JP2010281514A - Air guide path structure - Google Patents

Air guide path structure Download PDF

Info

Publication number
JP2010281514A
JP2010281514A JP2009135736A JP2009135736A JP2010281514A JP 2010281514 A JP2010281514 A JP 2010281514A JP 2009135736 A JP2009135736 A JP 2009135736A JP 2009135736 A JP2009135736 A JP 2009135736A JP 2010281514 A JP2010281514 A JP 2010281514A
Authority
JP
Japan
Prior art keywords
path
lead
heat
introduction
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009135736A
Other languages
Japanese (ja)
Other versions
JP5447798B2 (en
Inventor
Junichi Teraki
潤一 寺木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009135736A priority Critical patent/JP5447798B2/en
Publication of JP2010281514A publication Critical patent/JP2010281514A/en
Application granted granted Critical
Publication of JP5447798B2 publication Critical patent/JP5447798B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air guide path structure, which enhances heat exchange by a Peltier element to the maximum, while being reduced in size and weight. <P>SOLUTION: This air guide path structure 1 includes a housing 7 having one end 3 and the other end 5, inlets 9, 11 respectively formed on positions opposed to each other, of one end 3 and the other end 7 of the housing 7, outlets 13, 15 respectively formed at one end 3 and the other end 5 of the housing 7 at positions different in the width direction of the housing from the inlet port a supporting body 19 supporting a plurality of thermoelectric units disposed inside the housing 7, and two sheets of control plates 21, 23 opposed to each other at positions holding the supporting body 19 therebetween. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱電素子のペルチェ効果を利用して気体の温度を調整する気体温調装置の導風路構造に関する。   The present invention relates to an air duct structure for a gas temperature control device that adjusts the temperature of a gas by utilizing the Peltier effect of a thermoelectric element.

特許文献1に記載の調湿装置は、熱電素子であるペルチェ素子の吸熱作用により一方から導入される空気を冷却すると同時に、その放熱作用により他方から導入される空気を加熱するものである。同調湿装置を実際に運転するには、上記のように空気を導入するためのダクトと、空気の流れを切り替えるダンパー等が不可欠である。そこで、特許文献2に記載の給排気装置は、ペルチェ素子を吸熱フィンと放熱フィンとの間に挟着した熱電ユニットを形成し、その周囲に配置した複数のダクトに対して熱電ユニットを回転自在とし、複数のダクトの中から空気を熱電ユニットに導くダクト、及び熱電ユニットから空気を排出するダクトを選択できるようにしている。   The humidity control apparatus described in Patent Document 1 cools air introduced from one side by the endothermic action of a Peltier element, which is a thermoelectric element, and simultaneously heats air introduced from the other side by its heat dissipation action. In order to actually operate the tuned humidity device, a duct for introducing air and a damper for switching the flow of air as described above are indispensable. Therefore, the air supply / exhaust device described in Patent Document 2 forms a thermoelectric unit in which a Peltier element is sandwiched between heat absorbing fins and heat radiating fins, and the thermoelectric unit is rotatable with respect to a plurality of ducts arranged around the thermoelectric unit. The duct that guides air to the thermoelectric unit and the duct that exhausts air from the thermoelectric unit can be selected from the plurality of ducts.

しかしながら、熱電ユニットの性能を向上させるためにペルチェ素子の個数を増し、又はペルチェ素子に接続するヒートシンクを大型化すると、熱電ユニットを回転させるためのスペースが必要になる分、給排気装置を大型化、又は重量を増加するという問題がある。また、ヒートシンクにフィンを増設するためにフィン同士の間隔を狭くし、又は気体の流れる方向にフィンの奥行きを長くすると、フィン同士の間を流れる気体の圧力損失が著しくなる。このため、ダクトに気体を供給するための送風機等の出力を不要に増大するという問題がある。   However, increasing the number of Peltier elements in order to improve the performance of the thermoelectric unit or increasing the size of the heat sink connected to the Peltier element increases the size of the air supply / exhaust device by the amount of space required to rotate the thermoelectric unit. Or increase the weight. Further, if the distance between the fins is reduced in order to add fins to the heat sink or the depth of the fins is increased in the gas flow direction, the pressure loss of the gas flowing between the fins becomes significant. For this reason, there exists a problem that the output of the air blower etc. for supplying gas to a duct increases unnecessarily.

特開2002−115869号公報JP 2002-115869 A 特開2005−230716号公報Japanese Patent Laid-Open No. 2005-230716

本発明の目的とするところは、小型化と軽量化を実現でき、しかもペルチェ素子による熱交換を最大限に促進できる導風路構造を提供することにある。   An object of the present invention is to provide an air guide structure that can realize a reduction in size and weight and can further promote heat exchange by a Peltier element to the maximum extent.

本発明は上記目的を達成するため、ペルチェ素子の吸熱面に接合された吸熱フィン、及び放熱面に接合された放熱フィンに導かれる気体を導入する第1の導入路、及び第2の導入路と、前記ペルチェ素子の吸熱フィン、及び放熱フィンに導かれる気体を導出する第1の導出路、及び第2の導出路と、前記第1の導入路、及び第2の導入路に導入される気体が、前記第1の導出路、及び前記第2の導出路へ流れる向きを規制する導入孔、及び導出孔を有する2枚の規制板とを備え、前記第1の導入路から前記第2の導出路へ流れる気体が、前記2枚の規制板のうち一の規制板の導入孔を通り前記ペルチェ素子の吸熱フィンに達し、前記2枚の規制板のうち他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔を通り前記ペルチェ素子の放熱フィンに達し、前記一の規制板の導出孔を通過することを特徴とする。   In order to achieve the above object, the present invention provides a heat-absorbing fin joined to the heat-absorbing surface of the Peltier element, a first introduction path for introducing gas guided to the heat-radiation fin joined to the heat-radiation surface, and a second introduction path. And a first lead-out path, a second lead-out path, and a first lead-in path and a second lead-in path for deriving the gas led to the heat-absorbing fin and the heat-radiating fin of the Peltier element. An introduction hole for restricting the flow direction of the gas to the first lead-out path and the second lead-out path, and two restricting plates having the lead-out holes, and the second lead-out path from the first lead-in path to the second lead-out path The gas flowing into the lead-out path passes through the introduction hole of one of the two restriction plates and reaches the heat absorption fin of the Peltier element, and the lead-out hole of the other restriction plate out of the two restriction plates Gas that passes through and flows from the second introduction path to the first lead-out path, Serial reaches the inlet holes of the other regulation plate to the heat radiation fins of the street the Peltier element, characterized by passing the lead-out hole of the one regulation plate.

また、本発明は、前記ペルチェ素子と前記2枚の規制板とが相対的に平行移動することにより、前記第1の導入路から前記第2の導出路へ流れる気体が、前記2枚の規制板のうち一の規制板の導入孔を通り前記ペルチェ素子の吸熱フィンに達し、前記2枚の規制板のうち他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔を通り前記ペルチェ素子の放熱フィンに達し、前記一の規制板の導出孔を通過する状態と、前記第1の導入路から前記第2の導出路へ流れる気体が、前記一の規制板の導入孔を通り前記ペルチェ素子の放熱フィンに達し、前記他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔を通り前記ペルチェ素子の吸熱フィンに達し、前記一の規制板の導出孔を通過する状態と、を切替えられることを特徴とする。   Further, according to the present invention, the gas flowing from the first introduction path to the second lead-out path is controlled by the two Peltier elements and the two regulation plates relatively moving in parallel. One of the plates passes through the introduction hole of the restriction plate, reaches the heat absorption fin of the Peltier element, passes through the lead-out hole of the other restriction plate of the two restriction plates, and passes through the first introduction path to the first The gas flowing into the lead-out path of the other gas passes through the introduction hole of the other restricting plate, reaches the heat dissipation fin of the Peltier element, passes through the lead-out hole of the one restricting plate, and the first lead-in path from the first introduction path The gas flowing into the second lead-out path passes through the introduction hole of the one restriction plate, reaches the heat dissipation fin of the Peltier element, passes through the lead-out hole of the other restriction plate, and passes through the first introduction path to the first lead The gas flowing to the lead-out path of the Peltier passes through the introduction hole of the other restricting plate. Reached absorbing fin child, characterized in that it is switched to a state of passing through the outlet hole of the one regulation plate.

また、本発明は、吸熱面の反対側を放熱面としたペルチェ素子を、前記吸熱面に接合された吸熱フィンと、前記放熱面に接合された放熱フィンとの間に挟着した熱電ユニットに、気体を導く導風路構造であって、互いに直交する方向の長さ、幅、及び厚みが規定された函体と、前記函体の互いに対向する位置に各々設けられた第1の導入路、及び第2の導入路と、前記函体の互いに対向する位置に、前記第1の導入路、及び第2の導入口に対して前記函体の厚み方向に位置を違えて各々設けられた第1の導出路、及び第2の導出路と、前記ペルチェ素子を前記函体の内部で支持し、前記吸熱フィン、及び前記放熱フィンに気体を導く吸熱風路、及び放熱風路を形成した支持体と、前記支持体を前記函体の長さ方向から挟む位置で互いに対向し、互いに前記厚み方向に位置を違えた導入口、及び導出口を有する2枚の規制板とを備え、前記支持体に対して前記2枚の規制板のうち一の規制板が、その導入孔と導出孔とを前記支持体の吸熱風路と放熱風路とにそれぞれ合致させ、前記2枚の規制板のうち他の規制板が、その導入孔と導出孔とを前記支持体の放熱風路と吸熱風路とにそれぞれ合致させ、前記第1の導入路から前記第2の導出路へ流れる気体が、前記一の規制板の導入孔、前記吸熱風路、及び前記他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔、前記放熱風路、及び前記一の規制板の導出孔を通過することを特徴とする。   Further, the present invention provides a thermoelectric unit in which a Peltier element having a heat radiating surface opposite to a heat absorbing surface is sandwiched between a heat absorbing fin joined to the heat absorbing surface and a heat radiating fin joined to the heat radiating surface. A gas guide structure for guiding gas, the box having a defined length, width, and thickness in directions orthogonal to each other, and a first introduction path provided at a position facing each other of the box , And the second introduction path and the box at positions opposite to each other, the first introduction path and the second introduction port are provided in different positions in the thickness direction of the box. The first lead-out path, the second lead-out path, the Peltier element are supported inside the box, and the heat-absorbing fins, the heat-absorbing air path that guides gas to the heat-radiating fins, and the heat-radiating air path are formed. The support and the support are opposed to each other at a position sandwiching the support from the length direction of the box. Two restriction plates each having an introduction port and a lead-out port whose positions in the thickness direction are different from each other, and one restriction plate of the two restriction plates with respect to the support The lead-out hole is matched with the heat-absorbing air passage and the heat-dissipating air passage of the support, and the other restricting plate of the two restricting plates is connected to the introducing hole and the lead-out hole of the support. The gas flowing from the first introduction path to the second lead-out path is made to match the inlet hole of the one restricting plate, the endothermic air passage, and the other restricting plate. Gas passing through the hole and flowing from the second introduction path to the first lead-out path passes through the introduction hole of the other restriction plate, the heat radiation air passage, and the lead-out hole of the one restriction plate. It is characterized by.

また、本発明は、吸熱面の反対側を放熱面としたペルチェ素子を、前記吸熱面に接合された吸熱フィンと、前記放熱面に接合された放熱フィンとの間に挟着した熱電ユニットに、気体の導かれる方向を切り替える導風路構造であって、互いに直交する方向の長さ、幅、及び厚みが規定された函体と、前記函体の互いに対向する位置に各々設けられた第1の導入路、及び第2の導入路と、前記函体の互いに対向する位置に、前記第1の導入路、及び第2の導入口に対して前記函体の厚み方向に位置を違えて各々設けられた第1の導出路、及び第2の導出路と、前記ペルチェ素子を前記函体の内部で支持し、前記吸熱フィン、及び前記放熱フィンに気体を導く吸熱風路、及び放熱風路を形成した支持体と、前記支持体を前記函体の長さ方向から挟む位置で互いに対向し、互いに前記厚み方向に位置を違えた導入口、及び導出口を有する2枚の規制板とを備え、前記支持体と前記2枚の規制板とが、前記函体の幅方向に相対的に移動自在に前記函体に取付けられ、前記支持体に対して前記2枚の規制板のうち一の規制板が、その導入孔と導出孔とを前記支持体の吸熱風路と放熱風路とにそれぞれ合致させる位置に移動し、前記2枚の規制板のうち他の規制板が、その導入孔と導出孔とを前記支持体の放熱風路と吸熱風路とにそれぞれ合致させる位置に移動することにより、前記第1の導入路から前記第2の導出路へ流れる気体が、前記一の規制板の導入孔、前記吸熱風路、及び前記他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔、前記放熱風路、及び前記一の規制板の導出孔を通過し、前記支持体に対して前記一の規制板が、その導入孔と導出孔とを前記支持体の放熱風路と吸熱風路とにそれぞれ合致させる位置に移動し、前記他の規制板が、その導入孔と導出孔とを前記支持体の吸熱風路と放熱風路とにそれぞれ合致させる位置に移動することにより、前記第1の導入路から前記第2の導出路へ流れる気体が、前記一の規制板の導入孔、前記放熱風路、及び前記他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔、前記吸熱風路、及び前記一の規制板の導出孔を通過することを特徴とする。   Further, the present invention provides a thermoelectric unit in which a Peltier element having a heat radiating surface opposite to a heat absorbing surface is sandwiched between a heat absorbing fin joined to the heat absorbing surface and a heat radiating fin joined to the heat radiating surface. An air duct structure for switching the direction in which the gas is guided, wherein a box having a defined length, width, and thickness in directions orthogonal to each other, and a first box provided at each of the boxes facing each other The positions of the first introduction path and the second introduction path and the box opposite to each other are different from each other in the thickness direction of the box with respect to the first introduction path and the second introduction port. A first lead-out path, a second lead-out path, a heat-absorbing air path that supports the Peltier element inside the box, and guides gas to the heat-absorbing fin and the heat-radiating fin; A support body that forms a path, and the support body sandwiched from the length direction of the box Two restricting plates each having an introduction port and a discharge port that are opposed to each other at different positions in the thickness direction, and the support member and the two restricting plates have a width of the box. One of the two restricting plates is attached to the box so as to be relatively movable in the direction, and the introduction hole and the lead-out hole are connected to the endothermic air passage of the support. And the other restriction plate of the two restriction plates, the introduction hole and the lead-out hole are respectively connected to the heat radiation air path and the heat absorption air path of the support body. The gas flowing from the first introduction path to the second lead-out path by moving to the matching position causes the introduction hole of the one restricting plate, the endothermic air passage, and the lead-out hole of the other restricting plate. Gas passing through the second introduction path to the first lead-out path passes through the other regulating plate. Passing through the inlet hole, the radiating air passage, and the outlet hole of the one restricting plate, the one restricting plate is connected to the support body with the introduction hole and the outlet hole being the radiating air passage of the support body. By moving to a position that matches the endothermic air passage, and the other restricting plate is moved to a position that matches the introduction hole and the outlet hole with the endothermic air passage and the radiating air passage of the support, respectively. The gas flowing from the first introduction path to the second lead-out path passes through the introduction hole of the one restricting plate, the heat radiating air passage, and the lead-out hole of the other restricting plate, and the second The gas flowing from the introduction path to the first lead-out path passes through the introduction hole of the other restriction plate, the endothermic air passage, and the lead-out hole of the one restriction plate.

また、本発明は、前記2枚の規制板を前記函体に固定し、前記支持体を前記2枚の規制板に対して移動させる移動手段を備えることを特徴とする。   Further, the present invention is characterized in that the two regulating plates are fixed to the box and provided with moving means for moving the support relative to the two regulating plates.

また、本発明は、前記支持体を前記函体に固定し、前記2枚の規制板を前記支持体に対して移動させる移動手段を備えることを特徴とする。   In addition, the present invention is characterized in that the support body is fixed to the box and includes a moving means for moving the two restriction plates relative to the support body.

本発明に係る導風路構造によれば、熱電ユニットに導かれる空気の流れを切り替えるダンパー等が不要であり、また空気の流れる風路に対して熱電ユニットを回転させるためのスペースが不要である。このため、当該導風路構造は、その函体が熱電ユニットを収納できる大きさであれば足りるので、当該導風路構造を小型化し軽量化するのに有利である。   According to the air duct structure according to the present invention, a damper or the like for switching the flow of air guided to the thermoelectric unit is unnecessary, and a space for rotating the thermoelectric unit with respect to the air path through which the air flows is unnecessary. . For this reason, it is sufficient for the air guide path structure to have a size that can accommodate the thermoelectric unit, which is advantageous in reducing the size and weight of the air guide path structure.

更に、本発明に係る導風路構造によれば、熱電ユニットの個数を増減させることにより、放熱風路、及び吸熱風路を通過する気体を冷却する性能、又は気体に放熱する熱量を調整することができる。この場合、複数の熱電ユニットを支持体の移動する方向に並べれば、気体が吸熱フィン、及び放熱フィンに沿って流れる距離を増大させなくて済むので、気体の圧力損失を抑えることができる。   Furthermore, according to the air duct structure according to the present invention, by adjusting the number of thermoelectric units, the performance of cooling the heat passing air path and the gas passing through the endothermic air path, or the amount of heat released to the gas is adjusted. be able to. In this case, if a plurality of thermoelectric units are arranged in the direction in which the support moves, it is not necessary to increase the distance that the gas flows along the heat-absorbing fins and the heat-radiating fins, so that the pressure loss of the gas can be suppressed.

本発明の第1の実施形態に係る導風路構造の一部を破断した平面図。The top view which fractured | ruptured a part of air duct structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る導風路構造の一部を破断した正面図。The front view which fractured | ruptured a part of air duct structure concerning the 1st Embodiment of this invention. 本発明の第1の実施形態に係る導風路構造の側面図。The side view of the air guide path structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る導風路構造に適用した複数の熱電ユニットを支持する支持体を図1の矢印A−A線方向から見た側面図。The side view which looked at the support body which supports the several thermoelectric unit applied to the air duct structure which concerns on the 1st Embodiment of this invention from the arrow AA line direction of FIG. (a)は本発明の第1の実施形態に係る導風路構造に適用した2枚の規制板のうちの一の規制板を図1の矢印B−B線方向から見た側面図、(b)はその他の規制板を矢印C−C線方向から見た側面図。(A) is the side view which looked at one control board of the two control boards applied to the air duct structure which concerns on the 1st Embodiment of this invention from the arrow BB line direction of FIG. b) The side view which looked at the other control board from the arrow CC line direction. 図4のD−D線断面図。The DD sectional view taken on the line of FIG. 本発明の第1の実施形態に係る導風路構造に適用した熱電ユニットの分解斜視図。The disassembled perspective view of the thermoelectric unit applied to the air duct structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る導風路構造に適用した支持体に対する2枚の規制板のうちの一の規制板の配置の一例を図1の矢印B−B線方向から表した側面図。1 is a side view illustrating an example of the arrangement of one of the two restriction plates with respect to the support applied to the air guide structure according to the first embodiment of the present invention from the direction of the arrow BB in FIG. Figure. 本発明の第1の実施形態に係る導風路構造に適用した2枚の規制板の作用の一例を説明するのに支持体の一部を破断した概念図。The conceptual diagram which fractured | ruptured a part of support body in order to demonstrate an example of the effect | action of the two control plates applied to the air guide path structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る導風路構造に適用した支持体に対する2枚の規制板のうちの一の規制板の配置の他例を図1の矢印B−B線方向から表した側面図。The other example of arrangement | positioning of one control board of the two control boards with respect to the support body applied to the air guide path structure which concerns on the 1st Embodiment of this invention was represented from the arrow BB line direction of FIG. Side view. 本発明の第1の実施形態に係る導風路構造に適用した2枚の規制板の作用の他例を説明するのに支持体の一部を破断した概略図。Schematic which fractured | ruptured a part of support body in order to demonstrate the other example of an effect | action of the two control plates applied to the air duct structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る導風路構造に適用した函体と支持体との気密構造を示す断面図。Sectional drawing which shows the airtight structure of the box and support applied to the air duct structure which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る導風路構造の平面図。The top view of the air guide path structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る導風路構造の正面図。The front view of the air guide path structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る導風路構造の側面図。The side view of the air guide path structure which concerns on the 2nd Embodiment of this invention. (a)は本発明の第2の実施形態に係る導風路構造に適用した2枚の規制板のうちの一の規制板の側面図、(b)はその他の規制板の側面図。(A) is a side view of one regulation board of two regulation boards applied to the air guide structure concerning a 2nd embodiment of the present invention, and (b) is a side view of other regulation boards. 本発明の第1の実施形態に係る導風路構造の変形例を示す正面図。The front view which shows the modification of the air duct structure which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る導風路構造の更なる変形例を示す正面図。The front view which shows the further modification of the air guide path structure which concerns on the 1st Embodiment of this invention.

本発明の第1の実施形態に係る導風路構造ついて図面に基づき説明する。図面は特に断らない限り図1乃至図5を参照する。   An air guide structure according to a first embodiment of the present invention will be described with reference to the drawings. The drawings refer to FIGS. 1 to 5 unless otherwise specified.

導風路構造1は、一端部3、及び他端部5を有する函体7と、函体7の一端部3、及び他端部5の互いに対向する位置に各々設けられた導入口9,11と、これらの導入口9,11に対して函体7の厚み方向に位置を違え函体7の一端部3、及び他端部5の互いに対向する位置に各々設けられた導出口13,15と、函体7の内部に配置される複数の熱電ユニット17を支持する支持体19と、支持体19を函体7の長さ方向から挟む位置で互いに対面する2枚の規制板21,23とを備える。図中の矢印W、L、Tは、函体7の幅方向、長さ方向、及び厚み方向を各々指している。   The air guide structure 1 includes a box 7 having one end 3 and the other end 5, and inlets 9 provided at positions where the one end 3 and the other end 5 of the box 7 face each other. 11 and lead-out ports 13 provided at positions opposite to each other of the one end portion 3 and the other end portion 5 of the box 7 with different positions in the thickness direction of the box 7 with respect to the inlet ports 9 and 11. 15, a support body 19 that supports a plurality of thermoelectric units 17 disposed inside the box 7, and two regulation plates 21 that face each other at a position sandwiching the support body 19 from the length direction of the box 7, 23. Arrows W, L, and T in the figure respectively indicate the width direction, the length direction, and the thickness direction of the box 7.

熱電ユニット17は、図6,7に示すように、吸熱面25の反対側を放熱面27としたペルチェ素子29を、吸熱面25にフィンベース31を介して接合される吸熱フィン33と、放熱面27にフィンベース31を介して接合される放熱フィン35との間に挟着したものである。吸熱フィン33は、アルミニウムの薄板を波形に塑性変形させたコルゲートフィンである。吸熱フィン33の表面にシリカゲル等の吸湿剤を定着させても良い。放熱フィン35は吸熱フィン33と同様のものである。   As shown in FIGS. 6 and 7, the thermoelectric unit 17 includes a Peltier element 29 having a heat dissipation surface 27 opposite to the heat absorption surface 25, a heat absorption fin 33 joined to the heat absorption surface 25 via a fin base 31, and heat dissipation. It is sandwiched between the heat dissipating fin 35 joined to the surface 27 via the fin base 31. The endothermic fins 33 are corrugated fins obtained by plastically deforming an aluminum thin plate into a corrugated shape. A hygroscopic agent such as silica gel may be fixed on the surface of the heat absorbing fins 33. The heat radiating fins 35 are the same as the heat absorbing fins 33.

支持体19は、縦材37,39、及び2本の横材41を方形に枠組みし、これらの内側を空気等の気体が長さ方向に通過できる開口部43としたものである。また、支持体19は、函体7の正面45の挿通口47から函体7の内部に差し込まれており、函体7に対して幅方向に自在に移動できる。挿通口47は、函体7の正面45と背面49の互いに対向する位置に形成されている。支持体19の開口部43には、複数の熱電ユニット17が位置決めされ、それぞれのペルチェ素子29の間が、3つの吸熱風路51,53,55と、3つの放熱風路57,59,61とに区分されている。   The support 19 has a rectangular frame formed of vertical members 37 and 39 and two cross members 41, and an opening 43 through which a gas such as air can pass in the length direction is provided inside thereof. The support 19 is inserted into the box 7 from the insertion port 47 on the front surface 45 of the box 7, and can move freely in the width direction with respect to the box 7. The insertion opening 47 is formed at a position where the front surface 45 and the back surface 49 of the box 7 face each other. A plurality of thermoelectric units 17 are positioned in the opening 43 of the support 19, and three endothermic air passages 51, 53, 55 and three heat radiating air passages 57, 59, 61 are located between the Peltier elements 29. It is divided into and.

また、複数の熱電ユニット17は、支持体19の開口部43を気体が通過する方向を横切る幅方向に並べられており、この並び順に、それぞれの吸熱フィン33を縦材37へ向ける姿勢と、それぞれの吸熱フィン33を縦材39へ向ける姿勢とを交互に違えている。吸熱風路51,53は、互いに幅方向に隣り合う熱電ユニット17がそれぞれの吸熱フィン33を相対向させる領域である。吸熱風路55は、縦材39とこれに対面する熱電ユニット17のペルチェ素子29との間の領域である。放熱風路57は、縦材37とこれに対面する熱電ユニット17のペルチェ素子29との間の領域である。放熱風路59,61は、互いに幅方向に隣り合う熱電ユニット17がそれぞれの放熱フィン35を相対向させる領域である。   Further, the plurality of thermoelectric units 17 are arranged in the width direction across the direction in which the gas passes through the opening 43 of the support body 19, and in this arrangement order, the respective heat absorption fins 33 are directed to the vertical members 37, and The posture in which each endothermic fin 33 is directed to the vertical member 39 is alternately changed. The endothermic air passages 51 and 53 are regions where the thermoelectric units 17 adjacent to each other in the width direction oppose the respective endothermic fins 33. The endothermic air passage 55 is a region between the longitudinal member 39 and the Peltier element 29 of the thermoelectric unit 17 facing the longitudinal member 39. The heat radiating air passage 57 is a region between the vertical member 37 and the Peltier element 29 of the thermoelectric unit 17 facing the vertical member 37. The heat radiation air paths 59 and 61 are regions where the thermoelectric units 17 adjacent to each other in the width direction oppose the heat radiation fins 35 to each other.

函体7は、2枚の分割板63と12枚の分流板65とを内装している。分割板63は、函体7の一端部3、及び他端部5の内部を厚み方向に2分することにより、第1、第2の導入路67,69、及び第1、第2の導出路71,73を形成するものである。分流板65は、6枚ずつ規制板21と支持体19の間、及び支持体19と規制板23との間に配置され、函体7の内部を複数の分流路75に仕切るものである。導出口13,15には、第1、第2の導出路71,73から気体を吸引し函体7の外側へ排出するためのファン77が設けられている。   The box 7 includes two divided plates 63 and twelve flow dividing plates 65. The dividing plate 63 divides the inside of the one end portion 3 and the other end portion 5 of the box 7 into two in the thickness direction, so that the first and second introduction paths 67 and 69 and the first and second lead-outs are obtained. The paths 71 and 73 are formed. The flow dividing plates 65 are arranged six by six between the restriction plate 21 and the support body 19 and between the support body 19 and the restriction plate 23, and partition the inside of the box 7 into a plurality of branch flow paths 75. The outlets 13 and 15 are provided with a fan 77 for sucking gas from the first and second outlet paths 71 and 73 and discharging it to the outside of the box 7.

規制板21,23は函体7に固定されている。規制板21は、3つの導入孔79,81,83と、4つの導出孔85,87,89,91とを形成している。導入孔79,81,83に対して、導出孔85,87,89,91は厚み方向に位置を違えている。更に、導入孔79,81,83、及び導出孔85,87,89,91の幅方向の位置は、図1の右側に表れた7つの分流路75にそれぞれ合致している。規制板23は、4つの導入孔790,810,830,930と、3つの導出孔850,870,890とを形成している。導入孔790,810,830,930に対して、導出孔850,870,890は厚み方向に位置を違えている。更に、導入孔790,810,830,930、及び導出孔850,870,890の幅方向の位置は、図1の左側に表れた7つの分流路75にそれぞれ合致している。   The restriction plates 21 and 23 are fixed to the box 7. The restriction plate 21 has three introduction holes 79, 81, 83 and four lead-out holes 85, 87, 89, 91. The lead-out holes 85, 87, 89, 91 are different in position in the thickness direction with respect to the introduction holes 79, 81, 83. Further, the positions of the introduction holes 79, 81, 83 and the outlet holes 85, 87, 89, 91 in the width direction respectively correspond to the seven branch channels 75 appearing on the right side of FIG. The restriction plate 23 forms four introduction holes 790, 810, 830, and 930 and three lead-out holes 850, 870, and 890. With respect to the introduction holes 790, 810, 830, and 930, the lead-out holes 850, 870, and 890 have different positions in the thickness direction. Further, the positions in the width direction of the introduction holes 790, 810, 830, and 930 and the lead-out holes 850, 870, and 890 respectively match the seven branch channels 75 that appear on the left side of FIG.

支持体19が図3に表れた位置にあるとき、図8に示すように、支持体19の吸熱風路51,53,55が、規制板21の導入孔79,81,83にそれぞれ合致し、支持体19の放熱風路57,59,61が、規制板21の導出孔85,87,89にそれぞれ合致する。規制板21の導出孔91は、縦材39によって第1の導出路71から遮られる。また、支持体19の放熱風路57,59,61が、規制板23の導入孔790,810,830にそれぞれ合致し、支持体19の吸熱風路51,53,55が、規制板23の導出孔850,870,890にそれぞれ合致する。規制板23の導入孔930は、縦材39によって第2の導出路73から遮られる。   When the support 19 is in the position shown in FIG. 3, the endothermic air passages 51, 53, and 55 of the support 19 are aligned with the introduction holes 79, 81, and 83 of the restriction plate 21, respectively, as shown in FIG. 8. The heat radiating air passages 57, 59, 61 of the support body 19 respectively match the outlet holes 85, 87, 89 of the restriction plate 21. The outlet hole 91 of the restriction plate 21 is blocked from the first outlet path 71 by the vertical member 39. Further, the heat radiating air passages 57, 59, 61 of the support body 19 respectively match the introduction holes 790, 810, 830 of the restriction plate 23, and the heat absorption air passages 51, 53, 55 of the support body 19 are arranged on the restriction plate 23. It corresponds to the lead-out holes 850, 870, and 890, respectively. The introduction hole 930 of the restriction plate 23 is blocked from the second lead-out path 73 by the vertical member 39.

この状態で、ペルチェ素子29に、その吸熱面25から放熱面27へ熱が移動するように電流を供給する。そして、2つのファン77を起動させると、図9に矢印I,Xで示すように気体が流れる。同図は、吸熱風路53、及び放熱風路59を通過する気体にだけ注目した概念を表している。実際の気体の流れは次の通りである。   In this state, a current is supplied to the Peltier element 29 so that heat is transferred from the heat absorbing surface 25 to the heat radiating surface 27. When the two fans 77 are activated, gas flows as shown by arrows I and X in FIG. The figure shows a concept focusing only on the gas passing through the endothermic air passage 53 and the heat radiating air passage 59. The actual gas flow is as follows.

即ち、気体が函体7の外側から導入口9を経て第1の導入路67に導かれ、規制板21の導入孔79,81,83、吸熱風路51,53,55、及び規制板23の導出孔850,870,890を通過して第2の導出路73に達し、導出口15から函体7の外側へ導出される。一方、導入口11から第2の導入路69に導かれる気体が、規制板23の導入孔790,810,830、放熱風路57,59,61、及び規制板21の導出孔85,87,89を通過して第1の導出路71に達し、導出口13から函体7の外側へ導出される。   That is, the gas is guided from the outside of the box 7 to the first introduction path 67 through the introduction port 9, and the introduction holes 79, 81, 83 of the restriction plate 21, the endothermic air passages 51, 53, 55, and the restriction plate 23. The lead-out holes 850, 870, and 890 pass through the lead-out holes 850, reach the second lead-out path 73, and are led out from the lead-out port 15 to the outside of the box 7. On the other hand, the gas guided from the introduction port 11 to the second introduction path 69 is introduced into the introduction holes 790, 810, 830 of the restriction plate 23, the radiating air passages 57, 59, 61, and the lead-out holes 85, 87, It passes through 89 and reaches the first lead-out path 71, and is led out of the box 7 from the lead-out port 13.

上記のように吸熱風路51,53,55を通過する気体と、総ての熱電ユニット17のそれぞれの吸熱フィン33との間で、同時に熱交換が行われるので、導風路構造1は気体を効果的に冷却し、導出口13,15から排出することができる。また、上記のように放熱風路57,59,61を通過する気体と、総ての熱電ユニット17のそれぞれの放熱フィン35との間で、同時に熱交換が行われるので、導風路構造1はペルチェ素子29の放熱面27の熱を効率よく放熱させることができる。   As described above, heat exchange is simultaneously performed between the gas passing through the endothermic air passages 51, 53, and 55 and the endothermic fins 33 of all the thermoelectric units 17, so that the air guide passage structure 1 is a gas. Can be effectively cooled and discharged from the outlets 13 and 15. Moreover, since heat exchange is simultaneously performed between the gas passing through the heat radiating air passages 57, 59, and 61 and the heat radiating fins 35 of all the thermoelectric units 17 as described above, the air guide passage structure 1 Can efficiently dissipate heat from the heat radiation surface 27 of the Peltier element 29.

導風路構造1は、以上の動作とその休止を一定周期で繰り返すバッチ処理を行うことができる。これにより、導風路構造1は連続的に気体の温度と湿度を調整することができる。また、バッチ処理の周期を増減することにより温度と湿度を所望に制御できる。例えば、バッチ処理の周期を短くすれば、除湿能力は増加するが、冷却能力(顕熱処理)は低下する。逆にバッチ処理の周期を長くすれば、除湿能力は低下するが、冷却能力は増加する。ここまで、導風路構造1による除湿冷房について記したが、ペルチェ素子29に、その放熱面27から吸熱面25へ熱が移動するように電流を供給すれば、加湿暖房も行える。   The air guide path structure 1 can perform batch processing in which the above-described operation and its pause are repeated at a constant period. Thereby, the air guide path structure 1 can adjust the temperature and humidity of gas continuously. Also, the temperature and humidity can be controlled as desired by increasing or decreasing the batch processing cycle. For example, if the cycle of batch processing is shortened, the dehumidifying capacity increases, but the cooling capacity (sensible heat treatment) decreases. Conversely, if the cycle of the batch process is lengthened, the dehumidifying capacity is lowered, but the cooling capacity is increased. Up to this point, the dehumidifying and cooling by the air guide structure 1 has been described. However, if current is supplied to the Peltier element 29 so that heat is transferred from the heat radiation surface 27 to the heat absorption surface 25, humidification heating can be performed.

また、吸熱フィン33、及び放熱フィン35にシリカゲルが定着されている場合、導風路構造1が除湿冷房を行うときに、気体に含まれる水蒸気を吸熱フィン33のシリカゲルに吸湿させることができる。このシリカゲルが飽和状態に達したところで、ペルチェ素子29に、その放熱面27から吸熱面25へ熱が移動するように電流を供給すると、導風路構造1は、吸熱風路51,53,55を通過する気体に、ペルチェ素子29の放熱面27の熱を放熱し、吸熱フィン33のシリカゲルに吸湿された水分を蒸発させることができる。   Further, when silica gel is fixed to the heat-absorbing fins 33 and the heat-radiating fins 35, the water vapor contained in the gas can be absorbed into the silica gel of the heat-absorbing fins 33 when the air guide path structure 1 performs dehumidification cooling. When the silica gel reaches a saturated state, when current is supplied to the Peltier element 29 so that heat is transferred from the heat radiating surface 27 to the heat absorbing surface 25, the air guide path structure 1 has the heat absorbing air paths 51, 53, 55. It is possible to dissipate the heat of the heat dissipation surface 27 of the Peltier element 29 to the gas passing through and evaporate the moisture absorbed by the silica gel of the heat absorption fins 33.

更に、導風路構造1は、規制板21,23に対して支持体19を幅方向に移動する移動手段95を備える。移動手段95は、エアシリンダ、又は油圧シリンダのピストンロッド97に、連結部材99を介して支持体19を連結している。図1は、移動手段95がピストンロッド97を前進させた状態を示している。   Further, the air guide path structure 1 includes a moving means 95 that moves the support 19 in the width direction with respect to the regulating plates 21 and 23. The moving means 95 connects the support body 19 via a connecting member 99 to a piston rod 97 of an air cylinder or a hydraulic cylinder. FIG. 1 shows a state in which the moving means 95 has moved the piston rod 97 forward.

移動手段95がピストンロッド97を後退させると、図10に示すように、支持体19の放熱風路57,59,61が、規制板21の導入孔79,81,83にそれぞれ合致し、支持体19の吸熱風路51,53,55が、規制板21の導出孔87,89,91にそれぞれ合致する。規制板21の導出孔85は、縦材37によって第1の導出路71から遮られる。また、支持体19の吸熱風路51,53,55が、規制板23の導入孔810,830,930にそれぞれ合致し、支持体19の放熱風路57,59,61が、規制板23の導出孔850,870,890にそれぞれ合致する。規制板23の導出孔850は、縦材37によって第1の導出路71から遮られる。   When the moving means 95 moves the piston rod 97 backward, as shown in FIG. 10, the heat radiating air passages 57, 59, 61 of the support body 19 are respectively aligned with the introduction holes 79, 81, 83 of the restriction plate 21, and are supported. The endothermic air passages 51, 53, and 55 of the body 19 match the outlet holes 87, 89, and 91 of the restriction plate 21, respectively. The outlet hole 85 of the restriction plate 21 is blocked from the first outlet path 71 by the vertical member 37. Further, the endothermic air passages 51, 53, and 55 of the support body 19 respectively match the introduction holes 810, 830, and 930 of the restriction plate 23, and the radiating air passages 57, 59, and 61 of the support body 19 correspond to the restriction plate 23. It corresponds to the lead-out holes 850, 870, and 890, respectively. The outlet hole 850 of the restriction plate 23 is blocked from the first outlet path 71 by the vertical member 37.

この状態で、ペルチェ素子29に、その吸熱面25から放熱面27へ熱が移動するように電流を供給する。そして、2つのファン77を起動させると、図11に矢印I,Xで示すように気体が流れる。同図は、吸熱風路53及び放熱風路59を通過する気体にだけ注目した概念を表している。実際の気体の流れは次の通りである。   In this state, a current is supplied to the Peltier element 29 so that heat is transferred from the heat absorbing surface 25 to the heat radiating surface 27. When the two fans 77 are activated, gas flows as shown by arrows I and X in FIG. This figure represents the concept focusing only on the gas passing through the endothermic air passage 53 and the heat radiating air passage 59. The actual gas flow is as follows.

即ち、気体が函体7の外側から導入口9を経て第1の導入路67に導かれ、規制板21の導入孔79,81,83、放熱風路57,59,61、及び規制板23の導出孔850,870,890を通過して第2の導出路73に達し、導出口15から函体7の外側へ導出される。一方、導入口11から第2の導入路69に導かれる気体が、規制板23の導入孔810,830,930、吸熱風路51,53,55、及び規制板21の導出孔85,87,89を通過して第1の導出路71に達し、導出口13から函体7の外側へ導出される。   That is, the gas is guided from the outside of the box 7 to the first introduction path 67 through the introduction port 9, and the introduction holes 79, 81, 83 of the restriction plate 21, the radiating air passages 57, 59, 61, and the restriction plate 23. The lead-out holes 850, 870, and 890 pass through the lead-out holes 850, reach the second lead-out path 73, and are led out from the lead-out port 15 to the outside of the box 7. On the other hand, the gas led from the introduction port 11 to the second introduction path 69 is introduced into the introduction holes 810, 830, 930 of the restriction plate 23, the endothermic air passages 51, 53, 55, and the lead-out holes 85, 87, It passes through 89 and reaches the first lead-out path 71, and is led out of the box 7 from the lead-out port 13.

以上に述べた導風路構造1によれば、熱電ユニット17に導かれる気体の流れを切り替えるダンパー等が不要であり、また気体の流れる風路等に対して熱電ユニット17を回転させるためのスペースが不要である。このため、函体7は熱電ユニット17を収納できる大きさであれば足りるので、導風路構造1の全体を小型化し軽量化することができる。   According to the air guide structure 1 described above, a damper or the like for switching the flow of the gas guided to the thermoelectric unit 17 is unnecessary, and a space for rotating the thermoelectric unit 17 with respect to the air flow or the like through which the gas flows. Is unnecessary. For this reason, since the box 7 need only be large enough to accommodate the thermoelectric unit 17, the entire air guide path structure 1 can be reduced in size and weight.

更に、熱電ユニット17の個数を増減させることにより、放熱風路、及び吸熱風路を通過する気体を冷却する性能、又は気体に放熱する熱量を調整することができる。この場合、複数の熱電ユニット17を支持体19の移動する幅方向に並べれば、気体が個々の熱電ユニット17の吸熱フィン33、及び放熱フィン35に沿って流れる距離を増大させなくて済むので、気体の圧力損失を抑えることができる。   Furthermore, by increasing / decreasing the number of thermoelectric units 17, it is possible to adjust the performance of cooling the gas passing through the heat radiating air passage and the heat absorbing air passage, or the amount of heat released to the gas. In this case, if the plurality of thermoelectric units 17 are arranged in the width direction in which the support 19 moves, it is not necessary to increase the distance that the gas flows along the heat absorption fins 33 and the heat radiation fins 35 of the individual thermoelectric units 17. Gas pressure loss can be suppressed.

また、函体7の適所にその気密を保つためのシール材を設けても良い。図12に示すように、断面形状が三角形で厚み方向に延びる弾性体101を、函体7の正面45に形成された挿通口47の口縁に取付け、弾性体101と同様の弾性体103を、支持体19の縦材37に取付けても良い。同図は、支持体19が矢印F方向に前進したとき、弾性体101に弾性体103が密接する例を示している。   Further, a sealing material for keeping the airtightness in an appropriate position of the box 7 may be provided. As shown in FIG. 12, an elastic body 101 having a triangular cross-sectional shape and extending in the thickness direction is attached to the edge of the insertion opening 47 formed on the front surface 45 of the box 7, and an elastic body 103 similar to the elastic body 101 is attached. Alternatively, it may be attached to the vertical member 37 of the support 19. The figure shows an example in which the elastic body 103 is in close contact with the elastic body 101 when the support body 19 advances in the direction of arrow F.

次に、本発明の第2の実施形態について導風路構造1との相違点を説明する。図面は特に断らない限り図13乃至図16を参照する。   Next, the difference from the air guide path structure 1 is demonstrated about the 2nd Embodiment of this invention. The drawings refer to FIGS. 13 to 16 unless otherwise specified.

第2の実施形態に係る導風路構造10は、支持体19を函体7に固定し、規制板21,23を、函体7の正面45に形成したスリット状の挿通口47から函体7の内部に差し込んでいる。2枚の規制板21,23は、連結部材96で互いに接合され、連結部材96を介して移動手段95のピストンロッド97に連結されている。規制板21は、外側導入孔107と内側導入孔109とを合わせて導入孔79とし、外側導入孔111と内側導入孔113とを合わせて導入孔83としている。規制板23は、外側導出孔115と内側導出孔117とを合わせて導出孔850とし、外側導出孔119と内側導出孔121とを合わせて導出孔890としている。   The air guide structure 10 according to the second embodiment fixes the support 19 to the box 7, and the restricting plates 21 and 23 from the slit-shaped insertion port 47 formed on the front surface 45 of the box 7. 7 is inserted inside. The two regulating plates 21 and 23 are joined to each other by a connecting member 96 and are connected to the piston rod 97 of the moving means 95 via the connecting member 96. In the restricting plate 21, the outer introduction hole 107 and the inner introduction hole 109 are combined to form an introduction hole 79, and the outer introduction hole 111 and the inner introduction hole 113 are combined to form an introduction hole 83. In the restriction plate 23, the outer outlet hole 115 and the inner outlet hole 117 are combined to form a outlet hole 850, and the outer outlet hole 119 and the inner outlet hole 121 are combined to form a outlet hole 890.

移動手段95がピストンロッド97を矢印F方向へ前進させ、規制板21,23が図15に表れた位置にあるとき、規制板21は、その外側導入孔107、及び導出孔85を函体7の正面45から突出させるが、内側導入孔109を放熱風路57に合致させる。一方、規制板23は、その導入孔790、及び外側導出孔115を函体7の正面45から突出させるが、内側導出孔117を放熱風路57に合致させる。   When the moving means 95 advances the piston rod 97 in the direction of arrow F and the restricting plates 21 and 23 are in the positions shown in FIG. 15, the restricting plate 21 has the outer introduction hole 107 and the outlet hole 85 formed in the box 7. The inner introduction hole 109 is aligned with the heat radiating air passage 57. On the other hand, the restricting plate 23 causes the introduction hole 790 and the outer lead-out hole 115 to protrude from the front surface 45 of the box 7, but the inner lead-out hole 117 is matched with the heat radiating air passage 57.

或いは、移動手段95がピストンロッド97を矢印B方向へ後退させると、規制板21は、その外側導入孔111、及び導出孔91を函体7の背面49から突出させるが、内側導入孔113を吸熱風路55に合致させる。一方、規制板23は、その導入孔930、及び外側導出孔119を函体7の背面49から突出させるが、内側導出孔121を吸熱風路55に合致させる。   Alternatively, when the moving means 95 moves the piston rod 97 backward in the arrow B direction, the regulating plate 21 causes the outer introduction hole 111 and the outlet hole 91 to protrude from the back surface 49 of the box 7, but the inner introduction hole 113 is Match with the endothermic air passage 55. On the other hand, the restricting plate 23 causes the introduction hole 930 and the outer lead-out hole 119 to protrude from the back surface 49 of the box 7, but makes the inner lead-out hole 121 match the endothermic air passage 55.

また、図12に示す弾性体103を規制板21,23に取付けても良い。この場合、規制板21の外側導入孔107と内側導入孔109との間を通る位置、及び外側導入孔111と内側導入孔113とを通る位置に、弾性体103が取付けられる。更に、規制板23の外側導出孔115と内側導出孔117との間を通る位置、及び外側導出孔119と内側導出孔121とを通る位置に、弾性体103が取付けられる。   Moreover, you may attach the elastic body 103 shown in FIG. In this case, the elastic body 103 is attached to a position passing between the outer introduction hole 107 and the inner introduction hole 109 of the regulation plate 21 and a position passing through the outer introduction hole 111 and the inner introduction hole 113. Further, the elastic body 103 is attached to a position passing between the outer lead-out hole 115 and the inner lead-out hole 117 of the restriction plate 23 and a position passing through the outer lead-out hole 119 and the inner lead-out hole 121.

図17は、導風路構造1の変形例を使用して、室内の温度を調整する例を示している。上記の移動手段は省略されており、支持体19、及び規制板21,23は函体7に固定されている。支持体19、及び規制板21,23の相互の配置は、図8に照らして既に説明した通りである。符号123は室内と室外を遮断する壁を指している。室内の空気は、吸気口125を室内に解放したダクト126を介して、室外に設置された導風路構造1の導入口9に達している。導風路構造1の導入口11、及び導出口13は室外に解放されている。   FIG. 17 shows an example in which the indoor temperature is adjusted using a modification of the air guide structure 1. The moving means is omitted, and the support 19 and the regulation plates 21 and 23 are fixed to the box 7. The mutual arrangement of the support 19 and the regulation plates 21 and 23 is as already described with reference to FIG. Reference numeral 123 denotes a wall that blocks the room from the outside. The indoor air reaches the inlet 9 of the air guide path structure 1 installed outside the room through a duct 126 that opens the air inlet 125 to the room. The inlet port 11 and the outlet port 13 of the air guide structure 1 are open to the outdoors.

室内を冷房する場合、導風路構造1のペルチェ素子29に、その吸熱面25から放熱面27へ熱が移動するように電流を供給し、2つのファン77を起動させる。これにより、室内の空気は、導入口9から吸熱風路51,53,55を通過し、更に導出口15から室内へ循環する。室外の空気は、導入口11から放熱風路57,59,61を通過し、導出口13から排出される。室内を暖房する場合、導風路構造1のペルチェ素子29に、その放熱面27から吸熱面25へ熱が移動するように電流を供給し、上記のように室内の空気を循環させれば良い。   When the room is cooled, current is supplied to the Peltier element 29 of the air guide path structure 1 so that heat is transferred from the heat absorption surface 25 to the heat dissipation surface 27, and the two fans 77 are activated. Thereby, the indoor air passes through the endothermic air passages 51, 53, and 55 from the inlet 9 and further circulates from the outlet 15 into the room. The outdoor air passes through the heat radiating air passages 57, 59, 61 from the inlet 11 and is discharged from the outlet 13. When the room is heated, current is supplied to the Peltier element 29 of the air guide path structure 1 so that heat is transferred from the heat radiation surface 27 to the heat absorption surface 25, and the indoor air is circulated as described above. .

図18は、導風路構造1の更なる変形例を使用して、室内の換気と室内の温度を調整する例を示している。この場合、函体7に端部開口127を解放し、函体7の他端部を室内へ向けて全開させる。図1の左側に表れた分割板63、分流板65、及び規制板23を省略し、規制板21を函体7に固定する。また、導入口9に設けられたファン78は、噴出口129を室内に解放したダクト130に、函体7の内部から空気を送風するものである。   FIG. 18 shows an example of adjusting indoor ventilation and indoor temperature using a further modification of the air guide structure 1. In this case, the end opening 127 is released to the box 7 and the other end of the box 7 is fully opened toward the room. The dividing plate 63, the flow dividing plate 65, and the regulating plate 23 appearing on the left side of FIG. 1 are omitted, and the regulating plate 21 is fixed to the box 7. The fan 78 provided in the introduction port 9 blows air from the inside of the box 7 to the duct 130 in which the ejection port 129 is released indoors.

室内を冷房する場合、導風路構造1のペルチェ素子29に、その吸熱面25から放熱面27へ熱が移動するように電流を供給し、2つのファン77,78を起動させると、室内の空気は、端部開口127から吸熱風路51,53,55、及び放熱風路57,59,61に同時に流入する。そして、吸熱風路51,53,55に流入した空気が冷却され、規制板21の導入孔79,81,83を通過し、導入口9からダクト130を介して室内へ循環する。放熱風路57,59,61に流入した空気は、規制板21の導出孔85,87,89を経て導出口13から室外へ排気される。   When the room is cooled, current is supplied to the Peltier element 29 of the air guide path structure 1 so that heat is transferred from the heat absorbing surface 25 to the heat radiating surface 27 and the two fans 77 and 78 are activated. Air flows into the endothermic air passages 51, 53, and 55 and the heat radiating air passages 57, 59, and 61 simultaneously from the end opening 127. Then, the air flowing into the endothermic air passages 51, 53, 55 is cooled, passes through the introduction holes 79, 81, 83 of the regulation plate 21, and circulates from the introduction port 9 into the room through the duct 130. The air flowing into the heat radiating air passages 57, 59, 61 is exhausted from the outlet 13 through the outlet holes 85, 87, 89 of the restriction plate 21 to the outside of the room.

室内を暖房する場合、導風路構造1のペルチェ素子29に、その放熱面27から吸熱面25へ熱が移動するように電流を供給する。これにより、吸熱風路51,53,55に流入する空気が加熱され、規制板21の導入孔79,81,83を通過し、導入口9からダクト130を介して室内へ循環する。放熱風路57,59,61に流入する空気は、規制板21の導出孔85,87,89を経て導出口13から室外へ排気される。   When the room is heated, an electric current is supplied to the Peltier element 29 of the air guide structure 1 so that heat is transferred from the heat radiation surface 27 to the heat absorption surface 25. Thereby, the air flowing into the endothermic air passages 51, 53, 55 is heated, passes through the introduction holes 79, 81, 83 of the regulation plate 21, and circulates from the introduction port 9 into the room through the duct 130. The air flowing into the heat radiating air passages 57, 59, 61 is exhausted from the outlet 13 to the outside through the outlet holes 85, 87, 89 of the restriction plate 21.

或いは、規制板21を函体7に対して幅方向に移動自在に取付けても良い。この場合、放熱風路57,59,61、及び吸熱風路51,53,55に、それぞれ規制板21の導入孔79,81,83、及び導出孔85,87,89が合致させれば、電流を切り換えることなく室内を次のように暖房できる。即ち、上記の冷房を行うときと同じように電流をペルチェ素子29に供給した状態で、放熱風路57,59,61で加熱される空気は、導入孔79,81,83を通過し、導入口9からダクト130を介して室内へ循環する。吸熱風路51,53,55に流入する空気は、導出孔85,87,89を経て導出口13から室外へ排気される。   Alternatively, the restriction plate 21 may be attached to the box 7 so as to be movable in the width direction. In this case, if the introduction holes 79, 81, 83 and the outlet holes 85, 87, 89 of the regulation plate 21 are matched with the heat radiation air paths 57, 59, 61 and the heat absorption air paths 51, 53, 55, respectively, The room can be heated as follows without switching the current. That is, the air heated by the heat radiating air passages 57, 59, 61 in a state in which a current is supplied to the Peltier element 29 in the same manner as when performing the above-mentioned cooling passes through the introduction holes 79, 81, 83 and is introduced. It circulates from the port 9 through the duct 130 into the room. The air flowing into the endothermic air passages 51, 53, 55 is exhausted from the outlet 13 through the outlet holes 85, 87, 89 to the outside of the room.

尚、本発明は、その趣旨を逸脱しない範囲で当業者の知識に基づいて種々なる改良、修正、又は変形を加えた態様でも実施することができる。例えば、吸熱風路、又は放熱風路の何れか一方に、温風、又は冷風を送風し、ペルチェ素子29の吸熱面25と放熱面27との間に温度差を生じさせても良い。これにより、ペルチェ素子29に起電力を発生させることができる。また、複数の分流路75は必須の要素ではなく、分流板65を省略し支持体19に2枚の規制板21,23を近接させても、本発明の実施が妨げられることはない。   It should be noted that the present invention can be carried out in a mode in which various improvements, modifications, or variations are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention. For example, warm air or cold air may be blown into either the endothermic air path or the heat radiating air path, and a temperature difference may be generated between the heat absorbing surface 25 and the heat radiating surface 27 of the Peltier element 29. Thereby, an electromotive force can be generated in the Peltier element 29. Further, the plurality of flow dividing channels 75 are not essential elements, and even if the flow dividing plate 65 is omitted and the two regulating plates 21 and 23 are brought close to the support body 19, the implementation of the present invention is not hindered.

本発明は、電機部品を冷却、又は室内の温度調整をするのに使用できる。   The present invention can be used to cool an electrical component or adjust the temperature in a room.

1,10…導風路構造、3…一端部、5…他端部、7…函体、9,11…導入口、13,15…導出口、17…熱電ユニット、19…支持体、21,23…規制板、25…吸熱面、27…放熱面、29…ペルチェ素子、33…吸熱フィン、35…放熱フィン、43…開口部、45…正面、47…挿通口、49…背面、51,53,55…吸熱風路、57,59,61放熱風路、63…分割板、65…分流板、67…第1の導入路、69…第2の導入路、71…第1の導出路、73…第2の導出路、75…分流路、77…ファン、79,81,83…導入孔、85,87,89,91…導出孔、790,810,830,930…導入孔、850,870,890…導出孔、95…移動手段、97…ピストンロッド、96,99…連結部材、101,103…弾性体、107,111…外側導入孔、109,113…内側導入孔、115,119…外側導出孔、117,121…内側導出孔、127…端部開口。   DESCRIPTION OF SYMBOLS 1,10 ... Air guide path structure, 3 ... One end part, 5 ... Other end part, 7 ... Box, 9, 11 ... Inlet port, 13, 15 ... Outlet port, 17 ... Thermoelectric unit, 19 ... Support body, 21 , 23 ... Restriction plate, 25 ... Endothermic surface, 27 ... Radiation surface, 29 ... Peltier element, 33 ... Endothermic fin, 35 ... Radiation fin, 43 ... Opening, 45 ... Front, 47 ... Insertion port, 49 ... Back surface, 51 , 53, 55 ... endothermic air passage, 57, 59, 61 radiating air passage, 63 ... dividing plate, 65 ... shunt plate, 67 ... first introduction passage, 69 ... second introduction passage, 71 ... first derivation. 73, second lead-out path, 75 ... shunt flow path, 77 ... fan, 79, 81, 83 ... introduction hole, 85, 87, 89, 91 ... lead-out hole, 790, 810, 830, 930 ... introduction hole, 850, 870, 890 ... leading hole, 95 ... moving means, 97 ... piston rod, 96,99 ... connecting member, 1 1,103 ... elastic body, 107, 111 ... outer introduction hole, 109, 113 ... inner introduction holes, 115, 119 ... outer outlet hole, 117 and 121 ... inner outlet hole, 127 ... end opening.

Claims (6)

ペルチェ素子の吸熱面に接合された吸熱フィン、及び放熱面に接合された放熱フィンに導かれる気体を導入する第1の導入路、及び第2の導入路と、
前記ペルチェ素子の吸熱フィン、及び放熱フィンに導かれる気体を導出する第1の導出路、及び第2の導出路と、
前記第1の導入路、及び第2の導入路に導入される気体が、前記第1の導出路、及び前記第2の導出路へ流れる向きを規制する導入孔、及び導出孔を有する2枚の規制板とを備え、
前記第1の導入路から前記第2の導出路へ流れる気体が、前記2枚の規制板のうち一の規制板の導入孔を通り前記ペルチェ素子の吸熱フィンに達し、前記2枚の規制板のうち他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔を通り前記ペルチェ素子の放熱フィンに達し、前記一の規制板の導出孔を通過することを特徴とする導風路構造。
A heat-absorbing fin joined to the heat-absorbing surface of the Peltier element, a first introduction path for introducing a gas guided to the heat-radiation fin joined to the heat dissipation surface, and a second introduction path;
A first lead-out path and a second lead-out path for deriving a gas led to the heat-absorbing fin and the heat-radiating fin of the Peltier element;
Two sheets having an introduction hole and a discharge hole for restricting the direction in which the gas introduced into the first introduction path and the second introduction path flows to the first lead path and the second lead path With a regulation plate,
Gas flowing from the first introduction path to the second lead-out path passes through the introduction hole of one of the two restriction plates and reaches the heat absorption fin of the Peltier element, and the two restriction plates Gas passing through the lead-out hole of the other restriction plate and flowing from the second introduction path to the first lead-out path passes through the introduction hole of the other restriction plate and reaches the heat dissipation fin of the Peltier element, An air guide path structure that passes through a lead-out hole of the one regulating plate.
前記ペルチェ素子と前記2枚の規制板とが相対的に平行移動することにより、
前記第1の導入路から前記第2の導出路へ流れる気体が、前記2枚の規制板のうち一の規制板の導入孔を通り前記ペルチェ素子の吸熱フィンに達し、前記2枚の規制板のうち他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔を通り前記ペルチェ素子の放熱フィンに達し、前記一の規制板の導出孔を通過する状態と、
前記第1の導入路から前記第2の導出路へ流れる気体が、前記一の規制板の導入孔を通り前記ペルチェ素子の放熱フィンに達し、前記他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔を通り前記ペルチェ素子の吸熱フィンに達し、前記一の規制板の導出孔を通過する状態と、
を切替えられることを特徴とする請求項1に記載の導風路構造。
By the relative movement of the Peltier element and the two restriction plates,
Gas flowing from the first introduction path to the second lead-out path passes through the introduction hole of one of the two restriction plates and reaches the heat absorption fin of the Peltier element, and the two restriction plates Gas passing through the lead-out hole of the other restricting plate and flowing from the second introduction path to the first lead-out path passes through the introduction hole of the other restricting plate and reaches the heat dissipation fin of the Peltier element. A state of passing through the outlet hole of the one regulating plate;
Gas flowing from the first introduction path to the second lead-out path passes through the introduction hole of the one restriction plate, reaches the heat dissipation fin of the Peltier element, passes through the lead-out hole of the other restriction plate, The gas flowing from the second introduction path to the first lead-out path passes through the introduction hole of the other restriction plate, reaches the heat absorption fin of the Peltier element, and passes through the lead-out hole of the one restriction plate;
The air guide path structure according to claim 1, wherein:
吸熱面の反対側を放熱面としたペルチェ素子を、前記吸熱面に接合された吸熱フィンと、前記放熱面に接合された放熱フィンとの間に挟着した熱電ユニットに、気体を導く導風路構造であって、
互いに直交する方向の長さ、幅、及び厚みが規定された函体と、
前記函体の互いに対向する位置に各々設けられた第1の導入路、及び第2の導入路と、
前記函体の互いに対向する位置に、前記第1の導入路、及び第2の導入口に対して前記函体の厚み方向に位置を違えて各々設けられた第1の導出路、及び第2の導出路と、
前記ペルチェ素子を前記函体の内部で支持し、前記吸熱フィン、及び前記放熱フィンに気体を導く吸熱風路、及び放熱風路を形成した支持体と、
前記支持体を前記函体の長さ方向から挟む位置で互いに対向し、互いに前記厚み方向に位置を違えた導入口、及び導出口を有する2枚の規制板とを備え、
前記支持体に対して前記2枚の規制板のうち一の規制板が、その導入孔と導出孔とを前記支持体の吸熱風路と放熱風路とにそれぞれ合致させ、前記2枚の規制板のうち他の規制板が、その導入孔と導出孔とを前記支持体の放熱風路と吸熱風路とにそれぞれ合致させ、前記第1の導入路から前記第2の導出路へ流れる気体が、前記一の規制板の導入孔、前記吸熱風路、及び前記他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔、前記放熱風路、及び前記一の規制板の導出孔を通過することを特徴とする導風路構造。
A wind guide for guiding gas to a thermoelectric unit sandwiched between a heat-absorbing fin joined to the heat-absorbing surface and a heat-dissipating fin joined to the heat-dissipating surface, with a Peltier element having a heat-dissipating surface opposite to the heat-absorbing surface Road structure,
A box with a defined length, width, and thickness in directions orthogonal to each other;
A first introduction path and a second introduction path respectively provided at positions facing each other of the box;
A first lead-out path provided in a position opposite to each other in the thickness direction of the box with respect to the first introduction path and the second inlet; The derivation path of
The Peltier element is supported inside the box, the endothermic fin, and the endothermic air path that guides gas to the radiating fin, and the support body that forms the radiating air path,
Two support plates having an inlet and a outlet that are opposed to each other at a position sandwiching the support from the length direction of the box, and have different positions in the thickness direction;
One restriction plate of the two restriction plates with respect to the support body matches the introduction hole and the lead-out hole with the heat absorption air flow path and the heat radiation air path of the support body, respectively, Gas that flows from the first inlet path to the second outlet path, with the other restricting plate of the plates matching the introduction hole and the outlet hole with the heat radiating air path and the heat absorbing air path of the support, respectively. However, the gas that passes through the introduction hole of the one restriction plate, the endothermic air passage, and the lead-out hole of the other restriction plate and flows from the second introduction path to the first lead-out path, An air guide path structure that passes through an introduction hole of a restricting plate, the heat radiating air passage, and an outlet hole of the one restricting plate.
吸熱面の反対側を放熱面としたペルチェ素子を、前記吸熱面に接合された吸熱フィンと、前記放熱面に接合された放熱フィンとの間に挟着した熱電ユニットに、気体の導かれる方向を切り替える導風路構造であって、
互いに直交する方向の長さ、幅、及び厚みが規定された函体と、
前記函体の互いに対向する位置に各々設けられた第1の導入路、及び第2の導入路と、
前記函体の互いに対向する位置に、前記第1の導入路、及び第2の導入口に対して前記函体の厚み方向に位置を違えて各々設けられた第1の導出路、及び第2の導出路と、
前記ペルチェ素子を前記函体の内部で支持し、前記吸熱フィン、及び前記放熱フィンに気体を導く吸熱風路、及び放熱風路を形成した支持体と、
前記支持体を前記函体の長さ方向から挟む位置で互いに対向し、互いに前記厚み方向に位置を違えた導入口、及び導出口を有する2枚の規制板とを備え、
前記支持体と前記2枚の規制板とが、前記函体の幅方向に相対的に移動自在に前記函体に取付けられ、
前記支持体に対して前記2枚の規制板のうち一の規制板が、その導入孔と導出孔とを前記支持体の吸熱風路と放熱風路とにそれぞれ合致させる位置に移動し、前記2枚の規制板のうち他の規制板が、その導入孔と導出孔とを前記支持体の放熱風路と吸熱風路とにそれぞれ合致させる位置に移動することにより、前記第1の導入路から前記第2の導出路へ流れる気体が、前記一の規制板の導入孔、前記吸熱風路、及び前記他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔、前記放熱風路、及び前記一の規制板の導出孔を通過し、
前記支持体に対して前記一の規制板が、その導入孔と導出孔とを前記支持体の放熱風路と吸熱風路とにそれぞれ合致させる位置に移動し、前記他の規制板が、その導入孔と導出孔とを前記支持体の吸熱風路と放熱風路とにそれぞれ合致させる位置に移動することにより、前記第1の導入路から前記第2の導出路へ流れる気体が、前記一の規制板の導入孔、前記放熱風路、及び前記他の規制板の導出孔を通過し、前記第2の導入路から前記第1の導出路へ流れる気体が、前記他の規制板の導入孔、前記吸熱風路、及び前記一の規制板の導出孔を通過することを特徴とする導風路構造。
Direction in which gas is guided to a thermoelectric unit sandwiched between a heat-absorbing fin joined to the heat-absorbing surface and a heat-radiating fin joined to the heat-dissipating surface with a Peltier element having a heat-dissipating surface opposite to the heat-absorbing surface An air duct structure for switching between
A box with a defined length, width, and thickness in directions orthogonal to each other;
A first introduction path and a second introduction path respectively provided at positions facing each other of the box;
A first lead-out path provided in a position opposite to each other in the thickness direction of the box with respect to the first introduction path and the second inlet; The derivation path of
The Peltier element is supported inside the box, the endothermic fin, and the endothermic air path that guides gas to the radiating fin, and the support body that forms the radiating air path,
Two support plates having an inlet and a outlet that are opposed to each other at a position sandwiching the support from the length direction of the box, and have different positions in the thickness direction;
The support and the two restriction plates are attached to the box so as to be relatively movable in the width direction of the box,
One of the two restricting plates with respect to the support is moved to a position where the introduction hole and the lead-out hole are matched with the endothermic and radiating air paths of the support, respectively, The other restricting plate of the two restricting plates moves to the position where the introduction hole and the lead-out hole are respectively matched with the heat radiating air path and the heat absorbing air path of the support, whereby the first introduction path is formed. The gas flowing from the second lead-out path through the introduction hole of the one restriction plate, the endothermic air passage, and the lead-out hole of the other restriction plate, and from the second introduction path to the first lead The gas flowing to the lead-out path passes through the introduction hole of the other restriction plate, the heat radiation air path, and the lead-out hole of the one restriction plate,
The one restricting plate moves relative to the support to a position where the introduction hole and the lead-out hole match the heat radiating air passage and the heat absorbing air passage of the support, respectively, and the other restricting plate The gas flowing from the first introduction path to the second lead-out path is moved by moving the introduction hole and the lead-out hole to the positions where the heat absorption air path and the heat radiation air path of the support are respectively matched. The gas passing through the introduction hole of the restriction plate, the heat radiating air passage, and the lead-out hole of the other restriction plate and flowing from the second introduction path to the first lead-out path is introduced into the other restriction plate. An air guide passage structure that passes through a hole, the endothermic air passage, and a lead-out hole of the one restricting plate.
前記2枚の規制板を前記函体に固定し、前記支持体を前記2枚の規制板に対して移動させる移動手段を備えることを特徴とする請求項2又は4に記載の導風路構造。   5. The air guide path structure according to claim 2, further comprising a moving unit that fixes the two restriction plates to the box and moves the support relative to the two restriction plates. 6. . 前記支持体を前記函体に固定し、前記2枚の規制板を前記支持体に対して移動させる移動手段を備えることを特徴とする請求項2又は4に記載の導風路構造。   5. The air guide path structure according to claim 2, further comprising moving means for fixing the support to the box and moving the two restriction plates relative to the support. 6.
JP2009135736A 2009-06-05 2009-06-05 Air guide structure Expired - Fee Related JP5447798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135736A JP5447798B2 (en) 2009-06-05 2009-06-05 Air guide structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135736A JP5447798B2 (en) 2009-06-05 2009-06-05 Air guide structure

Publications (2)

Publication Number Publication Date
JP2010281514A true JP2010281514A (en) 2010-12-16
JP5447798B2 JP5447798B2 (en) 2014-03-19

Family

ID=43538412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135736A Expired - Fee Related JP5447798B2 (en) 2009-06-05 2009-06-05 Air guide structure

Country Status (1)

Country Link
JP (1) JP5447798B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146220A (en) * 1998-11-02 2000-05-26 Nissan Motor Co Ltd Air conditioning means and air conditioner
JP2006349342A (en) * 2006-08-28 2006-12-28 Daikin Ind Ltd Heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146220A (en) * 1998-11-02 2000-05-26 Nissan Motor Co Ltd Air conditioning means and air conditioner
JP2006349342A (en) * 2006-08-28 2006-12-28 Daikin Ind Ltd Heat exchanger

Also Published As

Publication number Publication date
JP5447798B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2014122702A1 (en) Air conditioning device
JP5925004B2 (en) Air conditioning ventilation system
JP2010524246A (en) Thermoelectric temperature control device
JP2006281190A (en) Electric heating structure of dehumidification rotor type dehumidifying device
JP2015064171A (en) Dehumidification and ventilation device
RU2008129540A (en) EVAPORATIVE COOLING DEVICE
WO2018154836A1 (en) Dehumidifier
KR20160059031A (en) Dehumidifier for vehicle
KR101507524B1 (en) Movable Dehumidification Apparatus for Aircraft
JPH10325561A (en) Peltier module unit, heat-exchanger, ventilation device
JP5768911B2 (en) Cooling and heating module and air conditioner
JP2009019862A (en) Humidity adjusting device
JP2002115869A (en) Humidistat
JP5447798B2 (en) Air guide structure
TW202103775A (en) dehumidifier
KR100895695B1 (en) Cooling apparatus for Fan Filter Unit using theremoelectric element
JP2004020047A (en) Air conditioner
JP2013098082A (en) Temperature control mechanism for battery
JP2015129606A (en) humidity control system
JP2009198141A (en) Heat exchange apparatus
CN109862761B (en) High-voltage frequency converter
JP2011247512A (en) Peltier cooling and heating module for air conditioning
KR20180057807A (en) Ventilation module of ventilation seat
JP5323102B2 (en) Cooling device for electronic components
JP2009006223A (en) Dehumidifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131217

LAPS Cancellation because of no payment of annual fees