JP2010277940A - Light guide body for linear light source device - Google Patents

Light guide body for linear light source device Download PDF

Info

Publication number
JP2010277940A
JP2010277940A JP2009131661A JP2009131661A JP2010277940A JP 2010277940 A JP2010277940 A JP 2010277940A JP 2009131661 A JP2009131661 A JP 2009131661A JP 2009131661 A JP2009131661 A JP 2009131661A JP 2010277940 A JP2010277940 A JP 2010277940A
Authority
JP
Japan
Prior art keywords
light
light guide
optical axis
light source
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009131661A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Kaburagi
清幸 蕪木
Hiroshige Haneda
博成 羽田
Hiroichi Kamei
宏市 亀井
Kazuaki Yano
一晃 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2009131661A priority Critical patent/JP2010277940A/en
Publication of JP2010277940A publication Critical patent/JP2010277940A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light guide body for a linear light source device capable of stable copying, by forming the light guide body so that spread of light emitted to the outside of the light guide body from the vicinity of the light entrance plane of the light guide body where a light source such as an LED or the like is disposed becomes the same extent of spread of light emitted to the outside of the light guide body in a location away from the light entrance plane to uniform illuminance distributions of light emitted from several positions in the optical axis direction of the light guide body. <P>SOLUTION: This light guide body for the linear light source device includes an upper surface 3 formed along the optical axis of the light guide body 1 while having a cross section perpendicular to the optical axis, which is formed like an circular arc, and including a light emitting surface to emit light, a lower surface 5 disposed parallel to the upper surface 3 along the optical axis while including a reflecting surface 4 formed of recessed parts and projecting parts facing the upper surface 3, and a side surface 6 formed on the side part connecting the upper surface 3 and the lower surface 5, and an inclined surface 61 which approaches the center of the optical axis as it parts from the light source in the direction of the optical axis is provided on the side surface 6. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、線状光源装置用導光体に係わり、特に、画像読み取り装置に利用される線状光源であって、LED等の光源からの光を導光し、線状の光を出射する線状光源装置用導光体に関する。   The present invention relates to a light guide for a linear light source device, and more particularly to a linear light source used in an image reading device, which guides light from a light source such as an LED and emits linear light. The present invention relates to a light guide for a linear light source device.

近年、パーソナルファクシミリ等の画像読取装置において、LEDの出力向上により、小型で低消費電力のLEDを光源とし、特許文献1に示すように、LEDを棒状の導光体の端部に配置し、LEDからの光を導光体で導光させて原稿に照射するLED原稿照明装置が提案されている。
図8は、特許文献1の図1に記載された原稿読み取り用の線状光源装置の構成を示す図であり、同図において、101は導光体、102は光拡散部、103はLEDを備える発光体、104は光出射面である。
In recent years, in an image reading apparatus such as a personal facsimile, by improving the output of the LED, a small and low power consumption LED is used as a light source, and as shown in Patent Document 1, the LED is disposed at the end of a rod-shaped light guide, There has been proposed an LED document illumination device that irradiates a document by guiding light from an LED with a light guide.
FIG. 8 is a diagram showing the configuration of the linear light source device for reading an original document described in FIG. 1 of Patent Document 1. In FIG. 8, 101 is a light guide, 102 is a light diffusing unit, and 103 is an LED. A light emitter 104, which is a light emitting surface.

特許第2900799号Japanese Patent No. 2900799 特許第2994148号Japanese Patent No. 2994148

ところで、図8に記載の線状光源装置は、LEDから導光体101に入射され、導光体101から放射される光の軸方向に直交する面での広がりが、導光体101の軸方向の位置が発光体103から遠ざかるにつれて狭くなるという問題がある。つまり、導光体101から放射される光の軸方向における光の広がりが異なると、導光体101から放射された光を原稿に照射して、CCD等の光学読み取り素子で読み取る際、通常、CCD等の光学読み取り素子は読み取り幅が狭いため、CCDの読み取り位置が少しでもずれてしまうと、原稿面から反射して、CCDに入射する光の強度が導光体101の軸方向の位置が異なることの影響を受けてしまう。   By the way, the linear light source device shown in FIG. 8 is incident on the light guide 101 from the LED and spreads in a plane orthogonal to the axial direction of the light emitted from the light guide 101. There is a problem that the position in the direction becomes narrower as the distance from the light emitter 103 increases. That is, when the light spread in the axial direction of the light emitted from the light guide 101 is different, when the light emitted from the light guide 101 is irradiated on the document and read by an optical reading element such as a CCD, Since an optical reading element such as a CCD has a narrow reading width, if the reading position of the CCD is slightly deviated, the intensity of light reflected from the document surface and incident on the CCD is determined by the position of the light guide 101 in the axial direction. Be influenced by different things.

この問題点を図9〜図12を用いて詳述する。図9は、従来技術に係る線状光源装置201の円柱状の導光体202の長手方向に沿った断面図である。
同図に示すように、この線状光源装置201は、円柱状の導光体202と、導光体202の長手方向における一端面204に対向させたLED等の光源203と、導光体202の長手方向の他端面205とにより構成される。導光体202には、その長手方向に沿って伸びる外面に凹部と凸部からなる反射溝206が設けられている。反射溝206は切り込み方向が導光体202の光軸方向と直交するように構成される。光源203を出射した光Sは、導光体202の一端面204から入射され、導光体202の内部に取り込まれる。導光体202に取り込まれた光Sは、導光体202の内部で反射を繰り返し、反射溝206の傾斜した面で反射され導光体202の反射溝206に対向する光出射面207から出射する。このように、光出射面207からは、導光体202の長手方向に沿って線状の光Sが出射される。
This problem will be described in detail with reference to FIGS. FIG. 9 is a cross-sectional view along the longitudinal direction of the cylindrical light guide 202 of the linear light source device 201 according to the prior art.
As shown in the figure, the linear light source device 201 includes a cylindrical light guide 202, a light source 203 such as an LED facing the one end surface 204 in the longitudinal direction of the light guide 202, and a light guide 202. And the other end face 205 in the longitudinal direction. The light guide 202 is provided with a reflection groove 206 composed of a concave portion and a convex portion on an outer surface extending along the longitudinal direction. The reflection groove 206 is configured such that the cutting direction is orthogonal to the optical axis direction of the light guide 202. The light S emitted from the light source 203 enters from the one end surface 204 of the light guide 202 and is taken into the light guide 202. The light S taken into the light guide 202 is repeatedly reflected inside the light guide 202, reflected by the inclined surface of the reflection groove 206, and emitted from the light emission surface 207 facing the reflection groove 206 of the light guide 202. To do. As described above, the linear light S is emitted from the light emitting surface 207 along the longitudinal direction of the light guide 202.

光出射面207から出射した線状の光Sは、画像読取装置の用途においては、例えば、CCD等の電子受光素子で受光される。ところが、光出射面207から出射した線状の光Sは、導光体202の光軸方向の各位置で光軸に垂直方向の照度分布が変化する。特許文献2の段落0004にも記載されているように、電子受光素子の読取位置は、導光体202の軸方向に対して垂直方向に向かってずれることがあるため、この読取位置のずれにより照度分布の変化の影響を受けて、電子受光素子の受光量に影響を与える問題がある。   In the application of the image reading apparatus, the linear light S emitted from the light emitting surface 207 is received by an electronic light receiving element such as a CCD, for example. However, the illuminance distribution of the linear light S emitted from the light emitting surface 207 changes in the direction perpendicular to the optical axis at each position in the optical axis direction of the light guide 202. As described in paragraph 0004 of Patent Document 2, the reading position of the electron light receiving element may be shifted in the direction perpendicular to the axial direction of the light guide 202. There is a problem in that the amount of light received by the electronic light receiving element is affected by the change in the illuminance distribution.

この点について、図10及び図11を用いて詳述する。図10は、図9に示した線状光源装置201の光出射面207側から見た上面図、図11(a)、(b)は、それぞれ図10に示した線状光源装置201の軸方向に対して直交する面のA−A断面図及びB−B断面図である。
図10に示すように、導光体202の光出射面207から出射される光Sは、一端面204から取り込まれた光Sが、導光体202の内部で導光され、導光体202の一端面204から他端面205に伸びる線状光として出射される。このとき、導光体202に取り込まれた光Sは、導光体202の一端側204において、導光体202の軸方向に対して角度成分の大きい光S1を有しており、この光S1が反射溝206で反射されると、光出射面207からは、図11(a)に示すような広がりを持った光S1として出射される。ところが、取り込まれた光Sの中で、導光体202の軸方向に対して角度成分の大きい光S1の多くは、導光体202の一端面204から中央部の間で光出射面207から出射されてしまう。このため、導光体202の他端面205側にたどり着く光Sは、導光体202の軸方向に対して角度成分の小さい光S2ばかりになってしまう。そのため、導光体202の他端面205側の光出射面207から出射される光S2は、図11(b)に示すように、導光体202の一端面204側から出射される光S1よりも広がりが小さな光となってしまう。
This point will be described in detail with reference to FIGS. 10 is a top view of the linear light source device 201 shown in FIG. 9 as viewed from the light emitting surface 207 side, and FIGS. 11A and 11B are axes of the linear light source device 201 shown in FIG. It is AA sectional drawing and BB sectional drawing of the surface orthogonal to a direction.
As shown in FIG. 10, the light S emitted from the light emission surface 207 of the light guide 202 is guided by the light S taken from the one end surface 204 inside the light guide 202. Are emitted as linear light extending from one end surface 204 to the other end surface 205. At this time, the light S taken into the light guide 202 has light S1 having a large angular component with respect to the axial direction of the light guide 202 on one end side 204 of the light guide 202, and this light S1. Is reflected by the reflection groove 206, it is emitted from the light emitting surface 207 as light S1 having a spread as shown in FIG. However, in the captured light S, most of the light S1 having a large angle component with respect to the axial direction of the light guide 202 is from the light emitting surface 207 between the one end surface 204 and the central portion of the light guide 202. It will be emitted. For this reason, the light S that reaches the other end face 205 side of the light guide 202 is only the light S <b> 2 having a small angle component with respect to the axial direction of the light guide 202. Therefore, the light S2 emitted from the light emitting surface 207 on the other end face 205 side of the light guide 202 is more than the light S1 emitted from the one end face 204 side of the light guide 202 as shown in FIG. Even the spread becomes a small light.

つまり、このような線状光源装置201においては、導光体202の長手方向の一端面204側における断面の照度分布と他端面205側における断面の照度分布とが異なる。そのため、電子受光素子(不図示)で導光体202から出射された線状光をその長手方向に沿って読み取る際、その中心軸に沿って読み取った照度分布と、電子受光素子の読取位置が中央部から横方向(Z軸方向)にずれた位置での照度分布とが、異なってしまう。   That is, in such a linear light source device 201, the illuminance distribution of the cross section on the one end face 204 side in the longitudinal direction of the light guide 202 is different from the illuminance distribution of the cross section on the other end face 205 side. Therefore, when the linear light emitted from the light guide 202 is read along the longitudinal direction by an electron light receiving element (not shown), the illuminance distribution read along the central axis and the reading position of the electron light receiving element are The illuminance distribution at a position shifted in the lateral direction (Z-axis direction) from the central portion is different.

この点について、図12を用いて詳述する。図12(a)は、紙面下側に図9の線状光源装置201を示しており、紙面上側に線状光源装置201の長手方向に沿って電子受光素子X1,X2で読み取った相対照度の測定結果を示している。図12(b)及び(c)は、図11(a)及び(b)の断面と同一であり、各断面において電子受光素子X1、X2の読取位置を示したものである。
図12(b)及び(c)に示すように、導光体202の中心軸の外方に電子受光素子X1を位置させたとき、導光体202の中心軸方向に沿って電子受光素子X1で照度を読み取ると、図12(a)の紙面上側図の実線のようになり、その相対強度は一定となる。しかし、図12(b)に示すように、導光体202の一端面204側の断面においては光の広がりが大きいのに対し、図12(c)に示すように、導光体202の他端面205側の断面においては光の広がりが小さい。このため、導光体202の中心軸の外方から横方向(図12においてX軸方向)に移動させた電子受光素子X2では、導光体202の中心軸方向に沿って照度を読み取ると、図12(a)の紙面上側図の点線のようになり、その相対強度が導光体202の一端面204側から他端面205側に向かうにつれて落ち込んでしまう。このように、従来技術に係る線状光源装置201は、電子受光素子による読み取る位置によって、導光体202の長手方向における照度分布が変化してしまう問題がある。
This point will be described in detail with reference to FIG. FIG. 12A shows the linear light source device 201 of FIG. 9 on the lower side of the paper, and the relative illuminance read by the electron light receiving elements X1 and X2 along the longitudinal direction of the linear light source device 201 on the upper side of the paper. The measurement results are shown. 12B and 12C are the same as the cross sections of FIGS. 11A and 11B, and show the reading positions of the electron light receiving elements X1 and X2 in each cross section.
As shown in FIGS. 12B and 12C, when the electron light receiving element X1 is positioned outside the central axis of the light guide 202, the electron light receiving element X1 along the central axis direction of the light guide 202. When the illuminance is read, the solid line in the upper side view of FIG. 12A is shown, and the relative intensity is constant. However, as shown in FIG. 12B, the light spread is large in the cross section on the one end face 204 side of the light guide 202, whereas the other of the light guide 202 is shown in FIG. 12C. In the cross section on the end face 205 side, the spread of light is small. For this reason, when the illuminance is read along the central axis direction of the light guide 202 in the electron light receiving element X2 moved in the lateral direction (X-axis direction in FIG. 12) from the outside of the central axis of the light guide 202, It becomes like the dotted line in the upper side view of FIG. 12A, and the relative strength of the light guide 202 decreases from the one end face 204 side toward the other end face 205 side. As described above, the linear light source device 201 according to the related art has a problem that the illuminance distribution in the longitudinal direction of the light guide 202 changes depending on the position read by the electron light receiving element.

本発明の目的は、上記の問題点に鑑み、LED等の光源が配置されている導光体の光入射面付近から導光体の外部に放射される光の広がりと、光入射面から離れた位置における導光体の外部に放射される光の広がりとを同程度となるように導光体を形成することによって、導光体の光軸方向の各位置から出射される光の照度分布を均一化し、安定した複写が可能な線状光源装置用導光体を提供することにある。   In view of the above problems, the object of the present invention is to spread the light emitted from the vicinity of the light incident surface of the light guide where a light source such as an LED is disposed to the outside of the light guide and away from the light incident surface. Illuminance distribution of light emitted from each position in the optical axis direction of the light guide by forming the light guide so that the spread of light radiated to the outside of the light guide at the same position is approximately the same It is an object of the present invention to provide a light guide for a linear light source device that can be made uniform and can be stably copied.

上記の課題を解決するために、請求項1に記載の発明は、導光体の光軸に沿って形成され、前記光軸に直交する断面形状が円弧状に形成され、光を出射する光出射面を含む上面と、該上面に対して光軸に沿って平行に配置され、前記上面に対向する凹部と凸部からなる反射面を含む下面と、前記上面と前記下面とをつなぐ側部に形成された側面とからなり、前記側面には、前記光軸方向において、光源から離れるに従って前記光軸中心に近づく傾斜面を有することを特徴とする線状光源装置用導光体である。
請求項2に記載の発明は、請求項1において、前記側面には、前記傾斜面が、前記導光体の光軸方向に沿って複数設けられていることを特徴とする線状光源装置用導光体である。
請求項3に記載の発明は、請求項1又は請求項2において、前記傾斜面は、前記導光体の光軸方向に直交する断面の形状が直線状であることを特徴とする線状光源装置用導光体である。
In order to solve the above-described problems, the invention according to claim 1 is a light that is formed along the optical axis of the light guide, the cross-sectional shape orthogonal to the optical axis is formed in an arc shape, and emits light. An upper surface including an emission surface, a lower surface including a reflecting surface composed of a concave portion and a convex portion that are arranged in parallel to the upper surface along the optical axis, and a side portion that connects the upper surface and the lower surface The light guide for a linear light source device is characterized in that the side surface has an inclined surface that approaches the optical axis center as the distance from the light source increases in the optical axis direction.
The invention according to claim 2 is the linear light source device according to claim 1, wherein a plurality of the inclined surfaces are provided on the side surface along the optical axis direction of the light guide. It is a light guide.
A third aspect of the present invention is the linear light source according to the first or second aspect, wherein the inclined surface has a linear cross-sectional shape orthogonal to the optical axis direction of the light guide. It is a light guide for apparatuses.

本発明によれば、導光体の軸方向に沿って形成された傾斜面が、導光体の端部に配置された光源から離れるに従って光軸中心軸に近づくように形成されているので、光軸に直交する断面方向における放射される光の広がり角を光軸方向全体に亘ってほぼ一定に制御することができる。その結果、導光体の軸方向の各位置から出射される光の照度分布を均一化することができ、安定した複写が可能な線状光源装置用導光体を提供することができる。   According to the present invention, the inclined surface formed along the axial direction of the light guide is formed so as to approach the optical axis central axis as it moves away from the light source disposed at the end of the light guide. The spread angle of the emitted light in the cross-sectional direction orthogonal to the optical axis can be controlled to be almost constant over the entire optical axis direction. As a result, the illuminance distribution of the light emitted from each position in the axial direction of the light guide can be made uniform, and a light guide for a linear light source device capable of stable copying can be provided.

第1の実施形態に係る線状光源装置用導光体の構成を示す図である。It is a figure which shows the structure of the light guide for linear light source devices which concerns on 1st Embodiment. 第1の実施形態に係る線状光源装置用導光体における短軸照射分布を示す図である。It is a figure which shows the short-axis irradiation distribution in the light guide for linear light source devices which concerns on 1st Embodiment. 第2の実施形態に係る線状光源装置用導光体の構成を示す図である。It is a figure which shows the structure of the light guide for linear light source devices which concerns on 2nd Embodiment. 第2の実施形態に係る線状光源装置用導光体における短軸照射分布を示す図である。It is a figure which shows the short-axis irradiation distribution in the light guide for linear light source devices which concerns on 2nd Embodiment. 第3及び第4の実施形態に係る線状光源装置用導光体の構成を示す図である。It is a figure which shows the structure of the light guide for linear light source devices which concerns on 3rd and 4th embodiment. 従来技術に係る線状光源装置用導光体の構成を示す図である。It is a figure which shows the structure of the light guide for linear light source devices which concerns on a prior art. 図6に示した線状光源装置用導光体における短軸照射分布を示す図である。It is a figure which shows the short-axis irradiation distribution in the light guide for linear light source devices shown in FIG. 特許文献1の図1に記載された線状光源装置の構成を示す図である。It is a figure which shows the structure of the linear light source device described in FIG. 従来技術に係る線状光源装置の円柱状の導光体の長手方向に沿った断面図である。It is sectional drawing along the longitudinal direction of the cylindrical light guide of the linear light source device which concerns on a prior art. 図9に示した線状光源装置の光出射面側から見た上面図である。It is the top view seen from the light-projection surface side of the linear light source device shown in FIG. 図10に示した線状光源装置の軸方向に対して直交する面のA−A断面図及びB−B断面図である。It is AA sectional drawing and BB sectional drawing of the surface orthogonal to the axial direction of the linear light source device shown in FIG. (a)は、紙面下側に図9の線状光源装置201を示し、紙面上側に線状光源装置201の長手方向に沿って電子受光素子X1,X2で読み取った相対照度の測定結果を示し、(b)及び(c)は、導光体断面における電子受光素子X1、X2の読取位置を示した図である。9A shows the linear light source device 201 of FIG. 9 on the lower side of the paper, and shows the measurement result of the relative illuminance read by the electron light receiving elements X1 and X2 along the longitudinal direction of the linear light source device 201 on the upper side of the paper. (B) And (c) is the figure which showed the reading position of the electronic light receiving elements X1 and X2 in a light-guide cross section.

本発明の第1の実施形態を図1及び図2を用いて説明する。
図1は、本実施形態に係る線状光源装置用導光体の構成を示す図である。
同図に示すように、この導光体1は、不図示のLED等の光源からの光を入射する光入射面2と、導光体1の光軸に沿って形成され、光軸に直交する断面形状が円弧状に形成され、光を出射する光出射面を含む上面3と、上面3に対して光軸に沿って平行に配置され、上面3に対向する凹部と凸部からなる反射溝4を含む下面5と、上面3と下面5とをつなぐ側部に形成された側面6とからなり、側面6には、光軸方向において、光入射面2から離れるに従って徐々に光軸中心に近づくように形成され、光軸方向に直交する断面の形状が直線状の長い傾斜面61を有する。なお、同図に示すように、上面3の円弧の曲率は導光体1の光軸方向において一様、ないしは上面3と下面5間の距離は導光体1の光軸方向において一様に構成されている。また、反射溝4は、例えば、図9に示すように、切り込み方向が導光体1の光軸方向と直交する凹部と凸部からなるプリズム状に構成される。また、傾斜面61を光軸方向に沿って光入射面2とは逆方向に進んだ部分である傾斜面61の端部61aでは、端部61aが上面3の一部にかかるように形成される。この端部61aに相当する上面3の領域では、導光体1の光軸方向全体に亘って殆どの光が臨界角に達することがなく導光体1の外部に光は放射されない。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram illustrating a configuration of a light guide for a linear light source device according to the present embodiment.
As shown in the figure, the light guide 1 is formed along a light incident surface 2 on which light from a light source such as an LED (not shown) is incident, and along the optical axis of the light guide 1, and is orthogonal to the optical axis. The cross-sectional shape to be formed is an arc shape, and includes a top surface 3 including a light emitting surface that emits light, and a reflection composed of a concave portion and a convex portion that are arranged parallel to the top surface 3 along the optical axis. The lower surface 5 including the groove 4 and the side surface 6 formed on the side portion connecting the upper surface 3 and the lower surface 5 are formed. The side surface 6 is gradually centered on the optical axis as the distance from the light incident surface 2 increases in the optical axis direction. And has a long inclined surface 61 whose cross section orthogonal to the optical axis direction is linear. As shown in the figure, the curvature of the arc of the upper surface 3 is uniform in the optical axis direction of the light guide 1, or the distance between the upper surface 3 and the lower surface 5 is uniform in the optical axis direction of the light guide 1. It is configured. Further, for example, as shown in FIG. 9, the reflection groove 4 is configured in a prism shape including a concave portion and a convex portion whose cutting direction is orthogonal to the optical axis direction of the light guide 1. Further, the end 61 a of the inclined surface 61, which is a portion of the inclined surface 61 that runs in the direction opposite to the light incident surface 2 along the optical axis direction, is formed so that the end 61 a covers a part of the upper surface 3. The In the region of the upper surface 3 corresponding to the end 61a, most of the light does not reach the critical angle over the entire optical axis direction of the light guide 1, and no light is emitted outside the light guide 1.

本実施形態の線状光源装置用導光体によれば、側面6に、光軸方向において、光入射面2から離れるに従って徐々に光軸中心に近づくように形成された長い傾斜面61が形成されていることによって、導光体1に入射された光を傾斜面61で反射させることができる。その結果、導光体1の光軸方向に対して角度成分の大きい光を生成することができ、上面3から出射する光の広がり角を光軸方向のいずれの位置においても、ほぼ均一化することができる。これによって、CCD等の電子受光素子の読取位置が、導光体1の光軸方向に対して垂直方向に向かって多少ずれることがあっても、読取位置のずれによる照度分布の変化の影響を受けることがなくなり、電子受光素子の受光量に影響を与える問題を解消することができる。   According to the light guide for a linear light source device of the present embodiment, the long inclined surface 61 is formed on the side surface 6 so as to gradually approach the center of the optical axis in the direction of the optical axis as the distance from the light incident surface 2 increases. As a result, the light incident on the light guide 1 can be reflected by the inclined surface 61. As a result, light having a large angle component with respect to the optical axis direction of the light guide 1 can be generated, and the spread angle of the light emitted from the upper surface 3 is almost uniform at any position in the optical axis direction. be able to. As a result, even if the reading position of an electronic light receiving element such as a CCD is slightly deviated in the direction perpendicular to the optical axis direction of the light guide 1, the influence of the change in illuminance distribution due to the deviation of the reading position is affected. The problem of affecting the amount of light received by the electron light receiving element can be solved.

図2は、導光体1から出射される光の広がりを、縦軸を任意の光強度、横軸を導光体1の中心を0とし、中心からの距離をとった場合の短軸照射分布を示す図である。ここで、横軸の距離0の部分が被照射物側、つまり、光の広がり角が0度になる部分を示している。また、各測定点は、導光体1の光入射面2に光源としてLEDが配置された側を0mmとした場合の距離であって、それぞれ距離90mm、180mm、270mmの位置における光の広がり角を示している。
同図に示すように、本実施形態の線状光源装置用導光体によれば、90mmの位置で測定した光の広がり角の曲線に対して、180mm、270mmの各位置で測定した光の広がり角の曲線とが良く一致していることが分かる。つまり、導光体1の光軸方向の各位置から出射される光の広がり角に差が無いことが分かる。
FIG. 2 shows the short-axis irradiation in the case where the spread of light emitted from the light guide 1 is arbitrary light intensity on the vertical axis, the center of the light guide 1 is 0 on the horizontal axis, and the distance from the center is taken. It is a figure which shows distribution. Here, the part with distance 0 on the horizontal axis shows the irradiated object side, that is, the part where the light spread angle becomes 0 degree. Each measurement point is a distance when the side where the LED is disposed as the light source on the light incident surface 2 of the light guide 1 is 0 mm, and the light spread angle at the positions of 90 mm, 180 mm, and 270 mm, respectively. Is shown.
As shown in the figure, according to the light guide for the linear light source device of the present embodiment, the light measured at each position of 180 mm and 270 mm with respect to the curve of the spread angle of the light measured at the position of 90 mm. It can be seen that the divergence angle curve agrees well. That is, it can be seen that there is no difference in the spread angle of the light emitted from each position of the light guide 1 in the optical axis direction.

次に、本発明の第2の実施形態を図3及び図4を用いて説明する。
図3は、本実施形態に係る線状光源装置用導光体の構成を示す図である。
同図に示すように、この導光体1も、不図示のLED等の光源からの光を入射する光入射面2と、導光体1の光軸に沿って形成され、光軸に直交する断面形状が円弧状に形成され、光を出射する光出射面を含む上面3と、上面3に対して光軸に沿って平行に配置され、上面3に対向する凹部と凸部からなる反射溝4を含む下面5と、上面3と下面5とをつなぐ側部に形成された側面6とからなり、側面6には、光軸方向において、光入射面2から離れるに従って徐々に光軸中心に近づくように形成され、光軸方向に直交する断面の形状が直線状である、複数、例えば、5個の傾斜面611〜615を形成する。なお、同図に示すように、上面3の円弧の曲率は、図1の場合と同様に、導光体1の光軸方向において一様、ないし上面3と下面5間の距離は導光体1の光軸方向において一様に形成されている。
Next, a second embodiment of the present invention will be described with reference to FIGS.
FIG. 3 is a diagram illustrating a configuration of a light guide for a linear light source device according to the present embodiment.
As shown in the figure, the light guide 1 is also formed along a light incident surface 2 on which light from a light source such as an LED (not shown) is incident, and along the optical axis of the light guide 1, and orthogonal to the optical axis. The cross-sectional shape to be formed is an arc shape, and includes a top surface 3 including a light emitting surface that emits light, and a reflection composed of a concave portion and a convex portion that are arranged parallel to the top surface 3 along the optical axis. The lower surface 5 including the groove 4 and the side surface 6 formed on the side connecting the upper surface 3 and the lower surface 5 are formed. A plurality of, for example, five inclined surfaces 611 to 615, which are formed so as to be close to each other and whose cross-sectional shape orthogonal to the optical axis direction is linear, are formed. As shown in the figure, the curvature of the arc of the upper surface 3 is uniform in the optical axis direction of the light guide 1 as in the case of FIG. 1, or the distance between the upper surface 3 and the lower surface 5 is the light guide. 1 in the direction of the optical axis.

本実施形態の線状光源装置用導光体においても、側面6に、光軸方向において、光入射面2から離れるに従って徐々に光軸中心に近づくように複数の傾斜面611〜615が形成されていることによって、導光体1に入射された光を傾斜面611〜615で反射させることができる。その結果、導光体1の光軸方向に対して角度成分の大きい光を生成することができ、上面3から出射する光の広がり角を光軸方向のいずれの位置においても、ほぼ均一化することができる。これによって、CCD等の電子受光素子の読取位置が、導光体1の光軸方向に対して垂直方向に向かって多少ずれることがあっても、読取位置のずれによる照度分布の変化の影響を受けることがなくなり、電子受光素子の受光量に影響を与える問題を解消することができる。   Also in the light guide for the linear light source device of the present embodiment, a plurality of inclined surfaces 611 to 615 are formed on the side surface 6 so as to gradually approach the center of the optical axis in the optical axis direction as the distance from the light incident surface 2 increases. As a result, the light incident on the light guide 1 can be reflected by the inclined surfaces 611 to 615. As a result, light having a large angle component with respect to the optical axis direction of the light guide 1 can be generated, and the spread angle of the light emitted from the upper surface 3 is almost uniform at any position in the optical axis direction. be able to. As a result, even if the reading position of an electronic light receiving element such as a CCD is slightly deviated in the direction perpendicular to the optical axis direction of the light guide 1, the influence of the change in illuminance distribution due to the deviation of the reading position is affected. The problem of affecting the amount of light received by the electronic light receiving element can be solved.

図4は、導光体1から出射される光の広がり角を、図2の場合と同様に示した短軸照射分布を示す図である。図2と同様に、各測定点は、導光体1の光入射面2に光源としてLEDが配置された側を0mmとした場合の距離をであって、それぞれ距離90mm、180mm、270mmの位置における光の広がり角を示している。
同図に示すように、本実施形態の線状光源装置用導光体においても、90mmの位置で測定した光の広がり角の曲線に対して、180mm、270mmの各位置で測定した光の広がり角の曲線とが良く一致しており、導光体1の光軸方向の各位置から出射される光の広がりに差が無いことが分かる。
FIG. 4 is a diagram showing a short-axis irradiation distribution in which the spread angle of light emitted from the light guide 1 is shown in the same manner as in FIG. As in FIG. 2, each measurement point is a distance when the side where the LED is disposed as the light source on the light incident surface 2 of the light guide 1 is 0 mm, and the positions are 90 mm, 180 mm, and 270 mm, respectively. The spread angle of light at.
As shown in the figure, also in the light guide for the linear light source device of this embodiment, the spread of light measured at each position of 180 mm and 270 mm with respect to the curve of the spread angle of light measured at the position of 90 mm. The corner curves are in good agreement, and it can be seen that there is no difference in the spread of light emitted from each position of the light guide 1 in the optical axis direction.

次に、本発明の第3及び第4の実施形態を図5を用いて説明する。
図5(a)は、第3の実施形態に係る線状光源装置用導光体の構成を示す図であり、同図に示すように、第1及び第2の実施形態の線状光源装置用導光体と比べて、上面3と下面5とをつなぐ側部に形成された側面6に、光軸方向において、光入射面2から離れるに従って徐々に光軸中心に近づくように形成され、光軸方向に直交する断面の形状が曲面である曲面62が形成されている。
また、図5(b)は、第4の実施形態に係る線状光源装置用導光体の構成を示す図であり、同図に示すように、第1〜第3の実施形態の線状光源装置用導光体と比べて、上面3と下面5とをつなぐ片側の側部に形成された側面6に、光入射面2から離れるに従って徐々に光軸中心に近づくように形成された長い傾斜面63が形成されている。
第3及び第4の実施形態の線状光源装置用導光体においても、導光体1の光軸方向に対して角度成分の大きい光を生成することができ、上面3から出射する光の広がり角を光軸方向のいずれの位置においても、ほぼ均一化することができる。これによって、CCD等の電子受光素子の読取位置が、導光体1の光軸方向に対して垂直方向に向かって多少ずれることがあっても、読取位置のずれによる照度分布の変化の影響を受けることがなくなり、電子受光素子の受光量に影響を与える問題を解消することができる。
Next, third and fourth embodiments of the present invention will be described with reference to FIG.
FIG. 5A is a diagram illustrating a configuration of a light guide for a linear light source device according to the third embodiment. As illustrated in FIG. 5A, the linear light source device of the first and second embodiments. Compared to the light guide for the light source, the side surface 6 formed on the side connecting the upper surface 3 and the lower surface 5 is formed so as to gradually approach the center of the optical axis in the optical axis direction as the distance from the light incident surface 2 increases. A curved surface 62 having a curved cross-sectional shape perpendicular to the optical axis direction is formed.
Moreover, FIG.5 (b) is a figure which shows the structure of the light guide for linear light source devices which concerns on 4th Embodiment, As shown in the figure, the linear form of 1st-3rd embodiment is shown. Compared with the light guide for the light source device, the side surface 6 formed on one side connecting the upper surface 3 and the lower surface 5 is formed so as to gradually approach the center of the optical axis as the distance from the light incident surface 2 increases. An inclined surface 63 is formed.
Also in the light guides for the linear light source devices of the third and fourth embodiments, light having a large angular component with respect to the optical axis direction of the light guide 1 can be generated, and light emitted from the upper surface 3 can be generated. The divergence angle can be made substantially uniform at any position in the optical axis direction. As a result, even if the reading position of an electronic light receiving element such as a CCD is slightly deviated in the direction perpendicular to the optical axis direction of the light guide 1, the influence of the change in illuminance distribution due to the deviation of the reading position is affected. The problem of affecting the amount of light received by the electronic light receiving element can be solved.

本発明の線状光源装置用導光体と対比するために、従来技術に係る線状光源装置用導光体を図6及び図7を用いて説明する。
図6は、従来技術に係る線状光源装置用導光体の構成を示す図であり、同図に示すように、この導光体301は、不図示のLED等の光源からの光を入射する光入射面302と、導光体301の光軸に沿って形成され、光軸に直交する断面形状が円弧状に形成され、光を出射する光出射面を含む上面303と、上面303に対して光軸に沿って平行に配置され、上面303に対向する凹部と凸部からなる反射溝304を含む下面305と、上面303と下面305とをつなぐ側部に形成された側面306とからなり、側面306には、第1〜第4の実施形態の線状光源装置用導光体に示されていた、傾斜面61、611〜615、63や曲面62が形成されていない点で相違する。
For comparison with the light guide for linear light source device of the present invention, the light guide for linear light source device according to the prior art will be described with reference to FIGS.
FIG. 6 is a diagram showing a configuration of a light guide for a linear light source device according to the prior art. As shown in FIG. 6, this light guide 301 receives light from a light source such as an LED (not shown). A light incident surface 302 that is formed along the optical axis of the light guide 301, a cross-sectional shape that is orthogonal to the optical axis is formed in an arc shape, and includes an upper surface 303 that includes a light emitting surface that emits light, and an upper surface 303. A lower surface 305 including a reflection groove 304 composed of a concave portion and a convex portion facing the upper surface 303 and parallel to the optical axis, and a side surface 306 formed on a side portion connecting the upper surface 303 and the lower surface 305. Therefore, the side surface 306 is different in that the inclined surfaces 61, 611 to 615, 63 and the curved surface 62 which are shown in the light guide for the linear light source device of the first to fourth embodiments are not formed. To do.

図7は、導光体301から出射される光の広がりを、縦軸を任意の光強度、横軸を導光体301の中心を0とし、中心からの距離をとった場合の短軸照射分布を示す図である。ここで、横軸の距離0の部分が被照射物側、つまり、光の広がり角が0度になる部分を示している。また、各測定点は、導光体301の光入射面302に光源としてLEDが配置された側を0mmとした場合の距離であって、それぞれ距離90mm、180mm、270mmの位置における光の広がりを示している。
同図に示すように、従来技術に係る線状光源装置用導光体によれば、90mmの位置で測定した光の広がりの曲線に対して、180mm、270mmの各位置で測定した光の広がりの曲線が大きく異なっていることが分かる。つまり、導光体301の光軸方向の各位置から出射される光の広がりに大きな差があり、光軸方向の照度に大きな減衰が発生していることが分かる。このような従来技術に係る線状光源装置用導光体と本発明の第1〜第4の実施形態に係る線状光源装置用導光体とを対比すると、本発明は従来技術に係る線状光源装置用導光体では奏し得ない効果を有していることが分かる。
FIG. 7 shows the short-axis irradiation in the case where the spread of light emitted from the light guide 301 is arbitrary light intensity on the vertical axis, the center of the light guide 301 is 0 on the horizontal axis, and the distance from the center is taken. It is a figure which shows distribution. Here, the part with distance 0 on the horizontal axis shows the irradiated object side, that is, the part where the light spread angle becomes 0 degree. Each measurement point is a distance when the side where the LED is disposed as a light source on the light incident surface 302 of the light guide 301 is 0 mm, and the spread of light at the positions of 90 mm, 180 mm, and 270 mm, respectively. Show.
As shown in the figure, according to the light guide for a linear light source device according to the prior art, the spread of light measured at each position of 180 mm and 270 mm with respect to the curve of the spread of light measured at a position of 90 mm. It can be seen that the curves are very different. That is, it can be seen that there is a large difference in the spread of light emitted from each position of the light guide 301 in the optical axis direction, and a large attenuation occurs in the illuminance in the optical axis direction. When such a light guide for a linear light source device according to the prior art and a light guide for a linear light source device according to the first to fourth embodiments of the present invention are compared, the present invention relates to a line according to the prior art. It can be seen that the light guide for the light source device has an effect that cannot be achieved.

1 導光体
2 光入射面
3 光出射面を含む上面
4 反射溝
5 下面
6 側面
61 傾斜面
61a 傾斜面61の端部
611〜615 傾斜面
62 曲面
63 傾斜面
DESCRIPTION OF SYMBOLS 1 Light guide 2 Light incident surface 3 Upper surface 4 including a light-projection surface 4 Reflecting groove 5 Lower surface 6 Side surface 61 Inclined surface 61a End part 611-615 of the inclined surface 61 Inclined surface 62 Curved surface 63 Inclined surface

Claims (3)

導光体の光軸に沿って形成され、前記光軸に直交する断面形状が円弧状に形成され、光を出射する光出射面を含む上面と、
該上面に対して光軸に沿って平行に配置され、前記上面に対向する凹部と凸部からなる反射面を含む下面と、
前記上面と前記下面とをつなぐ側部に形成された側面とからなり、前記側面には、前記光軸方向において、光源から離れるに従って前記光軸中心に近づく傾斜面を有する
ことを特徴とする線状光源装置用導光体。
An upper surface formed along the optical axis of the light guide, the cross-sectional shape orthogonal to the optical axis is formed in an arc shape, and includes a light emitting surface that emits light,
A lower surface including a reflective surface composed of a concave portion and a convex portion disposed parallel to the upper surface along the optical axis and facing the upper surface;
A line formed on a side portion connecting the upper surface and the lower surface, and the side surface has an inclined surface that approaches the optical axis center as the distance from the light source increases in the optical axis direction. -Shaped light source for light source device.
前記側面には、前記傾斜面が、前記導光体の光軸方向に沿って複数設けられていることを特徴とする請求項1に記載の線状光源装置用導光体。   The light guide for a linear light source device according to claim 1, wherein a plurality of the inclined surfaces are provided on the side surface along an optical axis direction of the light guide. 前記傾斜面は、前記導光体の光軸方向に直交する断面の形状が直線状であることを特徴とする請求項1又は請求項2に記載の線状光源装置用導光体。
3. The light guide for a linear light source device according to claim 1, wherein the inclined surface has a linear shape in a cross section perpendicular to the optical axis direction of the light guide. 4.
JP2009131661A 2009-05-31 2009-05-31 Light guide body for linear light source device Pending JP2010277940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131661A JP2010277940A (en) 2009-05-31 2009-05-31 Light guide body for linear light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131661A JP2010277940A (en) 2009-05-31 2009-05-31 Light guide body for linear light source device

Publications (1)

Publication Number Publication Date
JP2010277940A true JP2010277940A (en) 2010-12-09

Family

ID=43424706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131661A Pending JP2010277940A (en) 2009-05-31 2009-05-31 Light guide body for linear light source device

Country Status (1)

Country Link
JP (1) JP2010277940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204030A (en) * 2011-03-24 2012-10-22 Stanley Electric Co Ltd Light guide lens
CN105027545A (en) * 2013-02-21 2015-11-04 三菱电机株式会社 Light guide body and image reading device
US9709728B2 (en) 2013-05-31 2017-07-18 Kyocera Document Solutions Inc. Light guide and illumination device
US10536603B2 (en) 2017-06-28 2020-01-14 Mitsubishi Electric Corporation Light guide and image reading apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217084A (en) * 1993-01-19 1994-08-05 Canon Inc Light transmission body and illuminator having light transmission body and information processor having the illuminator
JP2004112830A (en) * 1995-03-22 2004-04-08 Canon Inc Light guide, illuminator and information processing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06217084A (en) * 1993-01-19 1994-08-05 Canon Inc Light transmission body and illuminator having light transmission body and information processor having the illuminator
JP2004112830A (en) * 1995-03-22 2004-04-08 Canon Inc Light guide, illuminator and information processing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204030A (en) * 2011-03-24 2012-10-22 Stanley Electric Co Ltd Light guide lens
CN105027545A (en) * 2013-02-21 2015-11-04 三菱电机株式会社 Light guide body and image reading device
CN105027545B (en) * 2013-02-21 2017-12-12 三菱电机株式会社 Light conductor and image read-out
DE112014000937B4 (en) 2013-02-21 2022-07-28 Mitsubishi Electric Corporation light guide and image reading device
US9709728B2 (en) 2013-05-31 2017-07-18 Kyocera Document Solutions Inc. Light guide and illumination device
US10536603B2 (en) 2017-06-28 2020-01-14 Mitsubishi Electric Corporation Light guide and image reading apparatus

Similar Documents

Publication Publication Date Title
US20090310190A1 (en) Rod-shaped light guide and image reading device
JP2010103034A (en) Linear light source device
JP2008216409A (en) Light guide body, and two-branch linear light source device
KR20140104002A (en) Irradiation device and image-reading device
US20140313738A1 (en) Light guide, illuminating device and image reading apparatus
JP2011154996A (en) Led linear light source and reading device
JPWO2006049206A1 (en) Illumination device and image reading device using the same
JP2010277940A (en) Light guide body for linear light source device
JP5018657B2 (en) Illumination device and image reading device
JP4877048B2 (en) Light guide and linear light source device
JP4946603B2 (en) Light guide and linear light source device
US20140355296A1 (en) Linear light source apparatus for an image reader
JP2010060298A (en) Lamp tool unit and object detector
JP2012074857A (en) Lighting system, and image sensor using the same
JP2014120971A5 (en)
US9557474B2 (en) Light guide and image reading apparatus
JP5854002B2 (en) Linear light source device for image reading
US9435509B2 (en) Linear light source apparatus and image reading apparatus
JP2016134303A (en) Transparent material, lighting device and image reading device
JP6157330B2 (en) Illumination device and image sensor
JP2015154120A (en) Lighting device and image sensor using the same
JP2009158177A (en) Lighting device
JP6571348B2 (en) Light guide, illumination unit, and image reading apparatus
JP6887473B2 (en) Laser lighting device
JP2014056848A (en) Lighting device and image sensor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130813