JP2010284116A - Method for producing phospholipid composition - Google Patents

Method for producing phospholipid composition Download PDF

Info

Publication number
JP2010284116A
JP2010284116A JP2009140653A JP2009140653A JP2010284116A JP 2010284116 A JP2010284116 A JP 2010284116A JP 2009140653 A JP2009140653 A JP 2009140653A JP 2009140653 A JP2009140653 A JP 2009140653A JP 2010284116 A JP2010284116 A JP 2010284116A
Authority
JP
Japan
Prior art keywords
phospholipid
soybean
composition
lecithin
phospholipid composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009140653A
Other languages
Japanese (ja)
Other versions
JP5475335B2 (en
Inventor
Kazuichi Tomonobu
一市 友延
Takeshi Goto
健 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009140653A priority Critical patent/JP5475335B2/en
Publication of JP2010284116A publication Critical patent/JP2010284116A/en
Application granted granted Critical
Publication of JP5475335B2 publication Critical patent/JP5475335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a phospholipid composition free from a nitrogen-containing base and highly containing a phospholipid. <P>SOLUTION: The method for producing the phospholipid composition includes reacting lecithin with an extract of a soybean enzyme extracted from a soybean seed having ≤145% water absorption, and having ≥9.0 of the activity ratio of phospholipase D to phospholipase C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、含窒素塩基を含まないリン脂質を高含有するリン脂質組成物を製造する方法に関するものである。   The present invention relates to a method for producing a phospholipid composition containing a high amount of phospholipid not containing a nitrogen-containing base.

リン脂質は生体膜を構成する主要な脂質であるが、乳化作用、酸化防止作用等を有することから、食品添加物として、マーガリン、乳飲料、アイスクリーム、菓子類等に広く用いられている。一方で、ホスファチジルコリン(PC)及びホスファチジルエタノールアミン(PE)といったリン脂質は、構成成分である含窒素化合物が熱に対して不安定であるため、加熱すると容易に着色、悪臭の発生を起こすとされている(特許文献1)。従って、含窒素塩基を含まないリン脂質、例えばホスファチジン酸(PA)、ホスファチジルイノシトール(PI)などを高含有するリン脂質は、食品のみならず、医薬品、化粧品などの様々な分野へ有用であると考えられている。   Phospholipids are the main lipids that make up biological membranes, but because they have emulsifying action, antioxidant action, etc., they are widely used as food additives in margarine, milk drinks, ice creams, confectionery and the like. On the other hand, phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are considered to easily cause coloring and odor generation when heated because the nitrogen-containing compounds that are constituents are unstable to heat. (Patent Document 1). Accordingly, phospholipids that do not contain nitrogenous bases, such as phosphatidic acid (PA), phosphatidylinositol (PI), and the like that are high in content, are useful not only for foods but also for various fields such as pharmaceuticals and cosmetics. It is considered.

PAの製造法としては、レシチンを、ホスホリパーゼD(PL−D)で加水分解する方法や、PL−DとホスホリパーゼC(PL−C)とを組み合わせて加水分解する方法が知られている(特許文献2−4)。PL−Dは、PCやPEをPAと含窒素塩基に加水分解する酵素で、PL−Cは、PIをジグリセリドとホスホリルイノシトールに加水分解する酵素である。   As a method for producing PA, there are known a method of hydrolyzing lecithin with phospholipase D (PL-D) and a method of hydrolyzing by combining PL-D and phospholipase C (PL-C) (patent). Literature 2-4). PL-D is an enzyme that hydrolyzes PC or PE into PA and a nitrogen-containing base, and PL-C is an enzyme that hydrolyzes PI into diglyceride and phosphorylinositol.

また、レシチンを大豆等の油糧種子抽出物により処理することでPAを製造する方法が知られている(特許文献5及び6)。この方法によってはPAを高純度で得ることができる。   Moreover, the method of manufacturing PA by processing a lecithin with oil seed extracts, such as a soybean, is known (patent documents 5 and 6). By this method, PA can be obtained with high purity.

特公平7−24548号公報Japanese Examined Patent Publication No. 7-24548 特開平3−4795号公報Japanese Patent Laid-Open No. 3-4795 特公平6−77509号公報Japanese Examined Patent Publication No. 6-77509 特開平4−66091号公報Japanese Patent Laid-Open No. 4-66091 特公平6−83639号公報Japanese Patent Publication No. 6-83639 特公平6−77507号公報Japanese Examined Patent Publication No. 6-77507

前記PL−D及びPL−Cを用いてレシチンを加水分解する従来技術は、いずれも酵素源として微生物由来のものを用いており、これは高価であるため工業的生産に適さない。一方、大豆等の油糧種子抽出物により処理する方法では、PIの分解率も高くなるため含窒素塩基を含まないリン脂質自体の収率は下がる。また、処理後にリン脂質を抽出する際、分離が困難で作業性が悪くなる結果、収率が下がる場合があった。そこで、含窒素塩基を含まないリン脂質を、作業性を良好として効率よく製造できる方法が望まれている。   The conventional techniques for hydrolyzing lecithin using PL-D and PL-C both use microorganism-derived materials as enzyme sources, which are expensive and are not suitable for industrial production. On the other hand, in the method of treating with an oilseed extract such as soybean, the decomposition rate of PI increases, so the yield of phospholipid itself containing no nitrogen-containing base is lowered. In addition, when extracting phospholipids after treatment, separation may be difficult and workability may deteriorate, resulting in a decrease in yield. Therefore, a method is desired that can efficiently produce a phospholipid that does not contain a nitrogen-containing base with good workability.

従って、本発明は、含窒素塩基を含まないリン脂質を高含有するリン脂質組成物の効率的な製造方法を提供することを課題とする。   Therefore, an object of the present invention is to provide an efficient method for producing a phospholipid composition containing a high amount of a phospholipid not containing a nitrogen-containing base.

本発明者は、レシチンを大豆種子から抽出した酵素含有抽出物(以下「大豆酵素抽出物」と記載する)により処理する方法において酵素源である大豆について検討したところ、吸水率の高い大豆からの抽出物は、レシチンの加水分解反応終了後に粘質な固形分を生成し、これがリン脂質組成物製造時における連続遠心の工程や溶媒(ヘキサン)でリン脂質組成物を抽出する際の分離性を低下させ、結果としてリン脂質組成物中のリン脂質の抽出率を下げることを見出した。また、含窒素塩基を含まないリン脂質の収率を上げ、かつPC及びPEの構成比を低くするためには、大豆酵素抽出物中のPL−DとPL−Cの活性のバランス(PL−D/PL−C活性比)が重要であることを見出した。
そして、酵素源である大豆として特定の吸水率の大豆種子を用い、且つ大豆酵素抽出物中の前記活性比を9.0以上とすれば、PCとPEを分解することにより高純度のPAが得られ、且つPIの分解を抑制でき、さらに作業性が良く抽出率も向上するため、極めて効率良く含窒素塩基を含まないリン脂質を高含有するリン脂質組成物を製造することができることを見出した。
The present inventor examined soybean as an enzyme source in a method of treating lecithin with an enzyme-containing extract (hereinafter referred to as “soy enzyme extract”) extracted from soybean seeds. The extract produces a sticky solid after completion of the lecithin hydrolysis reaction, which provides the separation performance when the phospholipid composition is extracted with a continuous centrifugation step or solvent (hexane) during the production of the phospholipid composition. It was found that the extraction rate of phospholipids in the phospholipid composition was lowered as a result. In order to increase the yield of phospholipids not containing nitrogenous bases and to lower the composition ratio of PC and PE, the balance of the activities of PL-D and PL-C in soybean enzyme extract (PL- (D / PL-C activity ratio) was found to be important.
Then, if soybean seeds having a specific water absorption rate are used as soybean as the enzyme source and the activity ratio in the soybean enzyme extract is 9.0 or more, high purity PA can be obtained by decomposing PC and PE. It has been found that the decomposition of PI can be suppressed, the workability is good, and the extraction rate is improved, so that a phospholipid composition containing a high amount of phospholipid not containing a nitrogen-containing base can be produced very efficiently. It was.

すなわち、本発明は、レシチンに、吸水率が145%以下である大豆種子より抽出され、ホスホリパーゼDとホスホリパーゼCの活性比が9.0以上である大豆酵素抽出物を反応させるリン脂質組成物の製造方法を提供するものである。   That is, the present invention relates to a phospholipid composition obtained by reacting lecithin with a soybean enzyme extract extracted from soybean seeds having a water absorption of 145% or less and having an activity ratio of phospholipase D and phospholipase C of 9.0 or more. A manufacturing method is provided.

本発明の方法によれば、PCとPEを分解しつつ、PIを多く残存させることができ、また、作業性が良く抽出率も向上するため、含窒素塩基を含まないリン脂質を高含有するリン脂質組成物を効率良く得ることができる。   According to the method of the present invention, it is possible to leave a large amount of PI while decomposing PC and PE, and because the workability is good and the extraction rate is improved, the phospholipid containing no nitrogenous base is highly contained. A phospholipid composition can be obtained efficiently.

本発明で用いるレシチンは、PC、PE、PA、PI、ホスファチジルセリン(PS)及びホスファチジルグリセロール(PG)、又はこれらのリゾ体などからなるリン脂質混合物である。レシチンは各種動植物由来のもの、化学合成により得られたものを用いることができるが、大豆、卵黄等を原料とする天然由来のレシチンが好ましい。また、ペースト状のクルードレシチン、油脂分を除去した脱脂レシチン、水素添加レシチンなどを用いることもできる。   The lecithin used in the present invention is a phospholipid mixture comprising PC, PE, PA, PI, phosphatidylserine (PS) and phosphatidylglycerol (PG), or their lyso form. As lecithin, those derived from various animals and plants and those obtained by chemical synthesis can be used. Naturally derived lecithin made from soybeans, egg yolks and the like is preferred. Also, paste-like crude lecithin, defatted lecithin from which oils and fats have been removed, hydrogenated lecithin, and the like can be used.

本発明で用いる大豆種子は、その吸水率が145%以下のものである。吸水率が145%を超える大豆種子から得られた酵素抽出物を用いると、レシチンの加水分解反応後に粘質な固形分が生成するため、リン脂質組成物製造時における連続遠心の工程や溶剤抽出の際に分離性すなわち作業性が著しく悪く、抽出率が劣る。また、吸水率が145%以下の大豆種子から得られた酵素抽出物を用いると、PIがより分解され難いという特性も有する。大豆種子の吸水率は、更には100〜140%、特に120〜139%であるのが作業性、抽出率、PIの分解され難さの点から好ましい。なお、大豆種子の吸水率は、大豆種子を10倍重量の水に20時間浸漬し、浸漬後の大豆質量と浸漬前の大豆質量の比(次式〔1〕)から求めることができる。
吸水率(%)={(浸漬後の大豆質量(g)−浸漬前の大豆質量(g))/浸漬前の大豆質量(g)}×100 〔1〕
The soybean seed used in the present invention has a water absorption of 145% or less. When an enzyme extract obtained from soybean seeds having a water absorption rate exceeding 145% is used, a viscous solid is produced after the hydrolysis reaction of lecithin. In this case, the separability, that is, the workability is remarkably poor, and the extraction rate is poor. In addition, when an enzyme extract obtained from soybean seeds having a water absorption rate of 145% or less is used, PI also has a characteristic that PI is more difficult to be decomposed. The water absorption rate of soybean seeds is further preferably 100 to 140%, particularly preferably 120 to 139% from the viewpoints of workability, extraction rate, and difficulty in decomposing PI. The water absorption rate of soybean seeds can be determined by immersing the soybean seeds in 10 times the weight of water for 20 hours and calculating the ratio of the soybean mass after immersion to the soybean mass before immersion (the following formula [1]).
Water absorption (%) = {(Soybean mass after immersion (g) −Soybean mass before immersion (g)) / Soybean mass before immersion (g)} × 100 [1]

大豆酵素抽出物は、大豆種子を生のまま或いは乾燥した後に、破砕処理したものから抽出することにより得られる。本発明においては、長期保存が可能なように乾燥した通常の乾燥大豆を用いることが好ましい。破砕処理は、特に制限されず、例えばワーリングブレンダー等の公知の装置、方法によって行うことができる。破砕処理後、ふるい分けして夾雑物を除去したものを用いてもよい。   The soybean enzyme extract can be obtained by extracting soybean seeds raw or dried and then crushed. In the present invention, it is preferable to use normal dried soybeans that have been dried so that they can be stored for a long time. The crushing process is not particularly limited, and can be performed by a known apparatus and method such as a Waring blender. After the crushing treatment, a material obtained by sieving to remove impurities may be used.

抽出方法は、浸漬、煎出、浸出、還流抽出、カラム通液抽出、超臨界抽出、超音波抽出、マイクロ波抽出等のいずれでもよい。抽出は、例えば、酵素活性維持の点から、カラム通液抽出するのが好ましい。   The extraction method may be any of immersion, decoction, leaching, reflux extraction, column flow extraction, supercritical extraction, ultrasonic extraction, microwave extraction, and the like. For the extraction, for example, column extraction is preferably performed from the viewpoint of maintaining enzyme activity.

抽出液としては、水、あるいはアルカリ金属塩又はアルカリ土類金属塩の1種又は2種以上を含有する水溶液が挙げられる。アルカリ金属塩又はアルカリ土類金属塩としては、例えば、アルカリ金属又はアルカリ土類金属のカルボン酸塩、リン酸塩、炭酸塩;アルカリ金属又はアルカリ土類金属のハロゲン化物、水酸化物等が挙げられる。中でも、カルボン酸塩、リン酸塩、ハロゲン化物が好ましい。これらは単独で又は2種以上を組み合わせて使用できる。
前記カルボン酸としては、炭素数2〜8の直鎖又は分岐鎖の脂肪族カルボン酸、ジカルボン酸、トリカルボン酸、炭素数7〜12の芳香族カルボン酸が挙げられ、例えば酢酸、酪酸、プロピオン酸、コハク酸、クエン酸、安息香酸等が挙げられる。また、アルカリ金属としては、例えばナトリウム、カリウムが挙げられ、アルカリ土類金属としては、例えばマグネシウム、カルシウムが挙げられる。
Examples of the extract include water or an aqueous solution containing one or more of alkali metal salts or alkaline earth metal salts. Examples of the alkali metal salt or alkaline earth metal salt include alkali metal or alkaline earth metal carboxylates, phosphates, carbonates; alkali metal or alkaline earth metal halides, hydroxides, and the like. It is done. Of these, carboxylates, phosphates and halides are preferred. These can be used alone or in combination of two or more.
Examples of the carboxylic acid include linear or branched aliphatic carboxylic acids having 2 to 8 carbon atoms, dicarboxylic acids, tricarboxylic acids, and aromatic carboxylic acids having 7 to 12 carbon atoms, such as acetic acid, butyric acid, and propionic acid. Succinic acid, citric acid, benzoic acid and the like. Examples of the alkali metal include sodium and potassium, and examples of the alkaline earth metal include magnesium and calcium.

また、抽出液は緩衝能を有することが好ましい。緩衝能を有するものとして、例えば、酢酸ナトリウム緩衝液、クエン酸ナトリウム緩衝液、リン酸ナトリウム緩衝液、クエン酸ナトリウム−酢酸ナトリウム緩衝液等が挙げられる。さらに、これらの緩衝液に、緩衝能を有さない、例えばアルカリ金属又はアルカリ土類金属のハロゲン化物等を併用しても良い。   The extract preferably has a buffer capacity. Examples of the buffering ability include sodium acetate buffer, sodium citrate buffer, sodium phosphate buffer, sodium citrate-sodium acetate buffer, and the like. Further, these buffer solutions may be used in combination with, for example, alkali metal or alkaline earth metal halides that do not have buffer capacity.

抽出液として、アルカリ金属又はアルカリ土類金属のカルボン酸塩、リン酸塩を含有する水溶液を使用する場合、抽出液中のカルボン酸イオン又はリン酸イオンの濃度は酵素活性を効率よく維持する点から、0.05〜1.0M、特に0.1〜0.5Mの範囲が好ましい。   When using an aqueous solution containing an alkali metal or alkaline earth metal carboxylate or phosphate as the extract, the concentration of the carboxylate or phosphate ions in the extract maintains the enzyme activity efficiently. Therefore, the range of 0.05 to 1.0M, particularly 0.1 to 0.5M is preferable.

抽出液のpHは、抽出効率の点から、pH4〜7.5、特にpH5〜7の範囲が好ましい。   The pH of the extract is preferably in the range of pH 4 to 7.5, particularly pH 5 to 7 from the viewpoint of extraction efficiency.

得られた大豆酵素抽出物は、必要に応じて糖質、タンパク質、各種塩類等の安定化剤を添加し、減圧濃縮、乾燥或いは凍結乾燥等の処理により液状、固形状とし、必要に応じて前記の抽出液を添加して使用することができる。また、大豆酵素抽出物は、本発明の効果を発揮するものであれば粗精製物であってもよく、さらに得られた粗精製物を公知の分離精製方法を適宜組み合わせてこれらの純度を高めてもよい。精製手段としては、有機溶剤沈殿、遠心分離、限界濾過膜、高速液体クロマトグラフやカラムクロマトグラフなどが挙げられる。   The obtained soybean enzyme extract is added with stabilizers such as sugars, proteins, various salts as necessary, and is made into a liquid or solid form by treatment such as concentration under reduced pressure, drying or freeze-drying. The above extract can be added and used. The soybean enzyme extract may be a crude product as long as it exhibits the effects of the present invention, and the obtained crude product is combined with known separation and purification methods as appropriate to increase the purity thereof. May be. Examples of the purification means include organic solvent precipitation, centrifugation, ultrafiltration membrane, high performance liquid chromatograph, column chromatograph and the like.

本発明において、大豆酵素抽出物中のホスホリパーゼD(PL−D)とホスホリパーゼC(PL−C)の活性比(PL−D/PL−C活性比)は9.0以上である。PL−D/PL−C活性比が9.0以上である大豆酵素抽出物を用いることにより、リン脂質組成物のPA組成比が高くなり、一方でPIの分解率を抑えることができるため、リン脂質組成物中の含窒素塩基を含まないリン脂質の含有量を向上させることができる。PL−D/PL−C活性比は、9.0〜15.0が好ましく、更には10.2〜13.0が好ましく、特に10.5〜12.0が好ましい。   In the present invention, the activity ratio (PL-D / PL-C activity ratio) of phospholipase D (PL-D) and phospholipase C (PL-C) in the soybean enzyme extract is 9.0 or more. By using a soybean enzyme extract having a PL-D / PL-C activity ratio of 9.0 or more, the PA composition ratio of the phospholipid composition is increased, while the degradation rate of PI can be suppressed. The content of phospholipids that do not contain a nitrogen-containing base in the phospholipid composition can be improved. The PL-D / PL-C activity ratio is preferably 9.0 to 15.0, more preferably 10.2 to 13.0, and particularly preferably 10.5 to 12.0.

本発明において、レシチンと大豆酵素抽出物との反応は、これらを混合、攪拌してスラリー状にし、反応温度10〜60℃、好ましくは20〜50℃で行うのが反応効率の点から好ましい。大豆酵素抽出物の使用割合は、レシチンに対して質量比で1〜50、好ましくは1〜10である。また、空気との接触が出来るだけ回避されるように、窒素、アルゴン等の不活性ガスの存在下で行うのが好ましい。   In the present invention, the reaction between lecithin and the soybean enzyme extract is preferably carried out at a reaction temperature of 10 to 60 ° C., preferably 20 to 50 ° C. from the viewpoint of reaction efficiency, by mixing and stirring them into a slurry. The use ratio of the soybean enzyme extract is 1 to 50, preferably 1 to 10 in terms of mass ratio with respect to lecithin. Moreover, it is preferable to carry out in presence of inert gas, such as nitrogen and argon, so that contact with air may be avoided as much as possible.

また、リン脂質組成物中の含窒素塩基を含まないリン脂質の含有量をより高めるために、各リン脂質の組成比(総リン脂質質量中の質量%)を経時的に測定しながら行い、リン脂質のうちPA組成比が90%以上に達した時点で反応を終了させることが好ましい。反応終了後は、反応液から固形分を遠心分離等により分取し、水洗等した後にヘキサン等の有機溶媒にてリン脂質を抽出し、精製するのが好ましい。有機溶媒抽出後のリン脂質組成物中には、リン脂質の他に、PIが分解することにより生成したジアシルグリセロールが含まれ、この含有量はPIの分解率により左右されるが、通常リン脂質組成物中の5〜15質量%程度である。   Moreover, in order to further increase the content of phospholipids that do not contain a nitrogenous base in the phospholipid composition, the composition ratio of each phospholipid (mass% in the total phospholipid mass) is measured over time, The reaction is preferably terminated when the PA composition ratio of the phospholipid reaches 90% or more. After completion of the reaction, it is preferable that the solid content is separated from the reaction solution by centrifugation or the like, washed with water, and then extracted with an organic solvent such as hexane and purified. The phospholipid composition after extraction with an organic solvent contains diacylglycerol produced by decomposing PI in addition to phospholipid, and the content depends on the decomposition rate of PI. It is about 5-15 mass% in a composition.

かくして、リン脂質組成物中のリン脂質のPA組成比90%以上、好ましくは90〜96%未満、更に好ましくは90〜94%未満とPAが高い純度で得られつつも、PI分解率80%未満、好ましくは66%未満、更に好ましくは60%以上66%未満に抑えることができ、含窒素塩基を含まないリン脂質を効率良く得ることができる。リン脂質組成物中のリン脂質のPI組成比は4%以上、好ましくは5%以上10%未満である。   Thus, the PA composition ratio of the phospholipid in the phospholipid composition is 90% or more, preferably 90 to less than 96%, more preferably less than 90 to 94%, and the PA degradation rate is 80% while being obtained with high purity. Less than, preferably less than 66%, more preferably not less than 60% and less than 66%, and a phospholipid containing no nitrogen-containing base can be obtained efficiently. The PI composition ratio of the phospholipid in the phospholipid composition is 4% or more, preferably 5% or more and less than 10%.

また、リン脂質組成物中のリン脂質の含窒素塩基を含まないリン脂質(PA及びPI)の組成比は94%以上、更に96%以上、特に97〜99.5%であるのが好ましい。また、リン脂質組成物中のリン脂質のPC及びPEの組成比は6%未満であるのが好ましく、更に5%未満、特に3%未満であるのが好ましい。さらに、これら以外のリン脂質、例えばホスファチジルセリン等の総組成比は0.5%以下、特に0.1%以下であることが好ましい。   Further, the composition ratio of phospholipids (PA and PI) not containing a nitrogen-containing base of phospholipid in the phospholipid composition is preferably 94% or more, more preferably 96% or more, and particularly preferably 97 to 99.5%. The composition ratio of phospholipid PC and PE in the phospholipid composition is preferably less than 6%, more preferably less than 5%, and particularly preferably less than 3%. Furthermore, the total composition ratio of phospholipids other than these, such as phosphatidylserine, is preferably 0.5% or less, particularly preferably 0.1% or less.

〔分析方法〕
(1)PL-C活性測定法
ここでいうPL-C活性とは、大豆酵素抽出物1mlが1分間に加水分解するPIの量(nmol)を意味し、PL-CによりPIをイノシトールリン酸とジアシルグリセロールに分解する工程後、生成したイノシトールリン酸のリン量を測定する以下の方法で測定した。
<試薬>
(A)基質・緩衝液:基質としてPI(SIGMA P-6636)80mgを0.5%デオキシコール酸(東京化成工業)水溶液5mlに加え、さらに0.38M酢酸緩衝液(pH6)10mlを加え溶解したもの。
(B)リン標準液:リン含量が正確に0.5mMとなるように蒸留水でリン酸一カリウム(和光純薬工業)を溶解したもの。
(C)反応停止液:クロロホルム66ml、メタノール33ml、濃塩酸1mlを混合したもの。
(D)酸化剤
(E)脱色剤
(F)発色剤
(D)〜(F)は過マンガン酸塩灰化法のリン脂質テストキット試薬(和光純薬工業製)を使用した。
<操作>
(i)測定対象となる試料(下記「大豆酵素抽出物の調製」により得られた大豆酵素抽出物)100μLを試験管に正確に計り取った。このとき、ブランクとして試料を取らない試験管を準備し、同時に分析した。
(ii)37℃水浴中で、前記2つの試験管にそれぞれ前記(A)の基質・緩衝液400μLを正確に計り取った後に加えて混合し、加えた時点から30分間放置した。
(iii)同時に検量線作成用に、標準ブランクとして蒸留水500μL、標準リンとして前記(B)のリン標準液500μLを各々正確に試験管に計り取っておいた。
(iv)(i)の試料及びブランク、並びに(iii)の検量線作成用の標準ブランク及びリン標準液を入れた各々の試験管に前記(C)の反応停止液2.5mLを正確に加え、よく混合した。
(v)上記試験管をそのまま1000rpmで10分間遠心分離し、上層200μLを正確に別の試験管に計り取った。
(vi)遠心分離で上層を採取した試験管に硫酸0.2mLを正確に加え、混合したのち沸騰浴中で10分間放置した。
(vii)前記(D)の酸化剤1.0mLを正確に加えて混合したのち、ガラス玉を試験管の上にのせ、沸騰浴中で30分放置した。
(viii)室温で10分間放冷し、ガラス玉を取った。
(ix)前記(E)の脱色剤1.0mLを正確に加え、よく撹拌した。
(x)前記(F)の発色剤0.25mLを正確に加え、混合したのち、37℃水浴中で20分間放置した。
(xi)流水で10分間冷却した。
(xii)吸光度計(HITACHI、U-3310)で660nmの吸光度を測定し、下記式〔2〕より活性を求めた。
[Analysis method]
(1) PL-C activity measurement method PL-C activity here means the amount (nmol) of PI that 1 ml of soybean enzyme extract hydrolyzes in 1 minute. PI is converted to inositol phosphate by PL-C. After the step of decomposing into diacylglycerol, the amount of inositol phosphate produced was measured by the following method.
<Reagent>
(A) Substrate / buffer solution: 80 mg of PI (SIGMA P-6636) as a substrate was added to 5 ml of 0.5% deoxycholic acid (Tokyo Chemical Industry) aqueous solution, and 10 ml of 0.38 M acetic acid buffer (pH 6) was further dissolved.
(B) Phosphorus standard solution: A solution obtained by dissolving monopotassium phosphate (Wako Pure Chemical Industries, Ltd.) with distilled water so that the phosphorus content is accurately 0.5 mM.
(C) Reaction stop solution: Mixture of 66 ml of chloroform, 33 ml of methanol and 1 ml of concentrated hydrochloric acid.
(D) Oxidizing agent
(E) Decolorizer
(F) Color former
(D) to (F) used a phospholipid test kit reagent (manufactured by Wako Pure Chemical Industries, Ltd.) of permanganate ashing method.
<Operation>
(i) 100 μL of a sample to be measured (soy enzyme extract obtained by “Preparation of soybean enzyme extract” below) was accurately measured in a test tube. At this time, the test tube which does not take a sample as a blank was prepared and analyzed simultaneously.
(ii) In a 37 ° C. water bath, 400 μL of the substrate / buffer solution of (A) was accurately weighed into each of the two test tubes, added and mixed, and allowed to stand for 30 minutes after the addition.
(iii) At the same time, 500 μL of distilled water as a standard blank and 500 μL of the phosphorus standard solution (B) as standard phosphorus were accurately measured in a test tube for preparing a calibration curve.
(iv) Accurately add 2.5 mL of the reaction stop solution of (C) above to each test tube containing the sample and blank of (i) and the standard blank and phosphorus standard solution for preparation of the calibration curve of (iii), Mix well.
(v) The above test tube was directly centrifuged at 1000 rpm for 10 minutes, and 200 μL of the upper layer was accurately weighed into another test tube.
(vi) 0.2 mL of sulfuric acid was accurately added to a test tube from which the upper layer was collected by centrifugation, mixed, and then left in a boiling bath for 10 minutes.
(vii) After accurately adding 1.0 mL of the oxidizing agent (D) and mixing, a glass ball was placed on the test tube and left in a boiling bath for 30 minutes.
(viii) The mixture was allowed to cool at room temperature for 10 minutes, and a glass ball was taken out.
(ix) 1.0 mL of the decoloring agent (E) was added accurately and stirred well.
(x) The color developing agent (F) (0.25 mL) was accurately added and mixed, and then left in a 37 ° C. water bath for 20 minutes.
(xi) Cooled with running water for 10 minutes.
(xii) Absorbance at 660 nm was measured with an absorptiometer (HITACHI, U-3310), and activity was determined from the following formula [2].

活性(nmoL/min・mL)=(試料吸光度−ブランク吸光度)×83.3/(標準リン吸光度−標準ブランク吸光度) 〔2〕   Activity (nmoL / min · mL) = (Sample Absorbance−Blank Absorbance) × 83.3 / (Standard Phosphorus Absorbance−Standard Blank Absorbance) [2]

(2)PL-D活性測定法
ここでいうPL-D活性とは、大豆酵素抽出物1mlが1分間に加水分解するPCの量(nmol)を意味し、PL-DによりPCをコリンとPAに分解する工程後、生成したコリンをコリンオキシダーゼ・フェノール法にて測定する以下の方法で測定した。
<試薬>
(G)基質・緩衝液:基質としてPC(商品名エピクロンS-200、Lucas Mayer社製)0.3gに、0.13%ノニデットP-40(SIGMA N-3516)水溶液10mlと75mM酢酸緩衝液(75mM塩化カルシウム入り;pH6.0)20mlを加え、溶解したもの。
(H)標準塩化コリン溶液:0.2mM塩化コリン(SIGMA C-1879)を含む50mM酢酸緩衝液(50mM塩化カルシウム入り;pH6.0)
(I)反応停止液: 1Mトリス塩酸緩衝液(150mM EDTA2ナトリウム2水塩入り;pH8.0)。
(J)発色基質液:4-アミノアンチピリン61mgを、100mMトリス塩酸緩衝液(4mMフェノール入り;pH8.0)100mlに溶解したもの。
(K)発色液:前記(J)発色基質液10mlに6mgコリンオキシダーゼ(SIGMA C-5896)6mgとパーオキシダーゼ(和光純薬工業)1mgを溶解したもの。
(L)発色停止液:1%(w/v)トリトンX-100(和光純薬工業)水溶液。
<操作>
(i)75mM酢酸緩衝液で50倍に希釈した測定対象となる試料(下記「大豆酵素抽出物の調製」により得られた大豆酵素抽出物)200μLを試験管に正確に取った。このとき、ブランクとして試料を取らない試験管、標準ブランクとして蒸留水200μLを正確に取った試験管、及び標準コリンとして前記(H)標準塩化コリン溶液200μLを正確に取った試験管を準備し、同時に分析した。
(ii)37℃水浴中で、前記(G)基質・緩衝液300μLを各々の試験管に正確に加えて混合し、加えた時点から10分間放置した。
(iii)正確に10分経過したら、前記(I)反応停止液200μLを各々の試験管に正確に加え、よく混合した。
(iv)前記(K)発色液500μLを各々の試験管に正確に加えて混合し、37℃水浴中で20分間放置し、発色させた。
(v)前記(L)発色停止液2mLを各々の試験管に正確に加えて混合し、吸光度計(HITACHI、U-3310)で500nmの吸光度を測定し、下記式〔3〕より活性を求めた。
(2) PL-D activity measurement method PL-D activity here means the amount (nmol) of PC that 1 ml of soybean enzyme extract hydrolyzes in 1 minute. After the step of decomposing, the produced choline was measured by the following method of measuring by choline oxidase / phenol method.
<Reagent>
(G) Substrate / buffer solution: 0.3 g of PC (trade name Epicron S-200, manufactured by Lucas Mayer) as a substrate, 10 ml of 0.13% nonidet P-40 (SIGMA N-3516) aqueous solution and 75 mM acetate buffer (75 mM chloride) Calcium containing; pH 6.0) 20ml added and dissolved.
(H) Standard choline chloride solution: 50 mM acetate buffer solution (containing 50 mM calcium chloride; pH 6.0) containing 0.2 mM choline chloride (SIGMA C-1879)
(I) Reaction stop solution: 1 M Tris-HCl buffer (containing 150 mM EDTA2 sodium dihydrate; pH 8.0).
(J) Chromogenic substrate solution: A solution prepared by dissolving 61 mg of 4-aminoantipyrine in 100 ml of 100 mM Tris-HCl buffer (containing 4 mM phenol; pH 8.0).
(K) Coloring solution: A solution obtained by dissolving 6 mg of choline oxidase (SIGMA C-5896) and 1 mg of peroxidase (Wako Pure Chemical Industries) in 10 ml of the above (J) coloring substrate solution.
(L) Color stop solution: 1% (w / v) Triton X-100 (Wako Pure Chemical Industries) aqueous solution.
<Operation>
(i) 200 μL of a sample to be measured (soy enzyme extract obtained by “Preparation of soybean enzyme extract” below) diluted 50 times with 75 mM acetate buffer was accurately taken in a test tube. At this time, prepare a test tube that does not take a sample as a blank, a test tube that accurately takes 200 μL of distilled water as a standard blank, and a test tube that accurately takes 200 μL of the (H) standard choline chloride solution as a standard choline, Analyzed simultaneously.
(ii) In a 37 ° C. water bath, 300 μL of the (G) substrate / buffer solution was accurately added to each test tube, mixed, and allowed to stand for 10 minutes after the addition.
(iii) After exactly 10 minutes, 200 μL of the (I) reaction stop solution was accurately added to each test tube and mixed well.
(iv) The above (K) coloring solution (500 μL) was accurately added to each test tube, mixed, and allowed to stand in a 37 ° C. water bath for 20 minutes for color development.
(v) Add exactly 2 mL of the (L) color stop solution to each test tube, mix, measure the absorbance at 500 nm with an absorptiometer (HITACHI, U-3310), and determine the activity from the following formula [3]. It was.

活性(nmoL/min・mL)=20×(試料吸光度−ブランク吸光度)×(サンプルの希釈倍率)/(標準塩化コリン吸光度−標準ブランク吸光度) 〔3〕   Activity (nmoL / min · mL) = 20 × (sample absorbance−blank absorbance) × (sample dilution factor) / (standard choline chloride absorbance−standard blank absorbance) [3]

(3)リン脂質組成の測定法
ヘキサンをリン脂質組成物1mLに対し3mLの割合で加え、よく混合した。3000rpmで10分間遠心分離し、上層を採取した。得られた上層3〜4滴にクロロホルム1mLを加えた。この溶液10μLを液体クロマトグラフに注入し、リン脂質組成を下記式〔4〕より求めた。
液体クロマトグラフ測定条件
カラム:ワコーシルNH2(5μm)、4.0×150mm (和光純薬工業)
カラム温度:40℃
溶離液:アセトニトリル/エタノール/12mMリン酸二水素アンモニウム水溶液(30/65/5容量比)
流速:1.0ml/min
検出:UV 210nm
(3) Method for measuring phospholipid composition Hexane was added in a ratio of 3 mL to 1 mL of the phospholipid composition and mixed well. The mixture was centrifuged at 3000 rpm for 10 minutes, and the upper layer was collected. 1 mL of chloroform was added to 3 to 4 drops of the obtained upper layer. 10 μL of this solution was injected into a liquid chromatograph, and the phospholipid composition was determined from the following formula [4].
Liquid chromatographic measurement column: Wakosil NH2 (5μm), 4.0 × 150mm (Wako Pure Chemical Industries)
Column temperature: 40 ° C
Eluent: acetonitrile / ethanol / 12mM ammonium dihydrogen phosphate aqueous solution (30/65/5 volume ratio)
Flow rate: 1.0ml / min
Detection: UV 210nm

各リン脂質のモル組成比(%)=各リン脂質のピーク面積/4成分のリン脂質(PC、PE、PA、PI)のピーク面積の和 〔4〕   Molar composition ratio (%) of each phospholipid = peak area of each phospholipid / sum of peak areas of four component phospholipids (PC, PE, PA, PI) [4]

実施例1〜6、比較例1及び2
(1)大豆酵素抽出物の調製
6種類の市販の乾燥大豆200gをワーリングブレンダーにてそれぞれ破砕した。破砕物はふるいにかけて夾雑物を除去した後、ガラスカラムに充填し、ペリスタポンプで流量を3.3ml/minに調整しながらカラム底部から抽出液(50mM塩化カルシウム入りの0.4M酢酸ナトリウム緩衝液;pH6.0)を流し、カラム上部から酵素抽出物を900g回収した。
(2)酵素反応
撹拌装置を備えた1000mLの4口フラスコに、市販の脱脂レシチン(商品名SLP-WSP:辻製油(株)製)を100gとり、これに酵素抽出物600gを加え、遮光、窒素ガス雰囲気下、30℃の条件で反応を行った。なお、本レシチンはリン脂質が100質量%であり、そのリン脂質組成(モル比)は、PA10.9%、PI16.2%、PC38.2%、PE34.7%であった。リン脂質中のPAのモル比が90%となった時点(実施例1〜4、比較例1及び2)、さらにPAのモル比が高まった時点(実施例5及び6)でそれぞれ反応液を採取し、リン脂質組成を高速液体クロマトグラフィーで分析し、反応終了後の総リン脂質の収量(総リン脂質質量の計算値)、PA+PIの収量及びそれぞれの収率を、下記に示した計算に従って求めた。
(3)計算方法
反応開始前の原料レシチンはPA、PC、PE及びPIから構成されているので、原料レシチン100g中の各リン脂質の質量は、各リン脂質の平均分子量にそれぞれのモル数を乗じることにより算出することができる。ここで、原料レシチン中の各リン脂質のモル数は、それぞれのモル組成比に比例した値であるので、原料レシチン中のPA、PC、PE及びPIのモル組成比をそれぞれA、B、C及びDとし、それぞれの平均分子量をMwPA、MwPC、MwPE、MwPIとすると、例えば原料レシチン100g中のPAの質量WPAは、
PA={(MwPA×A)/(MwPA×A+MwPC×B+MwPE×C+MwPI×D)}×100
であり、よって、原料レシチン100g中のPAのモル数MnPAは、
MnPA=WPA/MwPA
である。その他のリン脂質についても同様にMnPC、MnPE、MnPIが算出される。
次に、各リン脂質の反応後のモル数をmnPA、mnPC、mnPE、mnPIとし、反応終了後のPA、PC、PE及びPIのモル組成比をそれぞれa、b、c及びdとする。ここで、PIは反応によりDAGに分解されて減少するが、PC及びPEは、酵素反応によりそれぞれPAが生成するため、PA+PC+PEの合計モル数は反応前後で変化しないので、
mnPA+mnPC+mnPE=MnPA+MnPC+MnPE
であり、よって、
mnPI/(MnPA+MnPC+MnPE+mnPI)=d
であり、ここで、MnPA+MnPC+MnPE=Xとすれば次の式が導かれる。
mnPI=d×X/(1−d)
すると、反応終了後のPA、PC及びPEのモル数は、それぞれ、
mnPA=a×{X+d×X/(1−d)}
mnPC=b×{X+d×X/(1−d)}
mnPE=c×{X+d×X/(1−d)}
となる。以上から、反応終了後の各リン脂質のモル数にそれぞれの平均分子量を乗じて収量を算出し、「総リン脂質の収量」及び「PA+PIの収量」を求めた。
また、PIの分解率は下記式〔5〕より、PIの分解により生じたジアシルグリセロール(DAG)の収量については下記式〔6〕よりそれぞれ算出した。
PIの分解率(%)=(MnPI−mnPI)/MnPI×100 〔5〕
DAGの収量=(MnPI−mnPI)×DAGの平均分子量 〔6〕
大豆の吸水率は、前記の式〔1〕より算出した。
Examples 1-6, Comparative Examples 1 and 2
(1) Preparation of soybean enzyme extract Six types of commercially available dried soybeans (200 g) were each crushed with a Waring blender. The crushed material is sieved to remove contaminants, then packed into a glass column, and the extract (0.4 M sodium acetate buffer containing 50 mM calcium chloride; pH 6.) adjusted from the bottom of the column while adjusting the flow rate to 3.3 ml / min with a peristaltic pump. 0) and 900 g of enzyme extract was recovered from the top of the column.
(2) Enzymatic reaction In a 1000 mL four-necked flask equipped with a stirrer, 100 g of commercially available defatted lecithin (trade name SLP-WSP: manufactured by Sakai Oil Co., Ltd.) is added, and 600 g of enzyme extract is added to this, and the light is blocked The reaction was performed at 30 ° C. in a nitrogen gas atmosphere. The lecithin contained 100% by mass of phospholipid, and the phospholipid composition (molar ratio) was PA 10.9%, PI 16.2%, PC 38.2%, PE 34.7%. When the molar ratio of PA in the phospholipid reached 90% (Examples 1 to 4, Comparative Examples 1 and 2), and when the molar ratio of PA further increased (Examples 5 and 6), The phospholipid composition was collected and analyzed by high performance liquid chromatography. The total phospholipid yield (calculated value of the total phospholipid mass), PA + PI yield and each yield after the reaction were shown below. Obtained according to the calculation.
(3) Calculation method Since the raw material lecithin before starting the reaction is composed of PA, PC, PE and PI, the mass of each phospholipid in 100 g of the raw material lecithin is the number of moles of each phospholipid in the average molecular weight. It can be calculated by multiplying. Here, since the number of moles of each phospholipid in the raw lecithin is a value proportional to the molar composition ratio, the molar composition ratios of PA, PC, PE and PI in the raw lecithin are respectively A, B, C. And D, and the average molecular weights of Mw PA , Mw PC , Mw PE and Mw PI , for example, the mass W PA of PA in 100 g of raw lecithin is:
W PA = {(Mw PA × A) / (Mw PA × A + Mw PC × B + Mw PE × C + Mw PI × D)} × 100
Therefore, the molar number Mn PA of PA in 100 g of raw material lecithin is
Mn PA = W PA / Mw PA
It is. Similarly, Mn PC , Mn PE and Mn PI are calculated for other phospholipids.
Next, the number of moles of each phospholipid after the reaction is mn PA , mn PC , mn PE , mn PI , and the molar composition ratio of PA, PC, PE and PI after the reaction is a, b, c and d, respectively. And Here, PI is decomposed into DAG by the reaction and decreases. However, since PC and PE each generate PA by the enzymatic reaction, the total number of moles of PA + PC + PE does not change before and after the reaction.
mn PA + mn PC + mn PE = Mn PA + Mn PC + Mn PE
And therefore
mn PI / (Mn PA + Mn PC + Mn PE + mn PI ) = d
Here, if Mn PA + Mn PC + Mn PE = X, the following formula is derived.
mn PI = d × X / (1-d)
Then, the number of moles of PA, PC and PE after completion of the reaction is respectively
mn PA = a × {X + d × X / (1-d)}
mn PC = b × {X + d × X / (1-d)}
mn PE = c × {X + d × X / (1-d)}
It becomes. From the above, the yield was calculated by multiplying the number of moles of each phospholipid after the reaction by the respective average molecular weight, and the “total phospholipid yield” and “PA + PI yield” were determined.
Moreover, the decomposition rate of PI was calculated from the following formula [5], and the yield of diacylglycerol (DAG) produced by the decomposition of PI was calculated from the following formula [6].
Decomposition rate of PI (%) = (Mn PI −mn PI ) / Mn PI × 100 [5]
Yield of DAG = (Mn PI −mn PI ) × average molecular weight of DAG [6]
The water absorption rate of soybean was calculated from the above formula [1].

反応終了後、反応液を遠心分離(3000rpm×10分)することで得られた固形分は、加水(1%NaCl水溶液 500g)と遠心分離の繰り返し(4回)による水洗工程を経た後、分液ロート中でヘキサン(Hex)700mlに懸濁され、リン脂質組成物を抽出した。分液ロートを撹拌静置30分後にHex相と水相の分相状態を観察し、リン脂質組成物をHexで抽出する際の分離性を下記基準に従って評価した。
〔分離性〕
○:撹拌静置30分後にHex相と水相の界面が完全に分離した状態
△:撹拌静置60分後にHex相と水相の界面が完全に分離した状態
×:撹拌静置60分以上経過してもHex相と水相の界面が分離しない状態
After completion of the reaction, the solid content obtained by centrifuging the reaction solution (3000 rpm × 10 minutes) is subjected to a water washing step by repeating water addition (500% of 1% NaCl aqueous solution) and centrifugation (four times). It was suspended in 700 ml of hexane (Hex) in a liquid funnel, and the phospholipid composition was extracted. The separation phase of the Hex phase and the aqueous phase was observed after 30 minutes of stirring in the separatory funnel, and the separability when extracting the phospholipid composition with Hex was evaluated according to the following criteria.
[Separability]
○: The state where the interface between the Hex phase and the aqueous phase is completely separated after 30 minutes of stirring and standing Δ: The state where the interface between the Hex phase and the aqueous phase is completely separated after 60 minutes of stirring and standing x: More than 60 minutes when standing still A state in which the interface between the Hex phase and the aqueous phase does not separate even after elapse

さらに、Hexで抽出後得られたリン脂質組成物からHexを除去した後のリン脂質組成物の最終収量の実測値と、反応終了後の総リン脂質とジアシルグリセロールを含むリン脂質組成物収量の計算値から下記式〔7〕より抽出率を求めた。
抽出率(%)=Hexを除去した後のリン脂質組成物の最終収量の実測値(g)/反応終了後のリン脂質組成物収量の計算値(g)×100 〔7〕
結果を表1に示す。
Furthermore, the actual value of the final yield of the phospholipid composition after removing Hex from the phospholipid composition obtained after extraction with Hex, and the yield of the phospholipid composition containing total phospholipid and diacylglycerol after the reaction was completed. The extraction rate was calculated from the calculated value by the following formula [7].
Extraction rate (%) = actual value of final yield of phospholipid composition after removal of Hex (g) / calculated value of yield of phospholipid composition after completion of reaction (g) × 100 [7]
The results are shown in Table 1.

Figure 2010284116
Figure 2010284116

表1の結果から、吸水率145%以下の大豆種子から抽出したもので、且つPL−DとPL−Cの活性比が9.0以上である大豆酵素抽出物をレシチンに加えて反応させることにより、含窒素塩基を含まないリン脂質を高濃度で含有するリン脂質組成物を効率良く製造することができることが確認された。
すなわち、実施例1−6では、PC及びPE分解率が高く、またPI分解率を抑えることができ、且つ反応液の分相状態が良好であったためリン脂質組成物を抽出する際の分離性、PA+PIの収率が良かった。一方、PL−DとPL−Cの活性比が9.0未満である大豆酵素抽出物を用いた比較例1では、PI分解率が極めて高くなりリン脂質組成物中の含窒素塩基を含まないリン脂質の収率が悪かった。
大豆種子の吸水率が145%を超える比較例2では、PI分解率が高い上に、反応液の分相状態に劣り分離性が極めて低いためリン脂質組成物中の含窒素塩基を含まないリン脂質の収率が悪かった。
From the results shown in Table 1, a soybean enzyme extract extracted from soybean seeds having a water absorption of 145% or less and having an activity ratio of PL-D and PL-C of 9.0 or more is added to lecithin for reaction. Thus, it was confirmed that a phospholipid composition containing a high concentration of a phospholipid not containing a nitrogen-containing base can be efficiently produced.
That is, in Example 1-6, the PC and PE decomposition rates were high, the PI decomposition rate could be suppressed, and the phase separation state of the reaction solution was good, so the separability when extracting the phospholipid composition The yield of PA + PI was good. On the other hand, in Comparative Example 1 using the soybean enzyme extract in which the activity ratio of PL-D and PL-C is less than 9.0, the PI degradation rate becomes extremely high and does not contain the nitrogenous base in the phospholipid composition. The yield of phospholipid was poor.
In Comparative Example 2 where the water absorption rate of soybean seeds exceeds 145%, the PI decomposition rate is high, and the phase separation state of the reaction solution is inferior and the separability is extremely low. Therefore, phosphorus containing no nitrogenous base in the phospholipid composition is contained. The yield of lipid was poor.

Claims (5)

レシチンに、吸水率が145%以下である大豆種子より抽出され、ホスホリパーゼDとホスホリパーゼCの活性比が9.0以上である大豆酵素抽出物を反応させるリン脂質組成物の製造方法。   A method for producing a phospholipid composition comprising reacting lecithin with a soybean enzyme extract extracted from soybean seeds having a water absorption of 145% or less and having an activity ratio of phospholipase D and phospholipase C of 9.0 or more. レシチンが天然由来のレシチンである請求項1記載の製造方法。   The method according to claim 1, wherein the lecithin is naturally derived lecithin. リン脂質組成物中のリン脂質のうち、含窒素塩基を含まないリン脂質の組成比が94%以上である請求項1又は2記載の製造方法。   The production method according to claim 1 or 2, wherein, among the phospholipids in the phospholipid composition, the composition ratio of phospholipids not containing a nitrogenous base is 94% or more. 含窒素塩基を含まないリン脂質が、ホスファチジン酸及びホスファチジルイノシトールである請求項3記載の製造方法。   The production method according to claim 3, wherein the phospholipids not containing a nitrogen-containing base are phosphatidic acid and phosphatidylinositol. リン脂質組成物中のリン脂質のうち、ホスファチジン酸組成比が90%以上、ホスファチジルイノシトール組成比が4%以上で得るものである請求項1〜4のいずれか1項記載の製造方法。   The production method according to any one of claims 1 to 4, wherein the phosphatidic acid composition ratio is 90% or more and the phosphatidylinositol composition ratio is 4% or more among the phospholipids in the phospholipid composition.
JP2009140653A 2009-06-12 2009-06-12 Method for producing phospholipid composition Active JP5475335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009140653A JP5475335B2 (en) 2009-06-12 2009-06-12 Method for producing phospholipid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009140653A JP5475335B2 (en) 2009-06-12 2009-06-12 Method for producing phospholipid composition

Publications (2)

Publication Number Publication Date
JP2010284116A true JP2010284116A (en) 2010-12-24
JP5475335B2 JP5475335B2 (en) 2014-04-16

Family

ID=43540336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009140653A Active JP5475335B2 (en) 2009-06-12 2009-06-12 Method for producing phospholipid composition

Country Status (1)

Country Link
JP (1) JP5475335B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016501709A (en) * 2012-10-24 2016-01-21 カーギル インコーポレイテッド Phospholipid-containing emulsifier composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427431A (en) * 1987-04-08 1989-01-30 Kao Corp Mold release oil composition for food
JPH02186946A (en) * 1989-01-10 1990-07-23 Kao Corp Method for modifying phospholipid
JPH02312551A (en) * 1989-05-26 1990-12-27 Kao Corp Modification of phospholipid
JPH02312552A (en) * 1989-05-26 1990-12-27 Kao Corp Modification of phospholipid
JPH0466091A (en) * 1990-07-06 1992-03-02 Kao Corp Production of phosphatidic acid with immobilized enzyme

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427431A (en) * 1987-04-08 1989-01-30 Kao Corp Mold release oil composition for food
JPH02186946A (en) * 1989-01-10 1990-07-23 Kao Corp Method for modifying phospholipid
JPH02312551A (en) * 1989-05-26 1990-12-27 Kao Corp Modification of phospholipid
JPH02312552A (en) * 1989-05-26 1990-12-27 Kao Corp Modification of phospholipid
JPH0466091A (en) * 1990-07-06 1992-03-02 Kao Corp Production of phosphatidic acid with immobilized enzyme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016501709A (en) * 2012-10-24 2016-01-21 カーギル インコーポレイテッド Phospholipid-containing emulsifier composition

Also Published As

Publication number Publication date
JP5475335B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
Casado et al. Phospholipases in food industry: a review
JP4933432B2 (en) New phospholipid processing agent
EP2308954B1 (en) Method for production of highly pure phospholipid, and highly pure sphingomyelin and plasmalogen-type glycerophospholipid produced by the method
JP5934483B2 (en) Phospholipid-binding DHA increasing agent
JP2987682B2 (en) Concentration of acidic phospholipids
JP5475335B2 (en) Method for producing phospholipid composition
JPS6333387A (en) Production of phospholipid containing lysophospholipid having reduced neutral lipid content
JP2007119361A (en) Phospholipase a2 inhibitor
JPH066032B2 (en) Method for producing enzyme-modified lecithin
JP5530696B2 (en) Plasmalogen phospholipid
JPH0387191A (en) Production of phosphatidylinositol
WO2013187328A1 (en) Method for producing phospholipid-containing composition, and phospholipid-containing composition
JPH08168390A (en) Production of glyceride containing highly unsaturated fatty acid
WO2005090587A1 (en) Method of removing enzyme and method of base exchange or hydrolysis of phospholipid using the same
JP5894377B2 (en) Method for producing phospholipid
JP5041790B2 (en) Process for producing phosphatidylserine having polyunsaturated fatty acid as a constituent
JP2503567B2 (en) Lecithin purification method
JPH06228170A (en) Phosphatidylchromanol derivative, its production, antioxidizing agent and emulsifying agent
JP6177862B2 (en) Method for producing phospholipid
JP2002218991A (en) Method for producing phosphatidyl serine
JP2515839B2 (en) Phospholipid purification method
JP2017042163A (en) Method for producing sterylglycoside and sterylglycoside-containing material
Cerrato et al. One-phase extraction coupled with photochemical reaction allows the in-depth lipid characterization of hempseeds by untargeted lipidomics
ES2882528T3 (en) Enzymatic Degumming of Unrefined Triglyceride Oil
JPH0662648B2 (en) Method for producing high-purity lecithin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R151 Written notification of patent or utility model registration

Ref document number: 5475335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250