また、CPU11は、駆動用モータ33による回生制動力を考慮し、機械ブレーキ22a〜22dにより発生する制動力演算指令値をブレーキアクチュエータ21へ送信する。なお、CPU11は、駆動用モータ33の回転数から自車速度を把握することを基本とする。その他、CPU11は、アクセルセンサなど各種センサ検出値をモニタする。   The CPU 11 monitors various states including the state of charge (SOC), temperature, and deterioration state of the high-power battery 31, and calculates the amount of power that can be input / output according to these states. Then, by controlling the inverter 32 based on the calculated electric energy, the drive motor 33 and the generator 34 are operated, and the engine 35 is controlled. The driving force distribution between the driving motor 33 and the engine 35 is also controlled. Further, the CPU 11 considers the regenerative braking force by the drive motor 33 and transmits a braking force calculation command value generated by the mechanical brakes 22 a to 22 d to the brake actuator 21. The CPU 11 is basically based on grasping the own vehicle speed from the rotational speed of the drive motor 33. In addition, the CPU 11 monitors detection values of various sensors such as an accelerator sensor.

補助バッテリ12は、CPU11の動作電源を提供し、強電バッテリ31を電源としたDC/DCコンバータ43により電力が供給される。ブレーキアクチュエータ21は、CPU11により演算された機械ブレーキ22a〜22dで発生させるべき制動力演算指令値を受信し、それに応じて機械ブレーキ22a〜22dに対し必要な油圧をかける。   The auxiliary battery 12 provides an operating power source for the CPU 11 and is supplied with power by a DC / DC converter 43 that uses the high-power battery 31 as a power source. The brake actuator 21 receives a braking force calculation command value to be generated by the mechanical brakes 22a to 22d calculated by the CPU 11, and applies a necessary hydraulic pressure to the mechanical brakes 22a to 22d accordingly.

機械ブレーキ22a〜22dは、ブレーキアクチュエータ21により発生された油圧に応じ、制動力を発生させる。強電バッテリ31は、駆動用モータ33に対してインバータ32を経由して電力を供給することで車両走行をアシストする。発電機34が発電した電力は、インバータ32を経由して強電バッテリ31へ回収される。その他、強電バッテリ31は、強電バッテリ31の温度を検出するバッテリ温度センサ42を内蔵し、バッテリ温度センサ42の検出値はCPU11へ送信される。   The mechanical brakes 22a to 22d generate a braking force according to the hydraulic pressure generated by the brake actuator 21. The high-power battery 31 assists vehicle travel by supplying power to the drive motor 33 via the inverter 32. The electric power generated by the generator 34 is recovered to the high-power battery 31 via the inverter 32. In addition, the high-power battery 31 includes a battery temperature sensor 42 that detects the temperature of the high-power battery 31, and the detected value of the battery temperature sensor 42 is transmitted to the CPU 11.

インバータ32は、CPU11により直接制御され、エンジン35が発生するトルク及び回転数に応じて、強電バッテリ31の電気エネルギーを駆動用モータ33へ供給し、発電機34により発電された電気エネルギーを強電バッテリ31へと戻す。なお、駆動用モータ33、発電機34及びエンジン35は、トランスミッション36に内蔵された遊星歯車機構に直結している。よって、インバータ32は、車両を正常に作動させるために、トルク及び回転数のバランスを保つように強電バッテリ31及び発電機34を制御する。   The inverter 32 is directly controlled by the CPU 11, and supplies the electric energy of the high-power battery 31 to the drive motor 33 according to the torque and the rotational speed generated by the engine 35, and the electric energy generated by the generator 34 is supplied to the high-power battery. Return to 31. The drive motor 33, the generator 34 and the engine 35 are directly connected to a planetary gear mechanism built in the transmission 36. Therefore, the inverter 32 controls the high-power battery 31 and the generator 34 so as to keep a balance between the torque and the rotational speed in order to operate the vehicle normally.

駆動用モータ33は、車速が低い場合、単独で駆動トルクを発生させる。すなわち、この場合、エンジン35は駆動トルクを発生しない。また、車速が高い場合、駆動用モータ33は、エンジン35が発生する駆動トルクをアシストする。さらに、車両の減速時、駆動用モータ33は、回生制動を行うことにより電気エネルギーを発生させる。発生した電
気エネルギーはインバータ32を経由して強電バッテリ31へ戻される。
The drive motor 33 generates drive torque independently when the vehicle speed is low. That is, in this case, the engine 35 does not generate drive torque. When the vehicle speed is high, the drive motor 33 assists the drive torque generated by the engine 35. Further, when the vehicle is decelerated, the drive motor 33 generates electric energy by performing regenerative braking. The generated electric energy is returned to the high voltage battery 31 via the inverter 32.

図1のハイブリッド車両は、エンジン35を始動させる為のスタータを有さない。本発明の実施の形態に係わるハイブリッド車両は、エンジン35の始動時に、強電バッテリ31から電力を供給し、発電機34をモータとして動作することでエンジン35の始動をサポートする。通常走行時は、駆動用モータ33とエンジン35とをバランスさせることで電気エネルギーを発生(発電)し、この電気エネルギーを強電バッテリ31へ戻す。或いは、発電した電気エネルギーを直接、駆動用モータ33へ供給することも可能である。これにより、急激な加速に対応することも可能となる。   The hybrid vehicle of FIG. 1 does not have a starter for starting the engine 35. The hybrid vehicle according to the embodiment of the present invention supports the start of the engine 35 by supplying electric power from the high-power battery 31 and operating the generator 34 as a motor when the engine 35 is started. During normal travel, electric energy is generated (power generation) by balancing the drive motor 33 and the engine 35, and this electric energy is returned to the high-power battery 31. Alternatively, the generated electric energy can be directly supplied to the drive motor 33. Thereby, it becomes possible to cope with rapid acceleration.

エンジン35は、CPU11により直接制御されている。具体的には、車速が高い場合、車両駆動のためにトルクを発生する。車速が低い場合はモータ走行となるため、CPU11による制御は不要となる。トランスミッション36は、遊星歯車機構を有する。遊星キャリアにはエンジン35、内歯車(リングギア)には駆動用モータ33、太陽歯車(サンギア)には発電機34がそれぞれ直接接続している。従来システムのトランスミッション相当も内部に構成されている。   The engine 35 is directly controlled by the CPU 11. Specifically, when the vehicle speed is high, torque is generated for driving the vehicle. Since the motor travels when the vehicle speed is low, control by the CPU 11 is unnecessary. The transmission 36 has a planetary gear mechanism. An engine 35 is directly connected to the planetary carrier, a drive motor 33 is directly connected to the internal gear (ring gear), and a generator 34 is directly connected to the sun gear (sun gear). The transmission equivalent of the conventional system is also configured inside.

DC/DCコンバータ43は、強電バッテリ31から供給される電圧を12V程度へ変換して補助バッテリ12へ供給する。DC/DCコンバータ43は、従来のエンジン車両におけるオルタネータと同様の機能を有する。   The DC / DC converter 43 converts the voltage supplied from the high voltage battery 31 to about 12 V and supplies the converted voltage to the auxiliary battery 12. The DC / DC converter 43 has the same function as an alternator in a conventional engine vehicle.

水温センサ44は、エンジン35の冷却水の温度を検出し、この情報をCPU11へ入力する。冷却風温度センサ45は、強電バッテリ31を冷却する冷却風の温度を検出し、この情報をCPU11へ入力する。外気温センサ46は、車両システムがおかれた環境の温度を検出し、この情報をCPU11へ入力する。   The water temperature sensor 44 detects the temperature of the cooling water of the engine 35 and inputs this information to the CPU 11. The cooling air temperature sensor 45 detects the temperature of the cooling air that cools the high-power battery 31 and inputs this information to the CPU 11. The outside air temperature sensor 46 detects the temperature of the environment where the vehicle system is placed, and inputs this information to the CPU 11.

図2を参照して、図1のハイブリッド車両用起動判断装置の動作の一例を説明する。   With reference to FIG. 2, an example of operation | movement of the hybrid vehicle starting determination apparatus of FIG. 1 is demonstrated.

(イ)先ずS01段階において、CPU11は、ハイブリッド車両のイグニッションをオフするときの車両情報を記録する。具体的には、イグニッション(IGN)のオフ処理を検知した後、車両システムのオフ処理を行う際、今回のトリップにおいて強電バッテリ31へ充電した電力量及び強電バッテリ31が放電した電力量の積算値(絶対値)を示す「強電バッテリ積算充放電量」を記録する。また、強電バッテリ31のバッテリ温度センサ42から、強電バッテリ31の温度を示す「強電バッテリ温度」を確認して記録する。   (A) First, in step S01, the CPU 11 records vehicle information when turning off the ignition of the hybrid vehicle. Specifically, after detecting the ignition (IGN) off process, when performing the vehicle system off process, the integrated value of the amount of power charged to the high-power battery 31 and the amount of power discharged from the high-power battery 31 in this trip Record “high-power battery accumulated charge / discharge amount” indicating (absolute value). Further, the “high-power battery temperature” indicating the temperature of the high-power battery 31 is confirmed and recorded from the battery temperature sensor 42 of the high-power battery 31.

(ロ)更に、強電バッテリ31からイグニッションをオフした後の「強電バッテリ冷却時間」及び「強電バッテリ劣化情報」を確認して記録する。また、水温センサ44よりエンジン35の冷却水の水温を示す「エンジン水温」を確認して記録する。冷却風温度センサ45より強電バッテリ31を冷却する冷却風の温度を示す「強電バッテリ冷却風温度」を確認して記録する。外気温センサ46より車両システムがおかれた環境の温度を示す「外気温」を確認して記憶する。   (B) Further, the “strong battery cooling time” and the “strong battery deterioration information” after turning off the ignition from the strong battery 31 are confirmed and recorded. Further, the “engine water temperature” indicating the coolant temperature of the engine 35 is confirmed and recorded by the water temperature sensor 44. The “high-power battery cooling air temperature” indicating the temperature of the cooling air that cools the high-power battery 31 from the cooling air temperature sensor 45 is confirmed and recorded. The “outside temperature” indicating the temperature of the environment where the vehicle system is placed is confirmed and stored from the outside temperature sensor 46.

(ハ)その後、S03段階に進み、CPU11は、再びイグニッションをオンした時の「強電バッテリ温度」及び「外気温」を確認する。   (C) Thereafter, the process proceeds to step S03, and the CPU 11 confirms the “strong battery temperature” and the “outside temperature” when the ignition is turned on again.

(ニ)S05段階に進み、CPU11は、上記した車両情報及び各種温度情報から、車両システムを停止してから再び起動するまでの停止時間、及びエンジン35の冷却水の水温(エンジン水温)を推定する。具体的に、CPU11は、ハイブリッド車両の車両システムを停止した時(イグニッションをオフした時)にバッテリ温度センサ42が測定した強電バッテリ31の温度と車両システムを再び起動した時にバッテリ温度センサ42が測
定した強電バッテリ31の温度とに基づいて、イグニッションをオフしてから再びオンするまでの停止時間を推定する時間推定部、及び時間推定部により推定された停止時間に基づいてエンジン35の温度(エンジン水温)を推定する温度推定部として動作する。
(D) Proceeding to step S05, the CPU 11 estimates the stop time from when the vehicle system is stopped to when it is started again and the coolant temperature of the engine 35 (engine water temperature) from the vehicle information and various temperature information described above. To do. Specifically, the CPU 11 measures the temperature of the high-power battery 31 measured by the battery temperature sensor 42 when the vehicle system of the hybrid vehicle is stopped (when the ignition is turned off) and the battery temperature sensor 42 when the vehicle system is started again. And the temperature of the engine 35 based on the stop time estimated by the time estimation unit (estimated stop time from when the ignition is turned off to when the ignition is turned on again). It operates as a temperature estimation unit that estimates water temperature.

(ホ)先ず、イグニッションをオフした時の「強電バッテリ温度」からどの程度の温度上昇があるかを「強電バッテリ積算充放電量」より推定する。図3に示すように、「強電バッテリ積算充放電量」の絶対値が大きいほど、強電バッテリ31は発熱するため、イグニッション・オフ後の強電バッテリ31の温度上昇量は大きくなる。   (E) First, it is estimated from the “high-power battery integrated charge / discharge amount” how much the temperature rises from the “high-power battery temperature” when the ignition is turned off. As shown in FIG. 3, the higher the absolute value of the “high-power battery integrated charge / discharge amount” is, the more the high-power battery 31 generates heat. Therefore, the temperature increase amount of the high-power battery 31 after the ignition is turned off increases.

(へ)図3より推定した温度上昇量を、「強電バッテリ冷却時間」、「強電バッテリ冷却風温度」で補正する。例えば図6に示すデータを参照して、温度上昇量を補正すればよい。図6の例では、冷却風の温度が低く或いは冷却時間が長いと、温度上昇が制限される。また、図3より推定した温度上昇量を、「外気温」で補正する。例えば図7に示すデータを参照して、温度上昇量を補正すればよい。図7の例では、外気温が低いと温度上昇が制限される。さらに、図3より推定した温度上昇量を、「強電バッテリ劣化情報」により、劣化が進むほど、内部抵抗が増大するため発熱する側に補正する。例えば図5に示すデータを参照して、温度上昇量を補正すればよい。図5の例では、内部抵抗の劣化が進むほど発熱量が増加して温度上昇が大きくなる。   (F) The temperature increase estimated from FIG. 3 is corrected by “strong battery cooling time” and “strong battery cooling air temperature”. For example, the temperature rise amount may be corrected with reference to the data shown in FIG. In the example of FIG. 6, when the temperature of the cooling air is low or the cooling time is long, the temperature rise is limited. Further, the temperature increase estimated from FIG. 3 is corrected by “outside air temperature”. For example, the temperature rise amount may be corrected with reference to the data shown in FIG. In the example of FIG. 7, the temperature rise is restricted when the outside air temperature is low. Further, the amount of temperature increase estimated from FIG. 3 is corrected to the side that generates heat because the internal resistance increases as the deterioration progresses, according to the “strong battery deterioration information”. For example, the temperature rise amount may be corrected with reference to the data shown in FIG. In the example of FIG. 5, the amount of heat generation increases and the temperature rises as the internal resistance deteriorates.

(ト)次に、上記のようにして推定及び補正されたイグニッション・オフ後の温度上昇から、イグニッションをオフしてから強電バッテリ31が最高電池温度まで到達するまでの所要時間(温度上昇所要時間)を推定する。具体的には、例えば図4に示すデータを参照して温度上昇所要時間を推定すればよい。   (G) Next, the time required for the high-power battery 31 to reach the maximum battery temperature after the ignition is turned off from the temperature rise after the ignition turned off estimated and corrected as described above (time required for temperature rise) ). Specifically, for example, the temperature increase time may be estimated with reference to the data shown in FIG.

(チ)次に、上記した最高電池温度に到達してから次回起動時(S03)での電池温度まで低下するまでの所要時間(冷却所要時間)を、「強電バッテリ冷却時間」と「強電バッテリ冷却風温度」及び「外気温」に基づいて推定する。具体的には、例えば図8に示すデータを参照して冷却所要時間を推定すればよい。図8の例では、最高電池温度と次回起動時(S03)での電池温度との温度差を縦軸に取り、「外気温」を横軸に取り、温度差が大きい程、また「外気温」が高い程、冷却所要時間が長くなる。   (H) Next, the required time (cooling required time) from the time when the above-mentioned maximum battery temperature is reached to the time when the battery temperature is lowered at the next startup (S03) is expressed as “strong battery cooling time” and “strong battery”. It is estimated based on “cooling air temperature” and “outside air temperature”. Specifically, for example, the cooling time may be estimated with reference to the data shown in FIG. In the example of FIG. 8, the temperature difference between the maximum battery temperature and the battery temperature at the next start-up (S03) is taken on the vertical axis, and “outside air temperature” is taken on the horizontal axis. "Is higher, the cooling time is longer.

(リ)次に、「温度上昇所要時間」と「冷却所要時間」とを合算して、これを、車両システムを停止してから再び起動するまで、すなわちイグニッションをオフしてから再びオンするまでの停止時間とする。そして、この停止時間及び「外気温」に基づいて「エンジン水温」を推定する。具体的には、例えば図9を参照して「エンジン水温」を推定すればよい。図9において、横軸(イグニッション・オフ所要時間)は、車両システムを停止してから再び起動するまでの停止時間に相当する。外気温が低いほど、また停止時間が長いほど、「エンジン水温」は低くなる。   (I) Next, the “temperature rise time” and “cooling time” are added together until the vehicle system is stopped and then restarted, that is, until the ignition is turned off and then turned on again. The stop time of Then, the “engine water temperature” is estimated based on the stop time and the “outside air temperature”. Specifically, for example, the “engine water temperature” may be estimated with reference to FIG. In FIG. 9, the horizontal axis (time required for ignition / off) corresponds to a stop time from when the vehicle system is stopped until it is started again. The lower the outside air temperature and the longer the stop time, the lower the “engine water temperature”.

(ヌ)S07段階に進み、推定した「エンジン水温」と再びイグニッションをオンした時に検出した「強電バッテリ温度」とを比較して、いずれか低い方に基づいてエンジンの低温始動判定を行う。   (N) Proceeding to step S07, the estimated "engine water temperature" is compared with the "high-power battery temperature" detected when the ignition is turned on again, and the engine low temperature start determination is performed based on whichever is lower.

図10を参照して、本発明の実施の形態による効果を説明する。図10の点線PRで示すように、水温センサ44は、異常時のフェールセーフ値(F/S値)が高温側に設定されていることが多い。高温側に設定されたフェールセーフ値を低温始動時にそのまま適用すると、適切な低温判断ができない。そして、エンジンフリクションが大きく、且つ強電バッテリ31が低温で出力制限がかかる状態で、エンジン35の始動を試みる場合、強電バッテリ31上がりを誘発し、結果的に車両システムの始動不能に至る可能性がある。これに対して本発明の実施の形態では、適切な低温判断が可能であり、無理な条件でのエン
ジン35の始動を試みるおそれが少なくなる。
With reference to FIG. 10, the effect by embodiment of this invention is demonstrated. As indicated by a dotted line PR in FIG. 10, the water temperature sensor 44 often has a fail-safe value (F / S value) at the time of abnormality set to a high temperature side. If the fail-safe value set on the high temperature side is applied as it is at the time of cold start, an appropriate low temperature judgment cannot be made. Then, when starting the engine 35 in a state where the engine friction is large and the high-power battery 31 is at a low temperature and the output is restricted, there is a possibility that the high-power battery 31 rises and consequently the vehicle system cannot be started. is there. On the other hand, in the embodiment of the present invention, it is possible to make an appropriate low temperature determination, and the possibility of attempting to start the engine 35 under unreasonable conditions is reduced.

上記のように、本発明は、1つの実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。すなわち、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲に係る発明特定事項によってのみ限定されるものである。   As described above, the present invention has been described by way of one embodiment, but it should not be understood that the discussion and drawings that form part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it should be understood that the present invention includes various embodiments and the like not described herein. Therefore, the present invention is limited only by the invention specifying matters according to the scope of claims reasonable from this disclosure.

11 CPU
12 補助バッテリ
21 ブレーキアクチュエータ
22a〜22d 機械ブレーキ
31 強電バッテリ
32 インバータ
33 駆動用モータ(電動機)
34 発電機
35 エンジン(内燃機関)
36 トランスミッション
42 バッテリ温度センサ(バッテリ温度測定部)
43 DC/DCコンバータ
44 水温センサ
45 冷却風温度センサ
46 外気温センサ(外気温度測定部)
51a〜51d タイヤ
11 CPU
DESCRIPTION OF SYMBOLS 12 Auxiliary battery 21 Brake actuator 22a-22d Mechanical brake 31 High electric battery 32 Inverter 33 Drive motor (electric motor)
34 Generator 35 Engine (Internal combustion engine)
36 Transmission 42 Battery temperature sensor (battery temperature measurement unit)
43 DC / DC converter 44 Water temperature sensor 45 Cooling air temperature sensor 46 Outside air temperature sensor (outside air temperature measuring unit)
51a-51d tires

Claims (3)

内燃機関と電動機とを組合わせて走行するハイブリッド車両において、前記電動機へ電力を供給する強電バッテリの温度を測定するバッテリ温度測定部と、
前記ハイブリッド車両の車両システムを停止した時に前記バッテリ温度計測部が測定した強電バッテリの温度と、前記車両システムを再び起動した時に前記バッテリ温度計測部が測定した強電バッテリの温度とに基づいて、前記車両システムを停止してから再び起動するまでの停止時間を推定する時間推定部と、
前記時間推定部により推定された前記停止時間に基づいて、前記内燃機関の温度を推定する温度推定部と
を備えることを特徴とするハイブリッド車両用起動判断装置。
In a hybrid vehicle that travels by combining an internal combustion engine and an electric motor, a battery temperature measuring unit that measures the temperature of a high-power battery that supplies electric power to the electric motor;
Based on the temperature of the high voltage battery measured by the battery temperature measurement unit when the vehicle system of the hybrid vehicle is stopped and the temperature of the high voltage battery measured by the battery temperature measurement unit when the vehicle system is started again, A time estimation unit for estimating a stop time from when the vehicle system is stopped until it is started again;
A start determination device for a hybrid vehicle, comprising: a temperature estimation unit that estimates a temperature of the internal combustion engine based on the stop time estimated by the time estimation unit.
前記ハイブリッド車両の外気温を測定する外気温度測定部を更に備え、
前記時間推定部は、前記外気温度測定部が測定した外気温を考慮して、推定した停止時間に補正を加えることを特徴とする請求項1に記載のハイブリッド車両用起動判断装置。
An outside air temperature measurement unit for measuring the outside air temperature of the hybrid vehicle;
The start determination device for a hybrid vehicle according to claim 1, wherein the time estimation unit corrects the estimated stop time in consideration of the outside air temperature measured by the outside air temperature measurement unit.
前記時間推定部は、前回の車両システム起動中に使用した前記強電バッテリの充放電積算値が大きいほど、長い停止時間を推定することを特徴とする請求項1または2に記載のハイブリッド車両用起動判断装置。   3. The hybrid vehicle start-up according to claim 1, wherein the time estimation unit estimates a longer stop time as a charge / discharge integrated value of the high-power battery used during the previous vehicle system start-up is larger. Judgment device.
JP2009140926A 2009-06-12 2009-06-12 Start determination device for hybrid vehicle Active JP5310286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009140926A JP5310286B2 (en) 2009-06-12 2009-06-12 Start determination device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009140926A JP5310286B2 (en) 2009-06-12 2009-06-12 Start determination device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2010285092A true JP2010285092A (en) 2010-12-24
JP5310286B2 JP5310286B2 (en) 2013-10-09

Family

ID=43541144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009140926A Active JP5310286B2 (en) 2009-06-12 2009-06-12 Start determination device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP5310286B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086833A1 (en) 2010-12-21 2012-06-28 Yazaki Corporation Connector with reinforced structure
KR20190029186A (en) * 2017-09-12 2019-03-20 현대자동차주식회사 Fault diagnosis of timer for engine off time monitoring

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328905A (en) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd Battery control unit of automobile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004328905A (en) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd Battery control unit of automobile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086833A1 (en) 2010-12-21 2012-06-28 Yazaki Corporation Connector with reinforced structure
KR20190029186A (en) * 2017-09-12 2019-03-20 현대자동차주식회사 Fault diagnosis of timer for engine off time monitoring
KR102335532B1 (en) 2017-09-12 2021-12-03 현대자동차주식회사 Fault diagnosis of timer for engine off time monitoring

Also Published As

Publication number Publication date
JP5310286B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP3750608B2 (en) Control device for power storage device in vehicle
JP6011541B2 (en) Charge control device and charge control method
JP5372086B2 (en) Vehicle control device
US8606485B1 (en) Control device for internal combustion engine and control method for internal combustion engine
JP5548697B2 (en) Vehicle control device
US9327609B2 (en) Controller for hybrid vehicle
US8504232B2 (en) Electrically powered vehicle and method for controlling the same
JP6969357B2 (en) Vehicle hybrid system
JP2002058112A (en) Controller for hybrid vehicle
WO2016125852A1 (en) Vehicle power-source device and vehicle-power-source-device control method
JP2009078807A (en) Battery control device and charge/discharge control method for battery
JP2010064679A (en) Method of controlling hybrid automobile, and device therefor
JP2008012963A (en) Controller for hybrid car
US9586577B2 (en) Control device for vehicle and control method for vehicle
JP5310286B2 (en) Start determination device for hybrid vehicle
JP2005351202A (en) Engine stop/start control device
JP2010127178A (en) Startup control device for internal combustion engine
JPH11262101A (en) Permanent magnet wheel-in motor
JP6927326B2 (en) Vehicle control method and vehicle control device
JP2017178005A (en) Hybrid vehicle and control method therefor
KR20160136725A (en) Starting torque control system and method for hybrid electric vehicle
JP4595253B2 (en) Power supply
JP4386003B2 (en) Battery protection control device for hybrid vehicle
JP4884031B2 (en) Vehicle power supply system
KR101500407B1 (en) Method and system for controlling driving of hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5310286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150