JP2010281588A - Method and device for measuring electrochemical reaction - Google Patents

Method and device for measuring electrochemical reaction Download PDF

Info

Publication number
JP2010281588A
JP2010281588A JP2009132948A JP2009132948A JP2010281588A JP 2010281588 A JP2010281588 A JP 2010281588A JP 2009132948 A JP2009132948 A JP 2009132948A JP 2009132948 A JP2009132948 A JP 2009132948A JP 2010281588 A JP2010281588 A JP 2010281588A
Authority
JP
Japan
Prior art keywords
amplitude
response signal
perturbation
electrochemical reaction
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009132948A
Other languages
Japanese (ja)
Other versions
JP5483155B2 (en
Inventor
Nobuhiro Tomosada
伸浩 友定
Daisuke Yamazaki
大輔 山崎
Atsushi Kimura
篤史 木村
Tomomi Akutsu
智美 阿久津
Makoto Kawano
誠 川野
Soichiro Torai
総一朗 虎井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2009132948A priority Critical patent/JP5483155B2/en
Publication of JP2010281588A publication Critical patent/JP2010281588A/en
Application granted granted Critical
Publication of JP5483155B2 publication Critical patent/JP5483155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for measuring an electrochemical reaction which enable detailed measurement regarding the electrochemical reaction by utilizing a phenomenon caused by a nonlinear reaction, and the degree of the nonlinear reaction. <P>SOLUTION: An amplitude control means 31 changes the amplitude of a perturbation signal given to a battery 1. A response signal acquiring means 32 obtains a response signal in accordance with the amplitude of the perturbation signal changed by the amplitude control means 31. Besides, the impedance of the battery 1 is calculated in an operation part 33. Herein the impedance (Z, θ) of the battery 1 is calculated on the basis of the response signal obtained by the response signal acquiring means 32. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被計測物に摂動信号を与え、応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測方法および電気化学反応計測装置に関する。   The present invention relates to an electrochemical reaction measurement method and an electrochemical reaction measurement apparatus that give a perturbation signal to an object to be measured and perform measurement related to an electrochemical reaction of the object to be measured based on a response signal.

燃料電池、その他の電池のインピーダンスを計測する方法として、電池に摂動信号を与え、そのときの応答信号に基づいてインピーダンスを算出する方法が知られている。この方法では、ある動作点(出力電流Idc、出力電圧Vdc)での発電を行い、さらに周波数f1の交流電流摂動Iacを重畳させ、その電圧応答信号Vacを取得し、周波数f1におけるインピーダンスを算出する。あるいは上記動作点で周波数f1の交流電圧摂動Vacを重畳させ、その電流応答信号Iacを取得し、周波数f1におけるインピーダンスを算出する。例えば、二次電池などで残容量(SOC;State of Charge)を揃えた状態でのインピーダンス計測が必要な場合には、電池のSOCを所望状態に設定後、上記出力電流Idcをゼロにして(あるいは、出力電圧Vdcを固定して)交流摂動を印加し、そのときの応答信号に基づいてインピーダンスを計測する。   As a method for measuring the impedance of a fuel cell or other cell, a method is known in which a perturbation signal is given to the cell and the impedance is calculated based on the response signal at that time. In this method, power is generated at a certain operating point (output current Idc, output voltage Vdc), AC current perturbation Iac at frequency f1 is superimposed, voltage response signal Vac is obtained, and impedance at frequency f1 is calculated. . Alternatively, the AC voltage perturbation Vac having the frequency f1 is superimposed at the operating point, the current response signal Iac is obtained, and the impedance at the frequency f1 is calculated. For example, when impedance measurement is required in a state where the remaining capacity (SOC; State of Charge) is uniform in a secondary battery or the like, the output current Idc is set to zero after setting the SOC of the battery to a desired state ( Alternatively, AC perturbation is applied with the output voltage Vdc fixed, and the impedance is measured based on the response signal at that time.

一般に電気化学反応は非線形反応と考えられており、そのインピーダンス計測については、交流の摂動電圧幅あるいは摂動電流幅を小さくすることで、系を線形近似しても問題のない範囲、すなわち誤差が許容される領域での計測を行うようにしている。   In general, electrochemical reactions are considered to be nonlinear reactions. For impedance measurement, reducing the perturbation voltage width or perturbation current width of the alternating current allows a system that does not have any problem even if the system is linearly approximated, that is, an error is allowed. The measurement is performed in the area where it is performed.

特開2007−250365号公報JP 2007-250365 A

しかし、非線形現象を線形近似するための条件についての取り決めはなく、摂動電圧幅あるいは摂動電流幅を可能な限り小さくし、あるいは予め定められた摂動電圧値あるいは摂動電流値を適用しており、最適な摂動信号の信号幅についての検討はなされていない。   However, there is no agreement on the conditions for linear approximation of nonlinear phenomena, and the perturbation voltage width or perturbation current width is made as small as possible, or a predetermined perturbation voltage value or perturbation current value is applied. The signal width of such a perturbation signal has not been studied.

また、非線形反応に起因して生ずる応答信号の波形ひずみの程度等を電気化学反応の解析に利用する手法等も提案されていない。   In addition, no method has been proposed in which the degree of waveform distortion of the response signal caused by the nonlinear reaction is used for the analysis of the electrochemical reaction.

本発明の目的は、非線形反応に起因する現象や非線形反応の程度を利用することで電気化学反応に関する詳細な計測が可能な電気化学反応計測方法および電気化学反応計測装置を提供することにある。   An object of the present invention is to provide an electrochemical reaction measurement method and an electrochemical reaction measurement apparatus capable of performing detailed measurement relating to an electrochemical reaction by utilizing a phenomenon caused by the nonlinear reaction and the degree of the nonlinear reaction.

本発明の電気化学反応計測方法は、被計測物に摂動信号を与え、応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測方法において、前記摂動信号の振幅を変化させるステップと、前記振幅を変化させるステップにより変化する摂動信号の振幅に応じた応答信号を取得するステップと、を備えることを特徴とする。
この電気化学反応計測方法によれば、摂動信号の振幅を変化させるとともに、摂動信号の振幅に応じた応答信号を取得するので、非線形反応に起因する現象や非線形反応の程度を利用した計測が可能となる。
The electrochemical reaction measurement method of the present invention is the electrochemical reaction measurement method in which a perturbation signal is given to an object to be measured, and measurement related to an electrochemical reaction of the object to be measured is performed based on a response signal. And a step of acquiring a response signal corresponding to the amplitude of the perturbation signal that changes by the step of changing the amplitude.
According to this electrochemical reaction measurement method, the amplitude of the perturbation signal is changed, and a response signal corresponding to the amplitude of the perturbation signal is acquired, so measurement using the phenomenon caused by the nonlinear reaction and the degree of the nonlinear reaction is possible. It becomes.

前記応答信号を取得するステップにより取得された応答信号に基づいて、前記摂動信号の振幅に応じた前記被計測物のインピーダンスを算出するステップを備えてもよい。   You may provide the step which calculates the impedance of the said to-be-measured object according to the amplitude of the said perturbation signal based on the response signal acquired by the step which acquires the said response signal.

前記応答信号を取得するステップにより取得された応答信号に基づいて、前記被計測物のインピーダンスの非線形性が現れる前記摂動信号の振幅を取得するステップを備えてもよい。   The method may further include a step of acquiring an amplitude of the perturbation signal in which nonlinearity of impedance of the object to be measured appears based on the response signal acquired by the step of acquiring the response signal.

前記応答信号を取得するステップにより取得された応答信号の周波数スペクトルを算出するステップを備えてもよい。   You may provide the step which calculates the frequency spectrum of the response signal acquired by the step which acquires the said response signal.

前記周波数スペクトルは応答信号を取得するステップにより取得された応答信号の振幅スペクトルまたは位相スペクトルであってもよい。   The frequency spectrum may be an amplitude spectrum or a phase spectrum of the response signal obtained by obtaining the response signal.

本発明の電気化学反応計測装置は、被計測物に摂動信号を与え、応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測装置において、前記摂動信号の振幅を変化させる振幅制御手段と、前記振幅制御手段により変化する摂動信号の振幅に応じた応答信号を取得する応答信号取得手段と、を備えることを特徴とする。
この電気化学反応計測装置によれば、摂動信号の振幅を変化させるとともに、摂動信号の振幅に応じた応答信号を取得するので、非線形反応に起因する現象や非線形反応の程度を利用した計測が可能となる。
The electrochemical reaction measuring device according to the present invention provides a perturbation signal to an object to be measured, and changes an amplitude of the perturbation signal in an electrochemical reaction measuring device that performs measurement related to an electrochemical reaction of the object to be measured based on a response signal. And an amplitude control unit that performs response, and a response signal acquisition unit that acquires a response signal corresponding to the amplitude of the perturbation signal that is changed by the amplitude control unit.
According to this electrochemical reaction measuring device, the amplitude of the perturbation signal is changed, and a response signal corresponding to the amplitude of the perturbation signal is acquired, so that measurement using the phenomenon caused by the non-linear reaction and the non-linear reaction level is possible. It becomes.

本発明の電気化学反応計測方法によれば、摂動信号の振幅を変化させるとともに、摂動信号の振幅に応じた応答信号を取得するので、非線形反応に起因する現象や非線形反応の程度を利用した計測が可能となる。   According to the electrochemical reaction measurement method of the present invention, the amplitude of the perturbation signal is changed and a response signal corresponding to the amplitude of the perturbation signal is acquired. Therefore, measurement utilizing the phenomenon caused by the non-linear reaction and the degree of the non-linear reaction Is possible.

本発明の電気化学反応計測装置によれば、摂動信号の振幅を変化させるとともに、摂動信号の振幅に応じた応答信号を取得するので、非線形反応に起因する現象や非線形反応の程度を利用した計測が可能となる。   According to the electrochemical reaction measurement device of the present invention, the amplitude of the perturbation signal is changed, and a response signal corresponding to the amplitude of the perturbation signal is acquired. Therefore, measurement using the phenomenon caused by the non-linear reaction and the degree of the non-linear reaction Is possible.

本発明による電気化学反応計測方法を行うための計測装置の構成を示すブロック図。The block diagram which shows the structure of the measuring device for performing the electrochemical reaction measuring method by this invention. 計測装置の動作を示すフローチャート。The flowchart which shows operation | movement of a measuring device. 摂動信号の振幅とインピーダンスの対応関係を例示する図。The figure which illustrates the correspondence of the amplitude and impedance of a perturbation signal.

以下、本発明による電気化学反応計測方法の実施形態について説明する。   Hereinafter, embodiments of the electrochemical reaction measurement method according to the present invention will be described.

図1は、本発明による電気化学反応計測方法を行うための計測装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of a measuring apparatus for performing an electrochemical reaction measuring method according to the present invention.

図1に示すように、被計測物である電池1には電子負荷2が接続され、電子負荷2を介して電池1に所定の動作点が与えられるとともに、その動作点における動作電圧または動作電流に摂動信号(電圧摂動信号または電流摂動信号)が重畳される。   As shown in FIG. 1, an electronic load 2 is connected to a battery 1 that is an object to be measured, and a predetermined operating point is given to the battery 1 via the electronic load 2, and an operating voltage or operating current at the operating point is given. Is superimposed with a perturbation signal (voltage perturbation signal or current perturbation signal).

図1に示すように、計測装置3は電子負荷2を制御する振幅制御手段31と、電池1の応答信号を取得する応答信号取得手段32とを構成する。また、計測装置3には応答信号取得手段32で取得された応答信号に基づく演算を実行する演算部33と、演算部33における演算結果を表示する表示部34とが設けられる。   As shown in FIG. 1, the measuring device 3 includes an amplitude control unit 31 that controls the electronic load 2 and a response signal acquisition unit 32 that acquires a response signal of the battery 1. In addition, the measuring device 3 is provided with a calculation unit 33 that executes a calculation based on the response signal acquired by the response signal acquisition unit 32 and a display unit 34 that displays a calculation result in the calculation unit 33.

図2は、計測装置3の動作を示すフローチャートである。   FIG. 2 is a flowchart showing the operation of the measuring device 3.

図2のステップS1では、ユーザの指示に基づいて計測条件が設定される。ここで設定される設定パラメータには、摂動信号の周波数、摂動信号の振幅の初期値、摂動信号の振幅の上限値、摂動信号の振幅の変化幅などが含まれる。また、電池1が燃料電池の場合等には、直流負荷(出力電圧値または出力電流値)が、電池1が二次電池などの場合には残容量(SOC;State of Charge)が、それぞれ設定パラメータとして設定される。   In step S1 of FIG. 2, measurement conditions are set based on a user instruction. The setting parameters set here include the frequency of the perturbation signal, the initial value of the amplitude of the perturbation signal, the upper limit value of the amplitude of the perturbation signal, the change width of the amplitude of the perturbation signal, and the like. Further, when the battery 1 is a fuel cell, etc., a DC load (output voltage value or output current value) is set, and when the battery 1 is a secondary battery, a remaining capacity (SOC; State of Charge) is set. Set as a parameter.

次に、ステップS2では、上記設定パラメータに従い、振幅制御手段31は電子負荷2を介して電池1に直流負荷を与えるとともに、直流負荷に摂動信号を重畳させる。計測開始時における摂動信号の振幅は、上記設定パラメータにおける摂動信号の振幅の初期値に従う。   Next, in step S2, the amplitude control means 31 applies a DC load to the battery 1 via the electronic load 2 and superimposes a perturbation signal on the DC load in accordance with the set parameters. The amplitude of the perturbation signal at the start of measurement follows the initial value of the amplitude of the perturbation signal in the setting parameter.

次に、ステップS3では、応答信号取得手段32により電池1の応答信号を取得する。   Next, in step S <b> 3, the response signal of the battery 1 is acquired by the response signal acquisition unit 32.

次に、ステップS4では、演算部32において電池1のインピーダンスを算出する。ここでは、応答信号取得手段32により取得された応答信号に基づき、電池1のインピーダンス(Z,θ)を算出し、算出結果を摂動信号の振幅と対応付けて保存する。なお、摂動信号および応答信号の対比によりインピーダンスを算出する手法は公知であるため、インピーダンス算出の方法についての説明は省略する。   Next, in step S <b> 4, the calculation unit 32 calculates the impedance of the battery 1. Here, based on the response signal acquired by the response signal acquisition means 32, the impedance (Z, θ) of the battery 1 is calculated, and the calculation result is stored in association with the amplitude of the perturbation signal. In addition, since the technique for calculating the impedance by comparing the perturbation signal and the response signal is known, the description of the impedance calculation method is omitted.

次に、ステップS5では、摂動信号の振幅が上記設定パラメータにおける摂動信号の振幅の上限値に到達したか否か判断し、判断が肯定されればステップS7へ進み、判断が否定されればステップS6へ進む。   Next, in step S5, it is determined whether or not the amplitude of the perturbation signal has reached the upper limit value of the amplitude of the perturbation signal in the setting parameter. If the determination is affirmative, the process proceeds to step S7, and if the determination is negative, step S7 is performed. Proceed to S6.

ステップS6では、摂動信号の振幅を上記設定パラメータにおける摂動信号の振幅の変化幅だけ増加させ、ステップS2へ進む。   In step S6, the amplitude of the perturbation signal is increased by the change width of the amplitude of the perturbation signal in the setting parameter, and the process proceeds to step S2.

ステップS7では、保存されている電池1のインピーダンス(Z,θ)の算出結果に基づき、演算部33において、摂動信号の振幅とインピーダンスの対応関係を算出する。   In step S7, the calculation unit 33 calculates the correspondence between the amplitude of the perturbation signal and the impedance based on the stored calculation result of the impedance (Z, θ) of the battery 1.

図3は、演算部33において算出される摂動信号の振幅とインピーダンスの対応関係を例示する図である。図3に示すように、摂動信号の振幅の初期値は線形領域にあり、インピーダンス(Z,θ)は正しく算出される。さらに摂動信号の振幅を増加させても線形領域内では算出されるインピーダンス(Z,θ)は変化しない。しかし、摂動信号の振幅が限界振幅に到達すると非線形領域に突入し、線形性が崩れ、算出される見かけ上のZおよびθが増大してゆく。   FIG. 3 is a diagram illustrating a correspondence relationship between the amplitude of the perturbation signal and the impedance calculated by the calculation unit 33. As shown in FIG. 3, the initial value of the amplitude of the perturbation signal is in the linear region, and the impedance (Z, θ) is correctly calculated. Furthermore, even if the amplitude of the perturbation signal is increased, the calculated impedance (Z, θ) does not change in the linear region. However, when the amplitude of the perturbation signal reaches the limit amplitude, it enters a non-linear region, the linearity is lost, and the calculated apparent Z and θ increase.

このため、Zおよびθの変化状況を参照することで、線形性が崩れる閾値(限界振幅)を把握することができる。例えば、演算部33における演算結果を、図3に示すようなグラフとして表示部34に表示することで、ユーザは上記閾値(限界振幅)を容易に把握することができる。   For this reason, the threshold value (limit amplitude) at which the linearity is lost can be grasped by referring to the change state of Z and θ. For example, by displaying the calculation result in the calculation unit 33 on the display unit 34 as a graph as shown in FIG. 3, the user can easily grasp the threshold value (limit amplitude).

このように、上記実施形態では、線形領域から非線形領域に切り替わる上記閾値(限界振幅)が明らかとなるため、線形性が維持される範囲で摂動振幅を極力大きくとることで、インピーダンス計測時のSN比を向上させることが可能となる。例えば、上記閾値(限界振幅)に到達する直前における計測で算出されたインピーダンスを計測値として採用することができる。また、新たな被計測物に対して図2に示す手順で予備計測を行うことで、インピーダンス計測に適切な摂動信号の振幅を予め確定することができる。   As described above, in the above embodiment, the threshold value (limit amplitude) for switching from the linear region to the nonlinear region is clarified. Therefore, by increasing the perturbation amplitude as much as possible within the range in which the linearity is maintained, the SN at the time of impedance measurement is obtained. The ratio can be improved. For example, the impedance calculated by the measurement immediately before reaching the threshold (limit amplitude) can be adopted as the measurement value. Further, by performing preliminary measurement on a new object to be measured according to the procedure shown in FIG. 2, the amplitude of the perturbation signal suitable for impedance measurement can be determined in advance.

また、摂動信号の振幅とインピーダンスの関係を用いて被計測物の劣化や状態変化の高感度計測が可能となる。例えば、劣化が起きると上記閾値(限界振幅)が小さくなることが予測されるため、上記閾値(限界振幅)の変化状況を把握することで、劣化の程度を推定することができる。これに対し、従来のインピーダンス計測では摂動信号の振幅を最小限に抑えているため、劣化が大幅に進むまでその劣化がインピーダンスの算出値に反映されず、早期に劣化状況を知ることができない。   In addition, it is possible to perform highly sensitive measurement of deterioration or state change of the measurement object using the relationship between the amplitude of the perturbation signal and impedance. For example, since the threshold value (limit amplitude) is predicted to decrease when deterioration occurs, the degree of deterioration can be estimated by grasping the change state of the threshold value (limit amplitude). On the other hand, in the conventional impedance measurement, the amplitude of the perturbation signal is minimized, so that the deterioration is not reflected in the calculated impedance value until the deterioration is greatly advanced, and the deterioration state cannot be known at an early stage.

摂動信号の振幅とインピーダンスの対応関係(図3)に基づく評価を行う代わりに、あるいはこれと並行してスペクトル解析を行ってもよい。   Spectral analysis may be performed instead of or in parallel with the evaluation based on the correspondence between the amplitude of the perturbation signal and the impedance (FIG. 3).

例えば、摂動信号に応じた応答信号の周波数スペクトルを演算部33において算出し、表示部34においてこれを表示することができる。この場合、周波数スペクトルはインピーダンス計測値を導くものではないが、摂動信号の周波数を基本周波数とする応答信号の周波数スペクトルを算出することで、周波数スペクトルの内訳(ひずみの詳細状況)まで詳細に把握することが可能となる。この場合の周波数スペクトルとして、基本周波数に対する振幅比のほか、基本スペクトルに対する位相(摂動信号に対する応答信号の位相差)の周波数特性を得ることもできる。   For example, the frequency spectrum of the response signal corresponding to the perturbation signal can be calculated by the calculation unit 33 and displayed on the display unit 34. In this case, the frequency spectrum does not lead to the measured impedance value, but by calculating the frequency spectrum of the response signal with the frequency of the perturbation signal as the fundamental frequency, the frequency spectrum breakdown (detailed distortion status) can be grasped in detail. It becomes possible to do. As the frequency spectrum in this case, in addition to the amplitude ratio with respect to the fundamental frequency, the frequency characteristic of the phase with respect to the fundamental spectrum (the phase difference of the response signal with respect to the perturbation signal) can be obtained.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、被計測物に摂動信号を与え、応答信号に基づいて被計測物の電気化学反応に関する計測を行う電気化学反応計測方法および電気化学反応計測装置に対し、広く適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention can be widely applied to an electrochemical reaction measurement method and an electrochemical reaction measurement device that give a perturbation signal to an object to be measured and perform measurement related to an electrochemical reaction of the object to be measured based on a response signal.

31 振幅制御手段
32 応答信号取得手段
31 Amplitude control means 32 Response signal acquisition means

Claims (6)

被計測物に摂動信号を与え、応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測方法において、
前記摂動信号の振幅を変化させるステップと、
前記振幅を変化させるステップにより変化する摂動信号の振幅に応じた応答信号を取得するステップと、
を備えることを特徴とする電気化学反応計測方法。
In an electrochemical reaction measurement method that gives a perturbation signal to an object to be measured and performs measurement related to an electrochemical reaction of the object to be measured based on a response signal.
Changing the amplitude of the perturbation signal;
Obtaining a response signal corresponding to the amplitude of the perturbation signal that changes by the step of changing the amplitude;
An electrochemical reaction measuring method comprising:
前記応答信号を取得するステップにより取得された応答信号に基づいて、前記摂動信号の振幅に応じた前記被計測物のインピーダンスを算出するステップを備えることを特徴とする請求項1に記載の電気化学反応計測方法。 2. The electrochemical method according to claim 1, further comprising a step of calculating an impedance of the object to be measured according to an amplitude of the perturbation signal based on the response signal acquired in the step of acquiring the response signal. Reaction measurement method. 前記応答信号を取得するステップにより取得された応答信号に基づいて、前記被計測物のインピーダンスの非線形性が現れる前記摂動信号の振幅を取得するステップを備えることを特徴とする請求項1に記載の電気化学反応計測方法。 2. The method according to claim 1, further comprising: acquiring an amplitude of the perturbation signal in which nonlinearity of impedance of the measurement object appears based on the response signal acquired by the step of acquiring the response signal. Electrochemical reaction measurement method. 前記応答信号を取得するステップにより取得された応答信号の周波数スペクトルを算出するステップを備えることを特徴とする請求項1に記載の電気化学反応計測方法。 The electrochemical reaction measurement method according to claim 1, further comprising a step of calculating a frequency spectrum of the response signal acquired by the step of acquiring the response signal. 前記周波数スペクトルは応答信号を取得するステップにより取得された応答信号の振幅スペクトルまたは位相スペクトルであることを特徴とする請求項4に記載の電気化学反応計測方法。 The electrochemical reaction measurement method according to claim 4, wherein the frequency spectrum is an amplitude spectrum or a phase spectrum of the response signal acquired by the step of acquiring the response signal. 被計測物に摂動信号を与え、応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測装置において、
前記摂動信号の振幅を変化させる振幅制御手段と、
前記振幅制御手段により変化する摂動信号の振幅に応じた応答信号を取得する応答信号取得手段と、
を備えることを特徴とする電気化学反応計測装置。
In an electrochemical reaction measuring device that gives a perturbation signal to an object to be measured and performs measurement related to an electrochemical reaction of the object to be measured based on a response signal.
Amplitude control means for changing the amplitude of the perturbation signal;
Response signal acquisition means for acquiring a response signal corresponding to the amplitude of the perturbation signal that is changed by the amplitude control means;
An electrochemical reaction measuring device comprising:
JP2009132948A 2009-06-02 2009-06-02 Electrochemical reaction measuring method and electrochemical reaction measuring device Active JP5483155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132948A JP5483155B2 (en) 2009-06-02 2009-06-02 Electrochemical reaction measuring method and electrochemical reaction measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132948A JP5483155B2 (en) 2009-06-02 2009-06-02 Electrochemical reaction measuring method and electrochemical reaction measuring device

Publications (2)

Publication Number Publication Date
JP2010281588A true JP2010281588A (en) 2010-12-16
JP5483155B2 JP5483155B2 (en) 2014-05-07

Family

ID=43538470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132948A Active JP5483155B2 (en) 2009-06-02 2009-06-02 Electrochemical reaction measuring method and electrochemical reaction measuring device

Country Status (1)

Country Link
JP (1) JP5483155B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030295A1 (en) * 2013-08-30 2015-03-05 숭실대학교산학협력단 Charger having battery diagnosis function and control method therefor
CN111630208A (en) * 2017-12-19 2020-09-04 雷普索尔有限公司 Electrochemical process
JP2021505909A (en) * 2017-12-04 2021-02-18 エアロジェット ロケットダイン インコーポレイテッド Load impedance tester and measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256892A (en) * 1992-03-12 1993-10-08 Fuji Electric Co Ltd Method and instrument for measuring cable impedance
JP2003144407A (en) * 2001-11-13 2003-05-20 Japan Science & Technology Corp Method and device for measuring complex impedance locus of skin
JP2007250365A (en) * 2006-03-16 2007-09-27 Yokogawa Electric Corp Electrochemical spectral characteristic measurement method of fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256892A (en) * 1992-03-12 1993-10-08 Fuji Electric Co Ltd Method and instrument for measuring cable impedance
JP2003144407A (en) * 2001-11-13 2003-05-20 Japan Science & Technology Corp Method and device for measuring complex impedance locus of skin
JP2007250365A (en) * 2006-03-16 2007-09-27 Yokogawa Electric Corp Electrochemical spectral characteristic measurement method of fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030295A1 (en) * 2013-08-30 2015-03-05 숭실대학교산학협력단 Charger having battery diagnosis function and control method therefor
KR101511655B1 (en) * 2013-08-30 2015-04-13 숭실대학교산학협력단 Charger with Embedded Battery Diagnosis And Control Method thereof
US9793735B2 (en) 2013-08-30 2017-10-17 Foundation Of Soongsil University-Industry Cooperation Charger having battery diagnostic function and control method therof
JP2021505909A (en) * 2017-12-04 2021-02-18 エアロジェット ロケットダイン インコーポレイテッド Load impedance tester and measurement method
JP7011730B2 (en) 2017-12-04 2022-01-27 エアロジェット ロケットダイン インコーポレイテッド Load impedance tester and measurement method
CN111630208A (en) * 2017-12-19 2020-09-04 雷普索尔有限公司 Electrochemical process
CN111630208B (en) * 2017-12-19 2024-02-09 雷普索尔有限公司 Electrochemical process

Also Published As

Publication number Publication date
JP5483155B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
KR102554612B1 (en) Measuring apparatus of battery internal resistance and method of measuring same
KR101688824B1 (en) Ac impedance measuring device
Hoshi et al. Wavelet transformation to determine impedance spectra of lithium-ion rechargeable battery
JP2011122951A (en) Charged state estimation device and deterioration state estimation device of secondary battery
JP5751207B2 (en) Battery DC resistance evaluation device
JP6227309B2 (en) Battery state detection device
JP5467539B2 (en) Electrode evaluation apparatus and evaluation method
JP2011158444A (en) Method and device for detecting remaining capacity of secondary battery
US20130179103A1 (en) Battery analysis device and method thereof
JP5483155B2 (en) Electrochemical reaction measuring method and electrochemical reaction measuring device
JP2018146441A (en) Method of calculating internal resistance of secondary battery
JP5924617B2 (en) Equivalent circuit synthesis method and apparatus, and circuit diagnostic method
JP2011047666A (en) Alternating current impedance measuring system
US7577536B1 (en) Determination of ohmic losses in electrical devices
JP2010008062A (en) Wattmeter
TWI758760B (en) Battery control device and battery capacity estimation method
JP2010197354A (en) Capacity estimating device for secondary battery
JP2012083142A (en) Calculation device for internal resistance of secondary battery
JP5717671B2 (en) Model constant acquisition method and model constant acquisition apparatus
US10698035B2 (en) Circuit arrangement and method for determining the impedance of a test battery
JP2010048567A (en) Method and device for evaluating characteristics of battery
JP5444857B2 (en) Electrochemical reaction measuring method and electrochemical reaction measuring device
JP5614628B2 (en) Fuel cell evaluation apparatus and fuel cell evaluation method
JP5376405B2 (en) Impedance measuring method and impedance measuring apparatus
JP6074759B2 (en) Deterioration judgment method and degradation judgment device for lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R150 Certificate of patent or registration of utility model

Ref document number: 5483155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150