JP2010278076A - Device spraying high temperature gas on low temperature substrate in two steps - Google Patents

Device spraying high temperature gas on low temperature substrate in two steps Download PDF

Info

Publication number
JP2010278076A
JP2010278076A JP2009126834A JP2009126834A JP2010278076A JP 2010278076 A JP2010278076 A JP 2010278076A JP 2009126834 A JP2009126834 A JP 2009126834A JP 2009126834 A JP2009126834 A JP 2009126834A JP 2010278076 A JP2010278076 A JP 2010278076A
Authority
JP
Japan
Prior art keywords
substrate
gas
film
spraying
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009126834A
Other languages
Japanese (ja)
Inventor
Yuji Furumura
雄二 古村
Naomi Mura
直美 村
Shinji Nishihara
晋治 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philtech Inc
Original Assignee
Philtech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philtech Inc filed Critical Philtech Inc
Priority to JP2009126834A priority Critical patent/JP2010278076A/en
Publication of JP2010278076A publication Critical patent/JP2010278076A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a substrate from being deformed or cracked in the film due to stress of a burnt film, when the substrate is placed on a support stand, and the film on the substrate is burnt so as to form the film by not heating the substrate from the support stand but spraying gas of a high temperature from the substrate. <P>SOLUTION: Burning heat treatment for spraying gas of the high temperature with a fixed heat amount from the support stand of the substrate and for spraying gas with not less than the fixed heat amount is performed. A difference of the heat amount is given by a gas temperature, a gas flow rate, moving speed of the substrate, and a difference between the substrate, and a gas spraying device. Heat burning treatment can also be performed on a bendable sheet-like resin substrate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

一般に、基板に膜を形成して作製するデバイスの中には、基板を低温に保持したまま加工したいものがある。例えば、ガラスや樹脂、金属シートの基板や既に所要の膜を作製した後のシリコン基板を用いるデバイスがある。ガラス基板上に成長させた薄膜を用いるデバイスとしては、液晶表示デバイス(LCD)や有機EL(エレクトロミネセンス)表示デバイス、太陽電池等のいわゆる大面積電子デバイスがある。安価で取り扱いが容易、ロール巻き取りが可能な基板の上のデバイスとしては樹脂や金属シートの上に作製した太陽電池がある。最近では曲げ伸ばしが可能な基板の上の表示デバイスがある。利用する薄膜はいずれのデバイスにおいてもアモルファス膜や結晶膜、絶縁膜、導電膜、保護膜として用いられる。   Generally, among devices manufactured by forming a film on a substrate, there are devices that are desired to be processed while the substrate is kept at a low temperature. For example, there is a device using a glass substrate, a resin, a metal sheet substrate, or a silicon substrate after a required film is already formed. As a device using a thin film grown on a glass substrate, there are so-called large area electronic devices such as a liquid crystal display device (LCD), an organic electroluminescence (EL) display device, a solar cell and the like. As a device on a substrate that is inexpensive, easy to handle, and can be wound up, there is a solar cell fabricated on a resin or metal sheet. Recently, there are display devices on a substrate that can be bent and stretched. The thin film used is used as an amorphous film, a crystal film, an insulating film, a conductive film, or a protective film in any device.

低温に保持した基板上に形成させる膜は、例えばプラズマ励起のアモルファス薄膜がある。この場合は非平衡成長(可逆反応でない成長)なので、気相の活性種同士が核成長を起こして基板に付着して成長が進行するため高温熱CVD(化学気相成長)膜よりも膜組成や構造は複雑で不安定である。このために、膜は水素や酸素などの希望しない不純物を含み、吸湿もしやすく緻密性で劣る。これを改良するために、プラズマのビーム(先行特許文献1参照)やレーザー光でアニールする技術がある。基板を低温に保持しながら、組成や構造劣化の無い膜を形成する技術がデバイス製造に求められる。
緻密な膜を得る既存の製造方法には熱励起の化学気相成長(熱CVD)がある。また、熱CVDで成長させるのでなく、材料を溶かした溶液状のものをスピンオン式や塗布、スプレーなどの方法で基板に成膜して、それを300〜600℃で加熱して成膜する材料がある。絶縁膜としては、例えばスピンオンガラスや熱硬化樹脂などがある。導電膜としては、例えば不純物Alの入ったZnO膜や銅(Cu)膜、銀(Ag)膜がある。結晶膜としては、例えば化合物半導体であるCIGS(Cu,In、Ga,Seの化合物)がある。
An example of a film formed on a substrate held at a low temperature is a plasma-excited amorphous thin film. In this case, since it is non-equilibrium growth (growth that is not reversible reaction), the active composition in the vapor phase causes nucleation and adheres to the substrate, so that the growth proceeds. And the structure is complex and unstable. For this reason, the film contains undesired impurities such as hydrogen and oxygen, easily absorbs moisture, and is inferior in denseness. In order to improve this, there is a technique of annealing with a plasma beam (see Prior Patent Document 1) or laser light. A technique for forming a film having no composition or structural deterioration while maintaining the substrate at a low temperature is required for device production.
An existing manufacturing method for obtaining a dense film includes thermally excited chemical vapor deposition (thermal CVD). In addition, the material is not grown by thermal CVD, but is formed by forming a solution in which the material is dissolved on a substrate by a spin-on method, coating, spraying, or the like, and heating it at 300 to 600 ° C. There is. Examples of the insulating film include spin-on glass and thermosetting resin. Examples of the conductive film include a ZnO film containing impurities Al, a copper (Cu) film, and a silver (Ag) film. As the crystal film, for example, there is CIGS (compound of Cu, In, Ga, Se) which is a compound semiconductor.

本発明は例えば大面積電子デバイスの作製に好適な膜形成の改良に係り、例えば高温にできない基板、例えばガラス基板上や既に配線工程を終了させた基板、または樹脂や金属シートのように屈曲できる基板上に、この基板を支持する支持台の温度よりも高い温度を必要とする高温でしか形成できない膜、例えばシリコン膜やシリコン酸化膜、シリコン窒化膜、導電膜、硬質有機膜または3元以上の化合物膜等の膜を形成する装置に関する。   The present invention relates to an improvement in film formation suitable for manufacturing a large-area electronic device, for example, and can be bent like a substrate that cannot be heated to a high temperature, for example, a glass substrate, a substrate that has already completed a wiring process, or a resin or metal sheet A film that can be formed on a substrate only at a high temperature that requires a temperature higher than the temperature of the support that supports the substrate, such as a silicon film, a silicon oxide film, a silicon nitride film, a conductive film, a hard organic film, or a ternary or more The present invention relates to an apparatus for forming a film such as a compound film.

基板に膜を成長させる化学気相成長(CVD)では基板を加熱する。加熱された基板の上で堆積性のガスが熱分解を起こし、生成された分解活性種は基板の上に拡散して横方向拡散を伴いながら表面に膜を成長させた。しかし、基板が樹脂などであるとき、基板を高温加熱できない。塗布で膜形成する場合も、基板を含めた膜を電気炉などで加熱焼成はできない。   In chemical vapor deposition (CVD) in which a film is grown on a substrate, the substrate is heated. The deposition gas caused thermal decomposition on the heated substrate, and the generated decomposition active species diffused on the substrate to grow a film on the surface with lateral diffusion. However, when the substrate is a resin or the like, the substrate cannot be heated at a high temperature. Even when a film is formed by coating, the film including the substrate cannot be heated and fired in an electric furnace or the like.

基板を低温に保持したまま膜を成長させるためには、基板を加熱せずに基板より高温で活性種を発生させて、活性種を含む高温ガスを支持台に置かれた基板の上に拡散させ、基板の上に膜を成長させる。高温にできない樹脂などの基板に塗布した材料を焼成するには支持台に置かれた基板に高温のガスを吹き付けることにより、表面の塗布膜を加熱して余分な溶剤などを放出させ構造を緻密にし安定化させる。これを焼成という。このときの課題を図1に示す。ガス加熱器3で生成させた高温のガスビーム2を基板表面1aに吹き付けたとき、基板1の温度は支持台4との基板裏面1bとの密着度合いにより違い、基板の裏面1bにあるゴミ5や空気などに影響を受ける課題があった。真空吸着の場合、吸引孔が空隙の役割をするので熱の不良導体となる。即ち、密着度に依存した熱伝導度の分布が転写する。この熱転写はゴミだけでなくまた静電チャックのとき、表面の凹凸形状の影響としても現れる。例えば、空気による隙間が支持台と基板にあるとき、ポリカーボネイトの0.1mm厚みの基板は1mmX180mmの断面形状の500℃、20標準リットル/分(SLM)の窒素ガスビーム2の吹き付けにより空気の隙間のある部分で変形した。このように樹脂のような熱可塑性の材料のとき、熱転写は永久変形として残るので、平坦度を維持するためには課題となる。高温ガスを吹き付けて膜を形成するとき、支持台4と均一に再現性よく基板1がいたるところで密着する構造が必要である。この課題を解決するために、粘性と接着力、耐熱性がある粘性材料10を基板1と支持台4の間に挿入する。基板1が平面である場合を示したが、基板は屈曲するシート状の基板であってもよい。基板裏面1bからの熱が粘性材10を通して支持台4に移動する。粘性材料10は例えば油や耐熱グリースである。粘性材料10の挿入により、ゴミ5が作る空隙や表面形状のうねりが作る空隙を粘性材料10で埋める。このことにより熱伝導度の部分的不均一が解消される。静電チャックであっても粘性材料10の挿入により表面形状の熱転写は防止できる。基板が屈曲可能であると、ロールで供給してロールに回収することが可能となり低温に基板を維持した膜付きシートの連続生産が可能となる。基板が樹脂フィルムや金属シートのような屈曲可能であるとき、基板1の裏面に粘性材10を付着させること、またその付着した粘性材を回収して再度使用する機構を備えさせることが容易になる。   In order to grow a film while keeping the substrate at a low temperature, active species are generated at a temperature higher than that of the substrate without heating the substrate, and high temperature gas containing the active species is diffused on the substrate placed on the support base. And a film is grown on the substrate. In order to bake the material applied to the substrate such as resin that cannot be heated at high temperature, the surface coating film is heated to release excess solvent by blowing high temperature gas on the substrate placed on the support base, and the structure is dense To stabilize. This is called firing. The problem at this time is shown in FIG. When the high-temperature gas beam 2 generated by the gas heater 3 is sprayed on the substrate surface 1a, the temperature of the substrate 1 varies depending on the degree of adhesion between the support 4 and the substrate back surface 1b, and the dust 5 on the substrate back surface 1b There was a problem affected by air. In the case of vacuum adsorption, the suction hole serves as a gap, and thus becomes a defective conductor of heat. That is, the thermal conductivity distribution depending on the degree of adhesion is transferred. This thermal transfer appears not only as dust, but also as an influence of the surface irregularities when an electrostatic chuck is used. For example, when there is an air gap between the support and the substrate, a 0.1 mm thick polycarbonate substrate is blown with a nitrogen gas beam 2 having a cross-sectional shape of 1 mm × 180 mm at 500 ° C. and 20 standard liters per minute (SLM). Deformed in some part. Thus, in the case of a thermoplastic material such as a resin, thermal transfer remains as a permanent deformation, which is a problem in maintaining flatness. When a film is formed by spraying high-temperature gas, a structure in which the substrate 1 is in close contact with the support table 4 with good reproducibility is required. In order to solve this problem, a viscous material 10 having viscosity, adhesive strength, and heat resistance is inserted between the substrate 1 and the support 4. Although the case where the substrate 1 is a flat surface is shown, the substrate may be a sheet-like substrate that bends. The heat from the substrate back surface 1 b moves to the support base 4 through the viscous material 10. The viscous material 10 is, for example, oil or heat resistant grease. By inserting the viscous material 10, voids created by the dust 5 and voids created by the undulation of the surface shape are filled with the viscous material 10. This eliminates partial non-uniformity in thermal conductivity. Even with an electrostatic chuck, thermal transfer of the surface shape can be prevented by inserting the viscous material 10. When the substrate is bendable, it can be supplied by a roll and collected on the roll, and continuous production of a sheet with a film while keeping the substrate at a low temperature becomes possible. When the substrate is bendable, such as a resin film or a metal sheet, it is easy to attach the viscous material 10 to the back surface of the substrate 1 and to provide a mechanism for collecting and reusing the adhered viscous material. Become.

特開2006−06130号公報JP 2006-06130 A

「反応性熱CVD法による多結晶SiGe薄膜の低温成長技術の開発」東京工業大学大学院理工学研究科附属像情報工学研究施設半那研究室[平成20(2008)年6月12日検索]インターネット(URL:http://www.isl.titech.ac.jp〜hanna/cvd.html)"Development of low-temperature growth technology for polycrystalline SiGe thin film by reactive thermal CVD" Tokyo Institute of Technology Graduate School of Science and Engineering, Image Information Engineering Laboratory Hanna Laboratory [Search June 12, 2008] Internet (URL: http: //www.isl.titech.ac.jp-hanna/cvd.html)

課題は、基板の上につけた膜の膜質の改善に関する。基板より高温のガスを熱可塑性の基板に吹き付けて基板上の膜を焼成できる。このとき膜の縦横に膜収縮が起こり内部応力を生じる。この応力が基板を反らせる、またはクラックを入れる課題が生じる。また内部より先に表面が焼成されると、膜の深部からガスが抜けること(図1ではガス放出として示した)が困難となり、膜の深さ方向の焼成が不十分になるという課題がある。   The problem relates to the improvement of the film quality of the film deposited on the substrate. A film on the substrate can be baked by blowing a gas having a temperature higher than that of the substrate onto the thermoplastic substrate. At this time, film contraction occurs in the vertical and horizontal directions of the film, generating internal stress. This stress causes a problem of warping the substrate or causing cracks. Further, if the surface is baked before the inside, it is difficult for gas to escape from the deep part of the film (shown as outgassing in FIG. 1), and there is a problem that baking in the depth direction of the film becomes insufficient. .

課題を解決するには一回目のガスの吹き付けでは、膜を完全に焼成させないように吹き付ける熱量を一定以下にし、2回目のガスの吹き付けでは1回目を超える熱量を吹き付けて膜を焼成する。これを図2に示す構成の装置で説明する。この装置の構成では2つの吹き付けガスに対して相対的に基板を移動させる。一回目の焼成では表面はまだガスの放出を許す程度の熱量で焼成を行う。完全な焼成前なので膜の縦横の収縮割合は違う割合であることが許容される。これを緩やかな焼成と呼ぶことにする。緩やかな焼成により、膜の深部からのガス放出を可能にさせ、膜の収縮応力を膜の縦横の変形量の割合の違いで緩和させる。膜ストレスを緩和させた1回目の焼成のあと、さらに大きな熱量の高温のガス吹き付けを2回目の熱処理として行うと、膜組織の安定結合が促進される。これを焼結焼成と呼ぶことにする。高温ガス吹き付けによる熱処理量を1回目より2回目を大きくさせる方法に4通りある。一つ目は処理に用いるガスの温度を変える方法である。即ち、加熱器21の温度を加熱器22より低く設定して、吹き付けガス23の温度1を吹き付けガス24の温度2より低く設定する。2つ目はガスの流速(ガスの吹き付け断面が一定のときガス流量に相当する)を変える方法である。温度1と温度2が同じであっても、流速が早いガス吹き付けが遅い吹き付けより多量の熱を吹き付ける。運ばれる熱量の違いのほかに、基板の上に形成される熱伝導の抵抗層として作用する停滞層の厚みの違いによっても、違いが促進される。3つ目は基板を密着させた支持台とガス吹き付け装置の相対移動速度を変える方法である。この場合、異なる前記装置を用いた処理でも、同じ前記装置を用いた2回処理でも処理が可能である。図2において、温度1,2と流速1,2が同じであっても、一回目のガス吹き付けの熱処理の基板の移動速度1と2回目の移動速度2を変える。この速度の違いにより単位時間当たりに照射される熱量を変えることができる。4つ目は加熱ガスの吹き出る加熱器の出口(オリフィス)から基板までの距離(ギャップと表記した)を変える方法である。ギャップ1はギャップ2より大きい。吹き付けるガスの流量やガスの温度が同じでも、ギャップが大きくなると基板に到達するガスは周りのガスを巻き込み温度が低下する。同時にガス流れが発散して広がり流速が低下する。また基板に衝突する速度が低下すると熱伝導の抵抗層としての停滞層も厚くなる。従って、ギャップ1と2の差は基板表面に輸送する熱量の差を作り出す。前記緩やかな焼成と前記焼結焼成の処理は前記4つの方法の任意の組み合わせが可能である。   In order to solve the problem, the amount of heat to be sprayed is set below a certain level so that the film is not completely fired in the first gas spray, and the film is fired by spraying a heat amount exceeding the first time in the second gas spray. This will be described with an apparatus having the configuration shown in FIG. In the configuration of this apparatus, the substrate is moved relative to the two blowing gases. In the first firing, the surface is fired with an amount of heat that still allows the release of gas. Since the film is not completely baked, the contraction ratio of the film in the vertical and horizontal directions is allowed to be different. This is called gentle firing. The gentle firing enables gas release from the deep part of the film, and the contraction stress of the film is relieved by the difference in the amount of deformation in the vertical and horizontal directions of the film. After the first firing in which the film stress is relieved, if a high-temperature gas spray with a larger amount of heat is performed as the second heat treatment, stable bonding of the film structure is promoted. This is called sintering firing. There are four methods for increasing the amount of heat treatment by high temperature gas spraying from the first time to the second time. The first is a method of changing the temperature of the gas used for processing. That is, the temperature of the heater 21 is set lower than the heater 22, and the temperature 1 of the blowing gas 23 is set lower than the temperature 2 of the blowing gas 24. The second is a method of changing the gas flow rate (corresponding to the gas flow rate when the gas blowing section is constant). Even if the temperature 1 and the temperature 2 are the same, a gas blowing with a high flow rate blows a larger amount of heat than a slow blowing. In addition to the difference in the amount of heat that is carried, the difference is also promoted by the difference in the thickness of the stagnant layer that acts as a thermally conductive resistive layer formed on the substrate. The third is a method of changing the relative moving speed of the support base with which the substrate is closely attached and the gas spraying device. In this case, it is possible to perform processing using either a different device or two times using the same device. In FIG. 2, even if the temperatures 1 and 2 and the flow rates 1 and 2 are the same, the moving speed 1 and the second moving speed 2 of the substrate in the first gas blowing heat treatment are changed. The amount of heat irradiated per unit time can be changed by the difference in speed. The fourth is a method of changing the distance (denoted as a gap) from the outlet (orifice) of the heater from which the heated gas blows out to the substrate. The gap 1 is larger than the gap 2. Even if the flow rate of gas to be blown and the temperature of the gas are the same, as the gap increases, the gas that reaches the substrate entrains the surrounding gas and lowers the temperature. At the same time, the gas flow diverges and spreads, reducing the flow velocity. Further, when the speed of collision with the substrate decreases, the stagnant layer as the heat conductive resistance layer also becomes thick. Thus, the difference between gaps 1 and 2 creates a difference in the amount of heat transported to the substrate surface. The mild firing and the sintering firing can be performed in any combination of the four methods.

そして、請求項1に係る発明は支持台の上に置かれた基板より高温のガスをガス加熱装置から前記基板表面に吹き付ける機構を備え、当該吹き付け機構により基板の表面に膜を形成する装置であって、前記基板に一定温度の前記ガスを吹き付けた後に、当該一定温度より高い温度の前期ガスを吹き付けることを特徴とする膜形成装置である。   The invention according to claim 1 is an apparatus that includes a mechanism for spraying a gas having a temperature higher than that of a substrate placed on a support table from a gas heating device to the surface of the substrate, and forms a film on the surface of the substrate by the spraying mechanism. The film forming apparatus is characterized in that after the gas having a constant temperature is sprayed on the substrate, the preceding gas having a temperature higher than the constant temperature is sprayed.

請求項2に係わる発明は支持台の上に置かれた基板より高温のガスをガス加熱装置から前記基板表面に吹き付ける機構を備え、当該吹き付け機構により基板の表面に膜を形成する装置であって、前記基板を一定速度で移動しながら前記ガスを吹き付けた後に、当該一定速度より遅い速度で基板を移動させ前期ガスを吹き付けることを特徴とする膜形成装置である。   The invention according to claim 2 is an apparatus comprising a mechanism for spraying a gas having a temperature higher than that of a substrate placed on a support base from a gas heating device to the surface of the substrate, and forming a film on the surface of the substrate by the spraying mechanism. The film forming apparatus is characterized in that after the gas is sprayed while the substrate is moved at a constant speed, the substrate is moved at a speed slower than the constant speed and the gas is sprayed in the previous period.

請求項3に係わる発明は支持台の上に置かれた基板より高温のガスをガス加熱装置から前記基板表面に吹き付ける機構を備え、当該吹き付け機構により基板の表面に膜を形成する装置であって、一定流速の前記ガスを吹き付けた後に、当該一定流速より遅い流速の前期ガスを吹き付けることを特徴とする膜形成装置である。   According to a third aspect of the present invention, there is provided an apparatus for forming a film on the surface of a substrate by the spraying mechanism provided with a mechanism for spraying a gas having a temperature higher than that of the substrate placed on a support base from the gas heating device to the surface of the substrate. The film forming apparatus is characterized in that after the gas having a constant flow rate is blown, the gas having a flow rate slower than the constant flow rate is blown.

請求項4に係わる発明は支持台の上に置かれた基板より高温のガスをガス加熱装置から前記基板表面に吹き付ける機構を備え、当該吹き付け機構により基板の表面に膜を形成する装置であって、当該ガス加熱装置のガス出口から基板までの距離(ギャップ)を一定として前記ガスを吹き付けた後に、当該一定距離より短い距離で前期ガスを吹き付けることを特徴とする膜形成装置である。   According to a fourth aspect of the present invention, there is provided an apparatus for forming a film on the surface of a substrate by the blowing mechanism provided with a mechanism for spraying a gas having a temperature higher than that of a substrate placed on a support base from a gas heating device to the surface of the substrate. The film forming apparatus is characterized in that after the gas is sprayed at a constant distance (gap) from the gas outlet of the gas heating device to the substrate, the preceding gas is sprayed at a distance shorter than the constant distance.

請求項5に係わる発明は基板が屈曲可能なポリカーボネイトやPET(ポリエチレンテレフタレート),アクリルなどを含む樹脂や金属シートであることを特徴とする請求項1ないし4記載の装置である。   The invention according to claim 5 is the apparatus according to any one of claims 1 to 4, characterized in that the substrate is a resin or metal sheet containing polycarbonate, PET (polyethylene terephthalate), acrylic, or the like that can be bent.

請求項6に係わる発明は回転するドラムが前記支持台であることを特徴とする請求項1ないし5記載の装置である。   The invention according to claim 6 is the apparatus according to any one of claims 1 to 5, wherein a rotating drum is the support base.

請求項7に係る発明は前記ガス吹き付け機構を複数備えてあることを特徴とする請求項1ないし6記載の装置である。   A seventh aspect of the present invention is the apparatus according to any one of the first to sixth aspects, wherein a plurality of the gas blowing mechanisms are provided.

請求項8に係る発明は前記屈曲可能な樹脂や金属のシート基板がロールから供給され、ロールに巻き取られ回収されることを特徴とする請求項5と7記載の装置である。   The invention according to claim 8 is the apparatus according to claims 5 and 7, wherein the bendable resin or metal sheet substrate is supplied from a roll, wound up and collected by the roll.

請求項1ないし4に係わる発明によれば、支持台の上に置いた基板に、基板より高温のガスを2段階の異なる熱量で吹き付けて膜を熱処理するとき、先行の処理より後行の処理を高い熱量で行うことで、低温に保持した基板上に膜を安定に焼成させることができる。2段階の高温ガス熱処理により、一回の焼成では避けられなかった膜のストレスを緩和できる。その結果、膜中のクラックを防止し、基板のそりを低減できる。
請求項5ないし8に係わる発明によれば屈曲可能な基板材料としてポリカーボネイトやPET(ポリエチレンテレフタレート),アクリルなどの樹脂フィルムを基板として用いることを可能にさせる。また金属シートを基板として用いてもよい。これらの屈曲可能な材料は軽くて持ち運びが容易である。このような基板に膜を成長させることができると、太陽電池や平面表示装置が軽くなり搬送や据付が簡単となり、安価に製造と供給、設置、稼動ができるので、産業価値が高い。
According to the inventions according to claims 1 to 4, when the film is heat-treated by spraying a gas at a temperature higher than that of the substrate with two different amounts of heat onto the substrate placed on the support table, the subsequent processing than the preceding processing. By performing with high heat quantity, the film can be stably fired on the substrate kept at a low temperature. The two-stage high-temperature gas heat treatment can relieve the stress of the film, which could not be avoided by one firing. As a result, cracks in the film can be prevented and the warpage of the substrate can be reduced.
According to the inventions according to claims 5 to 8, it is possible to use a resin film such as polycarbonate, PET (polyethylene terephthalate), or acrylic as a substrate which can be bent. A metal sheet may be used as the substrate. These bendable materials are light and easy to carry. If a film can be grown on such a substrate, the solar cell and the flat display device become lighter, and the transportation and installation become easier, and the production, supply, installation, and operation can be performed at a low cost. Therefore, the industrial value is high.

屈曲可能な基板であることにより支持台4として回転するドラムを選ぶことが可能である。ドラムの上に基板が密着してドラムが回転すると基板がドラムの回転により移動できる。ドラムの回転数により基板移動速度を制御できる。また平坦な基板支持台を水平方向に移動する機構より装置を小型にできる長所がある。基板と接触しない側の回転ドラムを液体の媒体に接触させるとその媒体温度で基板温度を連続制御できる。   It is possible to select a rotating drum as the support base 4 because it is a bendable substrate. When the substrate is in close contact with the drum and the drum rotates, the substrate can be moved by the rotation of the drum. The substrate moving speed can be controlled by the number of revolutions of the drum. Further, there is an advantage that the apparatus can be made smaller than the mechanism for moving the flat substrate support in the horizontal direction. When the rotating drum on the side not in contact with the substrate is brought into contact with the liquid medium, the substrate temperature can be continuously controlled by the medium temperature.

請求項7に係る発明によれば異なる温度または異なる流速、異なるギャップのガス吹き付け機構による処理を1台の装置で連続して行うことができる。平坦な基板であっても屈曲可能な基板であっても、一定速度で基板を連続移動できて、異なる2段階の焼成処理ができる長所がある。   According to the invention which concerns on Claim 7, the process by the gas spraying mechanism of different temperature or a different flow velocity and a different gap can be continuously performed by one apparatus. Whether it is a flat substrate or a bendable substrate, there is an advantage that the substrate can be continuously moved at a constant speed, and two different firing processes can be performed.

請求項8に係る発明によれば前記屈曲可能な樹脂や金属シートの基板をロールから供給し、ロールに巻き取ることを可能にする。これは膜の連続形成と高い生産性を可能にさせる。   According to the eighth aspect of the present invention, the bendable resin or metal sheet substrate can be supplied from a roll and wound on the roll. This allows for continuous film formation and high productivity.

図1は基板より高い温度のガスを吹き付ける膜形成装置の課題を表す模式図である。FIG. 1 is a schematic diagram showing a problem of a film forming apparatus that blows a gas having a temperature higher than that of a substrate. 図2は課題を解決する装置の基本構造の模式図である。先行するガス吹き付け処理熱量を後続の処理より小さくすることで、焼成膜の劣化を防止する。FIG. 2 is a schematic diagram of the basic structure of an apparatus for solving the problems. Deterioration of the fired film is prevented by making the amount of heat of the preceding gas blowing process smaller than that of the subsequent process. 図3はシート基板と回転ドラム支持台を用いるガス吹き付け装置の実施例の模式図である。屈曲基板をドラムに巻きつけ回転移動させる。FIG. 3 is a schematic view of an embodiment of a gas spraying apparatus using a sheet substrate and a rotating drum support. A bent substrate is wound around a drum and rotated. 図4はシート基板をロールから供給、ロールに回収する装置の実施例の模式図である。高温ガスの吹き付け装置を2台備えた装置である。シート基板の裏面に粘性材をスキジーを用いて一様に付着させ、高温ガス処理のあとスキジーで拭き取り、溶剤を染みこませた回転ブラシで完全に除去する。FIG. 4 is a schematic view of an embodiment of an apparatus for supplying and recovering a sheet substrate from a roll. This is an apparatus provided with two high-temperature gas spraying apparatuses. A viscous material is uniformly attached to the back surface of the sheet substrate using a squeegee, wiped with a squeegee after high-temperature gas treatment, and completely removed with a rotating brush soaked with a solvent. 図5は基板の上のアモルファス膜をプラズマで熱処理する装置の従来技術の概略図である。FIG. 5 is a schematic diagram of the prior art of an apparatus for heat-treating an amorphous film on a substrate with plasma.

以下、本発明の実施形態を添付図面に基づいて説明する。なお、これら添付図面中、同一または相当部分には同一符号を付している。
実施例1を図3に示す。回転支持台34の上に屈曲するポリカーボネイト基板31が粘性材料であるグリース30を挟んで密着させてある。回転支持台34はステンレス製である。ステッピングモーターにより制御されて回転する。回転速度は表面の移動速度で300mm/分である。この実施例では高温ガス吹き付け装置32が回転支持台の上に置かれてある。窒素ガスが導入されてガス加熱器33で加熱される。ガスは2つの通路を通り加熱されてビーム状に吹き付けるガスビーム35とガスビーム36が作り出される。ガス加熱器33はカーボン製であり、ガスと接触する表面はシリコンカーバイドでコートされている。ガス加熱器はセラミクスであっても良い。低温であれば金属であっても良い。カーボンは変形が少ないので、高温のガスを作るのに好適である。ビーム状のガスは幅1mm、奥行き180mmの断面のガス加熱器の出口(オリフィス)を出て基板31の表面に当たる。支持台は左に回転するので、右側のガスビーム35が先に吹き付ける。ガス加熱器は550℃である。窒素のガスビーム35は3SLM(標準リットル/分)であり、緩やかに基板31上のコート膜(例えば、焼成すると硬くなる塗布した有機ガラス)を焼成する。窒素のガスビーム36は15SLMであり、ポリカーボネイト基板31に高速で当たり、コート膜を焼結焼成する。OH基に相当する赤外吸収ピークが焼成処理前より減少して、焼成が進んだことが確認できた。焼成膜の硬度を鉛筆引っかき法で測ると4H〜6Hの鉛筆で傷が肉眼では認められなかった。それ以上の硬さの鉛筆では傷が認められた。
図4に第2の実施例を示す。この実施例では2つのガス吹き付け装置431と432が備えられている。吹き付け装置431と屈曲可能なポリカーボネイト基板41の距離(ギャップ)は20mmである。吹き付け装置432のそれは10mmであり、装置431のそれより大きい。図では装置の内部構造は示さないが図3と同様に2本のガスビームが吹き付ける。装置431の2本の窒素ビームは同じ流量で3SLMであり、加熱温度は350℃である。装置432の2本の窒素ビームは同じ流量で20SLMであり、加熱温度は550℃である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the accompanying drawings, the same or corresponding parts are denoted by the same reference numerals.
Example 1 is shown in FIG. A polycarbonate substrate 31 bent on the rotation support base 34 is in close contact with a grease 30 which is a viscous material. The rotation support base 34 is made of stainless steel. It is controlled by a stepping motor and rotates. The rotational speed is 300 mm / min as the moving speed of the surface. In this embodiment, a hot gas spraying device 32 is placed on a rotating support base. Nitrogen gas is introduced and heated by the gas heater 33. The gas is heated through two passages to create a gas beam 35 and a gas beam 36 that are blown into a beam. The gas heater 33 is made of carbon, and the surface in contact with the gas is coated with silicon carbide. The gas heater may be ceramics. A metal may be used at a low temperature. Since carbon is less deformed, it is suitable for producing a high-temperature gas. The beam-like gas exits from the outlet (orifice) of the gas heater having a width of 1 mm and a depth of 180 mm and strikes the surface of the substrate 31. Since the support base rotates to the left, the right gas beam 35 blows first. The gas heater is 550 ° C. The nitrogen gas beam 35 is 3 SLM (standard liters / minute), and the coating film on the substrate 31 (for example, coated organic glass that hardens when fired) is gently fired. The nitrogen gas beam 36 is 15 SLM, hits the polycarbonate substrate 31 at a high speed, and the coating film is sintered and fired. It was confirmed that the infrared absorption peak corresponding to the OH group was decreased from that before the baking treatment, and the baking was advanced. When the hardness of the fired film was measured by a pencil scratching method, scratches were not recognized with the naked eye with a pencil of 4H to 6H. Scratches were observed with pencils of higher hardness.
FIG. 4 shows a second embodiment. In this embodiment, two gas spraying devices 431 and 432 are provided. The distance (gap) between the spraying device 431 and the bendable polycarbonate substrate 41 is 20 mm. The spray device 432 is 10 mm larger than that of the device 431. Although the internal structure of the apparatus is not shown in the figure, two gas beams are sprayed as in FIG. The two nitrogen beams of the apparatus 431 are 3 SLM at the same flow rate, and the heating temperature is 350 ° C. The two nitrogen beams of the device 432 are 20 SLM at the same flow rate, and the heating temperature is 550 ° C.

焼成すると硬くなる有機ガラスの膜が塗布されたポリカーボネイトのシート基板41をシート基板ローラ42から供給する。ドラム状の回転支持台44に密着してシート基板41は巻かれる。回転支持台44の他の側は粘性材10としてグリース40が溜められた粘性材付着器45につかっている。支持台の回転によりグリース40は付着する。ゴム製のシキジー46で一定量の厚みにグリースを付着させる。シート基板を表面移動速度30cm/分の速度で回転移動させながら、350℃に加熱した窒素ガスをガス吹き付け装置431で3SLMの流量で吹き付ける。次に550℃に加熱した窒素ガスをガス吹き付け装置432で20SLMの流量で吹き付ける。吹き付けたガスは1mmX180mmの断面を持ったビーム状である。スキジー47でグリース40を回収して再び付着器45にもどす。拭き取り液48を溜めた粘性材拭き取り器49には回転拭き取りブラシ50が備えられ、基板シート41に拭き取り液48を浴びせながら回転する。拭き取り液48はグリースの場合、例えばエチルアルコールでよい。ブラシはスポンジでもよい。アルコールを乾燥させるために温風の乾燥機51で温風をかける。スキジーは1段で示したが、何段になっていても良い。粘性材拭き取り器49は複数台あってもよい。粘性材の拭き取りの終った清浄なシート基板41を回収ローラ52に巻き取る。このようにして焼結焼成の終了したコート膜のOH基に相当する赤外吸収ピークが焼成処理前より減少して、焼結焼成が進んだことが確認された。膜の硬度を鉛筆引っかき法で測ると4H〜6Hの鉛筆で傷が肉眼では認められなかった。それ以上の硬さの鉛筆では傷が認められた。   A polycarbonate sheet substrate 41 coated with an organic glass film that hardens when fired is supplied from a sheet substrate roller 42. The sheet substrate 41 is wound in close contact with the drum-shaped rotation support base 44. The other side of the rotation support base 44 is attached to a viscous material applicator 45 in which grease 40 is stored as the viscous material 10. The grease 40 adheres due to the rotation of the support base. The grease is attached to a certain amount of thickness with a rubber squeegee 46. While rotating the sheet substrate at a surface moving speed of 30 cm / min, nitrogen gas heated to 350 ° C. is blown by the gas blowing device 431 at a flow rate of 3 SLM. Next, nitrogen gas heated to 550 ° C. is blown at a flow rate of 20 SLM by a gas blowing device 432. The sprayed gas has a beam shape with a cross section of 1 mm × 180 mm. The grease 40 is collected by the squeegee 47 and returned to the applicator 45 again. The viscous material wiping device 49 storing the wiping liquid 48 is provided with a rotary wiping brush 50 and rotates while the wiping liquid 48 is bathed on the substrate sheet 41. In the case of grease, the wiping liquid 48 may be, for example, ethyl alcohol. The brush may be a sponge. In order to dry the alcohol, warm air is applied by a warm air dryer 51. Although the squeegee is shown as one stage, it may be any number of stages. There may be a plurality of viscous material wipers 49. The clean sheet substrate 41 after wiping off the viscous material is wound around the collection roller 52. In this manner, it was confirmed that the infrared absorption peak corresponding to the OH group of the coating film after the sintering and firing was reduced from that before the firing treatment, and the sintering and firing proceeded. When the hardness of the film was measured by a pencil scratching method, scratches were not recognized with the naked eye with pencils of 4H to 6H. Scratches were observed with pencils of higher hardness.

屈曲可能なシート基板として、ここではポリカーボネイト樹脂シート基板41をあげたが、アクリルやPET(ポリエチレンテレフタレート)などの樹脂フィルムを基板として用いても良い。またステンレスやアルミニュームの金属シートであっても良い。粘性材10としてグリース40をあげたが、油や水、ワックスであっても良い。またシート基板に予め付着させてあり、高温ガスを吹き付けたとき軟化または液化するフィルム材料であっても良い。
Here, the polycarbonate resin sheet substrate 41 is given as the bendable sheet substrate, but a resin film such as acrylic or PET (polyethylene terephthalate) may be used as the substrate. Further, a metal sheet of stainless steel or aluminum may be used. Although the grease 40 is given as the viscous material 10, oil, water, or wax may be used. Alternatively, it may be a film material that is preliminarily attached to the sheet substrate and softens or liquefies when high-temperature gas is sprayed.

本発明は基板よりも高い温度で膜形成する大型基板を用いる太陽電池やフラットパネル表示装置の製造を容易にさせる。 The present invention facilitates the manufacture of solar cells and flat panel display devices that use large substrates that form films at higher temperatures than the substrate.

1 基板
1a 基板表面
1b 基板裏面
2 高温ガス
3 ガス加熱器
4 支持台
5 ゴミ
10 粘性材
21 加熱器1
22 加熱器2
23 吹き付けガス1
24 吹き付けガス2
30 グリース
31 ポリカーボネイト基板
32 高温ガス吹き付け装置
33 ガス加熱器
34 回転支持台
35 ガスビーム1
36 ガスビーム2
40 グリース
41 シート基板
42 送りローラ
431 ガス吹き付け装置1
432 ガス吹き付け装置2
44 回転支持台
45 粘性材付着器
46 シキジー
47 スキジー
48 拭き取り液
49 粘性材拭き取り器
50 回転拭き取りブラシ
51 乾燥器
52 回収ローラ
DESCRIPTION OF SYMBOLS 1 Substrate 1a Substrate surface 1b Substrate back surface 2 High temperature gas 3 Gas heater 4 Support stand 5 Garbage 10 Viscous material 21 Heater 1
22 Heater 2
23 Blowing gas 1
24 Blowing gas 2
30 Grease 31 Polycarbonate substrate 32 High-temperature gas spraying device 33 Gas heater 34 Rotating support base 35 Gas beam 1
36 Gas Beam 2
40 Grease 41 Sheet substrate 42 Feed roller 431 Gas spraying device 1
432 Gas spraying device 2
44 Rotating Support Base 45 Viscous Material Adhering Device 46 Shikiji 47 Squeegee 48 Wiping Liquid 49 Viscous Material Wiping Device 50 Rotating Wiping Brush 51 Dryer 52 Recovery Roller

Claims (8)

支持台の上に置かれた基板より高温のガスをガス加熱装置から前記基板表面に吹き付ける機構を備え、当該吹き付け機構により基板の表面に膜を形成する装置であって、前記基板に一定温度の前記ガスを吹き付けた後に、当該一定温度より高い温度の前期ガスを吹き付けることを特徴とする膜形成装置。   A device for forming a film on the surface of the substrate by means of the blowing mechanism, the device being provided with a mechanism for spraying a gas having a temperature higher than that of the substrate placed on a support base onto the substrate surface from a gas heating device, A film forming apparatus characterized by spraying the gas at a temperature higher than the certain temperature after spraying the gas. 支持台の上に置かれた基板より高温のガスをガス加熱装置から前記基板表面に吹き付ける機構を備え、当該吹き付け機構により基板の表面に膜を形成する装置であって、前記基板を一定速度で移動しながら前記ガスを吹き付けた後に、当該一定速度より遅い速度で基板を移動させ前期ガスを吹き付けることを特徴とする膜形成装置。   A device comprising a mechanism for spraying a gas at a temperature higher than that of a substrate placed on a support table from a gas heating device onto the surface of the substrate, and forming a film on the surface of the substrate by the spraying mechanism, wherein the substrate is moved at a constant speed. A film forming apparatus, wherein after spraying the gas while moving, the substrate is moved at a speed slower than the constant speed to spray the gas in the previous period. 支持台の上に置かれた基板より高温のガスをガス加熱装置から前記基板表面に吹き付ける機構を備え、当該吹き付け機構により基板の表面に膜を形成する装置であって、一定流速の前記ガスを吹き付けた後に、当該一定流速より遅い流速の前期ガスを吹き付けることを特徴とする膜形成装置。   A device for forming a film on the surface of the substrate by the blowing mechanism, the device having a mechanism for spraying a gas having a temperature higher than that of the substrate placed on a support table from a gas heating device to the surface of the substrate; A film forming apparatus, wherein after spraying, a previous gas having a flow rate slower than the constant flow rate is sprayed. 支持台の上に置かれた基板より高温のガスをガス加熱装置から前記基板表面に吹き付ける機構を備え、当該吹き付け機構により基板の表面に膜を形成する装置であって、当該ガス加熱装置のガス出口から基板までの距離を一定として前記ガスを吹き付けた後に、当該一定距離より短い距離で前期ガスを吹き付けることを特徴とする膜形成装置。   A device comprising a mechanism for spraying a gas at a temperature higher than that of a substrate placed on a support base from a gas heating device onto the surface of the substrate, and forming a film on the surface of the substrate by the spraying mechanism, the gas of the gas heating device A film forming apparatus, wherein the gas is sprayed at a distance shorter than the predetermined distance after the gas is sprayed at a constant distance from the outlet to the substrate. 基板が屈曲可能なポリカーボネイトやPET(ポリエチレンテレフタレート),アクリルなどを含む樹脂や金属シートであることを特徴とする請求項1ないし4記載の装置。   5. The apparatus according to claim 1, wherein the substrate is a bendable polycarbonate, PET (polyethylene terephthalate), a resin containing acrylic, or a metal sheet. 回転するドラムが前記支持台であることを特徴とする請求項1ないし5記載の装置。   6. A device according to claim 1, wherein the rotating drum is the support base. 前記ガス吹き付け機構を複数備えてあることを特徴とする請求項1ないし6記載の装置。   7. The apparatus according to claim 1, wherein a plurality of the gas blowing mechanisms are provided. 前記屈曲可能な樹脂や金属のシート基板がロールから供給され、ロールに巻き取られ回収されることを特徴とする請求項5または7記載の装置。   The apparatus according to claim 5 or 7, wherein the bendable resin or metal sheet substrate is supplied from a roll, wound around the roll and collected.
JP2009126834A 2009-05-26 2009-05-26 Device spraying high temperature gas on low temperature substrate in two steps Pending JP2010278076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009126834A JP2010278076A (en) 2009-05-26 2009-05-26 Device spraying high temperature gas on low temperature substrate in two steps

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009126834A JP2010278076A (en) 2009-05-26 2009-05-26 Device spraying high temperature gas on low temperature substrate in two steps

Publications (1)

Publication Number Publication Date
JP2010278076A true JP2010278076A (en) 2010-12-09

Family

ID=43424802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009126834A Pending JP2010278076A (en) 2009-05-26 2009-05-26 Device spraying high temperature gas on low temperature substrate in two steps

Country Status (1)

Country Link
JP (1) JP2010278076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019185999A (en) * 2018-04-09 2019-10-24 日本磁力選鉱株式会社 Lithium ion battery heating processing device and processing method for lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019185999A (en) * 2018-04-09 2019-10-24 日本磁力選鉱株式会社 Lithium ion battery heating processing device and processing method for lithium ion battery

Similar Documents

Publication Publication Date Title
CN1123934C (en) Semiconductor mfg. tech, and tech. for mfg. semiconductor device
US7572740B2 (en) Methods for optimizing thin film formation with reactive gases
US20100190288A1 (en) Thin silicon or germanium sheets and photovolatics formed from thin sheets
US7867868B2 (en) Absorber layer candidates and techniques for application
CN104058458A (en) Method for preparing high-quality single/double-layer controllable molybdenum disulfide
CN101526300B (en) Method for removing moisture from a substrate coated with a transparent electrode
CN1930662A (en) Low temperature epitaxial growth of silicon-containing films using UV radiation
MX2007001909A (en) Atmospheric pressure chemical vapor deposition.
US9548224B2 (en) Method and apparatus to control surface texture modification of silicon wafers for photovoltaic cell devices
US20110089429A1 (en) Systems, methods and materials involving crystallization of substrates using a seed layer, as well as products produced by such processes
US20090208725A1 (en) Layer transfer for large area inorganic foils
CN101477846B (en) Transparent base with transparent conductive film , Method for producing a transparent base with transparent conductive film, Photoelectric element including same
JP6269990B2 (en) Laminate and method for producing the same
WO2007108445A1 (en) Method of forming continuous thin film and linear glass substrate with thin film
JP2010278076A (en) Device spraying high temperature gas on low temperature substrate in two steps
EA019797B1 (en) Glass coating process and apparatus
CN1153506C (en) Process of mfg. electrothermal SnO2:F film heating pipe by ultrasonic spray
JP2010265504A (en) High-temperature gas blowing device for heat-bonding substrate
JP2010280958A (en) Heat treatment device with thermal surface contact roller
JP2006351995A (en) Manufacturing method of photoelectric conversion device
JP2010001560A (en) Film deposition method and film deposition apparatus
JP2011070085A (en) Surface heating device
US9076901B2 (en) Process and apparatus for producing a glass sheet coated with a semiconductor material
CN104716231B (en) For manufacturing the process of semi-finished for thin-layer solar cell
JP2009143806A (en) Method for producing glass plate with surface irregularity