JP2010278353A - Aligner - Google Patents

Aligner Download PDF

Info

Publication number
JP2010278353A
JP2010278353A JP2009131169A JP2009131169A JP2010278353A JP 2010278353 A JP2010278353 A JP 2010278353A JP 2009131169 A JP2009131169 A JP 2009131169A JP 2009131169 A JP2009131169 A JP 2009131169A JP 2010278353 A JP2010278353 A JP 2010278353A
Authority
JP
Japan
Prior art keywords
optical system
substrate
back surface
position detection
window member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009131169A
Other languages
Japanese (ja)
Inventor
Koichiro Komatsu
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009131169A priority Critical patent/JP2010278353A/en
Publication of JP2010278353A publication Critical patent/JP2010278353A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aligner capable of carrying out exposure at high accuracy, by carrying out a relative alignment between a projection position of an exposure pattern of a projection optical system and a detection position of a position detection optical system, without having to move the position detection optical system on a rear surface side. <P>SOLUTION: The aligner 1 includes a stage 9 for mounting a substrate 7 thereon; the projection optical system 4 disposed at a surface side of the substrate 7 and projecting a pattern on a surface 7a of the substrate 7; a rear surface position detection optical system 6 disposed at the rear surface side of the substrate 7 and detecting an alignment mark formed on a rear surface 7b of the substrate 7; a window member 10 attached to a through-hole 9b penetrating the stage 9 and formed of an optical transmitting member; and a control section 11 detecting the pattern image formed on a surface 10a of the window member 10 by the projection optical system 4 from the rear surface side of the window member 10, by means of the rear surface position detection optical system 6, and calculating a relative relationship between a position of the pattern image formed by the projection optical system 4 and the position of the aligning mark detected by the rear surface position detecting optical system 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、露光装置に関する。   The present invention relates to an exposure apparatus.

従来、基板上にフォトレジストを塗布し、露光、現像、及び、エッチング工程を経て電気回路素子を製造する際に、サイリスタなど一部の電気回路素子では、その構造上、基板の両面に対して上記工程を行って素子を作成する必要があった。この両面への加工を高精度に行うため、基板の裏面に設けられた位置合わせマークを検出して、位置合わせを行う露光装置が提案されている(例えば、特許文献1参照)。また、最近では、MEMS(Micro Electro Mechanical Systems)素子なども半導体プロセスを使って作成されるようになったため、このような裏面からの加工の需要が増えてきている。この場合、より高精度な加工技術が求められているが、投影光学系がパターンを投影する位置と、位置検出光学系が位置合わせマークを検出する位置との相対関係を決める必要があり、そのための提案がなされている(例えば、特許文献2参照)。この特許文献2に記載の発明は、レチクル(またはフォトマスク)を用いた露光方法であり、露光前に行う基板の位置合わせのために、まず投影光学系から基板を退避させた状態で、投影光学系によりレチクルに設けたレチクルアライメントマークを投影し、この投影位置を裏面側の位置検出光学系により検出するようにしている。その際に、位置検出光学系のレンズを移動させて、基板の厚さの影響を除去していた。   Conventionally, when an electric circuit element is manufactured by applying a photoresist on a substrate and performing exposure, development, and etching processes, some electric circuit elements such as a thyristor have a structure on both sides of the substrate. It was necessary to create an element by performing the above steps. In order to perform processing on both surfaces with high accuracy, an exposure apparatus has been proposed that performs alignment by detecting an alignment mark provided on the back surface of the substrate (see, for example, Patent Document 1). In addition, recently, MEMS (Micro Electro Mechanical Systems) elements and the like have been created using a semiconductor process, and thus the demand for processing from such a back surface is increasing. In this case, more precise processing technology is required, but it is necessary to determine the relative relationship between the position where the projection optical system projects the pattern and the position where the position detection optical system detects the alignment mark. Has been proposed (see, for example, Patent Document 2). The invention described in Patent Document 2 is an exposure method using a reticle (or photomask). For alignment of the substrate before exposure, the projection is first performed with the substrate retracted from the projection optical system. A reticle alignment mark provided on the reticle is projected by an optical system, and the projection position is detected by a position detection optical system on the back side. At this time, the lens of the position detection optical system is moved to remove the influence of the thickness of the substrate.

特開昭62−254423号公報JP-A-62-254423 特公平6−50714号公報Japanese Patent Publication No. 6-50714

しかしながら、位置検出光学系のレンズを移動させることにより光軸がずれたり、移動方向が投影光学系の光軸に完全には一致していなかったりすることがあり、その結果、位置検出光学系が検出する位置にズレが生じてしまうと言う課題があった。   However, the optical axis may be shifted by moving the lens of the position detection optical system, or the movement direction may not completely coincide with the optical axis of the projection optical system. There has been a problem that a shift occurs in the position to be detected.

本発明はこのような課題に鑑みてなされたものであり、裏面側の位置検出光学系を移動させることなく、投影光学系が露光パターンを投影する表面側の位置と、位置検出光学系が検出する裏面側の位置との相対関係を高精度に決めることが可能な露光装置を提供することを目的とする。   The present invention has been made in view of such problems, and the position detection optical system detects the position on the front surface side where the projection optical system projects the exposure pattern without moving the position detection optical system on the back surface side. An object of the present invention is to provide an exposure apparatus that can determine the relative relationship with the position on the back surface side with high accuracy.

前記課題を解決するために、本発明に係る露光装置は、基板を載置するホルダを有するステージと、基板の表面側に配置され、基板の表面にパターンを投影する投影光学系と、基板の裏面側に配置され、基板の裏面に形成された位置合わせマークを検出する裏面位置検出光学系と、ホルダを貫通する貫通孔に取り付けられ、光を透過する部材で形成された窓部材と、投影光学系により窓部材の表面に形成されたパターンの像を、窓部材の裏面側から裏面位置検出光学系で検出し、投影光学系により形成されるパターンの像の位置と裏面位置検出光学系で検出される位置合わせマークの位置との相対関係を算出する制御部と、を有する。   In order to solve the above-described problems, an exposure apparatus according to the present invention includes a stage having a holder for placing a substrate, a projection optical system that is disposed on the surface side of the substrate and projects a pattern onto the surface of the substrate, A rear surface position detection optical system for detecting an alignment mark formed on the rear surface side of the substrate, a window member formed of a member that is attached to a through-hole penetrating the holder and transmits light, and projection The pattern image formed on the front surface of the window member by the optical system is detected from the back surface side of the window member by the back surface position detection optical system, and the position of the pattern image formed by the projection optical system and the back surface position detection optical system And a control unit that calculates a relative relationship with the position of the alignment mark to be detected.

このような露光装置において、窓部材は、当該窓部材の表面が、ホルダ上に載置された状態の基板の表面と略同一平面上に位置し、かつ、投影光学系より当該窓部材の表面に形成されたパターンの像が裏面位置検出光学系の焦点面に略一致する厚さを有することが好ましい。   In such an exposure apparatus, the window member is such that the surface of the window member is substantially flush with the surface of the substrate placed on the holder, and the surface of the window member is projected from the projection optical system. It is preferable that the image of the pattern formed on has a thickness that substantially matches the focal plane of the back surface position detection optical system.

このとき、窓部材は、この窓部材の媒質の投影光学系からの光に対する屈折率をnEXPとし、窓部材の厚さをtwとし、基板の厚さをtsとし、投影光学系の合焦位置と裏面位置検出光学系の合焦位置との差をΔEXPとし、裏面位置検出光学系の焦点深度をDOFとしたとき、次式

Figure 2010278353
の条件を満足するよう構成されることが好ましい。 At this time, the window member has a refractive index for light from the projection optical system of the medium of the window member as n EXP , a thickness of the window member as t w , a thickness of the substrate as t s , and the projection optical system. When the difference between the focus position and the focus position of the back surface position detection optical system is Δ EXP and the depth of focus of the back surface position detection optical system is DOF, the following equation
Figure 2010278353
It is preferable to be configured to satisfy the above condition.

また、このような露光装置は、ホルダ上に載置したときに、ホルダの表面および窓部材の表面に接する面を有し、当該面の各々に校正用マークが形成された校正用標板を有し、制御部は、ホルダ上にこの校正用標板が載置された状態で、裏面位置検出光学系により校正用マークの各々の位置を検出して、投影光学系により形成されるパターンの像の位置と裏面位置検出光学系により検出される位置合わせマークの位置との相対関係のオフセットを算出することが好ましい。   Further, such an exposure apparatus has a calibration plate having a surface in contact with the surface of the holder and the surface of the window member when placed on the holder, and a calibration mark is formed on each of the surfaces. And the control unit detects each position of the calibration mark with the back surface position detection optical system in a state where the calibration plate is placed on the holder, and controls the pattern formed by the projection optical system. It is preferable to calculate an offset of the relative relationship between the position of the image and the position of the alignment mark detected by the back surface position detection optical system.

本発明に係る露光装置を以上のように構成すると、基板の裏面側の位置検出光学系を移動させることなく、投影光学系が露光パターンの像を投影する位置と、位置検出光学系による位置合わせマークの検出位置との相対関係を算出し、これらの位置合わせをより正確に行うことができ、露光装置による露光を高精度に行うことができる。   When the exposure apparatus according to the present invention is configured as described above, the position where the projection optical system projects the image of the exposure pattern without moving the position detection optical system on the back side of the substrate and the alignment by the position detection optical system The relative relationship with the detection position of the mark can be calculated, and the alignment can be performed more accurately, and the exposure by the exposure apparatus can be performed with high accuracy.

本発明に係る露光装置の構成を示す概略図である。It is the schematic which shows the structure of the exposure apparatus which concerns on this invention. 投影位置と検出位置との位置合わせを説明するため、基板、貫通孔及び窓部材の関係を示した説明図であり、(a)は貫通孔において基板の両面に、投影光学系と裏面位置検出光学系とがそれぞれ合焦した状態を示し、(b)は窓部材における投影光学系の合焦位置と裏面位置検出光学系の合焦位置との関係を示している。FIG. 4 is an explanatory diagram showing the relationship between a substrate, a through hole, and a window member in order to explain the alignment between the projection position and the detection position. FIG. The optical system is in a focused state, and (b) shows the relationship between the focus position of the projection optical system and the focus position of the back surface position detection optical system in the window member. 表面と裏面とが平行でない窓部材が取り付けられた場合の、位置ズレの発生を説明するための説明図である。It is explanatory drawing for demonstrating generation | occurrence | production of position shift when the window member whose front surface and back surface are not parallel is attached. 窓部材が傾斜して取り付けられた場合の、位置ズレの発生を説明するための説明図である。It is explanatory drawing for demonstrating generation | occurrence | production of position shift when a window member is inclined and attached. 校正用標板を用いて位置ズレを補正する手順を説明するための説明図である。It is explanatory drawing for demonstrating the procedure which correct | amends a position shift using the calibration label | marker.

以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて本実施形態に係る露光装置1の構成について説明する。本実施形態の露光装置1は、DMD素子からの像(露光パターン)を基板7上に投影するマスクレス露光装置であって、図1に示すように、照明光を照射する照明光学系2と、この照明光学系2からの照明光を空間的に変調し複数の像(露光パターン)を生成する光変調部としてのDMD素子3と、このDMD素子3からの露光パターンを基板7上に投影する投影光学系4と、この投影光学系4に組み込まれ、DMD素子3からの露光パターンの像が基板7の表面に合焦するよう調整するためのオートフォーカス検出光学系5と、基板7の裏面側の位置を検出するための裏面位置検出光学系6と、基板7を載置するためのホルダ8を備えたステージ9と、オートフォーカス検出光学系5及び裏面位置検出光学系6からの検出結果によりDMD素子3およびステージ9の作動を制御する制御部11と、を有して構成されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the configuration of the exposure apparatus 1 according to the present embodiment will be described with reference to FIG. The exposure apparatus 1 of the present embodiment is a maskless exposure apparatus that projects an image (exposure pattern) from a DMD element onto a substrate 7, and as shown in FIG. 1, an illumination optical system 2 that irradiates illumination light, and The DMD element 3 as a light modulation unit that spatially modulates the illumination light from the illumination optical system 2 to generate a plurality of images (exposure patterns), and the exposure pattern from the DMD element 3 is projected onto the substrate 7. A projection optical system 4 that is incorporated in the projection optical system 4, an autofocus detection optical system 5 that adjusts the image of the exposure pattern from the DMD element 3 to focus on the surface of the substrate 7, and the substrate 7. Detection from a back surface position detection optical system 6 for detecting the position of the back surface side, a stage 9 provided with a holder 8 for mounting the substrate 7, and detection from the autofocus detection optical system 5 and the back surface position detection optical system 6. DMD depending on the result It is configured to include a control unit 11 for controlling the operation of the child 3 and stage 9, a.

DMD素子3は、反射角を変更可能な図示しない複数のマイクロミラーを有して構成されている。DMD素子3の各マイクロミラーは、制御部11により駆動され、その反射面の反射角を変化させることで、反射光を投影光学系4に導くか導かないかを任意に選択することができ、多様な形状の露光パターンを生成することができる。   The DMD element 3 includes a plurality of micromirrors (not shown) that can change the reflection angle. Each micromirror of the DMD element 3 is driven by the control unit 11, and by changing the reflection angle of the reflection surface, it is possible to arbitrarily select whether the reflected light is guided to the projection optical system 4 or not, Various shapes of exposure patterns can be generated.

照明光学系2は、水銀灯、LEDなどからなる基板7上に塗布されたフォトレジストを感光させる波長を発する露光光源21と、この露光光源21からの照明光を集光してDMD素子3に照射するコンデンサレンズ22とから構成されている。また、投影光学系4は、DMD素子3にて生成された露光パターン(露光光)を略平行光に変換する第2対物レンズ41と、この略平行光を基板7上に投影する対物レンズ42とから構成されている。   The illumination optical system 2 condenses the illumination light from the exposure light source 21 that emits a wavelength for exposing the photoresist coated on the substrate 7 made of a mercury lamp, LED, etc., and irradiates the DMD element 3 with the illumination light from the exposure light source 21. And a condenser lens 22 to be used. The projection optical system 4 also includes a second objective lens 41 that converts an exposure pattern (exposure light) generated by the DMD element 3 into substantially parallel light, and an objective lens 42 that projects the substantially parallel light onto the substrate 7. It consists of and.

オートフォーカス検出光学系5は、基板7上に塗布されたフォトレジストを感光させない波長のフォーカス検出用の光(以下、「フォーカス検出光」と呼ぶ)を出射する点光源51と、この点光源51からのフォーカス検出光を略平行光に変換するコリメータレンズ52と、このコリメータレンズ52を透過したフォーカス検出光のうち、その瞳の半分を遮る遮光絞り53と、この略平行なフォーカス検出光を透過し基板7で反射された反射光をさらに反射するハーフミラー54と、投影光学系4の光路上に配置され、フォーカス検出光とその反射光とを反射し、露光光を透過するダイクロイックミラー55と、ダイクロイックミラー55及びハーフミラー54で反射された反射光を結像する結像レンズ56と、この像を受光するリニアセンサ57とから構成されている。   The autofocus detection optical system 5 emits a point light source 51 that emits focus detection light having a wavelength that does not expose the photoresist coated on the substrate 7 (hereinafter, referred to as “focus detection light”), and the point light source 51. A collimator lens 52 for converting the focus detection light from the light into a substantially parallel light, a light-shielding diaphragm 53 for blocking half of the pupil of the focus detection light transmitted through the collimator lens 52, and the substantially parallel focus detection light transmitted. A half mirror 54 that further reflects the reflected light reflected by the substrate 7, and a dichroic mirror 55 that is disposed on the optical path of the projection optical system 4, reflects the focus detection light and the reflected light, and transmits the exposure light; An imaging lens 56 for imaging the reflected light reflected by the dichroic mirror 55 and the half mirror 54, and a linear sensor for receiving the image. And a 57.

基板7を載置するホルダ8には、上下方向(投影光学系4および裏面位置検出光学系6の光軸と略平行な方向)に貫通する貫通孔8a及び貫通孔8bが形成されている。貫通孔8aは、基板7の裏面に形成された位置合わせマークを観察するための開口である。基板7の裏面には、例えば、十字マークなどの位置合わせマークが3カ所以上形成されており、これらの位置合わせマークを、各位置合わせマークに対応して形成された複数の貫通孔8aを介して裏面位置検出光学系6が検出する。また、貫通孔8bには光透過性の窓部材10が取り付けられている。この窓部材10は、後述するように、投影光学系4による露光パターンの投影位置と、裏面位置検出光学系6による位置合わせマークの検出位置との相対的な位置合わせをするために設けられている。なお、貫通孔8b(窓部材10)は、ホルダ8上に載置された基板7がこの貫通孔8bを塞がない位置に形成されている。また、ステージ9は、制御部11によって制御される図示しない適宜の移動手段により、水平方向及び鉛直方向に移動可能となっている。なお、ステージ9には干渉計またはリニアエンコーダが取り付けられ、制御部11によってホルダ8の位置がモニタリングされている。   The holder 8 on which the substrate 7 is placed is formed with a through hole 8a and a through hole 8b penetrating in the vertical direction (direction substantially parallel to the optical axes of the projection optical system 4 and the back surface position detection optical system 6). The through hole 8 a is an opening for observing the alignment mark formed on the back surface of the substrate 7. For example, three or more alignment marks such as cross marks are formed on the back surface of the substrate 7, and these alignment marks are passed through a plurality of through holes 8 a formed corresponding to each alignment mark. Then, the back surface position detection optical system 6 detects. A light-transmissive window member 10 is attached to the through hole 8b. As will be described later, the window member 10 is provided for relative alignment between the projection position of the exposure pattern by the projection optical system 4 and the detection position of the alignment mark by the back surface position detection optical system 6. Yes. The through hole 8b (window member 10) is formed at a position where the substrate 7 placed on the holder 8 does not block the through hole 8b. Further, the stage 9 can be moved in the horizontal direction and the vertical direction by an appropriate moving means (not shown) controlled by the control unit 11. An interferometer or a linear encoder is attached to the stage 9, and the position of the holder 8 is monitored by the control unit 11.

裏面位置検出光学系6は、ホルダ8を挟んで投影光学系4と対向する側、すなわち、ホルダ8の下方に配置されている。この裏面位置検出光学系6は、位置検出用の光(以下「位置検出光」と呼ぶ)を出射する位置検出用光源61と、この位置検出用光源61からの位置検出光を集光するコンデンサレンズ62と、このコンデンサレンズ62で集光した位置検出光を基板7方向に反射するハーフミラー63と、このハーフミラー63で反射された位置検出光を集光して基板7の裏面を照明する対物レンズ64と、基板7の裏面で反射して再び対物レンズ64で集光され、ハーフミラー63を透過した反射光を結像させる結像レンズ65と、この像を検出する撮像素子66とから構成されている。   The back surface position detection optical system 6 is disposed on the side facing the projection optical system 4 with the holder 8 interposed therebetween, that is, below the holder 8. The back surface position detection optical system 6 includes a position detection light source 61 that emits position detection light (hereinafter referred to as “position detection light”), and a condenser that collects the position detection light from the position detection light source 61. The lens 62, the half mirror 63 that reflects the position detection light collected by the condenser lens 62 toward the substrate 7, and the position detection light reflected by the half mirror 63 is condensed to illuminate the back surface of the substrate 7. An objective lens 64, an imaging lens 65 that forms an image of reflected light that is reflected from the back surface of the substrate 7, reflected by the objective lens 64, and transmitted through the half mirror 63, and an image sensor 66 that detects this image. It is configured.

以上のような構成の露光装置1において、照明光学系2の露光光源21から出射した照明光(露光光)は、コンデンサレンズ22を介してDMD素子3に照射される。このとき、制御部11では、この制御部11に内蔵されたパターンジェネレータの信号に対応して、DMD素子3の画素に相当するすべてのマイクロミラーの反射角を制御する。この制御により、DMD素子3の各マイクロミラーでは照明光を投影光学系4に導くか否かを選択することができ、所望の露光パターンを生成することができる。このDMD素子3により生成された露光パターンは、投影光学系4により基板7上に投影される。このとき、投影光学系4に組み込まれたオートフォーカス検出光学系5からのフォーカス信号に基づいて、制御部11の制御によりステージ9を上下させて、DMD素子3からの露光パターンが基板7の表面に合焦するよう投影される。そして、この露光パターンの投影により、基板7に対して露光が行われる。   In the exposure apparatus 1 configured as described above, illumination light (exposure light) emitted from the exposure light source 21 of the illumination optical system 2 is applied to the DMD element 3 via the condenser lens 22. At this time, the control unit 11 controls the reflection angles of all the micromirrors corresponding to the pixels of the DMD element 3 in accordance with the signal of the pattern generator built in the control unit 11. With this control, each micromirror of the DMD element 3 can select whether or not to guide the illumination light to the projection optical system 4, and a desired exposure pattern can be generated. The exposure pattern generated by the DMD element 3 is projected onto the substrate 7 by the projection optical system 4. At this time, on the basis of the focus signal from the autofocus detection optical system 5 incorporated in the projection optical system 4, the stage 9 is moved up and down by the control of the control unit 11, and the exposure pattern from the DMD element 3 becomes the surface of the substrate 7. Projected to focus on. Then, exposure of the substrate 7 is performed by projection of the exposure pattern.

ここで、オートフォーカス検出光学系5の動作を説明する。まず、点光源51から射出したフォーカス検出光がコリメータレンズ52で略平行光に変換される。この略平行なフォーカス検出光は、上述のように、遮光絞り53により瞳の略半分が遮られて絞られた後、ハーフミラー54を透過して、ダイクロイックミラー55に入射し、このダイクロイックミラー55で基板7の方向に反射され、投影光学系4の対物レンズ42を介して基板7上に照射される。そして、この基板7で反射された反射光は、投影光学系4の対物レンズ42により再び集光された後、ダイクロイックミラー55で反射されてオートフォーカス検出光学系5に導かれる。反射光は、さらにハーフミラー54で反射され、結像レンズ56によりリニアセンサ57上に結像する。このように、このオートフォーカス検出光学系5は、いわゆる瞳半隠しフォーカス検出光学系になっている。そして、このリニアセンサ57で得られた像を基に、投影光学系4の合焦位置に対する基板7の高さのずれが検出され、その信号に基づいて制御部11によりステージ9を光軸方向(上下方向)に移動させることにより、DMD素子3からの露光パターンを基板7の表面に合焦させる。   Here, the operation of the autofocus detection optical system 5 will be described. First, focus detection light emitted from the point light source 51 is converted into substantially parallel light by the collimator lens 52. As described above, the substantially parallel focus detection light is narrowed down by blocking about half of the pupil by the light-shielding diaphragm 53, then passes through the half mirror 54, and enters the dichroic mirror 55. The dichroic mirror 55 Is reflected in the direction of the substrate 7 and irradiated onto the substrate 7 through the objective lens 42 of the projection optical system 4. Then, the reflected light reflected by the substrate 7 is condensed again by the objective lens 42 of the projection optical system 4, reflected by the dichroic mirror 55, and guided to the autofocus detection optical system 5. The reflected light is further reflected by the half mirror 54 and imaged on the linear sensor 57 by the imaging lens 56. Thus, the autofocus detection optical system 5 is a so-called pupil half-hidden focus detection optical system. Then, based on the image obtained by the linear sensor 57, a deviation of the height of the substrate 7 from the in-focus position of the projection optical system 4 is detected. Based on the signal, the control unit 11 moves the stage 9 in the optical axis direction. By moving in the (vertical direction), the exposure pattern from the DMD element 3 is focused on the surface of the substrate 7.

一方、裏面位置検出光学系6において、位置検出用光源61から出射した位置検出光はコンデンサレンズ62で略平行光に変換されてハーフミラー63に入射し、このハーフミラー63で反射された後、対物レンズ64により集光され、ホルダ8に設けられた貫通孔8aを介して基板7の裏面を照明する。この基板7の裏面には、前述の通り位置合わせマークが3カ所以上形成されている。基板7の裏面で反射した位置検出光は、再び対物レンズ64で集光されて略平行光になり、ハーフミラー63を透過した後、結像レンズ65により撮像素子66上に結像する。この撮像素子66では、基板7の裏面像が光電変換され、画像処理により位置合わせマークが認識される。   On the other hand, in the back surface position detection optical system 6, the position detection light emitted from the position detection light source 61 is converted into substantially parallel light by the condenser lens 62, enters the half mirror 63, and is reflected by the half mirror 63. The light is condensed by the objective lens 64, and the back surface of the substrate 7 is illuminated through the through hole 8 a provided in the holder 8. As described above, three or more alignment marks are formed on the back surface of the substrate 7. The position detection light reflected by the back surface of the substrate 7 is condensed again by the objective lens 64 to become substantially parallel light, passes through the half mirror 63, and then forms an image on the image sensor 66 by the imaging lens 65. In this image sensor 66, the back image of the substrate 7 is photoelectrically converted, and the alignment mark is recognized by image processing.

裏面位置検出光学系6では、予め、制御部11により位置合わせの基準となる基準点を記憶している。基準点とは、後述する投影光学系4により窓部材10上に投影されたパターン中心を裏面位置検出光学系6で検出したときの撮像素子66上の座標のことである。この基準点と、撮像素子66で認識された3箇所以上の位置合わせマークの各中心とが順次一致するように、制御部11の制御によりステージ9を移動させる。そして、制御部11は、その際のステージ9の座標を読み込むことにより、基板7のステージ9における座標上での水平面内の位置及び水平面内の回転量が算出される。このように算出された基板7の位置及び回転量に基づいて、ステージ9を移動させて所定の露光位置に基板7を移動させ、露光処理を行う。なお、この裏面位置検出光学系6による処理は、例えば、基板7をホルダ8にセットし、露光処理を行う前に実行される。   In the back surface position detection optical system 6, a reference point serving as a reference for alignment is stored in advance by the control unit 11. The reference point is a coordinate on the image sensor 66 when the back surface position detection optical system 6 detects the pattern center projected on the window member 10 by the projection optical system 4 described later. The stage 9 is moved under the control of the control unit 11 so that this reference point and the centers of the three or more alignment marks recognized by the image sensor 66 are sequentially matched. And the control part 11 calculates the position in the horizontal surface on the coordinate in the stage 9 of the board | substrate 7, and the rotation amount in a horizontal surface by reading the coordinate of the stage 9 in that case. Based on the position and rotation amount of the substrate 7 calculated in this way, the stage 9 is moved to move the substrate 7 to a predetermined exposure position, and exposure processing is performed. The processing by the back surface position detection optical system 6 is executed, for example, before the substrate 7 is set on the holder 8 and exposure processing is performed.

ところで、上述のように基板7を正確な露光位置に配置した場合でも、投影光学系4による露光パターンの投影位置と、裏面位置検出光学系6による位置合わせマークの検出位置との相対的な位置関係にズレを生じている場合、高精度な加工ができない。この高精度な加工を可能とするため、投影光学系4の投影位置と裏面位置検出光学系6の基準点との相対的な位置関係を正確に把握し、ズレがある場合は補正する必要がある。そのため、本実施形態の露光装置1では、上述の窓部材10を用いて投影光学系4と裏面位置検出光学系6との位置合わせマークの中心位置(追い込み位置)の計測処理が行われる。この処理は、例えば、加工を行う前に、初期処理として一度行ってもよいし、所定の時間ごとに複数回行ってもよい。   By the way, even when the substrate 7 is arranged at an accurate exposure position as described above, the relative position between the projection position of the exposure pattern by the projection optical system 4 and the detection position of the alignment mark by the back surface position detection optical system 6. If the relationship is misaligned, high-precision machining cannot be performed. In order to enable this highly accurate processing, it is necessary to accurately grasp the relative positional relationship between the projection position of the projection optical system 4 and the reference point of the back surface position detection optical system 6, and to correct any deviation. is there. For this reason, in the exposure apparatus 1 of the present embodiment, the above-described window member 10 is used to perform measurement processing of the center position (run-in position) of the alignment mark between the projection optical system 4 and the back surface position detection optical system 6. For example, this processing may be performed once as an initial processing before processing, or may be performed a plurality of times at predetermined time intervals.

まず、投影光学系4の投影位置と裏面位置検出光学系6の検出位置との位置関係について、図2を参照して説明する。基板7に露光パターンを投影する場合には、図2(a)に示すように、DMD素子3からの露光光LEXPが基板7の表面7aで合焦するように、オートフォーカス検出光学系5(オートフォーカス機構)による検出結果に基づいて、制御部11がステージ9を上下動させることで調整される。その際、裏面位置検出光学系6は、貫通孔8aを介して基板7の裏面7b、すなわち、ホルダ8と基板7との接触面に合焦して観察することができるように構成されている。つまり、投影光学系4及び裏面位置検出光学系6は、共に、基板7の表面7aおよび裏面7bにそれぞれ合焦している状態になっている。 First, the positional relationship between the projection position of the projection optical system 4 and the detection position of the back surface position detection optical system 6 will be described with reference to FIG. When projecting an exposure pattern on the substrate 7, as shown in FIG. 2A, the autofocus detection optical system 5 so that the exposure light L EXP from the DMD element 3 is focused on the surface 7a of the substrate 7. Based on the detection result by the (autofocus mechanism), the control unit 11 is adjusted by moving the stage 9 up and down. At that time, the back surface position detection optical system 6 is configured to be able to focus and observe the back surface 7b of the substrate 7, that is, the contact surface between the holder 8 and the substrate 7 through the through hole 8a. . That is, the projection optical system 4 and the back surface position detection optical system 6 are both in focus on the front surface 7a and the back surface 7b of the substrate 7, respectively.

図2(b)では、ステージ9を水平方向に移動させて、窓部材10において、投影光学系4が露光パターンを投影する位置と、裏面位置検出光学系6がこの露光パターンを検出する位置との対応をとっている状態を示している。このとき、DMD素子3は、露光パターンを投影する位置の指標になるように、例えば、十字パターンなどの露光パターンを表示している。そして、オートフォーカス機構により、DMD素子3からの十字パターンは、窓部材10の上面10aに合焦するように調整される。また、この窓部材10は、光透過性であるため露光パターンを含む露光光LEXPは、図2(b)に示すように、屈折して窓部材10を透過する。この窓部材10は平行平板であり、その厚さをtw、窓部材10での露光光LEXPの屈折率をnEXPとしたとき、像の浮き上がり量uは、以下に示す式(1)により表される。 In FIG. 2B, the stage 9 is moved in the horizontal direction, and on the window member 10, the projection optical system 4 projects the exposure pattern, and the back surface position detection optical system 6 detects the exposure pattern. The state of taking the correspondence is shown. At this time, the DMD element 3 displays an exposure pattern such as a cross pattern, for example, so as to serve as an index of the position where the exposure pattern is projected. Then, the cross pattern from the DMD element 3 is adjusted by the autofocus mechanism so as to be focused on the upper surface 10 a of the window member 10. Further, since the window member 10 is light transmissive, the exposure light L EXP including the exposure pattern is refracted and transmitted through the window member 10 as shown in FIG. The window member 10 is a parallel plate, and when the thickness is t w and the refractive index of the exposure light L EXP at the window member 10 is n EXP , the image lifting amount u is expressed by the following equation (1). Is represented by

Figure 2010278353
Figure 2010278353

また、ホルダ8に穴が開いている場合など、この穴から裏面位置検出光学系6の位置検出光が漏れて装置本体に照射され、その結果、基板7に不測の迷光が照射されることがある。このような迷光が照射されても基板7上のレジストが感光しないように、裏面位置検出光学系6では露光光とは異なる波長の光を位置検出光として用いるのが一般的である。しかしながら、この波長の違いによる露光光と位置検出光との色収差が原因で、合焦位置のズレが生じてしまう。図2(b)の例では、露光光LEXPの合焦位置が、裏面位置検出光学系6の合焦位置よりも、ΔEXPだけ低い位置にある場合を示している。つまり、基板7の厚tsと露光光LEXPの合焦位置のズレ量ΔEXPとの和と、上記式(1)で表される像の浮き上がり量uとが焦点深度内で一致すれば、裏面位置検出光学系6を上下に移動させることなく、合焦した状態で、裏面位置検出光学系6は投影光学系4が露光パターンを投影する位置を検出することができる。この関係は、窓部材10における裏面位置検出光学系6の焦点深度をDOFとしたとき、以下に示す式(2)で表される。 Further, when the holder 8 has a hole, the position detection light of the back surface position detection optical system 6 leaks from the hole and is irradiated to the apparatus main body, and as a result, the substrate 7 is irradiated with unexpected stray light. is there. In order to prevent the resist on the substrate 7 from being exposed even when such stray light is irradiated, the back surface position detection optical system 6 generally uses light having a wavelength different from that of the exposure light as the position detection light. However, the focus position shifts due to chromatic aberration between the exposure light and the position detection light due to the difference in wavelength. In the example of FIG. 2B, the case where the focus position of the exposure light L EXP is lower than the focus position of the back surface position detection optical system 6 by Δ EXP is shown. In other words, if the sum of the thickness t s of the substrate 7 and the amount of deviation Δ EXP of the focus position of the exposure light L EXP and the image floating amount u expressed by the above equation (1) match within the depth of focus. The back surface position detection optical system 6 can detect the position where the projection optical system 4 projects the exposure pattern in a focused state without moving the back surface position detection optical system 6 up and down. This relationship is expressed by the following equation (2), where DOF is the depth of focus of the back surface position detection optical system 6 in the window member 10.

Figure 2010278353
Figure 2010278353

上記式(2)の関係を満足するように窓部材10を構成する、すなわち、この条件式(2)を満足する厚さtwとすることにより、投影光学系4により露光パターンが投影された位置(パターンの中心)を、裏面位置検出光学系6により検出し、撮像素子66上の座標として検出することにより、投影光学系4と裏面位置検出光学系6との相対的な位置関係を、正確に算出することができる。撮像素子66上のパターン中心の座標は前述の基準点となる。そのため、裏面位置検出光学系6を用いた位置合わせによって基板7を露光位置に設置し、この基板7に対して、投影光学系4による露光を高精度に行うことができる。窓部材10に石英(nexp=1.46674)を使った場合、裏面位置検出光学系6の開口が0.3、露光光波長が435nmのとき、焦点深度DOFは約2.4μmとなる。裏面位置検出光学系6の合焦位置のずれ10μm、基板7の厚さ0.7mmとしたとき、2.224mm<tw<2.238mmが窓部材10の厚さの最適値となる。 Constituting the window member 10 so as to satisfy the relationship of formula (2), i.e., by the thickness t w which satisfies the conditional expression (2), the exposure pattern is projected by the projection optical system 4 By detecting the position (the center of the pattern) by the back surface position detection optical system 6 and detecting it as coordinates on the image sensor 66, the relative positional relationship between the projection optical system 4 and the back surface position detection optical system 6 is It can be calculated accurately. The coordinates of the pattern center on the image sensor 66 are the aforementioned reference points. For this reason, the substrate 7 can be placed at the exposure position by alignment using the back surface position detection optical system 6, and the projection optical system 4 can expose the substrate 7 with high accuracy. When quartz (n exp = 1.46674) is used for the window member 10, the depth of focus DOF is about 2.4 μm when the aperture of the back surface position detection optical system 6 is 0.3 and the exposure light wavelength is 435 nm. When the deviation of the focusing position of the back surface position detection optical system 6 is 10 μm and the thickness of the substrate 7 is 0.7 mm, 2.224 mm <t w <2.238 mm is the optimum value of the thickness of the window member 10.

ところで、以上の説明では、窓部材10が平行平板である場合について説明したが、現実に使用される窓部材10では、表面と裏面との平行が完全でない場合や、取り付けが不完全で表面と裏面とが、投影光学系4及び裏面位置検出光学系6の光軸に対して垂直でない場合がある。このような場合の位置合わせ処理について、図3及び図4を用いて、以下に説明する。   By the way, in the above description, although the case where the window member 10 was a parallel plate was demonstrated, in the actually used window member 10, when the parallel of the surface and a back surface is not perfect, or attachment is incomplete and the surface The back surface may not be perpendicular to the optical axes of the projection optical system 4 and the back surface position detection optical system 6. The alignment process in such a case will be described below with reference to FIGS.

まず、図3に示すように、窓部材10の表面10aと裏面10bとの平行が完全ではなく、例えば、裏面10bが光軸に対して角度εだけ傾斜していた場合、窓部材10の表面10aの位置は、近似的に以下に示す式(3)で算出されるEεだけシフト(横ズレ)して観察される。 First, as shown in FIG. 3, when the front surface 10a and the back surface 10b of the window member 10 are not completely parallel, for example, when the back surface 10b is inclined by an angle ε with respect to the optical axis, The position of 10a is observed by shifting (lateral deviation) approximately by calculated by the following equation (3).

Figure 2010278353
Figure 2010278353

また、図4に示すように、窓部材10の取り付けが不完全で、表面10aと裏面10bとが光軸に対して角度δだけ傾斜していた場合には、窓部材10の表面10aの位置は、近似的に以下に示す式(4)で算出されるEδだけシフト(横ズレ)して観察される。 In addition, as shown in FIG. 4, when the window member 10 is not completely installed and the front surface 10a and the back surface 10b are inclined with respect to the optical axis by an angle δ, the position of the front surface 10a of the window member 10 is determined. Is observed with a shift (lateral shift) of E δ approximately calculated by the following equation (4).

Figure 2010278353
Figure 2010278353

このような表面9aの位置の横ズレは、窓部材10本体及び取り付けが完全でないことに起因するものであるので、装置内で変化することはほとんど考えられない。そのため、投影位置と検出位置との相対的な位置合わせを行う際のオフセットとして補正してやればよい。そのためには、図5に示すような、校正用標板12を用いることができる。この校正用標板12は、ホルダ8に載置して用いるものであり、ホルダ8への接触面は、窓部材10側がこの窓部材10の突出高さ分だけ切り取られて、段差が設けられている。また、校正用標板12には、校正用マーク12a,12bが形成されているが、これらは、校正用標板12をホルダ8に載置した際に、基板7の裏面7bを観察するための貫通孔8aから校正用マーク12aが観察でき、窓部材10から校正用マーク12bが観察できるように配置されている。なお、校正用標板12に設けられた段差、すなわち、校正用マーク12a,12b間の段差は、厚さtwの窓部材10がホルダ8の表面から浮き上がった浮き上がり量ωにほぼ一致するように形成されている。この校正用マーク12a,12b間の水平方向の相対位置は、干渉計などで厳密に測定されている。 Such a lateral shift of the position of the surface 9a is caused by the fact that the main body of the window member 10 and the mounting thereof are not complete, and therefore it is hardly considered that it changes in the apparatus. Therefore, it may be corrected as an offset when performing relative alignment between the projection position and the detection position. For this purpose, a calibration label 12 as shown in FIG. 5 can be used. The calibration label 12 is used by being placed on the holder 8, and the contact surface to the holder 8 is cut off on the window member 10 side by the projection height of the window member 10, thereby providing a step. ing. Further, the calibration marks 12 are formed with calibration marks 12 a and 12 b for observing the back surface 7 b of the substrate 7 when the calibration marks 12 are placed on the holder 8. The calibration mark 12a can be observed from the through hole 8a, and the calibration mark 12b can be observed from the window member 10. Incidentally, a step provided on the calibration target plate 12, i.e., the calibration mark 12a, step between 12b is such that the window member 10 in the thickness t w is approximately equal to ω amount lifting the lifted from the surface of the holder 8 Is formed. The relative position in the horizontal direction between the calibration marks 12a and 12b is strictly measured with an interferometer or the like.

上述のような構成の校正用標板12をホルダ8に載置し、裏面位置検出光学系6により貫通孔8aを介して校正用マーク12aのマーク位置を観察し、ステージ9を適宜移動して校正用マーク12aのマーク位置を撮像素子66の画面中心(基準点)に合わせ、この状態のステージ9の示す座標を記憶する。次に、裏面位置検出光学系6により窓部材10を介して校正用マーク12bのマーク位置を観察し、ステージ9を適宜移動して校正用マーク12bのマーク位置を撮像素子66の画面中心に合わせ、この状態のステージ9の示す座標を記憶する。   The calibration label 12 having the above-described configuration is placed on the holder 8, the mark position of the calibration mark 12a is observed through the through-hole 8a by the back surface position detection optical system 6, and the stage 9 is moved appropriately. The mark position of the calibration mark 12a is aligned with the screen center (reference point) of the image sensor 66, and the coordinates indicated by the stage 9 in this state are stored. Next, the mark position of the calibration mark 12 b is observed by the back surface position detection optical system 6 through the window member 10, and the stage 9 is appropriately moved so that the mark position of the calibration mark 12 b is aligned with the screen center of the image sensor 66. The coordinates indicated by the stage 9 in this state are stored.

このようにして得られた、校正用マーク12aを画像中心に合わせた状態のステージ9の示す座標と、校正用マーク12bを画像中心に合わせた状態のステージ9の示す座標との差を、前述のように予め厳密に測定した校正用マーク12a,12b間の相対位置と比較し、その差分を求める。この差分を位置合わせの際のオフセットとし、露光に際してステージ9移動を行う場合に補正してやることで、位置合わせを正確に行うことができる。   The difference between the coordinates indicated by the stage 9 in the state where the calibration mark 12a is aligned with the image center and the coordinates indicated by the stage 9 when the calibration mark 12b is aligned with the image center is obtained as described above. Compared with the relative position between the calibration marks 12a and 12b measured strictly in advance, the difference is obtained. By using this difference as an offset at the time of alignment and correcting when moving the stage 9 at the time of exposure, alignment can be performed accurately.

以上のように、本実施形態の露光装置1によれば、裏面位置検出光学系6の一部または全体を移動させることなく、投影光学系4が露光パターンを投影する位置と、裏面位置検出光学系6が、投影された露光パターンを検出する位置とを一致させることができるので、安定した位置合わせが可能となる。   As described above, according to the exposure apparatus 1 of the present embodiment, the position where the projection optical system 4 projects the exposure pattern and the back surface position detection optics without moving a part or the whole of the back surface position detection optical system 6. Since the system 6 can match the position where the projected exposure pattern is detected, stable alignment is possible.

なお、以上の説明では、投影光学系4と裏面位置検出光学系6との位置あわせ機構を、DMD素子3を用いたいわゆるマスクレス露光装置1に適用した例を説明したが、レチクルを用いた露光装置に適用することもできる。この場合、レチクルアライメントマークを裏面位置検出光学系6で検出することにより、露光パターンの投影される位置の座標を、ステージ9の座標として読み込むことができ、前述の位置合わせ処理と同様な手順で、基板7の裏面7bに形成された位置合わせマークに基づいて投影位置と検出位置との位置決めを行って、露光処理をすることが可能である。更に、この位置あわせ機構は、三次元実装の位置調整(アライメント)に応用することも可能である。   In the above description, the example in which the alignment mechanism of the projection optical system 4 and the back surface position detection optical system 6 is applied to the so-called maskless exposure apparatus 1 using the DMD element 3 has been described. However, a reticle is used. It can also be applied to an exposure apparatus. In this case, by detecting the reticle alignment mark with the back surface position detection optical system 6, the coordinates of the position where the exposure pattern is projected can be read as the coordinates of the stage 9, and the same procedure as the above-described alignment process is performed. The exposure process can be performed by positioning the projection position and the detection position based on the alignment mark formed on the back surface 7b of the substrate 7. Furthermore, this alignment mechanism can be applied to position adjustment (alignment) in three-dimensional mounting.

1 露光装置 4 投影光学系 6 裏面位置検出光学系
7 基板 7a 表面 7b 裏面
8 ホルダ 8a,8b 貫通孔 9 ステージ
10 窓部材 11 制御部 12 校正用標板
DESCRIPTION OF SYMBOLS 1 Exposure apparatus 4 Projection optical system 6 Back surface position detection optical system 7 Substrate 7a Front surface 7b Back surface 8 Holder 8a, 8b Through-hole 9 Stage 10 Window member 11 Control part 12 Calibration standard plate

Claims (4)

基板を載置するホルダを有するステージと、
前記基板の表面側に配置され、前記基板の前記表面にパターンを投影する投影光学系と、
前記基板の裏面側に配置され、前記基板の前記裏面に形成された位置合わせマークを検出する裏面位置検出光学系と、
前記ホルダを貫通する貫通孔に取り付けられ、光を透過する部材で形成された窓部材と、
前記投影光学系により前記窓部材の表面に形成された前記パターンの像を、前記窓部材の裏面側から前記裏面位置検出光学系で検出し、前記投影光学系により形成される前記パターンの像の位置と前記裏面位置検出光学系で検出される前記位置合わせマークの位置との相対関係を算出する制御部と、を有する露光装置。
A stage having a holder for placing a substrate;
A projection optical system disposed on the surface side of the substrate and projecting a pattern onto the surface of the substrate;
A back surface position detection optical system that is disposed on the back surface side of the substrate and detects an alignment mark formed on the back surface of the substrate;
A window member formed of a member that is attached to a through-hole penetrating the holder and transmits light;
The image of the pattern formed on the surface of the window member by the projection optical system is detected by the back surface position detection optical system from the back surface side of the window member, and the image of the pattern formed by the projection optical system is detected. An exposure apparatus comprising: a controller that calculates a relative relationship between the position and the position of the alignment mark detected by the back surface position detection optical system.
前記窓部材は、当該窓部材の前記表面が、前記ホルダ上に載置された状態の前記基板の前記表面と略同一平面上に位置し、かつ、前記投影光学系より当該窓部材の前記表面に形成された前記パターンの像が前記裏面位置検出光学系の焦点面に略一致する厚さを有する請求項1に記載の露光装置。   The window member has the surface of the window member positioned substantially on the same plane as the surface of the substrate placed on the holder, and the surface of the window member from the projection optical system. The exposure apparatus according to claim 1, wherein an image of the pattern formed on the substrate has a thickness that substantially matches a focal plane of the back surface position detection optical system. 前記窓部材は、
前記窓部材の媒質の前記投影光学系からの光に対する屈折率をnEXPとし、前記窓部材の厚さをtwとし、前記基板の厚さをtsとし、前記投影光学系の合焦位置と前記裏面位置検出光学系の合焦位置との差をΔEXPとし、前記裏面位置検出光学系の焦点深度をDOFとしたとき、次式
Figure 2010278353
の条件を満足するよう構成された請求項2に記載の露光装置。
The window member is
The refractive index for the light from the projection optical system of a medium of the window member and n EXP, the thickness of the window member and t w, the thickness of the substrate and t s, the focal position of the projection optical system When the difference between the in-focus position of the back surface position detection optical system is Δ EXP and the depth of focus of the back surface position detection optical system is DOF,
Figure 2010278353
The exposure apparatus according to claim 2, wherein the exposure apparatus is configured to satisfy the following condition.
前記ホルダ上に載置したときに、前記ホルダの表面および前記窓部材の表面に接する面を有し、当該面の各々に校正用マークが形成された校正用標板を有し、
前記制御部は、前記ホルダ上に前記校正用標板が載置された状態で、前記裏面位置検出光学系により前記校正用マークの各々の位置を検出して、前記投影光学系により形成される前記パターンの像の位置と前記裏面位置検出光学系で検出される前記位置合わせマークの位置との相対関係のオフセットを算出する請求項1〜3いずれか一項に記載の露光装置。
When mounted on the holder, it has a surface that contacts the surface of the holder and the surface of the window member, and has a calibration label in which a calibration mark is formed on each of the surfaces,
The control unit is formed by the projection optical system by detecting each position of the calibration mark by the back surface position detection optical system in a state where the calibration plate is placed on the holder. The exposure apparatus according to claim 1, wherein an offset of a relative relationship between the position of the pattern image and the position of the alignment mark detected by the back surface position detection optical system is calculated.
JP2009131169A 2009-05-29 2009-05-29 Aligner Pending JP2010278353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131169A JP2010278353A (en) 2009-05-29 2009-05-29 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131169A JP2010278353A (en) 2009-05-29 2009-05-29 Aligner

Publications (1)

Publication Number Publication Date
JP2010278353A true JP2010278353A (en) 2010-12-09

Family

ID=43425017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131169A Pending JP2010278353A (en) 2009-05-29 2009-05-29 Aligner

Country Status (1)

Country Link
JP (1) JP2010278353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521116A (en) * 2011-06-27 2014-08-25 ケーエルエー−テンカー コーポレイション Lighting control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014521116A (en) * 2011-06-27 2014-08-25 ケーエルエー−テンカー コーポレイション Lighting control

Similar Documents

Publication Publication Date Title
TW391035B (en) Proximity exposure device provided with gap setting mechanism
US9915878B2 (en) Exposure apparatus, exposure method, and device manufacturing method
TW200947160A (en) Position detection method, exposure apparatus, and device manufacturing method
TWI693667B (en) Control method of movable body, exposure method, device manufacturing method, movable body apparatus and exposure apparatus
JP2012195380A (en) Mark detection method and device, and exposure method and device
TWI405043B (en) Aberration measurement method, exposure apparatus, and device manufacturing method
US20140022377A1 (en) Mark detection method, exposure method and exposure apparatus, and device manufacturing method
JP2009031169A (en) Position detection apparatus, exposure apparatus, and manufacturing method for device
JP2011082468A (en) Exposure device
JP2008042036A (en) Exposure apparatus, and device manufacturing method
JP2010278353A (en) Aligner
KR100391345B1 (en) Exposure method and stepper
JP2006261419A (en) Projection aligner and process for fabricating device
JP2006030021A (en) Position detection apparatus and position detection method
JP3313932B2 (en) Projection exposure equipment
JP2006234647A (en) Method and device for position measurement, exposure method and exposure device
JP2006234769A (en) Position measuring method and position measuring apparatus
JP2004281904A (en) Position measuring apparatus, exposure apparatus, and manufacturing method of device
JP6226525B2 (en) Exposure apparatus, exposure method, and device manufacturing method using them
JPH113853A (en) Method and device for detecting position
JP2011114209A (en) Projection exposure device
JP2000306816A (en) Projection aligner, focus detecting apparatus, and manufacture of device
JP2005129557A (en) Aberration measurement device, aligner, aberration measurement method, exposure method, and device manufacturing method
JP3793106B2 (en) Rectil
JP2011129653A (en) Measurement method and exposure apparatus