JP2010281809A - Air flow rate measuring device - Google Patents

Air flow rate measuring device Download PDF

Info

Publication number
JP2010281809A
JP2010281809A JP2010070590A JP2010070590A JP2010281809A JP 2010281809 A JP2010281809 A JP 2010281809A JP 2010070590 A JP2010070590 A JP 2010070590A JP 2010070590 A JP2010070590 A JP 2010070590A JP 2010281809 A JP2010281809 A JP 2010281809A
Authority
JP
Japan
Prior art keywords
cavity
recess
sensor chip
sensor substrate
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010070590A
Other languages
Japanese (ja)
Other versions
JP5182314B2 (en
Inventor
Takashi Enomoto
崇 榎本
Junzo Yamaguchi
順三 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010070590A priority Critical patent/JP5182314B2/en
Priority to DE201010028387 priority patent/DE102010028387A1/en
Publication of JP2010281809A publication Critical patent/JP2010281809A/en
Application granted granted Critical
Publication of JP5182314B2 publication Critical patent/JP5182314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air flow meter for stabilizing the sensor output by suppressing turbulence of air flowing on the rear side of a sensor chip 12. <P>SOLUTION: In a case 13 for holding the sensor chip 12, a recess 13a is formed on a surface along the flow of the air, the sensor chip 12 is stored in the recess 13a, and the other end side of a sensor substrate 7 is fixed to the bottom surface of the recess 13a with an adhesive 14 to support the sensor chip 12 in a cantilever manner. One end side of the sensor substrate 7 having a diaphragm 8 is not stuck to the bottom surface of the recess 13a, so that a gap is disposed between the sensor substrate 7 and the recess 13a. The case 13 includes a projection 13b that projects from the bottom surface of the recess 13a toward a cavity 7a of the sensor substrate 7 removed to form the diaphragm 8, and enters the cavity 7a, and a substantially uniform gap is formed between it and the cavity 7a. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、センサ部に薄膜式(チップ式)の流量測定素子を用いた空気流量測定装置に関する。   The present invention relates to an air flow rate measuring apparatus using a thin film type (chip type) flow rate measuring element for a sensor unit.

従来、自動車用エンジンの吸入空気量を測定するエアフロメータ(熱式流量計)には、高精度、高応答の市場要求から、センサ部にチップ式の流量検出素子(以下、センサチップと呼ぶ)を用いたものが知られている(特許文献1参照)。
センサチップは、例えば、図21(a)、(b)に示す様に、センサ基板100の一部にダイヤフラム(薄膜部)110を形成し、そのダイヤフラム110の表面上に薄膜抵抗体120を配置して構成され、樹脂ケース130の表面に形成された凹部140に収納されて、接着剤150により固定されている。
2. Description of the Related Art Conventionally, air flow meters (thermal flow meters) that measure the intake air amount of automobile engines have a chip-type flow rate detection element (hereinafter referred to as a sensor chip) in the sensor unit because of market requirements with high accuracy and high response. Is known (see Patent Document 1).
In the sensor chip, for example, as shown in FIGS. 21A and 21B, a diaphragm (thin film portion) 110 is formed on a part of the sensor substrate 100, and a thin film resistor 120 is disposed on the surface of the diaphragm 110. It is comprised, is accommodated in the recessed part 140 formed in the surface of the resin case 130, and is being fixed with the adhesive agent 150. FIG.

しかし、センサ基板100を樹脂ケース130に全面接着すると、両者の線膨張係数が大きく異なるため、センサ基板100に応力が発生し、その応力によってセンサ基板100(特に、ダイヤフラム110が形成されている部分)に歪みが生じる。その結果、ダイヤフラム110の表面上に配置される薄膜抵抗体120の抵抗値が変化して、流量検出精度に影響を与えることが分かっている。このため、図21(a)に示す様に、センサ基板100の長手方向の一方の端部(ダイヤフラム110が形成される部分から遠い方の端部)のみを樹脂ケース130に接着する片持ち構造が一般的である。   However, when the sensor substrate 100 is entirely bonded to the resin case 130, the linear expansion coefficients of the two differ greatly, so that stress is generated in the sensor substrate 100, and the sensor substrate 100 (particularly, the portion where the diaphragm 110 is formed) due to the stress. ) Is distorted. As a result, it has been found that the resistance value of the thin film resistor 120 arranged on the surface of the diaphragm 110 changes and affects the flow rate detection accuracy. For this reason, as shown in FIG. 21A, a cantilever structure in which only one end in the longitudinal direction of the sensor substrate 100 (the end far from the portion where the diaphragm 110 is formed) is bonded to the resin case 130. Is common.

特開2008−309623号公報JP 2008-309623 A

ところが、センサチップを片持ち構造にすると、センサチップの裏側、つまり、樹脂ケース130に形成された凹部140とセンサ基板100との間に隙間が生じるため、エアフロメータに空気が流れた時に、センサチップの裏側にも空気が流れる。
しかし、樹脂ケース130の凹部140とセンサ基板100との間に生じる隙間は、全体に均一ではなく、センサ基板100にダイヤフラム110が設けられる部分だけ隙間が大きくなっている。つまり、ダイヤフラム110は、エッチング等によりセンサ基板100の裏側に空洞部111を設けることで形成されるため、その空洞部111の影響によってセンサ基板100の裏側を通る空気の流れに乱れが生じる。
However, if the sensor chip has a cantilever structure, a gap is formed between the back side of the sensor chip, that is, the recess 140 formed in the resin case 130 and the sensor substrate 100, so that when air flows through the air flow meter, Air also flows behind the chip.
However, the gap formed between the recess 140 of the resin case 130 and the sensor substrate 100 is not uniform as a whole, and the gap is large only in the portion where the diaphragm 110 is provided on the sensor substrate 100. That is, since the diaphragm 110 is formed by providing the cavity 111 on the back side of the sensor substrate 100 by etching or the like, the air flow passing through the back side of the sensor substrate 100 is disturbed by the influence of the cavity 111.

具体的には、図22(a)に示す様に、空洞部111の内部にも空気が流れ込むため、センサ基板100の裏側へ入り込む空気の流量が多くなると、同図(b)、(c)に示す様に、空洞部111に渦流が発生し、その渦流の大きさが流量に応じて変化する(当然、流量が多くなる程、渦流も大きくなる)。なお、図22は、(a)、(b)、(c)の順に流量が多くなり、空気の乱れが大きくなる様子を表している。
上記の結果、ダイヤフラム110の表面上に配置される薄膜抵抗体120(図21参照)への伝熱が不安定となり、図23に示す様に、流量が多くなるに連れて特性が変曲するため、エアフロメータの出力が安定せず(出力の時間変動が大きくなる)、また流量と電圧が一義的に決まらないという問題が生じる。
本発明は、上記事情に基づいて成されたもので、その目的は、センサチップの裏側を流れる空気の乱れを抑制することにより、センサ出力を安定化できる空気流量測定装置を提供することにある。
Specifically, as shown in FIG. 22 (a), air also flows into the cavity 111, and therefore, when the flow rate of air entering the back side of the sensor substrate 100 increases, As shown in FIG. 4, a vortex is generated in the cavity 111, and the magnitude of the vortex changes according to the flow rate (naturally, the vortex increases as the flow rate increases). FIG. 22 shows a state in which the flow rate increases in the order of (a), (b), and (c), and the air turbulence increases.
As a result, the heat transfer to the thin film resistor 120 (see FIG. 21) arranged on the surface of the diaphragm 110 becomes unstable, and the characteristics change as the flow rate increases as shown in FIG. Therefore, there are problems that the output of the air flow meter is not stabilized (time fluctuation of the output becomes large), and the flow rate and voltage are not uniquely determined.
The present invention has been made based on the above circumstances, and an object of the present invention is to provide an air flow measuring device that can stabilize sensor output by suppressing turbulence of air flowing on the back side of the sensor chip. .

(請求項1に係る発明)
本発明は、センサ基板の長手方向の一端側に、裏面から表側へ向かってテーパ状に空洞部を形成することにより、この空洞部に対応するセンサ基板の表面にダイヤフラムが設けられ、且つ、このダイヤフラムの表面上に発熱抵抗体を配置したセンサチップと、このセンサチップを保持するために形成された凹部を有し、この凹部に配置されるセンサチップの他端側を接着剤により固定して、センサチップの一端側の裏面および両側面と凹部の底面および両側面との間にそれぞれ隙間を有する状態でセンサチップを片持ち支持するケースとを備え、このケースを空気通路に配置して、発熱抵抗体の熱交換を基に空気流量を測定する空気流量測定装置において、ケースは、センサ基板の長手方向と直交する凹部の幅方向で、センサ基板の裏側を流れる空気の上流側に、凹部の底面より深く形成された深溝部を有し、この深溝部の下流側と、センサ基板の裏面に開口する空洞部の上流側とが、センサ基板の幅方向でオーバラップしていることを特徴とする。
(Invention according to Claim 1)
In the present invention, a hollow portion is formed in a tapered shape from one back surface to the front side on one end side in the longitudinal direction of the sensor substrate, so that a diaphragm is provided on the surface of the sensor substrate corresponding to the hollow portion, and this A sensor chip having a heating resistor disposed on the surface of the diaphragm, and a recess formed to hold the sensor chip, and the other end of the sensor chip disposed in the recess is fixed with an adhesive A case where the sensor chip is cantilevered with a gap between the back surface and both side surfaces of the one end side of the sensor chip and the bottom surface and both side surfaces of the recess, and this case is disposed in the air passage, In an air flow rate measuring device that measures the air flow rate based on heat exchange of a heating resistor, the case flows through the back side of the sensor substrate in the width direction of the recess perpendicular to the longitudinal direction of the sensor substrate. A deep groove portion formed deeper than the bottom surface of the concave portion on the upstream side of the air, and the downstream side of the deep groove portion and the upstream side of the hollow portion opened in the back surface of the sensor substrate are in the width direction of the sensor substrate. It is characterized by overlapping.

本発明の空気流量測定装置は、センサチップがケースに片持ち支持されているので、ケースに形成された凹部の底面に接着されていないセンサ基板の一端側では、ケースの凹部とセンサ基板との間に隙間が生じるため、発熱抵抗体を配置したセンサチップの表側だけでなく、センサチップの裏側(ケースの凹部とセンサ基板との間に生じる隙間)にも空気が流れる。
これに対し、請求項1に係る発明の構成では、ケースの表側を流れる空気の一部が、ケースの凹部とセンサ基板との幅方向上流側に形成される隙間に流れ込むと、一旦、凹部の底面より深く形成された深溝部に入り込み、その深溝部からケースの空洞部に向かって流れる。この時、深溝部の下流側と空洞部の上流側とがセンサ基板の幅方向にオーバラップしているので、深溝部から空洞部に向かって流れる空気は、空洞部の上流側に偏る(近寄る)。これにより、テーパ状に形成された空洞部の上流側傾斜面に沿って空気が流れるため、空洞部で渦が出来にくくなり、その結果、センサチップの表側を流れる空気に対し、センサチップの裏側を流れる空気の影響度を相対的に小さくできるので、センサ出力を安定させることが出来る。
In the air flow rate measuring device of the present invention, since the sensor chip is cantilevered by the case, at one end side of the sensor substrate that is not bonded to the bottom surface of the concave portion formed in the case, the concave portion of the case and the sensor substrate are Since a gap is generated between them, air flows not only on the front side of the sensor chip on which the heating resistor is disposed, but also on the back side of the sensor chip (a gap generated between the recess of the case and the sensor substrate).
On the other hand, in the configuration of the invention according to claim 1, once a part of the air flowing on the front side of the case flows into the gap formed on the upstream side in the width direction between the recess of the case and the sensor substrate, It enters the deep groove formed deeper than the bottom surface and flows from the deep groove toward the cavity of the case. At this time, since the downstream side of the deep groove portion and the upstream side of the cavity portion overlap in the width direction of the sensor substrate, the air flowing from the deep groove portion toward the cavity portion is biased toward (closer to) the upstream side of the cavity portion. ). As a result, air flows along the upstream inclined surface of the tapered cavity, so that vortices are difficult to form in the cavity, and as a result, the back of the sensor chip against the air flowing on the front side of the sensor chip. Since the influence of the air flowing through can be made relatively small, the sensor output can be stabilized.

(請求項2に係る発明)
請求項1に記載した空気流量測定装置において、センサ基板の幅方向で、センサ基板の裏面に開口する空洞部の上流側角部をキャビティ外エッジと呼び、空洞部の最深部でダイヤフラムの上流端に対応する空洞部の内角部をキャビティ内エッジと呼び、凹部の底面に開口する深溝部の下流側角部を溝エッジと呼ぶ時に、凹部およびセンサ基板の幅方向に対して、キャビティ外エッジと溝エッジとの間の距離をL1、キャビティ外エッジとキャビティ内エッジとの間の距離をL2とすると、
L1≦L2…………(1)
上記(1)式が成立することを特徴とする。
(Invention according to Claim 2)
2. The air flow rate measuring device according to claim 1, wherein the upstream corner of the cavity opening in the back surface of the sensor substrate in the width direction of the sensor substrate is referred to as an outer edge of the cavity, and the upstream end of the diaphragm at the deepest portion of the cavity. The inner corner of the cavity corresponding to is called the cavity inner edge, and the downstream corner of the deep groove opening on the bottom surface of the recess is called the groove edge. When the distance between the groove edges is L1, and the distance between the outer edge of the cavity and the inner edge of the cavity is L2,
L1 ≦ L2 ………… (1)
The above formula (1) is established.

上記(1)式の関係が成立しない場合、つまり、L1の方がL2より大きくなると、センサ基板の幅方向で深溝部と空洞部とがオーバラップする領域が大きくなる。このため、深溝部から空洞部へ流れ込む空気は、空洞部の上流側傾斜面に沿って流れにくくなる。つまり、空洞部の上流側傾斜面に沿って流れる空気が少なくなり、特に、流量が多く(流速が大きく)なる程、空洞部の上流側傾斜面から離れて流れるため、空洞部に渦が発生し易くなる。
これに対し、上記(1)式の関係が成立すると、深溝部と空洞部とがオーバラップする領域は、センサ基板の幅方向において、空洞部の上流側傾斜面が形成されている範囲内に限定される。これにより、深溝部から空洞部へ流れ込む空気の多くは、空洞部の上流側傾斜面に沿って流れるため、流量が少ない場合は言うまでもなく、流量が多い場合でも、空洞部で渦が出来にくくなる。その結果、センサチップの表側を流れる空気に対し、センサチップの裏側を流れる空気の影響度を相対的に小さくできるので、センサ出力を安定させることが出来る。
When the relationship of the above equation (1) is not established, that is, when L1 is larger than L2, the region where the deep groove portion and the cavity portion overlap in the width direction of the sensor substrate increases. For this reason, the air flowing from the deep groove portion into the cavity portion hardly flows along the upstream inclined surface of the cavity portion. In other words, less air flows along the upstream inclined surface of the cavity, and in particular, the higher the flow rate (the higher the flow velocity), the farther away from the upstream inclined surface of the cavity, the more vortex is generated in the cavity. It becomes easy to do.
On the other hand, when the relationship of the above expression (1) is established, the region where the deep groove portion and the cavity portion overlap is within the range where the upstream inclined surface of the cavity portion is formed in the width direction of the sensor substrate. Limited. As a result, most of the air flowing into the cavity from the deep groove flows along the inclined surface on the upstream side of the cavity, so it goes without saying that the flow rate is small, and even when the flow rate is high, vortices are difficult to form. . As a result, the influence of the air flowing on the back side of the sensor chip can be made relatively small with respect to the air flowing on the front side of the sensor chip, so that the sensor output can be stabilized.

(請求項3に係る発明)
請求項1または2に記載した空気流量測定装置において、凹部の底面に向かって立ち上がる深溝部の下流側の壁面は、テーパ状に傾斜する空洞部の上流側の傾斜面と同方向に傾斜して設けられていることを特徴とする。
例えば、凹部の底面に向かって立ち上がる深溝部の下流側の壁面が凹部の底面に対し垂直に形成されていると、深溝部から空洞部へ流れ込む空気が空洞部の傾斜面に当たって跳ね返り、その影響で空洞部を流れる空気に乱れを生じる恐れがある。
これに対し、請求項3に係る発明の構成によれば、深溝部から空洞部へ流れ込む空気の流れ方向が空洞部の傾斜面と同方向になるので、深溝部から空洞部へ流れ込んだ空気が空洞部の傾斜面に当たって跳ね返ることが少なくなる。言い換えると、空洞部の傾斜面に沿って流れやすくなるので、空洞部での渦の発生をより少なくできる。
(Invention according to claim 3)
3. The air flow rate measuring device according to claim 1, wherein the wall surface on the downstream side of the deep groove portion that rises toward the bottom surface of the recess is inclined in the same direction as the inclined surface on the upstream side of the tapered cavity portion. It is provided.
For example, if the wall surface on the downstream side of the deep groove that rises toward the bottom surface of the recess is formed perpendicular to the bottom surface of the recess, the air flowing from the deep groove to the cavity hits the inclined surface of the cavity and rebounds. There is a risk of turbulence in the air flowing through the cavity.
On the other hand, according to the configuration of the invention according to claim 3, since the flow direction of the air flowing from the deep groove portion into the cavity portion is the same direction as the inclined surface of the cavity portion, the air flowing from the deep groove portion into the cavity portion is It is less likely to bounce off the inclined surface of the cavity. In other words, since it becomes easy to flow along the inclined surface of the cavity, the generation of vortices in the cavity can be reduced.

(請求項4に係る発明)
請求項1〜3に記載した何れかの空気流量測定装置において、深溝部は、凹部の幅方向と直交する長手方向全体に渡って形成されることを特徴とする。
凹部の底面に深溝部を設ける場合の一例として、上記の様に、凹部の幅方向と直交する長手方向全体に渡って形成することが出来る。
(Invention of Claim 4)
The air flow rate measuring device according to any one of claims 1 to 3, wherein the deep groove portion is formed over the entire longitudinal direction perpendicular to the width direction of the concave portion.
As an example of the case where the deep groove portion is provided on the bottom surface of the concave portion, it can be formed over the entire longitudinal direction orthogonal to the width direction of the concave portion as described above.

(請求項5に係る発明)
請求項1〜3に記載した何れかの空気流量測定装置において、深溝部は、凹部の幅方向と直交する長手方向に対し、センサ基板の裏面に空洞部が開口している範囲に形成されることを特徴とする。
凹部の底面に深溝部を設ける場合の一例として、上記の様に、凹部の幅方向と直交する長手方向に対し、センサ基板の裏面に空洞部が開口している範囲に限定して形成することが出来る。
(Invention according to claim 5)
4. The air flow rate measuring apparatus according to claim 1, wherein the deep groove portion is formed in a range in which the cavity portion is opened on the back surface of the sensor substrate with respect to the longitudinal direction orthogonal to the width direction of the concave portion. It is characterized by that.
As an example of providing a deep groove on the bottom surface of the recess, as described above, it is limited to the range where the cavity is open on the back surface of the sensor substrate with respect to the longitudinal direction perpendicular to the width direction of the recess. I can do it.

(請求項6に係る発明)
請求項1〜3に記載した何れかの空気流量測定装置において、深溝部は、凹部の幅方向と直交する長手方向に対し、センサ基板の裏面に開口する空洞部の開口幅両端から、テーパ状に形成された空洞部の傾斜面を延長した方向へテーパ状に拡大して形成されていることを特徴とする。
凹部の底面に深溝部を設ける場合の一例として、上記の様に、凹部の幅方向と直交する長手方向に対し、センサ基板の裏面に開口する空洞部の開口幅両端から、テーパ状に形成された空洞部の傾斜面を延長した方向へテーパ状に拡大して形成することが出来る。
(Invention of Claim 6)
The air flow rate measuring device according to any one of claims 1 to 3, wherein the deep groove portion is tapered from both ends of the opening width of the hollow portion opened on the back surface of the sensor substrate with respect to the longitudinal direction perpendicular to the width direction of the recess portion. The inclined surface of the hollow portion formed in (1) is enlarged in a tapered shape in the extending direction.
As an example of providing a deep groove on the bottom surface of the recess, as described above, it is formed in a taper shape from both ends of the opening width of the cavity that opens on the back surface of the sensor substrate with respect to the longitudinal direction perpendicular to the width direction of the recess. The inclined surface of the hollow portion can be formed in a taper shape in the extending direction.

(請求項7に係る発明)
本発明は、センサ基板の長手方向の一端側に、裏面から表側へ向かってテーパ状に空洞部を形成することにより、この空洞部に対応するセンサ基板の表面にダイヤフラムが設けられ、且つ、このダイヤフラムの表面上に発熱抵抗体を配置したセンサチップと、このセンサチップを保持するために形成された凹部を有し、この凹部に配置されるセンサチップの他端側を接着剤により固定して、センサチップの一端側の裏面および両側面と凹部の底面および両側面との間にそれぞれ隙間を有する状態でセンサチップを片持ち支持するケースとを備え、このケースを空気通路に配置して、発熱抵抗体の熱交換を基に空気流量を測定する空気流量測定装置において、ケースには、ケースの裏側を流れる空気の一部をセンサ基板に形成された空洞部へ取り込むための空気導入路が設けられ、この空気導入路は、センサ基板の長手方向と直交する幅方向で、テーパ状に形成された空洞部の上流側の傾斜面に沿って、ケースの裏面から凹部の底面まで斜めに貫通して形成されていることを特徴とする。
(Invention of Claim 7)
In the present invention, a hollow portion is formed in a tapered shape from one back surface to the front side on one end side in the longitudinal direction of the sensor substrate, so that a diaphragm is provided on the surface of the sensor substrate corresponding to the hollow portion, and this A sensor chip having a heating resistor disposed on the surface of the diaphragm, and a recess formed to hold the sensor chip, and the other end of the sensor chip disposed in the recess is fixed with an adhesive A case where the sensor chip is cantilevered with a gap between the back surface and both side surfaces of the one end side of the sensor chip and the bottom surface and both side surfaces of the recess, and this case is disposed in the air passage, In an air flow rate measuring device that measures the air flow rate based on the heat exchange of a heating resistor, a part of the air flowing on the back side of the case is taken into a cavity formed on the sensor substrate. An air introduction path is provided in the width direction orthogonal to the longitudinal direction of the sensor substrate, along the inclined surface on the upstream side of the tapered cavity, and from the back surface of the case. It is characterized by being formed to penetrate obliquely to the bottom surface of the recess.

上記の構成によれば、ケースの裏側を流れる空気の一部を空気導入路よりセンサ基板の空洞部へ導入することができる。ここで、空気導入路は、テーパ状に形成された空洞部の上流側の傾斜面に沿って、ケースの裏面から凹部の底面まで斜めに貫通して形成されているので、ケースの裏面側から空気導入路を通じて空洞部へ導入された空気は、空洞部の上流側傾斜面に沿って流れる。その結果、センサチップの表側を流れる空気に対し、センサチップの裏側を流れる空気の影響度を相対的に小さくできるので、センサ出力を安定させることが出来る。   According to said structure, some air which flows through the back side of a case can be introduce | transduced into the cavity part of a sensor board | substrate from an air introduction path. Here, since the air introduction path is formed so as to penetrate obliquely from the back surface of the case to the bottom surface of the recess along the upstream inclined surface of the tapered cavity, from the back surface side of the case The air introduced into the cavity through the air introduction path flows along the upstream inclined surface of the cavity. As a result, the influence of the air flowing on the back side of the sensor chip can be made relatively small with respect to the air flowing on the front side of the sensor chip, so that the sensor output can be stabilized.

(請求項8に係る発明)
本発明は、センサ基板の長手方向の一端側に、裏面から表側へ向かってテーパ状に空洞部を形成することにより、この空洞部に対応するセンサ基板の表面にダイヤフラムが設けられ、且つ、このダイヤフラムの表面上に発熱抵抗体を配置したセンサチップと、このセンサチップを保持するために形成された凹部を有し、この凹部に配置されるセンサチップの他端側を接着剤により固定して、センサチップの一端側の裏面および両側面と凹部の底面および両側面との間にそれぞれ隙間を有する状態でセンサチップを片持ち支持するケースとを備え、このケースを空気通路に配置して、発熱抵抗体の熱交換を基に空気流量を測定する空気流量測定装置において、ケースは、センサ基板に形成された空洞部に対し、凹部の底面から突起して空洞部に入り込む凸状部が設けられていることを特徴とする。
(Invention of Claim 8)
In the present invention, a hollow portion is formed in a tapered shape from one back surface to the front side on one end side in the longitudinal direction of the sensor substrate, so that a diaphragm is provided on the surface of the sensor substrate corresponding to the hollow portion, and this A sensor chip having a heating resistor disposed on the surface of the diaphragm, and a recess formed to hold the sensor chip, and the other end of the sensor chip disposed in the recess is fixed with an adhesive A case where the sensor chip is cantilevered with a gap between the back surface and both side surfaces of the one end side of the sensor chip and the bottom surface and both side surfaces of the recess, and this case is disposed in the air passage, In the air flow measurement device that measures the air flow rate based on the heat exchange of the heating resistor, the case protrudes from the bottom surface of the recess to the hollow portion formed in the sensor substrate. Wherein the convex portion is provided Komu Ri.

本発明の空気流量測定装置は、センサチップがケースに片持ち支持されているので、ケースに形成された凹部の底面に接着されていないセンサ基板の一端側では、ケースの凹部とセンサ基板との間に隙間が生じるため、発熱抵抗体を配置したセンサチップの表側だけでなく、センサチップの裏側(ケースの凹部とセンサ基板との間に生じる隙間)にも空気が流れる。そこで、請求項1に係る本発明では、センサチップの裏側を流れる空気の通り道に抵抗となる凸状部を設けている。
この凸状部は、センサ基板に設けられる空洞部に対し、ケースに形成される凹部の底面から突起して空洞部に入り込んでいるので、空洞部の容積が減少して空気の乱れが抑制される。また、空洞部と凸状部との間の隙間を小さくすることで、センサチップの裏側に空気が流れ込みにくくなり、センサチップの裏側を流れる空気の流速を低下させて、流量を少なく出来る。その結果、センサチップの表側を流れる空気に対し、センサチップの裏側を流れる空気の影響度を相対的に小さくできるので、センサ出力を安定させることが出来る。
In the air flow rate measuring device of the present invention, since the sensor chip is cantilevered by the case, at one end side of the sensor substrate that is not bonded to the bottom surface of the concave portion formed in the case, the concave portion of the case and the sensor substrate are Since a gap is generated between them, air flows not only on the front side of the sensor chip on which the heating resistor is disposed, but also on the back side of the sensor chip (a gap generated between the recess of the case and the sensor substrate). Therefore, in the present invention according to claim 1, a convex portion serving as a resistance is provided in the passage of air flowing on the back side of the sensor chip.
The convex portion protrudes from the bottom surface of the concave portion formed in the case with respect to the hollow portion provided in the sensor substrate and enters the hollow portion, so that the volume of the hollow portion is reduced and air turbulence is suppressed. The In addition, by reducing the gap between the hollow portion and the convex portion, it becomes difficult for air to flow into the back side of the sensor chip, and the flow rate of the air flowing through the back side of the sensor chip can be reduced to reduce the flow rate. As a result, the influence of the air flowing on the back side of the sensor chip can be made relatively small with respect to the air flowing on the front side of the sensor chip, so that the sensor output can be stabilized.

(a)長手方向に沿ったケースとセンサチップの断面図、(b)同図(a)の幅方向を示すA−A断面図である(実施例1)。(A) It is sectional drawing of a case and a sensor chip along a longitudinal direction, (b) It is AA sectional drawing which shows the width direction of the same figure (a) (Example 1). エアフロメータを吸気ダクトに取り付けた状態を示す断面図である。It is sectional drawing which shows the state which attached the air flow meter to the intake duct. (a)エアフロメータを上流側から見た正面図、(b)エアフロメータの側面図、(c)エアフロメータを下流側から見た背面図である。(A) The front view which looked at the air flow meter from the upstream side, (b) The side view of an air flow meter, (c) The back view which looked at the air flow meter from the downstream side. (a)センサ部による流量計測の原理を説明する温度分布図、(b)センサ部に使用されるセンサチップの断面図である。(A) Temperature distribution diagram illustrating the principle of flow rate measurement by the sensor unit, (b) a cross-sectional view of a sensor chip used in the sensor unit. 上流側温抵抗体の検出温度と下流側温抵抗体の検出温度との温度差DThと、空気の流量および流れ方向との相関を示すグラフである。It is a graph which shows the correlation with the temperature difference DTh of the detection temperature of an upstream temperature resistor, and the detection temperature of a downstream temperature resistor, and the flow volume and flow direction of air. 凸状部の変形例を示す断面図である(実施例1)。It is sectional drawing which shows the modification of a convex-shaped part (Example 1). 凸状部の変形例を示す断面図である(実施例1)。It is sectional drawing which shows the modification of a convex-shaped part (Example 1). 凸状部の変形例を示す断面図である(実施例1)。It is sectional drawing which shows the modification of a convex-shaped part (Example 1). 凸状部の変形例を示す断面図である(実施例1)。It is sectional drawing which shows the modification of a convex-shaped part (Example 1). 幅方向に沿ったケースとセンサチップの断面図である(実施例2)。It is sectional drawing of the case and sensor chip along the width direction (Example 2). 幅方向に沿ったケースとセンサチップの断面図である(実施例2)。It is sectional drawing of the case and sensor chip along the width direction (Example 2). 深溝部の変形例を示す断面図である(実施例2)。It is sectional drawing which shows the modification of a deep groove part (Example 2). 深溝部の変形例を示す断面図である(実施例2)。It is sectional drawing which shows the modification of a deep groove part (Example 2). 深溝部の変形例を示す断面図である(実施例2)。It is sectional drawing which shows the modification of a deep groove part (Example 2). 深溝部の変形例を示す断面図である(実施例2)。It is sectional drawing which shows the modification of a deep groove part (Example 2). 深溝部の変形例を示す断面図である(実施例2)。It is sectional drawing which shows the modification of a deep groove part (Example 2). 凹部の長さ方向における深溝部の形状を示す平面図である(実施例2)。(Example 2) which is a top view which shows the shape of the deep groove part in the length direction of a recessed part. 凹部の長さ方向における深溝部の形状を示す平面図である(実施例2)。(Example 2) which is a top view which shows the shape of the deep groove part in the length direction of a recessed part. 凹部の長さ方向における深溝部の形状を示す平面図である(実施例2)。(Example 2) which is a top view which shows the shape of the deep groove part in the length direction of a recessed part. 幅方向に沿ったケースとセンサチップの断面図である(実施例3)。It is sectional drawing of the case and sensor chip along the width direction (Example 3). (a)長手方向に沿ったケースとセンサチップの断面図、(b)同図(a)の幅方向を示すB−B断面図である(従来技術)。(A) It is sectional drawing of a case and a sensor chip along a longitudinal direction, (b) It is BB sectional drawing which shows the width direction of the same figure (a) (prior art). センサ基板に形成された空洞部を流れる空気の状態が流量に応じて変化する様子を示した断面図である。It is sectional drawing which showed a mode that the state of the air which flows through the cavity part formed in the sensor board | substrate changed according to flow volume. 流量に対する出力特性の変化を示すグラフである。It is a graph which shows the change of the output characteristic with respect to flow volume.

本発明を実施するための最良の形態を以下の実施例により詳細に説明する。   The best mode for carrying out the present invention will be described in detail by the following examples.

(実施例1)
この実施例1では、例えば、自動車のエンジンに吸入される空気量を測定するエアフロメータ1に本発明の空気流量測定装置を適用した一例を説明する。
エアフロメータ1は、図2に示す様に、吸気ダクト2に取り付けられるセンサハウジング3と、このセンサハウジング3の内部に組み込まれるセンサ部4とを有する。
吸気ダクト2は、エンジンの吸気ポート(図示せず)に接続される吸気通路の一部を形成するもので、例えば、吸気通路の最上流に配置されるエアクリーナの出口パイプ、あるいは、この出口パイプの下流側に接続される吸気管等である。
センサハウジング3は、図3に示す様に、吸気ダクト2に固定されるフランジ部3aと、エンジンの運転状態を制御するECU(図示せず)との電気的接続を行うコネクタ部3bと、吸気ダクト2の内部に挿入される流路形成ボディ3c等が形成されている。
Example 1
In the first embodiment, for example, an example in which the air flow measuring device of the present invention is applied to an air flow meter 1 that measures the amount of air taken into an engine of an automobile will be described.
As shown in FIG. 2, the air flow meter 1 includes a sensor housing 3 attached to the intake duct 2 and a sensor portion 4 incorporated in the sensor housing 3.
The intake duct 2 forms part of an intake passage connected to an intake port (not shown) of the engine. For example, an outlet pipe of an air cleaner arranged at the uppermost stream of the intake passage, or the outlet pipe An intake pipe or the like connected to the downstream side.
As shown in FIG. 3, the sensor housing 3 includes a flange portion 3 a fixed to the intake duct 2, a connector portion 3 b that electrically connects an ECU (not shown) that controls the operating state of the engine, an intake air A flow path forming body 3c and the like inserted into the duct 2 are formed.

流路形成ボディ3cには、吸気ダクト2の内部を図2の左側(エアクリーナ側)から右側(エンジン側)に向かって流れる空気、つまり、エンジンが吸入する空気の一部を取り込むバイパス流路5と、このバイパス流路5を流れる空気の一部を取り込むサブバイパス流路6とが形成されている。
バイパス流路5は、空気を取り込む入口5aから空気を排出する出口5bまで略直線的に、且つ、吸気ダクト2を流れる空気の流れ方向と略平行に形成されている。このバイパス流路5は、空気流路の断面形状が円形であり、且つ、バイパス流路5の出口側は、流路断面積が出口5bに向かって次第に減少するテーパ状に形成されている。
In the flow path forming body 3c, a bypass flow path 5 for taking in the air flowing from the left side (air cleaner side) to the right side (engine side) in FIG. And a sub-bypass channel 6 for taking in part of the air flowing through the bypass channel 5 is formed.
The bypass flow path 5 is formed substantially linearly from the inlet 5 a that takes in air to the outlet 5 b that discharges air, and substantially parallel to the flow direction of the air flowing through the intake duct 2. The bypass channel 5 has a circular cross-sectional shape of the air channel, and the outlet side of the bypass channel 5 is formed in a tapered shape in which the channel cross-sectional area gradually decreases toward the outlet 5b.

サブバイパス流路6は、バイパス流路5を流れる空気の流れ方向と直交する所定の方向(図2の上下方向)をY−Y方向と呼ぶ時に、バイパス流路5に対するY−Y方向の一方側(図示上側)にバイパス流路5から分岐するサブバイパス流路6の入口6aが形成され、バイパス流路5の出口5bの周囲に環状の出口6bが形成されている。このサブバイパス流路6は、バイパス流路5より流路長が長く、且つ、流路途中で方向が大きく変化する曲がり部を有して形成されている。
また、サブバイパス流路6の入口6aは、バイパス流路5に対する上流側の入口端部をA点、下流側の入口端部をB点と呼ぶ時に、バイパス流路5の中心軸からA点までの距離より、B点までの距離の方が大きくなる様に形成されている(図2参照)。つまり、サブバイパス流路6の入口6aは、上記A点とB点とを含む開口面が、バイパス流路5の出口側に傾いて形成されている。
The sub-bypass channel 6 is one of the Y-Y directions with respect to the bypass channel 5 when a predetermined direction (vertical direction in FIG. 2) orthogonal to the flow direction of the air flowing through the bypass channel 5 is called a Y-Y direction. An inlet 6 a of the sub bypass channel 6 that branches from the bypass channel 5 is formed on the side (the upper side in the drawing), and an annular outlet 6 b is formed around the outlet 5 b of the bypass channel 5. The sub-bypass channel 6 has a longer channel length than the bypass channel 5 and is formed with a bent portion whose direction changes greatly in the middle of the channel.
In addition, the inlet 6a of the sub-bypass channel 6 has a point A from the central axis of the bypass channel 5 when the upstream inlet end with respect to the bypass channel 5 is referred to as point A and the downstream inlet end is referred to as point B. It is formed so that the distance to point B is larger than the distance to (see FIG. 2). In other words, the inlet 6 a of the sub-bypass channel 6 is formed such that the opening surface including the points A and B is inclined toward the outlet side of the bypass channel 5.

センサ部4は、図4(b)に示す様に、例えば、シリコン製のセンサ基板7に設けられるダイヤフラム8の表面上に薄膜抵抗体(発熱抵抗体9と側温抵抗体10、11)を形成したセンサチップ12と、発熱抵抗体9の発熱温度を制御すると共に、側温抵抗体10、11の抵抗値を基に、空気の流量と流れ方向に応じたセンサ信号を出力する回路部(図示せず)とを備え、センサチップ12がケース13に保持されてサブバイパス流路6の曲がり部に配置されている。
発熱抵抗体9は、サブバイパス流路6を流れる空気の温度よりも一定温度高い基準温度に通電制御される。側温抵抗体10、11は、発熱抵抗体9の上流側に近接して配置される一方の側温抵抗体(以下、上流側温抵抗体10と呼ぶ)と、発熱抵抗体9の下流側に近接して配置される他方の側温抵抗体(以下、下流側温抵抗体11と呼ぶ)である。
As shown in FIG. 4B, the sensor unit 4 includes, for example, a thin film resistor (a heating resistor 9 and side temperature resistors 10, 11) on the surface of a diaphragm 8 provided on a silicon sensor substrate 7. A circuit unit that controls the heat generation temperature of the formed sensor chip 12 and the heat generation resistor 9, and outputs a sensor signal corresponding to the flow rate and flow direction of air based on the resistance values of the side temperature resistors 10 and 11. (Not shown), and the sensor chip 12 is held by the case 13 and arranged at the bent portion of the sub-bypass channel 6.
The heating resistor 9 is energized and controlled to a reference temperature that is higher than the temperature of the air flowing through the sub-bypass passage 6 by a certain temperature. The side temperature resistors 10 and 11 are one side temperature resistor (hereinafter referred to as the upstream temperature resistor 10) disposed close to the upstream side of the heating resistor 9 and the downstream side of the heating resistor 9. Is the other side temperature resistor (hereinafter, referred to as the downstream temperature resistor 11) disposed in the vicinity.

ここで、センサ部4による空気流量の計測原理について説明する。
発熱抵抗体9が基準温度に通電制御されると、発熱抵抗体9の発熱による温度分布が生じる。ここで、サブバイパス流路6に空気の流れが発生していない時は、図4(a)に破線グラフで示す様に、発熱抵抗体9の位置を中心として上流側と下流側とで温度分布が左右対称となるため、上流側温抵抗体10で検出される温度と、下流側温抵抗体11で検出される温度とが等しくなる。
これに対し、例えば、サブバイパス流路6に順流方向の空気流が生じると、図4(a)に実線グラフで示す様に、発熱抵抗体9の下流側(図示右側)へ片寄った温度分布が生じることで、上流側温抵抗体10の検出温度より下流側温抵抗体11の検出温度の方が高くなる。
Here, the measurement principle of the air flow rate by the sensor unit 4 will be described.
When the heating resistor 9 is energized and controlled to the reference temperature, a temperature distribution due to heat generated by the heating resistor 9 occurs. Here, when there is no air flow in the sub-bypass channel 6, as shown by the broken line graph in FIG. 4 (a), the temperature is increased between the upstream side and the downstream side around the position of the heating resistor 9. Since the distribution is symmetrical, the temperature detected by the upstream temperature resistor 10 is equal to the temperature detected by the downstream temperature resistor 11.
On the other hand, for example, when a forward air flow is generated in the sub-bypass channel 6, as shown by a solid line graph in FIG. 4A, the temperature distribution is shifted to the downstream side (the right side in the drawing) of the heating resistor 9. As a result, the detected temperature of the downstream temperature resistor 11 becomes higher than the detected temperature of the upstream temperature resistor 10.

一方、サブバイパス流路6に逆流方向の空気流が生じると、発熱抵抗体9の上流側(図示左側)へ片寄った温度分布が生じることで、下流側温抵抗体11の検出温度より上流側温抵抗体10の検出温度の方が高くなる。
上記の様に、上流側温抵抗体10の検出温度と下流側温抵抗体11の検出温度との間に温度差DThが生じると、この温度差DThに応じて、上流側温抵抗体10と下流側温抵抗体11の抵抗値がそれぞれ変化するため、この抵抗値の変化により生じる電位差が増幅されて、センサ信号(例えばアナログ電圧)としてECUへ出力される。なお、センサ信号は、アナログ電圧を周波数値に変換して出力することも出来る。図5は、上流側温抵抗体10の検出温度と下流側温抵抗体11の検出温度との温度差DThと、空気の流量および流れ方向との相関を示すグラフである。
On the other hand, when an air flow in the reverse flow direction is generated in the sub-bypass channel 6, a temperature distribution that is shifted toward the upstream side (the left side in the drawing) of the heating resistor 9 is generated, so that the upstream side of the detected temperature of the downstream temperature resistor 11. The detected temperature of the temperature resistor 10 is higher.
As described above, when a temperature difference DTh occurs between the detected temperature of the upstream temperature resistor 10 and the detected temperature of the downstream temperature resistor 11, the upstream temperature resistor 10 and the temperature difference DTh are determined according to the temperature difference DTh. Since the resistance value of the downstream temperature resistor 11 changes, the potential difference caused by the change in the resistance value is amplified and output to the ECU as a sensor signal (for example, an analog voltage). The sensor signal can also be output by converting an analog voltage into a frequency value. FIG. 5 is a graph showing the correlation between the temperature difference DTh between the detected temperature of the upstream temperature resistor 10 and the detected temperature of the downstream temperature resistor 11, and the flow rate and flow direction of air.

次に、本発明に係るセンサチップ12とケース13について説明する。
センサチップ12は、図1(a)に示す様に、センサ基板7の長手方向(図示左右方向)の一端側(図示右側)にダイヤフラム8が形成されている。
このダイヤフラム8は、図4(b)に示す様に、センサ基板7の表面にスパッタ法あるいはCVD法等により形成される絶縁膜であり、例えば、異方性エッチングにより、センサ基板7の裏面から絶縁膜との境界面までセンサ基板7の一部を除去して、センサ基板7に空洞部7aを形成することにより設けられる。
なお、空洞部7aは、図1(a)に示すセンサ基板7の長手方向、および、図1(b)に示す幅方向ともに、センサ基板7の裏面から表側へ向かって、空洞部7aの開口幅が次第に小さくなるテーパ状に形成されている。
Next, the sensor chip 12 and the case 13 according to the present invention will be described.
As shown in FIG. 1A, the sensor chip 12 has a diaphragm 8 formed on one end side (right side in the figure) of the sensor substrate 7 in the longitudinal direction (left and right direction in the figure).
As shown in FIG. 4B, the diaphragm 8 is an insulating film formed on the surface of the sensor substrate 7 by a sputtering method or a CVD method. For example, the diaphragm 8 is formed from the back surface of the sensor substrate 7 by anisotropic etching. The sensor substrate 7 is provided by removing a part of the sensor substrate 7 up to the boundary surface with the insulating film and forming a cavity 7 a in the sensor substrate 7.
The hollow portion 7a is an opening of the hollow portion 7a from the back surface of the sensor substrate 7 to the front side in both the longitudinal direction of the sensor substrate 7 shown in FIG. 1A and the width direction shown in FIG. It is formed in a tapered shape with a gradually decreasing width.

ケース13は、例えば、樹脂製であり、図1(b)に示す様に、空気の流れに沿った表面に凹部13aが形成され、この凹部13aにセンサチップ12を配置して、センサ基板7の他端側を接着剤14により凹部13aの底面に固定することでセンサチップ12を片持ち支持している。つまり、ダイヤフラム8が形成されるセンサ基板7の一端側は、凹部13aの底面に接着されていないため、センサ基板7の裏面および両側面と、凹部13aの底面および両側面との間にそれぞれ隙間を有している。
このケース13には、図1(a)、(b)に示す様に、ダイヤフラム8を設けるために除去された空洞部7aに対し、凹部13aの底面から突起して空洞部7aに入り込む凸状部13bが設けられている。この凸状部13bは、例えば、空洞部7aと略同形状のテーパ状に設けられ、空洞部7aとの間に略均一な隙間を形成している。なお、ケース13は、樹脂製に限定されるものではないが、本実施例では、樹脂製であることが望ましい。
The case 13 is made of, for example, resin, and as shown in FIG. 1B, a concave portion 13a is formed on the surface along the air flow, and the sensor chip 12 is arranged in the concave portion 13a, so that the sensor substrate 7 The other end side of the sensor chip 12 is fixed to the bottom surface of the concave portion 13 a with an adhesive 14 to support the sensor chip 12 in a cantilever manner. That is, since one end side of the sensor substrate 7 on which the diaphragm 8 is formed is not bonded to the bottom surface of the recess 13a, there is a gap between the back surface and both side surfaces of the sensor substrate 7 and the bottom surface and both side surfaces of the recess 13a. have.
As shown in FIGS. 1A and 1B, the case 13 has a convex shape that protrudes from the bottom surface of the recess 13 a and enters the cavity 7 a with respect to the cavity 7 a that is removed to provide the diaphragm 8. A portion 13b is provided. For example, the convex portion 13b is provided in a tapered shape having substantially the same shape as the hollow portion 7a, and a substantially uniform gap is formed between the convex portion 13b and the hollow portion 7a. In addition, although the case 13 is not limited to resin, in this embodiment, it is preferable that the case 13 is made of resin.

(実施例1の作用および効果)
本実施例のエアフロメータ1は、センサチップ12がケース13に片持ち支持されている。この構造では、ケース13に形成された凹部13aの底面に接着されていないセンサ基板7の一端側では、ケース13の凹部13aとセンサ基板7との間に隙間が生じるため、薄膜抵抗体(発熱抵抗体9、上流側温抵抗体10、下流側温抵抗体11)を配置したセンサチップ12の表側だけでなく、センサチップ12の裏側(ケース13の凹部13aとセンサ基板7との間に生じる隙間)にも空気が流れる。これに対し、実施例1に記載したケース13には、センサチップ12の裏側を流れる空気の通り道に抵抗となる凸状部13bを設けている。
(Operation and Effect of Example 1)
In the air flow meter 1 of this embodiment, the sensor chip 12 is cantilevered by the case 13. In this structure, a gap is formed between the recess 13a of the case 13 and the sensor substrate 7 on one end side of the sensor substrate 7 that is not bonded to the bottom surface of the recess 13a formed in the case 13. Not only on the front side of the sensor chip 12 on which the resistor 9, the upstream temperature resistor 10, and the downstream temperature resistor 11) are arranged, but also on the back side of the sensor chip 12 (between the recess 13a of the case 13 and the sensor substrate 7). Air also flows through the gap. On the other hand, the case 13 described in the first embodiment is provided with a convex portion 13b that serves as a resistance in the passage of air that flows on the back side of the sensor chip 12.

上記の凸状部13bは、図1(b)に示した様に、センサ基板7に設けられる空洞部7aに対し、ケース13に形成される凹部13aの底面から突起して空洞部7aに入り込んでいるので、空洞部7aの容積が減少して空気の乱れが抑制される。また、空洞部7aと凸状部13bとの間の隙間を小さくできるので、センサチップ12の裏側に空気が流れ込み難くなり、センサチップ12の裏側を流れる空気の流速を低下させることができる。その結果、センサチップ12の表側を流れる空気に対し、センサチップ12の裏側を流れる空気の影響度を相対的に小さくできるので、特性が変曲することはなく、センサ出力を安定(時間変動を小さく)できる。   As shown in FIG. 1B, the convex portion 13b protrudes from the bottom surface of the concave portion 13a formed in the case 13 with respect to the hollow portion 7a provided in the sensor substrate 7, and enters the hollow portion 7a. As a result, the volume of the cavity 7a is reduced and air turbulence is suppressed. Moreover, since the clearance gap between the cavity part 7a and the convex-shaped part 13b can be made small, it becomes difficult for air to flow into the back side of the sensor chip 12, and the flow velocity of the air which flows through the back side of the sensor chip 12 can be reduced. As a result, the influence of the air flowing on the back side of the sensor chip 12 can be made relatively small with respect to the air flowing on the front side of the sensor chip 12, so that the characteristics do not change and the sensor output is stabilized (time fluctuation Small).

なお、図1に示した凸状部13bは、センサ基板7の空洞部7aと略同形状(テーパ形状)に設けているが、この形状に限定するものではなく、センサチップ12の裏側を流れる空気の通り道に抵抗となる様な形状、言い換えると、センサチップ12の裏側を空気が流れ難くなり、且つ、空気の流速を低下させることができる形状であれば良い。
例えば、図6〜図9に示す形状が考えられる。
図6に示す凸状部13bは、センサチップ12の裏側を流れる空気の流れ方向に対し、空洞部7aの上流側(図示左側)に偏った位置に設けた一例である。
The convex portion 13b shown in FIG. 1 is provided in substantially the same shape (tapered shape) as the hollow portion 7a of the sensor substrate 7, but is not limited to this shape, and flows on the back side of the sensor chip 12. Any shape that resists the passage of air, in other words, any shape that makes it difficult for air to flow through the back side of the sensor chip 12 and that can reduce the flow velocity of the air may be used.
For example, the shapes shown in FIGS.
The convex portion 13b shown in FIG. 6 is an example provided at a position biased to the upstream side (the left side in the drawing) of the cavity portion 7a with respect to the flow direction of the air flowing on the back side of the sensor chip 12.

図7に示す凸状部13bは、空洞部7aの略中央部に位置し、凹部13aの底面から角柱形状あるいは円柱形状に突起して設けた一例であり、凸状部13bの平坦な先端面と空洞部7aの天井面(図示上面)との間に略一定の隙間を形成している。
図8に示す凸状部13bは、空洞部7aの内部に入り込む先端部の形状が、所定の曲率を有する凸曲面(図8では半球形状)で構成される一例である。
図9に示す凸状部13bは、空洞部7aの内部に入り込む先端部に平坦面を有しており、且つ、平坦面の周縁部にRを設けた一例である。
The convex portion 13b shown in FIG. 7 is an example that is provided at a substantially central portion of the hollow portion 7a and that protrudes from the bottom surface of the concave portion 13a into a prismatic shape or a cylindrical shape, and is a flat distal end surface of the convex portion 13b. And a substantially constant gap is formed between the cavity portion 7a and the ceiling surface (the upper surface in the drawing).
The convex portion 13b shown in FIG. 8 is an example in which the shape of the tip portion entering the inside of the hollow portion 7a is a convex curved surface having a predetermined curvature (a hemispherical shape in FIG. 8).
The convex portion 13b shown in FIG. 9 is an example having a flat surface at the tip that enters the inside of the hollow portion 7a, and R is provided at the peripheral edge of the flat surface.

(実施例2)
この実施例2では、図10に示す様に、センサ基板7の長手方向と直交する凹部13aの幅方向(図示左右方向)で、センサ基板7の裏側を流れる空気の上流側(図示左側)に深溝部15を形成した一例である。
深溝部15は、凹部13aの底面より深く形成され、且つ、深溝部15の下流側と、センサ基板7の裏面に開口する空洞部7aの上流側とが幅方向にオーバラップしている。
但し、深溝部15の下流側と空洞部7aの上流側とがオーバラップする範囲は、図11に示すX点とZ点との幅方向の距離が、X点とY点との幅方向の距離以下であることが望ましい。
(Example 2)
In the second embodiment, as shown in FIG. 10, in the width direction (left and right direction in the drawing) of the concave portion 13 a orthogonal to the longitudinal direction of the sensor substrate 7, This is an example in which the deep groove portion 15 is formed.
The deep groove portion 15 is formed deeper than the bottom surface of the concave portion 13 a, and the downstream side of the deep groove portion 15 and the upstream side of the cavity portion 7 a opened on the back surface of the sensor substrate 7 overlap in the width direction.
However, the range in which the downstream side of the deep groove 15 and the upstream side of the cavity 7a overlap is such that the distance in the width direction between the X point and the Z point shown in FIG. It is desirable to be less than the distance.

具体的に説明すると、図11に示すセンサ基板7の幅方向(図示左右方向)で、センサ基板7の裏面に開口する空洞部7aの上流側角部をキャビティ外エッジ(図中X点)と呼び、空洞部7aの最深部でダイヤフラム8の上流端に対応する空洞部7aの内角部をキャビティ内エッジ(図中Y点)と呼び、凹部13aの底面に開口する深溝部15の下流側角部を溝エッジ(図中Z点)と呼ぶ時に、凹部13aおよびセンサ基板7の幅方向に対して、キャビティ外エッジと溝エッジとの間の距離をL1、キャビティ外エッジとキャビティ内エッジとの間の距離をL2とすると、
L1≦L2…………(1)
上記(1)式が成立していることが良い。
More specifically, in the width direction of the sensor substrate 7 shown in FIG. 11 (the left-right direction in the drawing), the upstream corner of the cavity portion 7a that opens on the back surface of the sensor substrate 7 is defined as an edge outside the cavity (point X in the drawing). The inner corner of the cavity 7a corresponding to the upstream end of the diaphragm 8 at the deepest part of the cavity 7a is called the cavity inner edge (point Y in the figure), and the downstream corner of the deep groove 15 that opens to the bottom surface of the recess 13a. When the portion is called a groove edge (Z point in the figure), the distance between the cavity outer edge and the groove edge with respect to the width direction of the recess 13a and the sensor substrate 7 is L1, and the distance between the cavity outer edge and the cavity inner edge If the distance between them is L2,
L1 ≦ L2 ………… (1)
The above equation (1) is preferably satisfied.

上記の構成によれば、ケース13の表側を流れる空気の一部が、ケース13の凹部13aとセンサ基板7との上流側に形成される隙間に流れ込むと、一旦、凹部13aの底面より深く形成された深溝部15に入り込み、その深溝部15からケース13の空洞部7aに向かって流れる。この時、深溝部15の下流側と空洞部7aの上流側とがセンサ基板7の幅方向にオーバラップしているので、深溝部15から空洞部7aに向かって流れる空気は、空洞部7aの上流側に偏る(近寄る)。特に、上記(1)式が成立する構成であれば、深溝部15と空洞部7aとがオーバラップする領域は、センサ基板7の幅方向において、空洞部7aの上流側の傾斜面が形成されている範囲内に限定される。   According to the above configuration, when a part of the air flowing on the front side of the case 13 flows into the gap formed on the upstream side of the concave portion 13a of the case 13 and the sensor substrate 7, it is once formed deeper than the bottom surface of the concave portion 13a. The deep groove portion 15 enters and flows from the deep groove portion 15 toward the cavity portion 7 a of the case 13. At this time, since the downstream side of the deep groove portion 15 and the upstream side of the cavity portion 7a overlap in the width direction of the sensor substrate 7, the air flowing from the deep groove portion 15 toward the cavity portion 7a flows into the cavity portion 7a. It tends to be upstream (approaching). In particular, if the above formula (1) is satisfied, the region where the deep groove 15 and the cavity 7a overlap is formed with an inclined surface on the upstream side of the cavity 7a in the width direction of the sensor substrate 7. It is limited within the range.

これにより、深溝部15から空洞部7aへ流れ込む空気の多くは、図10に空気の流れを示す実線矢印の様に、空洞部7aの上流側の傾斜面に沿って流れるため、流量が少ない場合は言うまでもなく、流量が多い場合でも、空洞部7aで渦が出来にくくなる。その結果、センサチップ12の表側を流れる空気に対し、センサチップ12の裏側を流れる空気の影響度を相対的に小さくできるので、特性が変曲することはなく、センサ出力を安定させることが出来る。
なお、本発明に係る深溝部15の形状は、図10、図11に示した形状に限定されるものではなく、深溝部15から空洞部7aへ流れ込む空気が、空洞部7aの上流側の傾斜面に沿って流れることが出来る形状であれば良い。
As a result, most of the air flowing into the cavity 7a from the deep groove 15 flows along the inclined surface on the upstream side of the cavity 7a as shown by the solid line arrows in FIG. Needless to say, even when the flow rate is large, vortices are hardly formed in the hollow portion 7a. As a result, the influence of the air flowing on the back side of the sensor chip 12 can be made relatively small with respect to the air flowing on the front side of the sensor chip 12, so that the characteristics do not change and the sensor output can be stabilized. .
The shape of the deep groove portion 15 according to the present invention is not limited to the shape shown in FIGS. 10 and 11, and the air flowing from the deep groove portion 15 into the cavity portion 7a is inclined on the upstream side of the cavity portion 7a. Any shape that can flow along the surface may be used.

例えば、図12〜図16に示す形状が考えられる。
図12に示す深溝部15は、凹部13aの底面に向かって立ち上がる深溝部15の下流側の壁面15aが、テーパ状に傾斜する空洞部7aの上流側の傾斜面と同方向に傾斜している一例である。
図13に示す深溝部15は、凹部13aの底面に向かって立ち上がる下流側の壁面を階段状に設けた一例である。つまり、深溝部15の下流側が、最深部から凹部13aの底面に至るまで段階的に浅くなる様に形成されている。
図14に示す深溝部15は、図13に示す深溝部15の形状とは逆に、上流側の壁面が段階的に深くなる様に、階段状に設けた一例である。
For example, the shapes shown in FIGS.
In the deep groove portion 15 shown in FIG. 12, the wall surface 15a on the downstream side of the deep groove portion 15 rising toward the bottom surface of the concave portion 13a is inclined in the same direction as the inclined surface on the upstream side of the cavity portion 7a inclined in a tapered shape. It is an example.
The deep groove portion 15 shown in FIG. 13 is an example in which a downstream wall surface that rises toward the bottom surface of the concave portion 13a is provided stepwise. In other words, the downstream side of the deep groove portion 15 is formed so as to gradually become shallower from the deepest portion to the bottom surface of the recess 13a.
The deep groove portion 15 shown in FIG. 14 is an example provided in a staircase shape so that the upstream wall surface becomes deeper stepwise, contrary to the shape of the deep groove portion 15 shown in FIG. 13.

図15に示す深溝部15は、楔形状に設けた一例である。つまり、深溝部15の上流端と下流端との間に深溝部15の最深部を形成し、この最深部に向かって、深溝部15の上流側および下流側の両壁面が傾斜して設けられている。
図16に示す深溝部15は、最深部をR形状に設けた一例である。特に、図15に示した楔形状との違いは、深溝部15の上流側の壁面が直線状ではなく、R形状の最深部まで緩やかに湾曲(凹曲)していることである。
上記の図12〜図16は、いずれも、凹部13aの底面に向かって立ち上がる深溝部15の下流側の壁面が、テーパ状に傾斜する空洞部7aの上流側の傾斜面と同方向に傾斜しているので、深溝部15から空洞部7aへ流れ込んだ空気が、空洞部7aの傾斜面に沿って流れやすくなり、空洞部7aでの渦の発生をより少なくできる。
The deep groove 15 shown in FIG. 15 is an example provided in a wedge shape. That is, the deepest portion of the deep groove portion 15 is formed between the upstream end and the downstream end of the deep groove portion 15, and both the upstream and downstream wall surfaces of the deep groove portion 15 are inclined toward the deepest portion. ing.
The deep groove portion 15 shown in FIG. 16 is an example in which the deepest portion is provided in an R shape. In particular, the difference from the wedge shape shown in FIG. 15 is that the upstream wall surface of the deep groove portion 15 is not linear but gently curved (concave) to the deepest portion of the R shape.
12 to 16 described above, the downstream wall surface of the deep groove portion 15 rising toward the bottom surface of the recess 13a is inclined in the same direction as the upstream inclined surface of the cavity portion 7a inclined in a tapered shape. Therefore, the air that has flowed from the deep groove portion 15 into the cavity portion 7a can easily flow along the inclined surface of the cavity portion 7a, and the generation of vortices in the cavity portion 7a can be reduced.

なお、図10〜図16に例示した深溝部15は、凹部13aの幅方向に沿った断面形状を示しているが、凹部13aの幅方向と直交する長手方向においても、幾つかの異なる形状を採用することができる。
例えば、図17に示す深溝部15は、凹部13aの長手方向(図示上下方向)全体に渡って形成した一例である。
図18に示す深溝部15は、凹部13aの長手方向に対し、センサ基板7の裏面に開口する空洞部7aに対応して形成した一例である。センサ基板7の長手方向における空洞部7aの開口寸法と略同一の大きさ(長さ)に形成されている。
図19に示す深溝部15は、凹部13aの長手方向に対し、センサ基板7の裏面に開口する空洞部7aの開口幅両端から、テーパ状に形成された空洞部7aの傾斜面を延長した方向へテーパ状に拡大して形成されている一例である。
The deep groove 15 illustrated in FIGS. 10 to 16 has a cross-sectional shape along the width direction of the recess 13a. However, the deep groove 15 has several different shapes in the longitudinal direction perpendicular to the width direction of the recess 13a. Can be adopted.
For example, the deep groove 15 shown in FIG. 17 is an example formed over the entire longitudinal direction (the vertical direction in the figure) of the recess 13a.
The deep groove part 15 shown in FIG. 18 is an example formed corresponding to the cavity part 7a opened in the back surface of the sensor substrate 7 with respect to the longitudinal direction of the recessed part 13a. The sensor substrate 7 is formed to have substantially the same size (length) as the opening dimension of the cavity 7 a in the longitudinal direction.
The deep groove portion 15 shown in FIG. 19 is a direction in which the inclined surface of the tapered cavity portion 7a is extended from both ends of the opening width of the cavity portion 7a opening on the back surface of the sensor substrate 7 with respect to the longitudinal direction of the recess portion 13a. It is an example which is enlarged and formed in a tapered shape.

(実施例3)
この実施例3では、ケース13の裏側を流れる空気の一部をセンサ基板7に形成された空洞部7aへ取り込むための空気導入路16を設けた一例を説明する。
空気導入路16は、図20に示す様に、センサ基板7の長手方向と直交する幅方向で、テーパ状に形成された空洞部7aの上流側の傾斜面に沿って、ケース13の裏面(図示下面)から凹部13aの底面まで斜めに貫通して形成されている。
上記の構成によれば、ケース13の裏面側から空気導入路16を通じて空洞部7aへ導入された空気が、空洞部7aの上流側の傾斜面に沿って流れる。これにより、センサチップ12の表側を流れる空気に対し、センサチップ12の裏側を流れる空気の影響度を相対的に小さくできるので、特性が変曲することはなく、センサ出力を安定させることが出来る。
(Example 3)
In the third embodiment, an example will be described in which an air introduction path 16 is provided for taking a part of the air flowing through the back side of the case 13 into the cavity 7 a formed in the sensor substrate 7.
As shown in FIG. 20, the air introduction path 16 extends in the width direction perpendicular to the longitudinal direction of the sensor substrate 7, and along the inclined surface on the upstream side of the tapered cavity portion 7 a ( It is formed so as to penetrate obliquely from the lower surface (shown in the figure) to the bottom surface of the recess 13a.
According to said structure, the air introduce | transduced into the cavity part 7a from the back surface side of the case 13 through the air introduction path 16 flows along the inclined surface of the upstream of the cavity part 7a. Thereby, since the influence degree of the air which flows the back side of the sensor chip 12 with respect to the air which flows on the front side of the sensor chip 12 can be made relatively small, the characteristic does not change and the sensor output can be stabilized. .

1 エアフロメータ(空気流量測定装置)
2 吸気ダクト(空気通路) 7 センサ基板
7a センサ基板の空洞部
8 ダイヤフラム
9 発熱抵抗体
12 センサチップ
13 ケース
13a ケースに形成された凹部
13b ケースに設けられた凸状部
14 接着剤
15 深溝部
16 空気導入路
X キャビティ外エッジ
Y キャビティ内エッジ
Z 溝エッジ
1 Air flow meter (air flow measuring device)
2 Intake duct (air passage) 7 Sensor substrate 7a Sensor substrate cavity 8 Diaphragm 9 Heating resistor 12 Sensor chip 13 Case 13a Concave portion formed in the case 13b Convex portion provided in the case 14 Adhesive 15 Deep groove portion 16 Air introduction path X Cavity edge Y Cavity edge Z Groove edge

Claims (8)

センサ基板の長手方向の一端側に、裏面から表側へ向かってテーパ状に空洞部を形成することにより、この空洞部に対応する前記センサ基板の表面にダイヤフラムが設けられ、且つ、このダイヤフラムの表面上に発熱抵抗体を配置したセンサチップと、
このセンサチップを保持するために形成された凹部を有し、この凹部に配置される前記センサチップの他端側を接着剤により固定して、前記センサチップの一端側の裏面および両側面と前記凹部の底面および両側面との間にそれぞれ隙間を有する状態で前記センサチップを片持ち支持するケースとを備え、
このケースを空気通路に配置して、前記発熱抵抗体の熱交換を基に空気流量を測定する空気流量測定装置において、
前記ケースは、前記センサ基板の長手方向と直交する前記凹部の幅方向で、前記センサ基板の裏側を流れる空気の上流側に、前記凹部の底面より深く形成された深溝部を有し、この深溝部の下流側と、前記センサ基板の裏面に開口する前記空洞部の上流側とが、前記センサ基板の幅方向にオーバラップしていることを特徴とする空気流量測定装置。
By forming a hollow portion in a tapered shape from one back surface to the front side on one end side in the longitudinal direction of the sensor substrate, a diaphragm is provided on the surface of the sensor substrate corresponding to the hollow portion, and the surface of the diaphragm A sensor chip having a heating resistor disposed thereon;
The sensor chip has a recess formed to hold the sensor chip, and the other end side of the sensor chip disposed in the recess is fixed with an adhesive, and the back surface and both side surfaces of the sensor chip on one end side and the A case for supporting the sensor chip in a cantilevered manner with a gap between the bottom surface and both side surfaces of the recess,
In the air flow rate measuring device that arranges this case in the air passage and measures the air flow rate based on the heat exchange of the heating resistor,
The case has a deep groove formed deeper than the bottom surface of the recess on the upstream side of the air flowing through the back side of the sensor substrate in the width direction of the recess perpendicular to the longitudinal direction of the sensor substrate. An air flow rate measuring apparatus characterized in that a downstream side of the part and an upstream side of the hollow portion opened on the back surface of the sensor substrate overlap in the width direction of the sensor substrate.
請求項1に記載した空気流量測定装置において、
前記センサ基板の幅方向で、前記センサ基板の裏面に開口する前記空洞部の上流側角部をキャビティ外エッジと呼び、
前記空洞部の最深部で前記ダイヤフラムの上流端に対応する前記空洞部の内角部をキャビティ内エッジと呼び、
前記凹部の底面に開口する前記深溝部の下流側角部を溝エッジと呼ぶ時に、
前記凹部および前記センサ基板の幅方向に対して、前記キャビティ外エッジと前記溝エッジとの間の距離をL1、前記キャビティ外エッジと前記キャビティ内エッジとの間の距離をL2とすると、
L1≦L2…………(1)
上記(1)式が成立することを特徴とする空気流量測定装置。
In the air flow rate measuring device according to claim 1,
In the width direction of the sensor substrate, the upstream corner of the cavity that opens on the back surface of the sensor substrate is called a cavity outer edge,
The inner corner of the cavity corresponding to the upstream end of the diaphragm at the deepest part of the cavity is called the cavity inner edge,
When the downstream corner of the deep groove opening at the bottom of the recess is called a groove edge,
When the distance between the outer edge of the cavity and the groove edge is L1, and the distance between the outer edge of the cavity and the inner edge of the cavity is L2, with respect to the width direction of the recess and the sensor substrate,
L1 ≦ L2 ………… (1)
An air flow rate measuring device characterized in that the above equation (1) is established.
請求項1または2に記載した空気流量測定装置において、
前記凹部の底面に向かって立ち上がる前記深溝部の下流側の壁面は、テーパ状に傾斜する前記空洞部の上流側の傾斜面と同方向に傾斜して設けられていることを特徴とする空気流量測定装置。
In the air flow rate measuring device according to claim 1 or 2,
An air flow rate characterized in that the downstream wall surface of the deep groove portion rising toward the bottom surface of the recess is inclined in the same direction as the upstream inclined surface of the hollow portion inclined in a tapered shape. measuring device.
請求項1〜3に記載した何れかの空気流量測定装置において、
前記深溝部は、前記凹部の幅方向と直交する長手方向全体に渡って形成されることを特徴とする空気流量測定装置。
In any one of air flow measuring devices given in claims 1-3,
The deep groove portion is formed over the entire longitudinal direction perpendicular to the width direction of the concave portion.
請求項1〜3に記載した何れかの空気流量測定装置において、
前記深溝部は、前記凹部の幅方向と直交する長手方向に対し、前記センサ基板の裏面に前記空洞部が開口している範囲に形成されることを特徴とする空気流量測定装置。
In any one of air flow measuring devices given in claims 1-3,
The deep groove portion is formed in a range in which the cavity portion is open on the back surface of the sensor substrate with respect to a longitudinal direction orthogonal to the width direction of the concave portion.
請求項1〜3に記載した何れかの空気流量測定装置において、
前記深溝部は、前記凹部の幅方向と直交する長手方向に対し、前記センサ基板の裏面に開口する前記空洞部の開口幅両端から、テーパ状に形成された前記空洞部の傾斜面を延長した方向へテーパ状に拡大して形成されていることを特徴とする空気流量測定装置。
In any one of air flow measuring devices given in claims 1-3,
The deep groove portion extends an inclined surface of the cavity portion formed in a tapered shape from both ends of the opening width of the cavity portion that opens to the back surface of the sensor substrate with respect to a longitudinal direction orthogonal to the width direction of the recess portion. An air flow rate measuring device, wherein the air flow rate measuring device is formed to taper in the direction.
センサ基板の長手方向の一端側に、裏面から表側へ向かってテーパ状に空洞部を形成することにより、この空洞部に対応する前記センサ基板の表面にダイヤフラムが設けられ、且つ、このダイヤフラムの表面上に発熱抵抗体を配置したセンサチップと、
このセンサチップを保持するために形成された凹部を有し、この凹部に配置される前記センサチップの他端側を接着剤により固定して、前記センサチップの一端側の裏面および両側面と前記凹部の底面および両側面との間にそれぞれ隙間を有する状態で前記センサチップを片持ち支持するケースとを備え、
このケースを空気通路に配置して、前記発熱抵抗体の熱交換を基に空気流量を測定する空気流量測定装置において、
前記ケースには、前記ケースの裏側を流れる空気の一部を前記センサ基板に形成された前記空洞部へ取り込むための空気導入路が設けられ、この空気導入路は、前記センサ基板の長手方向と直交する幅方向で、テーパ状に形成された前記空洞部の上流側の傾斜面に沿って、前記ケースの裏面から前記凹部の底面まで斜めに貫通して形成されていることを特徴とする空気流量測定装置。
By forming a hollow portion in a tapered shape from one back surface to the front side on one end side in the longitudinal direction of the sensor substrate, a diaphragm is provided on the surface of the sensor substrate corresponding to the hollow portion, and the surface of the diaphragm A sensor chip having a heating resistor disposed thereon;
The sensor chip has a recess formed to hold the sensor chip, and the other end side of the sensor chip disposed in the recess is fixed with an adhesive, and the back surface and both side surfaces of the sensor chip on one end side and the A case for supporting the sensor chip in a cantilevered manner with a gap between the bottom surface and both side surfaces of the recess,
In the air flow rate measuring device that arranges this case in the air passage and measures the air flow rate based on the heat exchange of the heating resistor,
The case is provided with an air introduction path for taking a part of the air flowing through the back side of the case into the cavity formed in the sensor substrate, and the air introduction path is connected to the longitudinal direction of the sensor substrate. The air is formed so as to penetrate diagonally from the back surface of the case to the bottom surface of the recess along the inclined surface on the upstream side of the cavity formed in a taper shape in the orthogonal width direction. Flow measurement device.
センサ基板の長手方向の一端側に、裏面から表側へ向かってテーパ状に空洞部を形成することにより、この空洞部に対応する前記センサ基板の表面にダイヤフラムが設けられ、且つ、このダイヤフラムの表面上に発熱抵抗体を配置したセンサチップと、
このセンサチップを保持するために形成された凹部を有し、この凹部に配置される前記センサチップの他端側を接着剤により固定して、前記センサチップの一端側の裏面および両側面と前記凹部の底面および両側面との間にそれぞれ隙間を有する状態で前記センサチップを片持ち支持するケースとを備え、
このケースを空気通路に配置して、前記発熱抵抗体の熱交換を基に空気流量を測定する空気流量測定装置において、
前記ケースは、前記センサ基板に形成された前記空洞部に対し、前記凹部の底面から突起して前記空洞部に入り込む凸状部が設けられていることを特徴とする空気流量測定装置。
By forming a hollow portion in a tapered shape from one back surface to the front side on one end side in the longitudinal direction of the sensor substrate, a diaphragm is provided on the surface of the sensor substrate corresponding to the hollow portion, and the surface of the diaphragm A sensor chip having a heating resistor disposed thereon;
The sensor chip has a recess formed to hold the sensor chip, and the other end side of the sensor chip disposed in the recess is fixed with an adhesive, and the back surface and both side surfaces of the sensor chip on one end side and the A case for supporting the sensor chip in a cantilevered manner with a gap between the bottom surface and both side surfaces of the recess,
In the air flow rate measuring device that arranges this case in the air passage and measures the air flow rate based on the heat exchange of the heating resistor,
The air flow measuring device according to claim 1, wherein the case is provided with a convex portion that protrudes from a bottom surface of the concave portion and enters the hollow portion with respect to the hollow portion formed in the sensor substrate.
JP2010070590A 2009-05-01 2010-03-25 Air flow measurement device Active JP5182314B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010070590A JP5182314B2 (en) 2009-05-01 2010-03-25 Air flow measurement device
DE201010028387 DE102010028387A1 (en) 2009-05-01 2010-04-29 Air flow measurement unit, at the air intake of an internal combustion motor, has a chip with a membrane within a structured housing with hollows

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009111907 2009-05-01
JP2009111907 2009-05-01
JP2010070590A JP5182314B2 (en) 2009-05-01 2010-03-25 Air flow measurement device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012236557A Division JP5477446B2 (en) 2009-05-01 2012-10-26 Air flow measurement device

Publications (2)

Publication Number Publication Date
JP2010281809A true JP2010281809A (en) 2010-12-16
JP5182314B2 JP5182314B2 (en) 2013-04-17

Family

ID=42813894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010070590A Active JP5182314B2 (en) 2009-05-01 2010-03-25 Air flow measurement device

Country Status (2)

Country Link
JP (1) JP5182314B2 (en)
DE (1) DE102010028387A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064716A (en) * 2011-08-26 2013-04-11 Denso Corp Air flow rate measurement device
JP2014001986A (en) * 2012-06-15 2014-01-09 Hitachi Automotive Systems Ltd Thermal flowmeter
CN104395705A (en) * 2012-06-15 2015-03-04 日立汽车系统株式会社 Thermal flow meter
JP2015099169A (en) * 2015-03-04 2015-05-28 日立オートモティブシステムズ株式会社 Flow sensor
US9322686B2 (en) 2012-04-06 2016-04-26 Hitachi Automotive Systems, Ltd. Flow sensor
US9695769B2 (en) 2013-06-12 2017-07-04 Denso Corporation Air flow rate adjusting apparatus
JP6416357B1 (en) * 2017-10-05 2018-10-31 三菱電機株式会社 Flow measuring device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533590B2 (en) * 2010-11-23 2014-06-25 株式会社デンソー Thermal flow sensor
US10757973B2 (en) * 2016-07-25 2020-09-01 Fontem Holdings 1 B.V. Electronic cigarette with mass air flow sensor
WO2018141637A1 (en) * 2017-01-31 2018-08-09 Belimo Holding Ag Flow sensor and air flow device with such flow sensor
US11965762B2 (en) * 2019-10-21 2024-04-23 Flusso Limited Flow sensor
US11262224B2 (en) * 2020-06-19 2022-03-01 Honeywell International Inc. Flow sensing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139360A (en) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Thermal flow sensor
JP2004504620A (en) * 2000-07-21 2004-02-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor
JP2006038787A (en) * 2004-07-30 2006-02-09 Yamatake Corp Flow sensor
JP2006090889A (en) * 2004-09-24 2006-04-06 Denso Corp Thermal type flow sensor and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488031B2 (en) 2007-06-14 2010-06-23 株式会社デンソー Air flow measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504620A (en) * 2000-07-21 2004-02-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor
JP2002139360A (en) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Thermal flow sensor
JP2006038787A (en) * 2004-07-30 2006-02-09 Yamatake Corp Flow sensor
JP2006090889A (en) * 2004-09-24 2006-04-06 Denso Corp Thermal type flow sensor and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013064716A (en) * 2011-08-26 2013-04-11 Denso Corp Air flow rate measurement device
US9027413B2 (en) 2011-08-26 2015-05-12 Denso Corporation Airflow measuring device
US9322686B2 (en) 2012-04-06 2016-04-26 Hitachi Automotive Systems, Ltd. Flow sensor
JP2014001986A (en) * 2012-06-15 2014-01-09 Hitachi Automotive Systems Ltd Thermal flowmeter
CN104395705A (en) * 2012-06-15 2015-03-04 日立汽车系统株式会社 Thermal flow meter
US9804009B2 (en) 2012-06-15 2017-10-31 Hitachi Automotive Systems, Ltd. Thermal flow meter with diaphragm forming a reduced pressure sealed space
US9695769B2 (en) 2013-06-12 2017-07-04 Denso Corporation Air flow rate adjusting apparatus
US10443528B2 (en) 2013-06-12 2019-10-15 Denso Corporation Air flow rate adjusting apparatus
JP2015099169A (en) * 2015-03-04 2015-05-28 日立オートモティブシステムズ株式会社 Flow sensor
JP6416357B1 (en) * 2017-10-05 2018-10-31 三菱電機株式会社 Flow measuring device
JP2019066430A (en) * 2017-10-05 2019-04-25 三菱電機株式会社 Flow rate measuring device

Also Published As

Publication number Publication date
JP5182314B2 (en) 2013-04-17
DE102010028387A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP2010281809A (en) Air flow rate measuring device
JP4488031B2 (en) Air flow measurement device
JP4140553B2 (en) Air flow measurement device
US20080016959A1 (en) Thermal type flow sensor
JP3853842B2 (en) Equipment for measuring the amount of fluid medium
JP2007093422A (en) Device for measuring flow rate
JP2010014489A (en) Flow measuring device
US6561021B2 (en) Flow rate-measuring device
JP2006329927A (en) Flow rate measuring apparatus
JP4488030B2 (en) Air flow measurement device
KR102497876B1 (en) Sensor arrangement for determining at least one parameter of a fluid medium flowing through a measurement channel
JP6477195B2 (en) Flow measuring device
JP2010261771A (en) Device for measurement of air flow rate
KR102447065B1 (en) Sensor arrangement for determining at least one parameter of a fluid medium flowing through a channel structure
JP6365388B2 (en) Flow measuring device
KR100538060B1 (en) Air flow rate measuring apparatus
JP5477446B2 (en) Air flow measurement device
JP3985801B2 (en) Air flow measurement device
JP4166705B2 (en) Air flow measurement device
JP2007155435A (en) Air flowrate measurement device
JP2006522921A (en) Apparatus for measuring at least one parameter of a medium flowing in a pipeline
JP2012242298A (en) Flow rate detection device
JP5272801B2 (en) Air flow measurement device
US10684155B2 (en) Air flow rate measurement device
JP5370114B2 (en) Air flow measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R151 Written notification of patent or utility model registration

Ref document number: 5182314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250