JP2010281554A - Compounding calculating device and program - Google Patents

Compounding calculating device and program Download PDF

Info

Publication number
JP2010281554A
JP2010281554A JP2009137744A JP2009137744A JP2010281554A JP 2010281554 A JP2010281554 A JP 2010281554A JP 2009137744 A JP2009137744 A JP 2009137744A JP 2009137744 A JP2009137744 A JP 2009137744A JP 2010281554 A JP2010281554 A JP 2010281554A
Authority
JP
Japan
Prior art keywords
coal
ash
specific resistance
carbonized fuel
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009137744A
Other languages
Japanese (ja)
Other versions
JP5422263B2 (en
Inventor
Akira Tajima
彰 田島
Yuichi Nakayama
勇一 中山
Tomotake Ueno
知威 上野
Seiichi Hosoda
誠一 細田
Keiichi Ozawa
啓一 小澤
Yuichi Komatsu
祐一 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO FUEL CO Inc
JOBAN KYODO KARYOKU KK
Tokyo Electric Power Company Holdings Inc
Original Assignee
BIO FUEL CO Inc
JOBAN KYODO KARYOKU KK
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO FUEL CO Inc, JOBAN KYODO KARYOKU KK, Tokyo Electric Power Co Inc filed Critical BIO FUEL CO Inc
Priority to JP2009137744A priority Critical patent/JP5422263B2/en
Publication of JP2010281554A publication Critical patent/JP2010281554A/en
Application granted granted Critical
Publication of JP5422263B2 publication Critical patent/JP5422263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compounding calculating device accurately predicting resistivity of mixed combustion ash by considering components of carbonized fuel and coal and their compounding ratio and of calculating a compounding ratio achieving the resistivity of the mixed combustion ash within an optimal range for dust collection by an electric dust collector during mixed combustion of the carbonized fuel obtained by carbonization treatment of sludge and coal by a coal-burning boiler. <P>SOLUTION: The compounding calculating device includes: an ash resistivity prediction means predicting resistivity of mixed combustion ash generated during mixed combustion of the carbonized fuel and coal by considering component analysis values of the carbonized fuel and coal and an ash resistivity decline ratio corresponding to the compounding ratio with respect to a reference ash resistivity set from resistivity of a mono-fuel combustion ash generated during mono-fuel combustion of coal; and a compounding calculating means for calculating a compounding ratio of the carbonized fuel and coal so that the predicted resistivity of the mixed combustion ash is within a management range by the electric dust collector. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭化燃料と石炭とを石炭ボイラで混焼するときの配合割合を計算する配合計算装置及びプログラムに関する。   The present invention relates to a blending calculation device and a program for calculating a blending ratio when carbonized fuel and coal are co-fired with a coal boiler.

近年,廃棄物を再利用し環境に優しいエネルギーの有効活用が図られている。廃棄物を再利用したバイオマス燃料については種々の種類があるが、例えば下水を処理した汚泥(以下、下水汚泥と呼ぶ)を炭化した炭化燃料がある。下水汚泥は人間の活動に伴い恒常的かつ多量に発生するものであり、調達ポテンシャルの面で優れているが、下水汚泥に含まれる成分が日々変化して炭化燃料の品質も若干変動する。   In recent years, environmentally friendly energy has been effectively utilized by reusing waste. There are various types of biomass fuel that reuses waste. For example, there is a carbonized fuel obtained by carbonizing sludge treated with sewage (hereinafter referred to as sewage sludge). Sewage sludge is generated constantly and in large quantities with human activities and is excellent in terms of procurement potential, but the components contained in sewage sludge change day by day and the quality of carbonized fuel also varies slightly.

この炭化燃料を石炭火力発電所で燃焼させる試みが進められている。そこで、炭化燃料の品質や供給量の変動を吸収するため、炭化燃料の供給量及びその品質と、利用先の需要量及び要求品質との管理を適切に行い、生成した炭化燃料を有効利用できるバイオマス燃料供給システムが提案されている(特許文献1参照)。   Attempts have been made to burn this carbonized fuel in a coal-fired power plant. Therefore, in order to absorb fluctuations in the quality and supply amount of carbonized fuel, the generated carbonized fuel can be effectively used by appropriately managing the supply amount and quality of the carbonized fuel, and the demand amount and required quality of the user. A biomass fuel supply system has been proposed (see Patent Document 1).

炭化燃料と石炭とを混焼するときの配合割合は、炭化燃料と石炭との混合燃料の発熱量、排ガスの環境影響度(NOx量等)及び灰発生量等を考慮して決定される。   The blending ratio when carbonized fuel and coal are co-fired is determined in consideration of the calorific value of the mixed fuel of carbonized fuel and coal, the environmental impact of exhaust gas (NOx amount, etc.), the amount of ash generated, and the like.

ここで、石炭火力発電所で発生した石炭灰(フライアッシュ)を含む排ガス中の粉塵は、電気集塵機やバグフィルタを用いて除去されている。電気集塵機とは、並行に配置された2枚の集塵極と、両集塵極間の中央に配置された放電極からなり、集塵極と放電極との間に高電圧を印加しコロナ放電を発生させ、クーロン力を利用して排ガス中の粉塵を捕集するものである。   Here, dust in the exhaust gas containing coal ash (fly ash) generated in a coal-fired power plant is removed using an electric dust collector or a bag filter. An electrostatic precipitator consists of two dust collectors arranged in parallel and a discharge electrode arranged in the center between both dust collectors. A high voltage is applied between the dust collector and the discharge electrode to corona It generates electric discharge and collects dust in the exhaust gas using Coulomb force.

電気集塵機で集塵効率が高く保てる粉塵の比抵抗(電気抵抗率)は、104〜1010Ω・cmであるが、近年利用が増えている海外炭の灰の比抵抗は1012〜1013Ω・cmと高いため、逆電離現象が起こり集塵効率が低下する点が指摘されている(例えば特許文献2参照)。すなわち、粉塵の比抵抗が高い場合に、コロナ放電されず粉塵に電荷が蓄積し、この電荷によって形成された電界が絶縁破壊限界強度に達すると、集塵極から放電極に向かって正イオンが飛び出す逆電離現象が起こる。その結果、集塵空間にある負イオンが正イオンによって中和され、集塵効率が低下してしまう。 The specific resistance (electrical resistivity) of dust that can keep high dust collection efficiency with an electric dust collector is 10 4 -10 10 Ω · cm, but the specific resistance of ash of overseas coal, which has been increasing in recent years, is 10 12 -10 Since it is as high as 13 Ω · cm, it has been pointed out that the reverse ionization phenomenon occurs and the dust collection efficiency decreases (for example, see Patent Document 2). That is, when the specific resistance of the dust is high, charges are accumulated in the dust without corona discharge, and when the electric field formed by this charge reaches the dielectric breakdown limit strength, positive ions are generated from the dust collection electrode toward the discharge electrode. The reverse ionization phenomenon that pops out occurs. As a result, negative ions in the dust collection space are neutralized by positive ions, and dust collection efficiency is reduced.

そのため、灰比抵抗の高い石炭を用いる際には、灰比抵抗の低い石炭と混炭する等の措置により石炭ボイラで混焼させたときの灰(以下混焼灰と呼ぶ)の比抵抗を低下させ、電気集塵機での集塵効率を最適化するように燃料の配合設計がされてきた。   Therefore, when using coal with high ash resistivity, the specific resistance of ash (hereinafter referred to as mixed ash) when mixed with a coal boiler is reduced by measures such as mixing with coal with low ash resistivity, Fuel formulation has been designed to optimize dust collection efficiency in electric dust collectors.

さらに、配合設計で配慮しても、混焼灰の比抵抗が一定の制限値(例えば1011Ω・cm)を超えると予測される場合には、逆電離現象を抑えるためパルス荷電を与えて電気集塵機の集塵効率を維持する方法が提案されている(特許文献3参照)。特許文献3の方法では、混焼灰の比抵抗の予測値には、それぞれの石炭を単独で燃焼させたときの灰(以下専焼灰と呼ぶ)の比抵抗に、それぞれの配合割合を乗じて加重平均した値を用いている。 Furthermore, even if consideration is given to formulation design, if the specific resistance of the mixed ash is expected to exceed a certain limit (eg, 10 11 Ω · cm), a pulse charge is applied to suppress the reverse ionization phenomenon. A method for maintaining the dust collection efficiency of the dust collector has been proposed (see Patent Document 3). In the method of Patent Document 3, the specific resistance of the mixed ash is weighted by multiplying the specific resistance of the ash (hereinafter referred to as “combustion ash”) when each coal is burned alone by the respective blending ratio. Averaged values are used.

特開2005−106390号公報JP 2005-106390 A 特開平1−171662号公報Japanese Patent Laid-Open No. 1-171662 特開平8−229433号公報JP-A-8-229433

しかし、下水汚泥を炭化処理した炭化燃料を石炭ボイラで燃焼した実績が少なく、石炭とは成分が異なる炭化燃料を混焼した場合に、どのように混焼灰の比抵抗が変化し、それが電気集塵機の集塵効率に如何なる影響を与えるかが不明であった。   However, when carbonized fuel carbonized from sewage sludge is burned in a coal boiler, the specific resistance of the co-fired ash changes when co-firing carbonized fuel, which has a different component from coal. It is unclear how it will affect the dust collection efficiency.

そのため、特許文献3の方法と同様に、単純な加重平均により混焼灰の比抵抗を予測したとしても、予測値の信頼性に乏しいといった問題点があった。その結果、電気集塵機での集塵効率への影響があらかじめ予測できず、炭化燃料と石炭の配合割合が決定できないといった問題点があった。   Therefore, similarly to the method of Patent Document 3, even if the specific resistance of the mixed ash is predicted by a simple weighted average, there is a problem that the reliability of the predicted value is poor. As a result, there is a problem that the influence on the dust collection efficiency in the electric dust collector cannot be predicted in advance, and the blending ratio of carbonized fuel and coal cannot be determined.

よって、本発明の目的は、下水汚泥を炭化処理した炭化燃料と石炭とを石炭ボイラで混焼する際に、炭化燃料及び石炭の成分やその配合割合を考慮して混焼灰の比抵抗を正確に予測でき、混焼灰の比抵抗が電気集塵機での集塵に最適な範囲内となるような炭化燃料と石炭の配合割合を計算できる配合計算装置及びプログラムを提供することにある。   Therefore, the object of the present invention is to accurately determine the specific resistance of the co-fired ash in consideration of the carbonized fuel and the components of the coal and the blending ratio thereof when the carbonized fuel obtained by carbonizing the sewage sludge and the coal are co-fired in the coal boiler. It is an object of the present invention to provide a blending calculation apparatus and program capable of predicting and calculating the blending ratio of carbonized fuel and coal so that the specific resistance of the mixed ash is within the optimum range for dust collection by an electric dust collector.

上記課題を解決するために、発明者らが鋭意検討を行った結果、石炭に少量の炭化燃料を配合した混合燃料を石炭ボイラで燃焼させると、石炭のみの専焼灰に比べて混焼灰の比抵抗が約半分に低下し電気集塵機での集塵効率が向上することを見出した。さらに、混焼灰の比抵抗は、炭化燃料及び石炭の成分やその配合割合を考慮すれば一定精度で予測できることを見出し、本発明を完成するに至った。   In order to solve the above-mentioned problems, the inventors have conducted intensive investigations. As a result, when a mixed fuel in which a small amount of carbonized fuel is mixed with coal is burned in a coal boiler, the ratio of the mixed ash is higher than that of the coal-only ash. It has been found that the resistance decreases to about half and the dust collection efficiency of the electric dust collector is improved. Furthermore, it has been found that the specific resistance of the mixed ash can be predicted with a certain accuracy in consideration of the components of carbonized fuel and coal and the blending ratio thereof, and the present invention has been completed.

すなわち、本発明に係わる配合計算装置は、下水汚泥を炭化処理した炭化燃料と石炭とを石炭ボイラで混焼するときの配合割合を計算する配合計算装置であって、前記炭化燃料と石炭の成分分析値を含むデータを入力する入力装置と、前記石炭を専焼したときに発生する専焼灰の比抵抗から設定される基準灰比抵抗に、前記炭化燃料と石炭の成分分析値及びその配合割合に対応する灰比抵抗低下率を考慮して、前記炭化燃料と石炭とを混焼したときに発生する混焼灰の比抵抗を予測する灰比抵抗予測手段と、予測された前記混焼灰の比抵抗が、電気集塵機での管理範囲内となるような炭化燃料と石炭の配合割合を計算する配合計算手段と、前記配合計算手段での炭化燃料と石炭の配合割合の計算結果を含むデータを出力する出力装置とを備えたことを特徴とする。   That is, the blending calculation apparatus according to the present invention is a blending calculation apparatus that calculates a blending ratio when carbonized fuel obtained by carbonizing sewage sludge and coal in a coal boiler, and component analysis of the carbonized fuel and coal Corresponding to the component ash analysis value and blending ratio of the carbonized fuel and coal to the standard ash specific resistance set from the input device that inputs data including values and the specific resistance of the special ash generated when the coal is fired exclusively In consideration of the ash specific resistance reduction rate, the ash specific resistance predicting means for predicting the specific resistance of the mixed ash generated when the carbonized fuel and coal are co-fired, and the predicted specific resistance of the mixed ash, A blending calculation means for calculating the blending ratio of carbonized fuel and coal so as to be within the control range of the electric dust collector, and an output device for outputting data including the calculation result of the blending ratio of carbonized fuel and coal by the blending calculation means And with It is characterized in.

また、前記基準灰比抵抗は、前記炭化燃料と石炭とをそれぞれ専焼したときに発生する専焼灰の比抵抗をその配合割合に応じて加重平均した値から設定してもよい。   In addition, the reference ash specific resistance may be set from a value obtained by weighted averaging the specific resistance of the exclusive combustion ash generated when the carbonized fuel and coal are exclusively burned.

また、前記灰比抵抗低下率は、前記基準灰比抵抗と、前記炭化燃料及び石炭を混焼したときに発生する混焼灰の電気集塵機における見掛け比抵抗との関係に基づき設定及び更新してもよい。   In addition, the ash specific resistance reduction rate may be set and updated based on the relationship between the reference ash specific resistance and the apparent specific resistance of the co-fired ash generated when the carbonized fuel and coal are co-fired. .

また、前記入力装置で入力されるデータは、前記石炭ボイラの燃焼方式に係わるボイラ仕様と前記電気集塵機での灰比抵抗の管理範囲に係わる集塵機仕様とを含み、前記灰比抵抗低下率は、前記炭化燃料と石炭の成分分析値及びその配合割合に加えて前記ボイラ仕様にも対応するよう設定され、前記配合計算手段は、前記集塵機仕様に対応する灰比抵抗の管理範囲に基づいて前記配合割合を計算してもよい。   Further, the data input by the input device includes a boiler specification related to a combustion method of the coal boiler and a dust collector specification related to a management range of ash specific resistance in the electric dust collector, and the ash specific resistance reduction rate is: In addition to the component analysis values of the carbonized fuel and coal and the blending ratio thereof, it is set so as to correspond to the boiler specifications, and the blending calculation means is based on the management range of the ash specific resistance corresponding to the dust collector specifications. A percentage may be calculated.

さらに、本発明に係わるプログラムは、下水汚泥を炭化処理した炭化燃料と石炭とを石炭ボイラで混焼するときの配合割合を計算する配合計算プログラムであって、前記石炭を専焼したときに発生する専焼灰の比抵抗から設定される基準灰比抵抗に、前記炭化燃料と石炭の成分分析値及びその配合割合に対応する灰比抵抗低下率を考慮して、前記炭化燃料と石炭とを混焼したときに発生する混焼灰の比抵抗を予測する処理と、予測された前記混焼灰の比抵抗が、電気集塵機での管理範囲内となるような炭化燃料と石炭の配合割合を計算する処理とをコンピュータに行わせることを特徴とする。   Further, the program according to the present invention is a blending calculation program for calculating a blending ratio when carbonized fuel obtained by carbonizing sewage sludge and coal in a coal boiler, and is produced only when the coal is exclusively fired. When the carbonized fuel and coal are co-fired, taking into account the ash specific resistance reduction rate corresponding to the component analysis value of the carbonized fuel and coal and the blending ratio thereof, to the reference ash specific resistance set from the specific resistance of ash A process for predicting the specific resistance of the mixed ash generated in the gas and a process for calculating the blending ratio of carbonized fuel and coal so that the predicted specific resistance of the mixed ash is within the control range of the electric dust collector It is made to carry out.

本発明によれば、下水汚泥を炭化処理した炭化燃料と石炭とを石炭ボイラで混焼する際に、炭化燃料及び石炭の成分やその配合割合を考慮して混焼灰の比抵抗を正確に予測でき、混焼灰の比抵抗が電気集塵機での集塵に最適な範囲内となるような炭化燃料と石炭の配合割合を計算できる。その結果、生成した炭化燃料を最適箇所に有効活用することができる。   According to the present invention, when carbonized fuel carbonized from sewage sludge and coal are co-fired in a coal boiler, the specific resistance of the co-fired ash can be accurately predicted in consideration of the components of carbonized fuel and coal and their blending ratio. It is possible to calculate the blending ratio of carbonized fuel and coal so that the specific resistance of the mixed ash is within the optimum range for dust collection by the electric dust collector. As a result, the generated carbonized fuel can be effectively utilized at the optimum location.

本発明の第1の実施形態に係わる石炭ボイラシステムの概要図である。1 is a schematic diagram of a coal boiler system according to a first embodiment of the present invention. 本発明の第1の実施形態に係わる配合計算装置の構成を表すブロック図である。It is a block diagram showing the structure of the compounding calculation apparatus concerning the 1st Embodiment of this invention. 本発明の第1の実施形態に係わる混焼灰の比抵抗比と炭化燃料の配合割合の関係を表す線グラフである。It is a line graph showing the relationship between the specific resistance ratio of the mixed combustion ash concerning the 1st Embodiment of this invention, and the mixture ratio of carbonized fuel. 本発明の第1の実施形態に係わる配合計算方法を表すフロー図である。It is a flowchart showing the mixing | blending calculation method concerning the 1st Embodiment of this invention. 本発明の第2の実施形態に係わる石炭ボイラシステムの概要図である。It is a schematic diagram of the coal boiler system concerning the 2nd Embodiment of this invention. 本発明の第2の実施形態に係わる配合計算方法を表すフロー図である。It is a flowchart showing the compounding calculation method concerning the 2nd Embodiment of this invention. 本発明の第3の実施形態に係わる石炭ボイラシステムの概要図である。It is a schematic diagram of the coal boiler system concerning the 3rd Embodiment of this invention. 本発明の第3の実施形態に係わる配合計算方法を表すフロー図である。It is a flowchart showing the compounding calculation method concerning the 3rd Embodiment of this invention.

以下に添付図面を参照しながら、本発明を実施するための形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。   EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated in detail, referring an accompanying drawing below. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified.

〔第1の実施形態〕
図1は、本発明の第1の実施形態に係わる石炭ボイラシステムの概要図である。この石炭ボイラシステムは、下水汚泥を炭化処理した炭化燃料と石炭とを混焼するためのシステムである。
[First Embodiment]
FIG. 1 is a schematic diagram of a coal boiler system according to a first embodiment of the present invention. This coal boiler system is a system for co-firing carbonized fuel obtained by carbonizing sewage sludge and coal.

図1を用いて、石炭ボイラシステムでの燃料及び排ガス処理の流れを説明する。石炭バンカ1に貯留された石炭と炭化燃料置場2に貯留された炭化燃料は、それぞれ給炭機3に送られ、給炭機3で所定の配合割合となるよう混合燃料が配合される。ここで、炭化燃料と石炭の配合割合は予め配合計算装置5によって計算され、給炭機3にインプットされている。混合燃料は微粉炭機4で微粉化された後、石炭ボイラ後段の空気予熱器7にて加熱された燃焼用空気とともに、石炭ボイラ6に供給される。   The flow of fuel and exhaust gas treatment in the coal boiler system will be described with reference to FIG. The coal stored in the coal bunker 1 and the carbonized fuel stored in the carbonized fuel yard 2 are respectively sent to the coal feeder 3, and the mixed fuel is blended in the coal feeder 3 so as to have a predetermined blending ratio. Here, the blending ratio of the carbonized fuel and coal is calculated in advance by the blending calculation device 5 and input to the coal feeder 3. The mixed fuel is pulverized by the pulverized coal machine 4 and then supplied to the coal boiler 6 together with the combustion air heated by the air preheater 7 at the subsequent stage of the coal boiler.

石炭ボイラ6で混合燃料を燃焼させた際に発生する排ガスは、排煙脱硝装置(図示しない)と前述の空気予熱器7を経て電気集塵機8に通流され、ここで大部分の粉塵が除去される。粉塵濃度計9で粉塵濃度を確認した後、残った粉塵はバグフィルタ10で除去される。さらに、排煙脱硫装置(図示しない)で排ガス中の脱硫を行い、再度粉塵濃度計9で粉塵濃度を最終確認して、清浄化された排ガスが煙突11から排出される。   Exhaust gas generated when the mixed fuel is burned in the coal boiler 6 is passed through the flue gas denitration device (not shown) and the air preheater 7 to the electric dust collector 8 where most of the dust is removed. Is done. After confirming the dust concentration with the dust concentration meter 9, the remaining dust is removed by the bag filter 10. Further, desulfurization in the exhaust gas is performed by a flue gas desulfurization apparatus (not shown), the dust concentration is finally confirmed again by the dust concentration meter 9, and the cleaned exhaust gas is discharged from the chimney 11.

なお、図1のように石炭と炭化燃料とを給炭機3で混合するだけでなく、炭化燃料置場2から直接石炭バンカ1に炭化燃料を送り、石炭バンカ1の中で混合しても良い。 図2は、本実施形態に係わる配合計算装置の構成を表すブロック図である。配合計算装置5は、炭化燃料と石炭の成分分析値を含むデータを入力する入力装置21と、入力データや演算プログラムを記憶する記憶装置23と、炭化燃料と石炭とを石炭ボイラで混焼するときの配合割合を計算する演算装置22と、配合結果を出力する出力装置24とから構成される。以後、各構成について詳細に説明する。   As shown in FIG. 1, not only coal and carbonized fuel are mixed by the coal feeder 3, but also carbonized fuel may be sent directly from the carbonized fuel yard 2 to the coal bunker 1 and mixed in the coal bunker 1. . FIG. 2 is a block diagram showing the configuration of the blending calculation apparatus according to the present embodiment. When the blending calculation device 5 co-combusts the carbonized fuel and the coal in the coal boiler, the input device 21 for inputting the data including the component analysis values of the carbonized fuel and the coal, the storage device 23 for storing the input data and the operation program. Is composed of an arithmetic unit 22 for calculating the blending ratio and an output device 24 for outputting the blending result. Hereinafter, each configuration will be described in detail.

入力装置21は、炭化燃料と石炭の成分分析値を入力するために用いられる。入力される成分分析値は、後段の配合計算で用いられるデータを網羅している必要がある。具体的には、少なくとも以下のデータが必要である。   The input device 21 is used to input component analysis values of carbonized fuel and coal. The input component analysis value needs to cover the data used in the subsequent formulation calculation. Specifically, at least the following data is required.

発熱量、全水分
工業分析データ(固有水分、灰分、揮発分、固定炭素の含有率)
元素分析データ(炭素、水素、酸素、窒素、硫黄、塩素、リン等の含有率)
灰の組成分析(シリカ、アルミナ、5酸化2リン等の含有率)
通常、石炭は海上輸送により定期的に一定量が供給され、その成分分析値は石炭ヤード受け入れ時に測定される。同一産地の石炭であれば成分はほぼ安定しており、受け入れ時に測定すれば十分である。
Calorific value, total moisture Industrial analysis data (intrinsic moisture, ash, volatiles, fixed carbon content)
Elemental analysis data (carbon, hydrogen, oxygen, nitrogen, sulfur, chlorine, phosphorus content, etc.)
Ash composition analysis (silica, alumina, phosphorous pentoxide, etc.)
Normally, coal is regularly supplied in a fixed amount by sea transportation, and its component analysis value is measured at the time of receiving the coal yard. In the case of coal from the same production area, the components are almost stable and it is sufficient to measure at the time of acceptance.

炭化燃料の場合は、下水処理場から定常的に少量づつ供給される。成分分析値のうち、発熱量は配合割合を計算する基本データとなるため高い頻度(例えば、1週間/回)で測定され、それ以外の成分分析値は定期的(例えば、数ヶ月/回)に測定される。炭化燃料の成分は若干変動するものの、同じ下水処理場からの炭化燃料であればその変動幅は一定範囲であることが分かっており、定期的に測定されたデータがあれば問題はない。なお、下水汚泥に含まれる成分に季節変動が認められる場合には、過去の同時期に測定された成分分析値を参照してもよい。   In the case of carbonized fuel, it is regularly supplied in small quantities from a sewage treatment plant. Of the component analysis values, the calorific value is the basic data for calculating the blending ratio, so it is measured at a high frequency (for example, one week / time), and other component analysis values are regularly (for example, several months / time). Is measured. Although the components of carbonized fuel vary slightly, it is known that the variation range of carbonized fuel from the same sewage treatment plant is within a certain range, and there is no problem if there is data measured periodically. In addition, when a seasonal variation is recognized in the component contained in sewage sludge, you may refer the component analysis value measured in the past same period.

演算装置22では、記憶装置23に記憶された演算プログラムを演算装置22内のプロセッサ(図示せず)で実行し、配合計算に係わる演算を行う。演算は、次の手段を用いて行われる。すなわち、
1)石炭を専焼したときに発生する専焼灰の比抵抗から設定される基準灰比抵抗に、炭化燃料と石炭の成分分析値及びその配合割合に対応する灰比抵抗低下率を考慮して、炭化燃料と石炭とを混焼したときに発生する混焼灰の比抵抗を予測する灰比抵抗予測手段25と、
2)混焼灰の比抵抗が、電気集塵機8での管理範囲内となるような炭化燃料と石炭の配合割合を計算する配合計算手段26である。
In the arithmetic device 22, the arithmetic program memorize | stored in the memory | storage device 23 is performed with the processor (not shown) in the arithmetic device 22, and the calculation related to a compounding calculation is performed. The calculation is performed using the following means. That is,
1) In consideration of the ash specific resistance reduction rate corresponding to the component analysis value of carbonized fuel and coal and the blending ratio to the reference ash specific resistance set from the specific resistance of the special ash generated when coal is burned exclusively, Ash resistivity prediction means 25 for predicting the resistivity of the mixed ash generated when carbonized fuel and coal are mixed,
2) The blending calculation means 26 calculates the blending ratio of the carbonized fuel and coal so that the specific resistance of the mixed ash is within the control range of the electric dust collector 8.

灰比抵抗予測手段25では、まず、基準灰比抵抗を求める。基準灰比抵抗とは、混焼灰の比抵抗を予測するための基準となる灰比抵抗のことであり、本実施形態では石炭の専焼灰の比抵抗から設定される。石炭の専焼灰の比抵抗は、その灰成分から予測するだけでなく、同じ成分(同一産地)の石炭における過去の燃焼実績を参照して算出することができる。   The ash specific resistance predicting means 25 first obtains a reference ash specific resistance. The reference ash specific resistance is an ash specific resistance that is a reference for predicting the specific resistance of the mixed fired ash, and is set from the specific resistance of the coal fired ash in this embodiment. The specific resistance of the coal-burned ash can be calculated not only by predicting from its ash component, but also by referring to past combustion results in coal of the same component (same production area).

次に、基準灰比抵抗に灰比抵抗低下率を考慮して、炭化燃料と石炭の混焼灰の比抵抗を予測する。例え少量であっても石炭に炭化燃料を配合すると、混焼灰の比抵抗が石炭専焼灰の比抵抗よりも大幅に低下する。この現象を反映するため、灰比抵抗低下率を設けた。   Next, the specific resistance of the mixed ash of carbonized fuel and coal is predicted in consideration of the ash specific resistance reduction rate in the standard ash specific resistance. Even if it is a small amount, when carbonized fuel is blended with coal, the specific resistance of the mixed ash is significantly lower than the specific resistance of the coal-burned ash. In order to reflect this phenomenon, an ash resistivity reduction rate was provided.

混焼灰の比抵抗が石炭専焼灰の比抵抗よりも低下する現象について、図3を用いて説明する。図3は、炭化燃料と石炭との混焼灰の比抵抗比と炭化燃料の配合割合の関係を表す線グラフである。ここで、混焼灰の比抵抗比は、混焼灰の比抵抗と石炭専焼灰(炭化燃料の配合割合がゼロの時の灰)の比抵抗との比として算出した。同図には2つのデータがあるが、これは電気集塵機8を通る排ガスラインがAライン、Bラインの2本存在するためである。また、灰の比抵抗は、電気集塵機での印加電圧と測定電流から後述する方法にて見掛け比抵抗として算出した。炭化燃料の配合割合は、石炭に対する炭化燃料の重量比として算出した。   A phenomenon in which the specific resistance of the mixed ash is lower than the specific resistance of the coal-fired ash will be described with reference to FIG. FIG. 3 is a line graph showing the relationship between the specific resistance ratio of the mixed ash of carbonized fuel and coal and the blending ratio of the carbonized fuel. Here, the specific resistance ratio of the mixed ash was calculated as a ratio between the specific resistance of the mixed ash and the specific resistance of the coal-burned ash (ash when the blending ratio of carbonized fuel was zero). Although there are two data in the figure, this is because there are two exhaust gas lines, A line and B line, passing through the electrostatic precipitator 8. Moreover, the specific resistance of ash was calculated as an apparent specific resistance by a method described later from an applied voltage and a measured current in an electric dust collector. The blending ratio of the carbonized fuel was calculated as a weight ratio of the carbonized fuel to coal.

図3に示されるように、炭化燃料の配合割合が増加すると直線的に混焼灰の比抵抗比が低下している。特に、炭化燃料の配合割合が3.9重量%のときには、比抵抗比が0.5近くになり、混焼灰の比抵抗が石炭専焼灰の比抵抗の半分程度まで低下することが分かる。   As shown in FIG. 3, the specific resistance ratio of the mixed ash decreases linearly as the blending ratio of the carbonized fuel increases. In particular, when the blending ratio of the carbonized fuel is 3.9% by weight, the specific resistance ratio is close to 0.5, and it can be seen that the specific resistance of the mixed ash is reduced to about half of the specific resistance of the coal-fired ash.

炭化燃料の配合によって混焼灰の比抵抗が大幅に低下する要因について検討するため灰成分を分析した。表1に石炭と炭化燃料の専焼灰の組成分析結果を示す。

Figure 2010281554
The ash components were analyzed to investigate the factors that significantly reduce the specific resistance of co-fired ash by blending carbonized fuel. Table 1 shows the compositional analysis results of the coal and carbonized fuel combustion ash.
Figure 2010281554

表1より、5酸化2リン(P)が、石炭の専焼灰にはほとんど含まれていないのに対し、炭化燃料の専焼灰では製造日にかかわらず20%以上含まれていることが分かる。このように、石炭と炭化燃料の専焼灰では、5酸化2リン(P)の組成率が大きく異なっている。 Table 1 shows that phosphorous pentoxide (P 2 O 5 ) is hardly contained in coal-burning ash, whereas carbonization fuel-burning ash contains 20% or more regardless of the date of manufacture. I understand. As described above, the composition ratio of phosphorus pentoxide (P 2 O 5 ) is greatly different between coal and carbonized fuel-burning ash.

5酸化2リン(P)の灰組成比率が高いことにより、混焼灰全体の比抵抗が大幅に低下するメカニズムは次の通りと推測される。5酸化2リン(P)は水に対する反応性が高く、排ガス中の水分と反応すればリン酸(オルトリン酸、HPO)になる。リン酸は融点が約50℃であるため、電気集塵機内の排ガス中(通常は100℃以上)では液体となるが、この液体状態のリン酸は高い電気伝導性を示すこと、つまり比抵抗が小さいことが知られており、この影響により混焼灰全体の比抵抗も大幅に低下したものと考えられる。 The mechanism by which the specific resistance of the entire mixed ash is greatly reduced due to the high ash composition ratio of phosphorus pentoxide (P 2 O 5 ) is estimated as follows. Phosphorus pentoxide (P 2 O 5 ) is highly reactive with water and becomes phosphoric acid (orthophosphoric acid, H 3 PO 4 ) when reacted with moisture in the exhaust gas. Since phosphoric acid has a melting point of about 50 ° C., it becomes liquid in the exhaust gas in the electrostatic precipitator (usually at 100 ° C. or higher), but this liquid phosphoric acid exhibits high electrical conductivity, that is, has a specific resistance. It is known that it is small, and it is thought that the specific resistance of the mixed ash as a whole has also decreased significantly due to this effect.

よって、専焼灰の比抵抗を予測するにあたっては、炭化燃料の配合割合だけでなく、特に灰の組成分析値も考慮する必要がある。これらを総合して、灰比抵抗低下率を表す関数F(P、P、x)を定義する。考慮するパラメータとして、Pは石炭専焼灰の組成分析値、Pは炭化燃料専焼灰の組成分析値、xは炭化燃料の配合割合である。ここで、混焼灰の比抵抗をρとすると、ρは(1)式より求めることができる。 Therefore, in predicting the specific resistance of the special combustion ash, it is necessary to consider not only the blending ratio of the carbonized fuel but also the ash composition analysis value. By combining these, a function F d (P c , P b , x) representing the ash specific resistance reduction rate is defined. As parameters to be considered, P c is a composition analysis value of coal-burning ash, P b is a composition analysis value of carbonized fuel ash, and x is a blending ratio of carbonization fuel. Here, assuming that the specific resistance of the mixed ash is ρ m , ρ m can be obtained from equation (1).

(数1)
ρ=ρ・F(P、P、x) ------- (1)
ここで、関数F(P、P、x)には、灰比抵抗低下率を表すのに最適な関数を用いればよい。
(Equation 1)
ρ m = ρ c · F d (P c , P b , x) ------- (1)
Here, an optimal function may be used for the function F d (P c , P b , x) to represent the ash specific resistance reduction rate.

例えば、図3については、同一の石炭と炭化燃料を用いて、配合割合のみ変化させているため、変数は配合割合xのみとなり、この関数はF(x)となる。さらに、図3に示すように、F(x)は1次関数で表現できることが分かる。配合割合に対する混焼灰の比抵抗比の変化率を−k(k>0)とすると、(1)式は(2)式に置き換えることができる。 For example, in FIG. 3, since only the blending ratio is changed using the same coal and carbonized fuel, the variable is only the blending ratio x, and this function is F d (x). Furthermore, as shown in FIG. 3, it can be seen that F d (x) can be expressed by a linear function. When the rate of change of the specific resistance ratio of the mixed ash with respect to the blending ratio is −k (k> 0), the expression (1) can be replaced with the expression (2).

(数2)
ρ=ρ(1−x・k)------- (2)
以上の説明では、基準灰比抵抗は、石炭専焼灰の比抵抗から設定したが、他にも石炭と炭化燃料のそれぞれの専焼灰の比抵抗をその配合割合に応じて加重平均した値から設定してもよい。炭化燃料の配合割合が多い場合(例えば10%以上)、炭化燃料自体の専焼灰の比抵抗を考慮した方が、より合理的に混焼灰の比抵抗を予測できるためである。
(Equation 2)
ρ m = ρ c (1-x · k) ------- (2)
In the above description, the standard ash specific resistance is set from the specific resistance of coal-fired ash, but it is also set from the value obtained by weighted averaging the specific resistance of each of the special ash of coal and carbonized fuel according to the blending ratio. May be. This is because when the blending ratio of the carbonized fuel is large (for example, 10% or more), the specific resistance of the mixed ash can be predicted more rationally by considering the specific resistance of the combustion ash of the carbonized fuel itself.

基準灰比抵抗を加重平均値から設定する場合、炭化燃料専焼灰の比抵抗をρとすると、(1)式は(3)式に置き換えることができる。 When setting the reference ash specific resistance from the weighted average value, if the specific resistance of the carbonized fuel-burned ash is ρ b , the equation (1) can be replaced with the equation (3).

(数3)
ρ={(1−x)ρ+x・ρ}F(P、P、x) ------- (3)
続いて配合計算手段26について説明する。まず、炭化燃料と石炭との混合燃料の発熱量、排ガスの環境影響度(NOx量等)、灰発生量等の一般条件を満足する配合を計算し、仮配合を決定する。この仮配合について、予測された混焼灰の比抵抗が、電気集塵機8での管理範囲内(例えば104〜1010Ω・cm)になるかどうかを確認する。
(Equation 3)
ρ m = {(1-x) ρ c + x · ρ b } F d (P c , P b , x) ------- (3)
Next, the blending calculation means 26 will be described. First, a blend that satisfies general conditions such as the calorific value of the fuel mixture of carbonized fuel and coal, the environmental impact of the exhaust gas (NOx amount, etc.), the amount of ash generated, etc. is calculated to determine the temporary blend. About this temporary mixture, it is confirmed whether the predicted specific resistance of the mixed ash is within the control range (for example, 10 4 to 10 10 Ω · cm) in the electrostatic precipitator 8.

混焼灰の比抵抗が上記管理範囲外になると予測された場合には、前述の一般条件を満足する範囲で、灰比抵抗が低い石炭と混炭したり炭化燃料を追加配合して、管理範囲内となるように配合を調整する。なお、前述の通り炭化燃料の配合割合が増加すると混焼灰の比抵抗が低下する傾向にあるため、灰比抵抗が高い石炭を燃焼させるときに炭化燃料を多めに配合するのは有効な措置である。   If it is predicted that the specific resistance of the mixed ash will be outside the above control range, it can be mixed with coal with a low ash specific resistance within the range that satisfies the above-mentioned general conditions, or an additional blend of carbonized fuel and within the control range. Adjust the formulation so that As mentioned above, as the blending ratio of carbonized fuel increases, the specific resistance of mixed ash tends to decrease, so it is an effective measure to blend a larger amount of carbonized fuel when burning coal with high ash specific resistance. is there.

以上説明してきた配合計算装置5としては、パーソナルコンピュータ、ワークステーション、メインフレームなどが例示される。入力装置21としては、マウス、キーボード、無線あるいは有線で送信されるデータを受信する受信部などが例示される。記憶装置23としては、ハードディスクドライブ、揮発型または不揮発型メモリ、CD−ROM、CD−RAM、DVD−ROM、DVD−RAMなどが例示される。出力装置24は、ディスプレイ、プリンタ、ハードディスクドライブなどが例示される。   Examples of the blending calculation apparatus 5 described above include personal computers, workstations, main frames, and the like. Examples of the input device 21 include a mouse, a keyboard, and a receiving unit that receives data transmitted wirelessly or by wire. Examples of the storage device 23 include a hard disk drive, a volatile or nonvolatile memory, a CD-ROM, a CD-RAM, a DVD-ROM, and a DVD-RAM. Examples of the output device 24 include a display, a printer, and a hard disk drive.

次に、図4に示す本実施形態に係わる配合計算方法を表すフロー図について説明する。まず、炭化燃料と石炭について配合計算に必要な成分分析値を入力する(S1)。入力された成分分析値等から、石炭専焼灰の比抵抗を算出し、基準灰比抵抗として設定する(S2)。次に、前述した一般条件を満たすように炭化燃料と石炭の配合割合を仮定する(S3)。その配合割合及び成分分析値に対応する灰比抵抗低下率を算出し、基準灰比抵抗に灰比抵抗低下率を乗じて混焼灰の比抵抗を予測する(S4)。混焼灰の比抵抗が電気集塵機8の管理範囲内にあるかどうかを確認し(S5)、管理範囲外であれば、再度配合割合の仮定(S3)に戻る。管理範囲内であれば、配合割合を確定し、結果を給炭機3に伝送する(S6)。   Next, the flowchart showing the blending calculation method according to this embodiment shown in FIG. 4 will be described. First, component analysis values necessary for blending calculation are input for carbonized fuel and coal (S1). The specific resistance of the coal-burning ash is calculated from the input component analysis value and the like, and set as the reference ash specific resistance (S2). Next, the blending ratio of carbonized fuel and coal is assumed so as to satisfy the general conditions described above (S3). The ash specific resistance reduction rate corresponding to the blending ratio and component analysis value is calculated, and the specific resistance of the mixed ash is predicted by multiplying the reference ash specific resistance by the ash specific resistance reduction rate (S4). It is confirmed whether or not the specific resistance of the mixed ash is within the control range of the electrostatic precipitator 8 (S5), and if it is out of the control range, the mixture ratio is assumed again (S3). If it is in a management range, a mixture ratio will be fixed and a result will be transmitted to coal feeder 3 (S6).

第1の実施形態によれば、下水汚泥を炭化処理した炭化燃料と石炭とを石炭ボイラ6で混焼する際に、炭化燃料及び石炭の成分分析値やその配合割合を考慮して混焼灰の比抵抗を正確に予測でき、混焼灰の比抵抗が電気集塵機8での集塵に最適な範囲内となるような炭化燃料と石炭の配合割合を計算することができる。   According to the first embodiment, when carbonized fuel obtained by carbonizing sewage sludge and coal are co-fired in the coal boiler 6, the ratio of the co-fired ash in consideration of the component analysis values of carbonized fuel and coal and the blending ratio thereof. The resistance can be accurately predicted, and the blending ratio of carbonized fuel and coal can be calculated such that the specific resistance of the mixed ash is within the optimum range for dust collection by the electric dust collector 8.

〔第2の実施形態〕
図5は、本発明の第2の実施形態に係わる石炭ボイラシステムの概要図である。本実施形態は、図1に示した第1の実施形態に対し、配合計算装置5を電気集塵機8とも接続して、データの送信ができるようにしたものである。
[Second Embodiment]
FIG. 5 is a schematic diagram of a coal boiler system according to the second embodiment of the present invention. In the present embodiment, in contrast to the first embodiment shown in FIG. 1, the blending calculation device 5 is also connected to the electric dust collector 8 so that data can be transmitted.

本実施形態では、図2に示す灰比抵抗予測手段25で用いられる灰比抵抗低下率は、基準灰比抵抗と、炭化燃料及び石炭を混焼したときに発生する混焼灰の電気集塵機における見掛け比抵抗との関係に基づき設定及び更新する。   In the present embodiment, the ash specific resistance reduction rate used in the ash specific resistance predicting means 25 shown in FIG. 2 is the reference ash specific resistance and the apparent ratio in the electric dust collector of the mixed ash generated when the carbonized fuel and coal are mixed. Set and update based on the relationship with the resistor.

ここで、混焼灰の見掛け比抵抗ρ’は、電気集塵機での印加電圧をV、測定電流をI、集塵極の面積をA、集塵極と放電極の距離をLとし、(4)式より算出する。 Here, the apparent specific resistance ρ m ′ of the mixed ash is V applied voltage at the electric dust collector, I is the measurement current, A is the area of the dust collecting electrode, and L is the distance between the dust collecting electrode and the discharge electrode. ).

(数4)
ρ’=V/I×A/L ------- (4)
(1)式のρに(4)式のρ’で代入して、灰比抵抗低下率F(P、P、x)について整理すると(5)式の通りとなる。この関係を満足するように灰比抵抗低下率の算出方法を設定及び更新する。
(Equation 4)
ρ m '= V / I × A / L ------- (4)
Substituting ρ m ′ in equation (4) into ρ m in equation (1) and organizing the ash specific resistance reduction rate F d (P c , P b , x) yields equation (5). The calculation method of the ash specific resistance reduction rate is set and updated so as to satisfy this relationship.

(数5)
(P、P、x)=ρ’/ρ ------- (5)
図6は、本実施形態に係わる配合計算方法を表すフロー図であり、図4に示した第1の実施形態に対し、配合割合の確定及び給炭機への結果の伝送(S6)以降の処理(S11〜S15)を追加したものである。
(Equation 5)
F d (P c , P b , x) = ρ m ′ / ρ c ------- (5)
FIG. 6 is a flowchart showing the blending calculation method according to the present embodiment. Compared to the first embodiment shown in FIG. 4, the blending ratio is determined and the result is transmitted to the coal feeder (S6) and thereafter. Processing (S11 to S15) is added.

追加した処理について説明する。処理S6で確定した配合に基づき炭化燃料と石炭とを混合した混合燃料を石炭ボイラで混焼する(S11)。その際、電気集塵機8での印加電圧と電流を計測し(S12)、前述の(4)式より混焼灰の見掛け比抵抗を算出する(S13)。混焼灰の見掛け比抵抗が、S4で予測した混焼灰の比抵抗予測値の許容誤算範囲内にあるかどうかを確認する(S14)。混焼灰の見掛け比抵抗が許容誤差範囲外の場合には、灰比抵抗低下率の算出法を更新し(S15)、更新結果を次回以降の灰比抵抗低下率の算出(S4)に反映する。具体的には、灰比抵抗低下率を表す関数F(P、P、x)の各種係数を最新のデータに基づき(5)式を満足するように更新する。混焼灰の見掛け比抵抗が許容誤差範囲内の場合には、処理を終了する。 The added process will be described. A mixed fuel obtained by mixing carbonized fuel and coal based on the formulation determined in process S6 is co-fired in a coal boiler (S11). At that time, the applied voltage and current in the electrostatic precipitator 8 are measured (S12), and the apparent specific resistance of the mixed ash is calculated from the above-described equation (4) (S13). It is confirmed whether the apparent specific resistance of the mixed ash is within the allowable miscalculation range of the predicted specific resistance value of the mixed ash predicted in S4 (S14). When the apparent specific resistance of the mixed ash is outside the allowable error range, the calculation method of the ash specific resistance reduction rate is updated (S15), and the update result is reflected in the calculation of the ash specific resistance reduction rate from the next time (S4). . Specifically, the various coefficients of the function F d (P c , P b , x) representing the ash specific resistance decrease rate are updated based on the latest data so as to satisfy the expression (5). If the apparent resistivity of the mixed ash is within the allowable error range, the process is terminated.

第2の実施形態によれば、第1の実施形態での効果に加えて、炭化燃料の燃焼実績の蓄積により混焼灰の見掛け比抵抗に関するデータが増えた場合に、そのデータを柔軟に反映でき、混焼灰の比抵抗予測の精度を常に高く保つことができる。   According to the second embodiment, in addition to the effects of the first embodiment, when data on the apparent specific resistance of the mixed ash increases due to the accumulation of combustion performance of carbonized fuel, the data can be flexibly reflected. In addition, the accuracy of the prediction of the specific resistance of the mixed ash can always be kept high.

なお、以上の説明では、配合計算装置5を電気集塵機8に接続する構成を対象としたが、さらに図5に示すように配合計算装置5をバグフィルタ10や粉塵濃度計とも接続してデータの送信ができるようにしてもよい。バグフィルタの差圧計や粉塵濃度計の測定値から電気集塵機での集塵効率が直接確認できるためである。   In the above description, the composition calculation device 5 is connected to the electrostatic precipitator 8. However, as shown in FIG. 5, the composition calculation device 5 is also connected to the bag filter 10 and the dust densitometer. You may enable it to transmit. This is because the dust collection efficiency of the electric dust collector can be directly confirmed from the measured values of the differential pressure gauge of the bag filter and the dust concentration meter.

〔第3の実施形態〕
図7は、本発明の第3の実施形態に係わる石炭ボイラシステムの概要図である。本実施形態は、図1に示した第1の実施形態に対し、配合計算装置5を複数の石炭ボイラシステムの給炭機3と接続して、データの送信ができるようにしたものである。この配合計算装置5は、対象とする石炭ボイラシステムの仕様を考慮して配合割合を計算できる点に特徴がある。
[Third Embodiment]
FIG. 7 is a schematic diagram of a coal boiler system according to the third embodiment of the present invention. In the present embodiment, in contrast to the first embodiment shown in FIG. 1, the blending calculation device 5 is connected to the coal feeders 3 of a plurality of coal boiler systems so that data can be transmitted. This blending calculation device 5 is characterized in that the blending ratio can be calculated in consideration of the specifications of the target coal boiler system.

本実施形態では、図2に示す配合計算装置5の入力装置21で入力されるデータには、第1の実施形態で説明した成分分析値に加えて、石炭ボイラ6の燃焼方式に係わるボイラ仕様と電気集塵機8での灰比抵抗の管理範囲に係わる集塵機仕様が含まれている。また、灰比抵抗予測手段25で用いられる灰比抵抗低下率は、炭化燃料と石炭の成分分析値、その配合割合に加えてこのボイラ仕様にも対応するように設定され、配合計算手段26は、この集塵機仕様に対応する灰比抵抗の管理範囲に基づき炭化燃料と石炭の配合割合を計算する。   In the present embodiment, the data input by the input device 21 of the blending calculation device 5 shown in FIG. 2 includes boiler specifications related to the combustion method of the coal boiler 6 in addition to the component analysis values described in the first embodiment. And the dust collector specification concerning the management range of the ash specific resistance in the electric dust collector 8 is included. Further, the ash specific resistance reduction rate used in the ash specific resistance predicting means 25 is set so as to correspond to this boiler specification in addition to the component analysis values of carbonized fuel and coal and the blending ratio thereof. The blending ratio of carbonized fuel and coal is calculated based on the control range of ash specific resistance corresponding to this dust collector specification.

石炭ボイラ6の燃焼方式や燃焼温度によって発生する灰成分や灰比抵抗が若干変化するため、ボイラ仕様を考慮して混焼灰の比抵抗を予測することで、その予測精度をさらに向上させることができる。また、電気集塵機8のメーカーや型式によって集塵に適した灰比抵抗の範囲が変化するため、集塵機仕様に対応した管理範囲を用いることで、設備仕様を適切に反映した合理的な配合割合を計算することができる。   Since the ash components and ash specific resistance generated slightly vary depending on the combustion method and combustion temperature of the coal boiler 6, the prediction accuracy can be further improved by predicting the specific resistance of the mixed ash in consideration of the boiler specifications. it can. In addition, since the range of ash specific resistance suitable for dust collection varies depending on the manufacturer and model of the electrostatic precipitator 8, by using a management range corresponding to the dust collector specifications, a reasonable blending ratio that appropriately reflects the equipment specifications can be obtained. Can be calculated.

図8は、本実施形態に係わる配合計算方法を表すフロー図である。図4に示した第1の実施形態に対し、処理S1の前段に処理S21及び処理S22を、判断S5の後段に判断S23を追加したものである。   FIG. 8 is a flowchart showing the blending calculation method according to this embodiment. In contrast to the first embodiment shown in FIG. 4, processing S21 and processing S22 are added before the processing S1, and determination S23 is added after the determination S5.

本実施形態では、まず、複数ある選択肢の中から1つの石炭ボイラシステムを選定して仮決定し(S21)、その石炭ボイラシステムでのボイラ仕様及び集塵機仕様を入力する(S22)。その後、炭化燃料と石炭について配合計算に必要な成分分析値を入力し(S1)、入力された成分分析値等から、石炭専焼灰の比抵抗を算出し、基準灰比抵抗として設定する(S2)。さらに、前述した一般条件を満たすように炭化燃料と石炭の配合割合を仮定する(S3)。その配合割合、成分分析値及びボイラ仕様に対応する灰比抵抗低下率を算出し、基準灰比抵抗に灰比抵抗低下率を乗じて混焼灰の比抵抗を予測する(S4)。   In the present embodiment, first, a coal boiler system is selected from a plurality of options and temporarily determined (S21), and boiler specifications and dust collector specifications in the coal boiler system are input (S22). Thereafter, component analysis values necessary for blending calculation are input for the carbonized fuel and coal (S1), and the specific resistance of the coal-burned ash is calculated from the input component analysis values and set as the reference ash specific resistance (S2). ). Furthermore, the blending ratio of carbonized fuel and coal is assumed so as to satisfy the general conditions described above (S3). The ash specific resistance reduction rate corresponding to the blending ratio, component analysis value, and boiler specifications is calculated, and the specific resistance of the mixed ash is predicted by multiplying the reference ash specific resistance by the ash specific resistance reduction rate (S4).

次に、混焼灰の比抵抗が集塵機仕様に対応した管理範囲内にあるかどうかを確認する(S5)。管理範囲外であれば、さらに石炭ボイラシステムを変更する必要があるか(配合割合の変更では対応できないか)どうかを確認する(S23)。石炭ボイラシステムを変更する必要があれば、再度石炭ボイラシステムの仮定(S21)に戻り、変更する必要がなければ、再度配合割合の仮定(S3)に戻る。混焼灰の比抵抗が電気集塵機8の管理範囲内であれば、配合割合を確定し、結果を給炭機3に伝送する(S6)。   Next, it is confirmed whether or not the specific resistance of the mixed ash is within the management range corresponding to the dust collector specification (S5). If it is outside the control range, it is confirmed whether or not the coal boiler system needs to be further changed (cannot be handled by changing the blending ratio) (S23). If it is necessary to change the coal boiler system, the process returns to the assumption of the coal boiler system (S21) again. If it is not necessary to change, the process returns to the assumption of the blending ratio (S3). If the specific resistance of the mixed ash is within the control range of the electric dust collector 8, the blending ratio is determined and the result is transmitted to the coal feeder 3 (S6).

図8に示す配合計算方法によれば、複数の選択肢の中から炭化燃料を混焼させるのに最適な石炭ボイラシステムを選定でき、生成した炭化燃料を最適箇所に有効活用することができる。   According to the blending calculation method shown in FIG. 8, an optimum coal boiler system for co-firing carbonized fuel can be selected from a plurality of options, and the generated carbonized fuel can be effectively used at the optimum location.

1 石炭バンカ
2 炭化燃料置場
3 給炭機
4 微粉炭機
5 配合計算装置
6 石炭ボイラ
7 空気予熱器
8 電気集塵機
9 粉塵濃度計
10 バグフィルタ
11 煙突
21 入力装置
22 演算装置
23 記憶装置
24 出力装置
25 灰比抵抗予測手段
26 配合計算手段
DESCRIPTION OF SYMBOLS 1 Coal bunker 2 Carbonization fuel place 3 Coal feeder 4 Pulverized coal machine 5 Compounding calculation device 6 Coal boiler 7 Air preheater 8 Electric dust collector 9 Dust concentration meter 10 Bag filter 11 Chimney 21 Input device 22 Arithmetic device 23 Storage device 24 Output device 25 Ash resistivity prediction means 26 Formulation calculation means

Claims (5)

下水汚泥を炭化処理した炭化燃料と石炭とを石炭ボイラで混焼するときの配合割合を計算する配合計算装置であって、
前記炭化燃料と石炭の成分分析値を含むデータを入力する入力装置と、
前記石炭を専焼したときに発生する専焼灰の比抵抗から設定される基準灰比抵抗に、前記炭化燃料と石炭の成分分析値及びその配合割合に対応する灰比抵抗低下率を考慮して、前記炭化燃料と石炭とを混焼したときに発生する混焼灰の比抵抗を予測する灰比抵抗予測手段と、
予測された前記混焼灰の比抵抗が、電気集塵機での管理範囲内となるような炭化燃料と石炭の配合割合を計算する配合計算手段と、
前記配合計算手段での炭化燃料と石炭の配合割合の計算結果を含むデータを出力する出力装置とを備えたことを特徴とする配合計算装置。
A blending calculation device that calculates a blending ratio when carbonized fuel carbonized with sewage sludge and coal in a coal boiler,
An input device for inputting data including component analysis values of the carbonized fuel and coal;
In consideration of the ash specific resistance reduction rate corresponding to the component analysis value of the carbonized fuel and coal and the blending ratio thereof, to the reference ash specific resistance set from the specific resistance of the dedicated ash generated when the coal is exclusively burned, Ash specific resistance prediction means for predicting the specific resistance of the mixed ash generated when the carbonized fuel and coal are mixed,
A blending calculation means for calculating a blending ratio of carbonized fuel and coal so that the predicted specific resistance of the mixed ash is within a control range in the electric dust collector;
A blending calculation apparatus comprising: an output device that outputs data including a calculation result of a blending ratio of carbonized fuel and coal in the blending calculation means.
前記基準灰比抵抗は、前記炭化燃料と石炭とをそれぞれ専焼したときに発生する専焼灰の比抵抗をその配合割合に応じて加重平均した値から設定することを特徴とする請求項1に記載の配合計算装置。   The reference ash specific resistance is set from a value obtained by weighted averaging the specific resistance of the exclusive combustion ash generated when the carbonized fuel and coal are exclusively burned, according to the blending ratio. Formulation calculation device. 前記灰比抵抗低下率は、前記基準灰比抵抗と、前記炭化燃料及び石炭を混焼したときに発生する混焼灰の電気集塵機における見掛け比抵抗との関係に基づき設定及び更新することを特徴とする請求項1または2に記載の配合計算装置。   The ash specific resistance reduction rate is set and updated based on a relationship between the reference ash specific resistance and an apparent specific resistance of the mixed dust ash generated when the carbonized fuel and coal are co-fired. The compounding calculation apparatus according to claim 1 or 2. 前記入力装置で入力されるデータは、前記石炭ボイラの燃焼方式に係わるボイラ仕様と前記電気集塵機での灰比抵抗の管理範囲に係わる集塵機仕様とを含み、
前記灰比抵抗低下率は、前記炭化燃料と石炭の成分分析値及びその配合割合に加えて前記ボイラ仕様にも対応するよう設定され、
前記配合計算手段は、前記集塵機仕様に対応する灰比抵抗の管理範囲に基づいて前記配合割合を計算することを特徴とする請求項1から3に記載の配合計算装置。
Data input by the input device includes a boiler specification related to a combustion method of the coal boiler and a dust collector specification related to a management range of ash specific resistance in the electric dust collector,
The ash specific resistance reduction rate is set to correspond to the boiler specifications in addition to the component analysis value of the carbonized fuel and coal and the blending ratio thereof,
The said compounding calculation means calculates the said compounding ratio based on the management range of the ash specific resistance corresponding to the said dust collector specification, The compounding calculation apparatus of Claim 1 to 3 characterized by the above-mentioned.
下水汚泥を炭化処理した炭化燃料と石炭とを石炭ボイラで混焼するときの配合割合を計算する配合計算プログラムであって、
前記石炭を専焼したときに発生する専焼灰の比抵抗から設定される基準灰比抵抗に、前記炭化燃料と石炭の成分分析値及びその配合割合に対応する灰比抵抗低下率を考慮して、前記炭化燃料と石炭とを混焼したときに発生する混焼灰の比抵抗を予測する処理と、
予測された前記混焼灰の比抵抗が、電気集塵機での管理範囲内となるような炭化燃料と石炭の配合割合を計算する処理とをコンピュータに行わせることを特徴とする配合計算プログラム。
A blending calculation program for calculating a blending ratio when carbonized fuel obtained by carbonizing sewage sludge and coal in a coal boiler,
In consideration of the ash specific resistance reduction rate corresponding to the component analysis value of the carbonized fuel and coal and the blending ratio thereof, to the reference ash specific resistance set from the specific resistance of the dedicated ash generated when the coal is exclusively burned, A process for predicting the specific resistance of the mixed ash generated when the carbonized fuel and coal are mixed,
A blending calculation program for causing a computer to perform a process of calculating a blending ratio of carbonized fuel and coal so that the predicted specific resistance of the mixed ash is within a management range in an electric dust collector.
JP2009137744A 2009-06-08 2009-06-08 Compounding calculation device and program Active JP5422263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009137744A JP5422263B2 (en) 2009-06-08 2009-06-08 Compounding calculation device and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009137744A JP5422263B2 (en) 2009-06-08 2009-06-08 Compounding calculation device and program

Publications (2)

Publication Number Publication Date
JP2010281554A true JP2010281554A (en) 2010-12-16
JP5422263B2 JP5422263B2 (en) 2014-02-19

Family

ID=43538447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009137744A Active JP5422263B2 (en) 2009-06-08 2009-06-08 Compounding calculation device and program

Country Status (1)

Country Link
JP (1) JP5422263B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279922A (en) * 2009-06-08 2010-12-16 Tokyo Electric Power Co Inc:The Method of improving dust collection efficiency
KR101684348B1 (en) * 2015-06-25 2016-12-08 한국생산기술연구원 Operation diagnostic apparatus and method of thermal power generation system
CN111169487A (en) * 2020-02-19 2020-05-19 齐鲁工业大学 Collector shoe arc-discharge early-warning intelligent measurement and control device, metro vehicle and control method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229433A (en) * 1995-02-23 1996-09-10 Sumitomo Heavy Ind Ltd Method for energizing electricity in electrostatic precipitator
JPH09173768A (en) * 1995-12-27 1997-07-08 Kawasaki Heavy Ind Ltd Flue gas treatment and device therefor
JPH11179146A (en) * 1997-12-18 1999-07-06 Chiyoda Corp Waste gas treatment system
JP2005106390A (en) * 2003-09-30 2005-04-21 Tokyo Electric Power Co Inc:The Biomass fuel supply system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229433A (en) * 1995-02-23 1996-09-10 Sumitomo Heavy Ind Ltd Method for energizing electricity in electrostatic precipitator
JPH09173768A (en) * 1995-12-27 1997-07-08 Kawasaki Heavy Ind Ltd Flue gas treatment and device therefor
JPH11179146A (en) * 1997-12-18 1999-07-06 Chiyoda Corp Waste gas treatment system
JP2005106390A (en) * 2003-09-30 2005-04-21 Tokyo Electric Power Co Inc:The Biomass fuel supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279922A (en) * 2009-06-08 2010-12-16 Tokyo Electric Power Co Inc:The Method of improving dust collection efficiency
KR101684348B1 (en) * 2015-06-25 2016-12-08 한국생산기술연구원 Operation diagnostic apparatus and method of thermal power generation system
CN111169487A (en) * 2020-02-19 2020-05-19 齐鲁工业大学 Collector shoe arc-discharge early-warning intelligent measurement and control device, metro vehicle and control method thereof

Also Published As

Publication number Publication date
JP5422263B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
CN103697946B (en) A kind of computing method of coal fired boiler of power plant flue gas flow and the control method of pollutant discharge amount
CN103197549B (en) The hard measurement of Circulating Fluidized Bed Boiler sulfur dioxide in flue gas and optimal control method
Kortelainen et al. Ash behaviour and emission formation in a small-scale reciprocating-grate combustion reactor operated with wood chips, reed canary grass and barley straw
JP5197032B2 (en) Combustion state simulation method, program, storage medium, and combustion state simulation apparatus
US8661993B2 (en) Heavy fuel-fired boiler system and operating method thereof
JP5422263B2 (en) Compounding calculation device and program
Wils et al. Reduction of fuel side costs due to biomass co-combustion
JP2010281536A (en) Compounding calculating device and program
JP2012007811A (en) Pulverized coal supply system
Pan et al. Effect of sludge-based additive on ash characteristic and potassium fixation during the rice straw combustion process
CN102096375A (en) Soft measurement and optimization control method for chlorine concentration in black water of coal water slurry gasifying device
CN104048299B (en) A kind of coal-burning power plant&#39;s mud co-combustion system and intelligence supply method thereof
US7078235B2 (en) Sulfur trioxide conditioning system control algorithm
Kuprianov et al. Assessment of gaseous, PM and trace element emissions from a 300-MW lignite-fired boiler unit for various fuel qualities
CN114091276A (en) On-line calculation method for boiler thermal efficiency of household garbage incineration boiler
Doka Updates to Life Cycle Inventories of Waste Treatment Services-part II: waste incineration. Doka Life Cycle Assessments, Zurich, 2013
JP2006064251A (en) Corrosion preventive method for refuse power generation boiler
JP2006274837A (en) Method of correcting efficiency of coal-fired power generation plant and its system
Rai et al. Investigating electrostatic precipitator design parameters for efficient control of particulate matter in thermal power plant: a case study
JP2009204164A (en) Utility control method of combustion furnace
JP6170799B2 (en) Organic waste energy estimation method and apparatus
US8182583B1 (en) Mercury control activated carbon management
Lee Hydrogen Chloride (HCl) and Sulfur Oxides (SOx) generation characteristics from Refuse Derived Fuel (DRF) incineration
Khodier et al. Investigation of gaseous emissions and ash deposition in a pilot-scale PF combustor co-firing cereal co-product biomass with coal
JP2010279922A (en) Method of improving dust collection efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Ref document number: 5422263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250