JP2010276795A - Electrophotographic device - Google Patents

Electrophotographic device Download PDF

Info

Publication number
JP2010276795A
JP2010276795A JP2009128064A JP2009128064A JP2010276795A JP 2010276795 A JP2010276795 A JP 2010276795A JP 2009128064 A JP2009128064 A JP 2009128064A JP 2009128064 A JP2009128064 A JP 2009128064A JP 2010276795 A JP2010276795 A JP 2010276795A
Authority
JP
Japan
Prior art keywords
electrophotographic
surface layer
electrophotographic photoreceptor
atoms
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009128064A
Other languages
Japanese (ja)
Inventor
Shigenori Ueda
重教 植田
Kazuyoshi Akiyama
和敬 秋山
Daisuke Tazawa
大介 田澤
Tomohito Ozawa
智仁 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009128064A priority Critical patent/JP2010276795A/en
Publication of JP2010276795A publication Critical patent/JP2010276795A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophotographic device for satisfying all of image deletion due to high humidity, abrasion resistance and energy-saving property by suppressing oxidation of the surface of an electrophotographic photoreceptor. <P>SOLUTION: In the electrophotographic device, a corona charger includes a sheet-like shielding member for shielding an opening part facing the electrophotographic photoreceptor and a mechanism for winding the shielding member, wherein the electrophotographic photoreceptor is made by successively forming a photo-conductive layer made of hydrogenated amorphous silicon and a surface layer made of hydrogenated amorphous silicon carbide at least on the surface of a base body, and the surface layer has the sum of atomic density of silicon atom and atomic density of carbon atom, of 6.60×10<SP>22</SP>atom/cm<SP>3</SP>or more and has the ratio of number of atoms of carbon atom to the sum of number of atoms of silicon atom and number of atoms of carbon atom, of 0.61 to 0.75. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、水素化アモルファスシリコンカーバイドで構成された表面層(以下、「a−SiC表面層」とも称する。)を有する電子写真用感光体を用いた複写機、プリンタ、ファックス等の電子写真装置に関するものである。   The present invention relates to an electrophotographic apparatus such as a copying machine, a printer, and a fax machine using an electrophotographic photosensitive member having a surface layer (hereinafter also referred to as “a-SiC surface layer”) composed of hydrogenated amorphous silicon carbide. It is about.

基体の表面にアモルファス材料を感光層として形成した電子写真用感光体が知られている。特に、金属等の基体の表面に化学気相成長法(CVD法)、物理気相成長法(PVD法)等の成膜技術によりアモルファスシリコン(以下、「a−Si」とも称する。)の層が形成されたa−Si感光体がすでに製品化されている。
このようなa−Si感光体の基本構成としては、図5に示すようなプラス帯電用a−Si感光体が知られている。プラス帯電用a−Si感光体は、導電性基体5001の表面にa−Siで構成された光受容層5002を形成し、更にa−SiC表面層5005を積層した構成となっている。
An electrophotographic photoreceptor is known in which an amorphous material is formed as a photosensitive layer on the surface of a substrate. In particular, a layer of amorphous silicon (hereinafter also referred to as “a-Si”) is formed on the surface of a substrate such as a metal by a film forming technique such as chemical vapor deposition (CVD) or physical vapor deposition (PVD). The a-Si photosensitive member on which is formed has already been commercialized.
As a basic configuration of such an a-Si photosensitive member, a positive charging a-Si photosensitive member as shown in FIG. 5 is known. The positive charging a-Si photosensitive member has a structure in which a light-receiving layer 5002 made of a-Si is formed on the surface of a conductive substrate 5001, and an a-SiC surface layer 5005 is further laminated.

a−SiC表面層は耐磨耗性に優れていることから、主にプロセススピードの速い電子写真装置で用いられてきた。しかし、従来のa−SiC表面層は、絶対湿度の高い環境下で使用した場合に、文字がぼける、又は、文字が印字されずに白抜けが生じる場合があった(以下、「高湿流れ」とも称する。)。
高湿流れとは、以下のような現象である。絶対湿度の高い環境下に設置された電子写真装置を用いて画像を出力し、しばらく時間をあけた後、再び画像を出力する。このとき出力される画像において、文字がぼける、又は、文字が印字されずに白抜けが生じるという画像不良のことである。
この高湿流れは、電子写真用感光体の表面に水分が吸着することによって表面の抵抗が低下し、電荷が横流れを起こすために発生すると考えられている。そのため、電子写真装置が設置されている環境の絶対湿度が高い場合やa−Si感光体近傍に設けた感光体ヒーターを使用しない場合に、より発生しやすくなる。そのため、この高湿流れの発生を抑えるために、常時、感光体ヒーターにより電子写真用感光体を加熱し、高湿流れの原因とされる感光体表面に吸着した帯電生成物や水分を低減又は除去することが行われてきた。
Since the a-SiC surface layer is excellent in wear resistance, it has been mainly used in an electrophotographic apparatus having a high process speed. However, when the conventional a-SiC surface layer is used in an environment with a high absolute humidity, characters may be blurred or white spots may occur without printing characters (hereinafter referred to as “high humidity flow”). ").
The high humidity flow is the following phenomenon. An image is output using an electrophotographic apparatus installed in an environment with high absolute humidity, and after a while, the image is output again. This is an image defect in which characters are blurred in the image output at this time, or white spots occur without characters being printed.
This high-humidity flow is considered to occur because moisture is adsorbed on the surface of the electrophotographic photosensitive member, the surface resistance is reduced, and electric charges cause a lateral flow. For this reason, it is more likely to occur when the absolute humidity of the environment where the electrophotographic apparatus is installed is high or when the photoreceptor heater provided near the a-Si photoreceptor is not used. Therefore, in order to suppress the generation of this high humidity flow, the electrophotographic photoreceptor is always heated by a photoconductor heater to reduce charged products and moisture adsorbed on the surface of the photoconductor that is the cause of the high humidity flow or It has been done to remove.

これに対し、従来から感光体ヒーター以外の方法で、高湿流れを抑制するための電子写真プロセスが提案されている。
例えば、ニッケルを2〜20重量%以上含むステンレス鋼からなる感光体保護シャッター用遮蔽部材を帯電器と感光体の間に挿入する機構を備える事により画像流れの発生を防止する技術が提案されている(特許文献1参照)。
また、複写動作停止時に巻き取り可能なフィルムを静電的に感光体表面に付着させ、帯電器と感光体の間を遮蔽する事で画像流れの発生を防止する技術が提案されている(特許文献2参照)。
更に、帯電器と感光ドラムの間を開放、遮蔽可能なシート状ヒーターを有し帯電器に対向するドラム面を加熱することで画像流れを防止する技術が提案されている(特許文献3参照)。
更に、感光体に対向するコロナ帯電器の開口部を遮蔽可能な導電性の帯電器シャッターにバイアスを印加し帯電生成物、オゾンなどのイオンを電界により吸着する技術が提案されている(特許文献4参照)。
On the other hand, an electrophotographic process for suppressing a high-humidity flow by a method other than the photoreceptor heater has been proposed.
For example, there has been proposed a technique for preventing the occurrence of image flow by providing a mechanism for inserting a shielding member for a photosensitive member protection shutter made of stainless steel containing 2 to 20% by weight or more of nickel between a charger and a photosensitive member. (See Patent Document 1).
In addition, a technique for preventing the occurrence of image flow by electrostatically adhering a film that can be wound when the copying operation is stopped to the surface of the photosensitive member and shielding between the charger and the photosensitive member is proposed (patent). Reference 2).
Further, a technique has been proposed in which a sheet-like heater that can open and shield between the charger and the photosensitive drum is provided to prevent image flow by heating the drum surface facing the charger (see Patent Document 3). .
Further, a technique has been proposed in which a bias is applied to a conductive charger shutter capable of shielding the opening of the corona charger facing the photoconductor to adsorb ions such as charged products and ozone by an electric field (Patent Literature). 4).

特開平07−104564号公報Japanese Patent Application Laid-Open No. 07-104564 特開平07−104565号公報Japanese Patent Application Laid-Open No. 07-104565 特開2008−46297号公報JP 2008-46297 A 特開2008−145851号公報JP 2008-145851 A

近年、市場では、電子写真装置の高速化及びカラー化が進み、従来に比べ、更に磨耗し易い電子写真プロセスへと変化してきている。また、高速化及びカラー化に伴い、高画質な画像を安定して出力可能な電子写真装置も求められている。更に、環境問題への関心も高く、電子写真装置の消費電力低減による省エネルギー性の向上も求められている。
これらの市場要求に対し、電子写真装置における改善も必要ではある。同時に、良好な耐磨耗性を維持しつつ、高湿流れを改善し、更に、省エネルギー性にも優れた電子写真用感光体も必要となっている。
しかし、高湿流れの発生を抑制するためには、電子写真用感光体の最表面に形成された高湿流れの原因となる吸着物質を取り除くため、一定以上の磨耗量が必要であった。
このような磨耗し易いa−SiC表面層では、表面層の膜厚を厚くすることで耐久性を確保する必要が生じる。
In recent years, in the market, the speed and color of electrophotographic apparatuses have been increased, and the electrophotographic process is more easily worn than before. In addition, with the increase in speed and color, there is a demand for an electrophotographic apparatus that can stably output a high-quality image. Furthermore, there is a high interest in environmental issues, and there is a demand for improved energy savings by reducing the power consumption of electrophotographic apparatuses.
In response to these market requirements, improvements in electrophotographic apparatus are also necessary. At the same time, there is a need for an electrophotographic photoreceptor that maintains high wear resistance, improves high-humidity flow, and is excellent in energy saving.
However, in order to suppress the generation of the high-humidity flow, a certain amount of wear is required in order to remove the adsorbing substance that causes the high-humidity flow formed on the outermost surface of the electrophotographic photoreceptor.
In such an a-SiC surface layer that easily wears, it is necessary to ensure durability by increasing the thickness of the surface layer.

しかし、a−SiC表面層の膜厚を厚くすると、光吸収が増加するため、感度が低下する場合があった。
また、電子写真装置としては、感光体近傍に感光体ヒーターを設けることで電子写真用感光体の最表面に吸着した水分を除去し、磨耗量を抑えつつ高湿流れの抑制を可能としてきた。しかし、感光体ヒーターは多量な電力を必要とすることから、感光体ヒーターを使用する場合、消費電力の削減を実現することは困難である。
以上のことから、従来の電子写真用感光体及び電子写真装置において、高湿流れを抑制しつつ、耐磨耗性向上と消費電力低減の両立を実現することは困難な課題であった。
そこで、本発明者らは、耐磨耗性向上と消費電力低減を両立しつつ、高湿流れ抑制を実現するために鋭意検討を行った。その結果、高湿流れの現象には、大別すると下記に示す2つの現象が存在することを見出した。
However, when the thickness of the a-SiC surface layer is increased, the light absorption increases, and thus the sensitivity may be lowered.
In addition, as an electrophotographic apparatus, by providing a photoconductor heater in the vicinity of the photoconductor, moisture adsorbed on the outermost surface of the electrophotographic photoconductor is removed, and the flow of high humidity can be suppressed while suppressing the amount of wear. However, since the photoconductor heater requires a large amount of electric power, it is difficult to reduce the power consumption when using the photoconductor heater.
From the above, in the conventional electrophotographic photoreceptor and electrophotographic apparatus, it has been a difficult problem to achieve both improvement of wear resistance and reduction of power consumption while suppressing high humidity flow.
Therefore, the present inventors have intensively studied to realize high humidity flow suppression while achieving both wear resistance improvement and power consumption reduction. As a result, it was found that the phenomenon of high-humidity flow roughly includes the following two phenomena.

現象A;絶対湿度の高い環境下で画像出力し、そのまま一晩放置した後、翌朝画像を出力した場合、画像の一部に画像濃度低下が発生する現象。この画像濃度低下は、放置時に電子写真用感光体と帯電器が対面していた領域で発生する。このような放置時に電子写真用感光体の帯電器に対面した領域で発生する高湿流れを、以下、「帯電器下流れ」とも称する。
現象B;現象Aと同様に翌朝画像を出力した場合、帯電器下流れが発生するとともに、同時に、放置時に帯電器に対面していない領域においても画像濃度低下が発生する現象。
この現象は、多量の画像出力をした(長期間画像出力をし続けた)際に発生する場合があり、画像上で局所的に発生する帯電器下流れとは異なり、画像全面で発生する。
このような帯電器下流れとは異なる放置時に帯電器に対面していない領域で生じる高湿流れを以下、「耐久流れ」とも称する。
これら2つの現象から、高湿流れは帯電器下流れと耐久流れからなる複合的な現象であることがわかった。つまり、帯電器下流れは、放置時に電子写真用感光体と帯電器とが対面した領域で生じる高湿流れであり、耐久流れは、長期使用時に発生し、画像全面で生じる高湿流れである。
Phenomenon A: A phenomenon in which when an image is output in an environment where the absolute humidity is high and left as it is overnight, an image is output the next morning, and a decrease in image density occurs in a part of the image. This decrease in image density occurs in an area where the electrophotographic photosensitive member and the charger face each other when left standing. Such a high-humidity flow generated in the region facing the charger of the electrophotographic photosensitive member when left untreated is also referred to as “flow below the charger”.
Phenomenon B: Similar to phenomenon A, when an image is output the next morning, a flow under the charger occurs, and at the same time, a decrease in image density occurs even in an area that does not face the charger when left unattended.
This phenomenon may occur when a large amount of image is output (the image output is continued for a long period of time), and is generated on the entire surface of the image unlike a flow under the charger that occurs locally on the image.
Hereinafter, the high-humidity flow generated in a region not facing the charger when left standing different from the flow under the charger is also referred to as “endurance flow”.
From these two phenomena, it was found that the high-humidity flow is a complex phenomenon consisting of the flow under the charger and the durable flow. That is, the flow under the charger is a high-humidity flow that occurs in the area where the electrophotographic photoreceptor and the charger face each other when left standing, and the durable flow is a high-humidity flow that occurs during long-term use and occurs over the entire image. .

本発明者らは、上記2つの現象が生じるメカニズムを下記のように推察した。図1及び図2を用いて、上記2つの現象発生メカニズムを説明する。
図1は、Aの現象を説明するための模式的な説明図であり、電子写真用感光体最表面に吸着した吸着物質の量と高湿流れ発生の関係を示したものである。水分や帯電生成物等の吸着物質の吸着量が高湿流れ発生の閾値を超えると画像上に高湿流れが発生する。
まず、画像出力前の初期の段階では、電子写真用感光体最表面の吸着物質は少ない。
次に画像出力を繰り返し行った画像出力後の状態を考える。この状態では主に帯電の影響により、電子写真用感光体表面層が酸化され、最表面に極性基が生成されることとなる。
この酸化により極性基が生成されることの高湿流れに対する影響は、次の2通りの作用が考えられる。
The present inventors inferred the mechanism by which the above two phenomena occur as follows. The above two phenomenon occurrence mechanisms will be described with reference to FIGS.
FIG. 1 is a schematic explanatory diagram for explaining the phenomenon A, and shows the relationship between the amount of adsorbed material adsorbed on the outermost surface of the electrophotographic photoreceptor and the generation of a high-humidity flow. When the amount of adsorbed substances such as moisture and charged products exceeds the threshold for generating a high-humidity flow, a high-humidity flow is generated on the image.
First, at the initial stage before image output, there is little adsorbed material on the outermost surface of the electrophotographic photoreceptor.
Next, a state after image output in which image output is repeatedly performed will be considered. In this state, the surface layer of the electrophotographic photoreceptor is oxidized mainly by the influence of charging, and a polar group is generated on the outermost surface.
The following two effects can be considered as the influence of the generation of polar groups by this oxidation on the high-humidity flow.

まず第1に、極性基それ自体が水分の吸着量を増大させることにより、表面の低抵抗化を起こしやすくする作用である。第2に、極性基が生成されることにより、帯電生成物が吸着しやすい表面へと変化させる作用である。帯電生成物は水分を吸着することで、表面の低抵抗化をより促進すると考えられている。
従って結果として上記の2つの相乗的な作用により、水分や帯電生成物等の吸着物質が増加し、高湿流れを発生しやすい状況を作り出すものと考えられる。
First, the polar group itself has the effect of facilitating the reduction of the surface resistance by increasing the amount of moisture adsorbed. Second, by generating polar groups, the surface is changed to a surface on which charged products are easily adsorbed. It is considered that the charged product further promotes lowering the resistance of the surface by adsorbing moisture.
Therefore, as a result, the two synergistic actions described above are considered to increase the amount of adsorbed substances such as moisture and charged products, and create a situation where high humidity flow is likely to occur.

次に、この状態で、電子写真用感光体を電子写真装置内に放置した場合を考える。放置時に帯電器に対面している領域では、帯電器周辺に多量の帯電生成物が存在していることに加え、酸化により帯電生成物が吸着しやすくなっているため、結果として表面には大量の帯電生成物が吸着することとなる。その結果、帯電生成物、水分からなる吸着物質量が閾値を超えてしまい、高湿流れが発生すると考えられる。
一方、放置時に帯電器に対面していない領域では、酸化によって水分や帯電生成物の吸着性が増大しているものの、付着すべき帯電生成物の存在量が少ないため、吸着物質量が閾値を超えるまでには至らない。
以上の結果、放置時に帯電器に対面した部分だけが高湿流れを起こす、上記の「帯電器下流れ」を発生させるものと考えられる。
Next, consider the case where the electrophotographic photoreceptor is left in the electrophotographic apparatus in this state. In the area facing the charger when left unattended, in addition to the presence of a large amount of charged products around the charger, the charged products are easily adsorbed by oxidation, resulting in a large amount on the surface. The charged product will be adsorbed. As a result, it is considered that the amount of the adsorbed substance composed of the charged product and moisture exceeds the threshold value and a high-humidity flow is generated.
On the other hand, in the area that is not facing the charger when left unattended, the adsorption of moisture and charged products has increased due to oxidation, but the amount of adsorbed substance has a threshold value because the amount of charged products to be adhered is small. It does not lead to exceeding.
As a result of the above, it is considered that only the portion facing the charger when left standing causes a high-humidity flow to generate the “flow under the charger”.

図2は、Bの現象を説明するための模式的な説明図であり、図1と同様に電子写真用感光体最表面に吸着した吸着物質の量と高湿流れ発生の関係を示したものである。図1との相違は、図1に示した場合よりも長期にわたって画像形成を繰り返した状況を示している点である。
a−SiC表面層最表面が長期間にわたり繰り返し行われてきた帯電の影響により図1の場合に比べて酸化が更に進行し、帯電生成物や水分に対する吸着性が更に増加する。
そのため、帯電生成物が多量に存在する放置時に帯電器に対面する部分はもとより、もともと帯電生成物の少ない放置時に帯電器に対面しない部分であっても、主に水分の吸着量の増加により、吸着物質量が閾値を超えてしまうことになる。結果として、放置時に帯電器に対面していない領域でも高湿流れが発生すると考えられる。
以上のように、高湿流れには「帯電器下流れ」と「耐久流れ」の2つの要素があることが明らかとなったが、上記のようにその原因はどちらも高湿流れの原因となる水分、帯電生成物の吸着量の増大であるということができる。
特に、極端な高温高湿環境においては、主に「帯電器下流れ」による高湿流れの発生が顕著である。
よって、帯電器下流れ及び耐久流れを両方とも抑制するためには、吸着物質の吸着性を左右するa−SiC表面層の酸化を抑制することが極めて重要であることが解った。
また、電子写真用感光体を用いた電子写真装置において、前記電子写真用感光体に対向するコロナ帯電器の開口部を遮蔽する遮蔽部材を設けることにより、高湿流れに対して更なる大きな効果が得られる。
このような構成にすることによって、帯電器下流れの1原因である帯電生成物が多量に発生した場合でも、電子写真プロセス終了時に帯電器と電子写真用感光体の間に遮蔽部材を設けることで、帯電生成物の電子写真用感光体表面への付着抑制が可能となる。
しかし、電子写真プロセス終了時にコロナ帯電器と電子写真用感光体の間に遮蔽部材を設ける構成は遮蔽部材が電子写真用感光体に接触し、電子写真用感光体に弊害を及ぼす場合があった。
FIG. 2 is a schematic explanatory diagram for explaining the phenomenon B, and shows the relationship between the amount of adsorbed material adsorbed on the outermost surface of the electrophotographic photoreceptor and the generation of high-humidity flow as in FIG. It is. The difference from FIG. 1 is that the image formation is repeated over a longer period than the case shown in FIG.
Oxidation further proceeds as compared with the case of FIG. 1 due to the influence of charging that has been repeatedly performed on the outermost surface of the a-SiC surface layer over a long period of time, and the adsorptivity to the charged product and moisture further increases.
Therefore, not only the part that faces the charger when left with a large amount of charged product, but also the part that does not face the charger when left with little charged product, mainly due to the increased amount of moisture adsorbed, The amount of adsorbed substance will exceed the threshold value. As a result, it is considered that a high-humidity flow is generated even in a region that does not face the charger when left standing.
As described above, it has been clarified that the high-humidity flow has two elements, “under-charger flow” and “endurance flow”. It can be said that this is an increase in the amount of adsorbed moisture and charged products.
In particular, in an extremely high temperature and high humidity environment, generation of a high humidity flow mainly due to the “flow under the charger” is remarkable.
Therefore, in order to suppress both the flow under the charger and the durable flow, it has been found that it is extremely important to suppress the oxidation of the a-SiC surface layer that affects the adsorptivity of the adsorbed substance.
Further, in the electrophotographic apparatus using the electrophotographic photosensitive member, by providing a shielding member that shields the opening portion of the corona charger facing the electrophotographic photosensitive member, a further great effect on the high humidity flow is provided. Is obtained.
By adopting such a configuration, even when a large amount of charged product that is one cause of the flow under the charger is generated, a shielding member is provided between the charger and the electrophotographic photoreceptor at the end of the electrophotographic process. Thus, it is possible to suppress adhesion of the charged product to the surface of the electrophotographic photoreceptor.
However, the configuration in which the shielding member is provided between the corona charger and the electrophotographic photosensitive member at the end of the electrophotographic process may have a negative effect on the electrophotographic photosensitive member because the shielding member contacts the electrophotographic photosensitive member. .

このような構成の場合、遮蔽部材が開閉移動を行う毎に電子写真用感光体と摺擦する場合があり、電子写真用感光体表面にスジ状の傷が発生し良好な画像が得られない場合がある。また、感光体との摺擦により遮蔽部材に付着した帯電成生物を感光体表面に付着させてしまう場合がある。これらを避けるためには、遮蔽部材周辺の機構の精度をより高めることや、遮蔽部材と電子写真用感光体との隙間を大きくする等が考えられる。しかしながら、遮蔽部材周辺の機構の精度をより高めるためには、使用する材料や構造等が限定される場合が多い。そのため、設計の自由度を狭めたり、コストの増加を伴なってしまう場合がある。また、遮蔽部材と電子写真用感光体との隙間を大きくする場合には装置のコンパクト化の障害になる場合がある。また、コロナ帯電器と電子写真感光体との距離が離れ、帯電性が低下してしまう場合がある。   In such a configuration, the shielding member may rub against the electrophotographic photosensitive member every time the opening and closing movement is performed, and streaky scratches are generated on the surface of the electrophotographic photosensitive member, and a good image cannot be obtained. There is a case. In addition, the charged adult product attached to the shielding member may be attached to the surface of the photosensitive member due to rubbing with the photosensitive member. In order to avoid these problems, it is conceivable to increase the accuracy of the mechanism around the shielding member or to increase the gap between the shielding member and the electrophotographic photoreceptor. However, in order to further improve the accuracy of the mechanism around the shielding member, the materials and structures used are often limited. For this reason, the degree of freedom in design may be reduced or the cost may be increased. Further, when the gap between the shielding member and the electrophotographic photosensitive member is increased, it may be an obstacle to downsizing the apparatus. In addition, the distance between the corona charger and the electrophotographic photosensitive member may be increased, and the chargeability may be reduced.

以上のように、電子写真用感光体に関しては、a−SiC表面層の酸化を抑制することにより、帯電生成物や水分等に対する吸着量を抑制することが求められている。また、上述したような遮蔽部材による電子写真用感光体表面の摺擦が生じても弊害が生じ難いことが求められている。
このような要求に応えることができると、a−SiC表面層の酸化層や吸着物質を除去するために磨耗量を増加させる必要がないため、耐摩耗性を向上させることが可能となる。
また、感光体ヒーターによってa−SiC表面層の吸着物質を低減する必要がなくなるため、感光体ヒーターが不要となり、消費電力の低減が可能となる。
As described above, regarding electrophotographic photoreceptors, it is required to suppress the amount of adsorption of charged products, moisture, and the like by suppressing oxidation of the a-SiC surface layer. Further, it is demanded that even if the surface of the electrophotographic photosensitive member is rubbed by the shielding member as described above, no adverse effect is caused.
If such a requirement can be met, it is not necessary to increase the amount of wear in order to remove the oxide layer and the adsorbed substance on the a-SiC surface layer, so that the wear resistance can be improved.
Further, since it is not necessary to reduce the adsorbed material on the a-SiC surface layer by the photoconductor heater, the photoconductor heater becomes unnecessary, and the power consumption can be reduced.

そこで、本発明の目的としては、a−SiC表面層のコロナ帯電による酸化を抑制することにより従来に比べ吸着物質の付着を低減し更に、耐磨耗性、機械的強度に優れた電子写真用感光体を提供することにある。
更に、コロナ帯電器を電子写真用感光体に近接させて設けたとしても、遮蔽部材の開閉移動に伴う電子写真用感光体への弊害を低減することができる電子写真装置を提供することにある。
これにより、高湿流れ、耐磨耗性及び省エネルギー性の全てに優れた電子写真装置を提供することにある。
Therefore, the object of the present invention is to reduce the adhesion of adsorbed materials by suppressing the oxidation due to corona charging of the a-SiC surface layer, and further, for electrophotography having excellent wear resistance and mechanical strength. The object is to provide a photoreceptor.
It is another object of the present invention to provide an electrophotographic apparatus that can reduce adverse effects on the electrophotographic photosensitive member due to opening / closing movement of the shielding member even if the corona charger is provided close to the electrophotographic photosensitive member. .
Accordingly, an object of the present invention is to provide an electrophotographic apparatus that is excellent in all of high humidity flow, wear resistance, and energy saving.

上記目的を達成すべく鋭意検討を行った結果、電子写真用感光体に対向するコロナ帯電器の開口部を遮蔽する遮蔽部材を設けることにより、帯電生成物の電子写真用感光体表面への付着抑制が可能となることを確認した。
同時に電子写真用感光体のa−SiC表面層を構成するケイ素原子及び炭素原子に対する炭素原子の比を所定の範囲内とする。
更にケイ素原子及び炭素原子の原子密度の和を所定の値より大きくすることにより、上述した課題に対して大きな効果があることを見出し、本発明を完成させるに至ったものである。
即ち本発明は、少なくとも電子写真用感光体と、前記電子写真用感光体に対向する開口部を有するコロナ帯電器を有し、
前記コロナ帯電器は、前記開口部の長手方向に遮蔽可能なシート状の遮蔽部材と、長手方向に前記遮蔽部材を巻き取る機構を有する電子写真装置であって、
前記電子写真用感光体は、少なくとも基体の表面に、水素化アモルファスシリコンで形成された光導電層及び、水素化アモルファスシリコンカーバイドで形成された表面層を順次形成したものであり、
前記表面層は、ケイ素原子の原子密度と炭素原子の原子密度の和が6.60×1022原子/cm以上であり、更に、ケイ素原子の原子数と炭素原子の原子数の和に対する炭素原子の原子数の比が0.61以上0.75以下であることを特徴とする。
As a result of diligent studies to achieve the above object, by providing a shielding member that shields the opening of the corona charger facing the electrophotographic photoreceptor, the charged product adheres to the surface of the electrophotographic photoreceptor. It was confirmed that suppression was possible.
At the same time, the ratio of carbon atoms to silicon atoms and carbon atoms constituting the a-SiC surface layer of the electrophotographic photoreceptor is set within a predetermined range.
Furthermore, by making the sum of the atomic densities of silicon atoms and carbon atoms larger than a predetermined value, it has been found that there is a significant effect on the above-described problems, and the present invention has been completed.
That is, the present invention comprises a corona charger having at least an electrophotographic photoreceptor and an opening facing the electrophotographic photoreceptor,
The corona charger is an electrophotographic apparatus having a sheet-like shielding member capable of shielding in the longitudinal direction of the opening, and a mechanism for winding the shielding member in the longitudinal direction,
The electrophotographic photoreceptor is one in which a photoconductive layer formed of hydrogenated amorphous silicon and a surface layer formed of hydrogenated amorphous silicon carbide are sequentially formed on at least the surface of the substrate.
In the surface layer, the sum of the atomic density of silicon atoms and the atomic density of carbon atoms is 6.60 × 10 22 atoms / cm 3 or more, and carbon relative to the sum of the number of silicon atoms and the number of carbon atoms. The ratio of the number of atoms is from 0.61 to 0.75.

本発明における電子写真装置によれば、電子写真用感光体のa−SiC表面層は原子密度が高いため、コロナ放電の帯電手段による表面層の酸化反応を抑制することが可能となる。
そのため、電子写真用感光体最表面での極性基の生成を抑制でき、水分や帯電生成物等の吸着が低減し、高湿流れの抑制が可能となる。
同時に、表面層の膜構造を形成する骨格原子の結合力が向上するので、従来のa−SiC表面層に比べ、高硬度なa−SiC表面層が得られ、耐磨耗性や機械的強度も向上する。
また、本発明においては、コロナ帯電器の開口部をシート状部材で遮蔽可能な構成としている。これにより、コロナ帯電器で生成された帯電生成物が電子写真装置停止時に電子写真感光体表面へ付着することが抑制される。この結果、高湿流れが抑制される。
そして本発明では、遮蔽部材をシート状部材で構成しているため、遮蔽部材が電子写真感光体表面を摺擦しても電子写真感光体に及ぼす弊害が小さい。
更には、本発明に用いる電子写真感光体は上述したように、耐磨耗性や機械的強度が高く、帯電生成物等の吸着が低減されているので、遮蔽部材が表面を摺擦しても電子写真感光体に及ぼす弊害が低減される。
このように、本発明によれば、高湿流れの抑制、耐磨耗性、機械的強度の向上及び省エネルギー性の向上に優れた電子写真装置を提供可能となる。
According to the electrophotographic apparatus of the present invention, since the a-SiC surface layer of the electrophotographic photoreceptor has a high atomic density, the oxidation reaction of the surface layer by the charging means for corona discharge can be suppressed.
Therefore, the generation of polar groups on the outermost surface of the electrophotographic photoreceptor can be suppressed, the adsorption of moisture and charged products is reduced, and the high-humidity flow can be suppressed.
At the same time, since the bonding force of the skeleton atoms forming the film structure of the surface layer is improved, an a-SiC surface layer that is harder than the conventional a-SiC surface layer is obtained, and wear resistance and mechanical strength are obtained. Will also improve.
Moreover, in this invention, it is set as the structure which can shield the opening part of a corona charger with a sheet-like member. As a result, the charged product generated by the corona charger is prevented from adhering to the surface of the electrophotographic photosensitive member when the electrophotographic apparatus is stopped. As a result, the high humidity flow is suppressed.
In the present invention, since the shielding member is composed of a sheet-like member, even if the shielding member rubs the surface of the electrophotographic photosensitive member, the adverse effect on the electrophotographic photosensitive member is small.
Furthermore, as described above, the electrophotographic photosensitive member used in the present invention has high wear resistance and mechanical strength and reduced adsorption of charged products, etc., so that the shielding member rubs the surface. Also, adverse effects on the electrophotographic photosensitive member are reduced.
As described above, according to the present invention, it is possible to provide an electrophotographic apparatus that is excellent in suppressing high-humidity flow, wear resistance, mechanical strength, and energy saving.

現象A(帯電器下流れ)を説明するための模式的な説明図である。FIG. 6 is a schematic explanatory diagram for explaining a phenomenon A (flow under the charger). 現象B(耐久流れ)を説明するための模式的な説明図である。It is a typical explanatory view for explaining phenomenon B (endurance flow). 本発明の電子写真用感光体の作製に用いられるプラズマCVD装置の一例の模式図である。It is a schematic diagram of an example of the plasma CVD apparatus used for preparation of the electrophotographic photoreceptor of the present invention. (a)コロナ帯電器の開口部が開口した状態を示す概略断面図である。(b)コロナ帯電器の開口部を遮蔽した状態を示す概略断面図である。(A) It is a schematic sectional drawing which shows the state which the opening part of the corona charger opened. (B) It is a schematic sectional drawing which shows the state which shielded the opening part of the corona charger. 従来のプラス帯電用a-Si感光体の層構成に示す模式的概略断面図である。FIG. 6 is a schematic cross-sectional view showing a layer structure of a conventional positive charging a-Si photoconductor. 実施例で用いた電子写真装置の概略断面図である。It is a schematic sectional drawing of the electrophotographic apparatus used in the Example.

本発明の実施の形態について図面を用いて詳細に説明する。
本発明で用いられる電子写真感光体は、少なくとも基体の表面に、水素化アモルファスシリコン(a−Si)で形成された光導電層及び、水素化アモルファスシリコンカーバイド(a−SiC)で形成された表面層を順次形成したものである。そして、本発明では、a−SiC表面層のケイ素原子の原子密度と炭素原子の原子密度の和に対する炭素原子の原子密度の比が0.61以上0.75以下の範囲で、a−SiC表面層のケイ素原子の原子密度と炭素原子の原子密度の和を6.60×1022原子/cm以上にすることを特徴としている。
a−SiC表面層のケイ素原子の原子密度と炭素原子の原子密度の和を6.60×1022原子/cm以上とすることにより、高湿流れ抑制及び耐磨耗性の向上に大きな効果が得られる。この理由を以下に示す。
Embodiments of the present invention will be described in detail with reference to the drawings.
The electrophotographic photoreceptor used in the present invention has a photoconductive layer formed of hydrogenated amorphous silicon (a-Si) and a surface formed of hydrogenated amorphous silicon carbide (a-SiC) at least on the surface of the substrate. The layers are sequentially formed. In the present invention, the ratio of the atomic density of carbon atoms to the sum of the atomic density of silicon atoms and the atomic density of carbon atoms in the a-SiC surface layer is in the range of 0.61 to 0.75, and the a-SiC surface The sum of the atomic density of silicon atoms and the atomic density of carbon atoms in the layer is 6.60 × 10 22 atoms / cm 3 or more.
By making the sum of the atomic density of silicon atoms and the atomic density of carbon atoms in the a-SiC surface layer equal to or greater than 6.60 × 10 22 atoms / cm 3 , it is highly effective in suppressing high-humidity flow and improving wear resistance. Is obtained. The reason is shown below.

a−SiC表面層を構成するケイ素原子及び炭素原子の原子密度を高くすることにより、ケイ素原子と炭素原子との結合を切れにくくすること、及び空間率が低減するため炭素原子と酸化物質との反応確率を低減させることが可能になると考えられる。
これは、a−SiCの酸化反応が、炭素原子の酸化及び脱離によりケイ素原子と炭素原子との結合が切断され、新たに生成したSiのダングリングボンドに酸化物質が反応することによって生じるためである。
電子写真プロセスにおいては、帯電工程により生成したイオン種と炭素原子との反応により、炭素原子の酸化及び脱離が生じると考えられる。
よって、炭素原子の酸化をできるだけ抑制することによりケイ素原子の酸化が抑制され、高湿流れが抑制可能になると考えられる。
そのためには、ケイ素原子と炭素原子との結合を切れにくくするか、若しくは、炭素原子の酸化を抑制するために反応確率を下げることが必要である。
これを実現するためには、各原子間距離の短縮及び空間率の低減が必要であると考えられる。
By increasing the atomic density of silicon atoms and carbon atoms constituting the a-SiC surface layer, it is difficult to break the bond between silicon atoms and carbon atoms, and the space ratio is reduced, so It is considered that the reaction probability can be reduced.
This is because the a-SiC oxidation reaction occurs when the bond between the silicon atom and the carbon atom is broken by the oxidation and desorption of the carbon atom, and the oxidizing substance reacts with the newly formed dangling bond of Si. It is.
In the electrophotographic process, it is considered that oxidation and desorption of carbon atoms occur due to the reaction between ionic species generated in the charging step and carbon atoms.
Therefore, it is considered that the oxidation of silicon atoms is suppressed by suppressing the oxidation of carbon atoms as much as possible, and the high-humidity flow can be suppressed.
For this purpose, it is necessary to make the bond between the silicon atom and the carbon atom difficult to break, or to reduce the reaction probability in order to suppress the oxidation of the carbon atom.
In order to realize this, it is considered necessary to shorten the distance between each atom and the space ratio.

よって、a−SiC表面層を構成するケイ素原子及び炭素原子の原子密度を高くすることにより各原子間距離の短縮及び空間率の低減が可能となるため、a−SiC表面層最表面での極性基の生成を抑制することが可能となると考えられる。この結果、高湿流れの抑制が可能となる。更に、表面層の構成原子の結合力が高くなるため、高硬度な表面層が得られ、その結果、耐磨耗性も向上すると推察される。
そのため、a−SiC表面層のケイ素原子の原子密度と炭素原子の原子密度の和が高い方がより好ましく、6.81×1022原子/cm以上にすることで、更に、高湿流れ抑制と耐磨耗性の向上に大きな効果が得られる。a−SiCにおいては、上記組成範囲のSiC結晶が最も高密度化した状態である13.0×1022原子/cmが、ケイ素原子の原子密度と炭素原子の原子密度の和の上限となる。
Therefore, by increasing the atomic density of silicon atoms and carbon atoms constituting the a-SiC surface layer, it is possible to shorten the distance between each atom and to reduce the space ratio. Therefore, the polarity at the outermost surface of the a-SiC surface layer It is considered that the production of the group can be suppressed. As a result, the high humidity flow can be suppressed. Furthermore, since the bonding force of the constituent atoms of the surface layer is increased, a surface layer having a high hardness is obtained, and as a result, it is presumed that the wear resistance is also improved.
Therefore, it is more preferable that the sum of the atomic density of silicon atoms and the atomic density of carbon atoms in the a-SiC surface layer is higher, and by controlling the density to 6.81 × 10 22 atoms / cm 3 or more, further suppressing high-humidity flow. Great effect on improving wear resistance. In a-SiC, 13.0 × 10 22 atoms / cm 3 , which is the most dense state of SiC crystals in the above composition range, is the upper limit of the sum of the atomic density of silicon atoms and the atomic density of carbon atoms. .

ケイ素原子の原子密度と炭素原子の原子密度の和を上記範囲とし、且つ、a−SiC表面層のケイ素原子の原子密度と炭素原子の原子密度の和に対する炭素原子の原子密度の比を0.61以上0.75以下の組成範囲とすることが、優れた電子写真用感光体特性を得る上では必要である。
a−SiC表面層において、ケイ素原子の原子密度と炭素原子の原子密度の和に対する炭素原子の原子密度の比を0.61よりも小さくすると、特に、原子密度の高いa−SiCを作製した場合、a−SiCの抵抗が低下する場合がある。
このような場合、静電潜像形成時にキャリアが表面層中で横流れを生じやすくなる。そのため、静電潜像として孤立ドットを形成した場合に、表面層中でのキャリアの横流れにより孤立ドットが小さくなる。その結果、出力された画像において、特に、低濃度側での画像濃度が低下してしまうために、階調性の低下を生じる場合がある。
このような理由により、原子密度の高いa−SiC表面層においては、ケイ素原子の原子密度と炭素原子の原子密度の和に対する炭素原子の原子密度の比を0.61以上にする必要がある。
The sum of the atomic density of silicon atoms and the atomic density of carbon atoms is in the above range, and the ratio of the atomic density of carbon atoms to the sum of the atomic density of silicon atoms and the atomic density of carbon atoms in the a-SiC surface layer is 0.00. A composition range of 61 or more and 0.75 or less is necessary in order to obtain excellent electrophotographic photoreceptor characteristics.
When the ratio of the atomic density of carbon atoms to the sum of the atomic density of silicon atoms and the atomic density of carbon atoms is made smaller than 0.61 in the a-SiC surface layer, particularly when a-SiC having a high atomic density is produced. The resistance of a-SiC may decrease.
In such a case, the carrier tends to cause a lateral flow in the surface layer when forming the electrostatic latent image. Therefore, when an isolated dot is formed as an electrostatic latent image, the isolated dot becomes smaller due to the lateral flow of carriers in the surface layer. As a result, in the output image, particularly, the image density on the low density side is lowered, so that gradation may be lowered.
For this reason, in the a-SiC surface layer having a high atomic density, the ratio of the atomic density of carbon atoms to the sum of the atomic density of silicon atoms and the atomic density of carbon atoms needs to be 0.61 or more.

また、ケイ素原子の原子密度と炭素原子の原子密度の和に対する炭素原子の原子密度の比を0.75より大きくすると、特に、原子密度の高いa−SiCを作製した場合、a−SiC表面層での光吸収が急激に増加する場合がある。
このような場合、静電潜像形成時に必要となる像露光光量が多くなり、感度が極端に低下してしまう。また、a−SiC表面層の磨耗量に対する感度変動が大きくなることから、電子写真用感光体に削れムラが生じた場合に、画像濃度ムラが生じる場合がある。
このような理由により、原子密度の高いa−SiC表面層においては、ケイ素原子の原子密度と炭素原子の原子密度の和に対する炭素原子の原子密度の比を0.75以下にする必要がある。
以上の理由により、実用上好ましい電子写真用感光体特性を維持しつつ、a−SiC表面層の耐酸化性を向上させて高湿流れを抑制するためには、a−SiC表面層のケイ素原子の原子密度と炭素原子の原子密度の和を6.60×1022原子/cm以上、且つ、a−SiC表面層のケイ素原子の原子密度と炭素原子の原子密度の和に対する炭素原子の原子密度の比が0.61以上0.75以下の組成範囲とする必要がある。
Further, when the ratio of the atomic density of carbon atoms to the sum of the atomic density of silicon atoms and the atomic density of carbon atoms is made larger than 0.75, particularly when an a-SiC having a high atomic density is produced, the a-SiC surface layer In some cases, the light absorption at the abruptly increases.
In such a case, the amount of image exposure necessary for forming the electrostatic latent image increases, and the sensitivity is extremely lowered. In addition, since the sensitivity fluctuation with respect to the wear amount of the a-SiC surface layer becomes large, when the electrophotographic photosensitive member is shaved and uneven, image density unevenness may occur.
For this reason, in the a-SiC surface layer having a high atomic density, the ratio of the atomic density of carbon atoms to the sum of the atomic density of silicon atoms and the atomic density of carbon atoms needs to be 0.75 or less.
For the above reason, in order to improve the oxidation resistance of the a-SiC surface layer and suppress the high-humidity flow while maintaining the practically preferable electrophotographic photoreceptor characteristics, silicon atoms in the a-SiC surface layer are used. Atoms of carbon atoms with respect to the sum of the atomic density of silicon atoms and the atomic density of carbon atoms in the a-SiC surface layer is 6.60 × 10 22 atoms / cm 3 or more. The density ratio needs to be in the composition range of 0.61 to 0.75.

また、本発明において、ケイ素原子の原子密度、炭素原子の原子密度及び水素原子の原子密度の和に対する水素原子の原子数の比(以下、「H原子比」とも称する。)を0.30以上0.45以下にすることが好ましい。これにより、電子写真用感光体特性が良好、且つ、更なる高湿流れ抑制及び耐磨耗性に優れた電子写真用感光体が得られる。
原子密度の高いa−SiC表面層において、光学的バンドギャップが狭くなり、光吸収が増加することにより感度が低下する場合がある。しかしながら、H原子比を0.30以上含有させることで光学的バンドギャップが広がり、感度の良化が図れる。よって、H原子比を0.30以上とすることが好ましい。
In the present invention, the ratio of the number of hydrogen atoms to the sum of the atomic density of silicon atoms, the atomic density of carbon atoms and the atomic density of hydrogen atoms (hereinafter also referred to as “H atomic ratio”) is 0.30 or more. It is preferable to make it 0.45 or less. As a result, an electrophotographic photoreceptor having good electrophotographic photoreceptor characteristics and further excellent high-humidity flow suppression and wear resistance can be obtained.
In an a-SiC surface layer having a high atomic density, the optical band gap is narrowed, and the light absorption increases, so that the sensitivity may decrease. However, when the H atomic ratio is 0.30 or more, the optical band gap is widened, and the sensitivity can be improved. Therefore, the H atomic ratio is preferably set to 0.30 or more.

一方、H原子比を0.45より多くすると、a−SiC表面層中には、メチル基のような水素原子の多い終端基が増加する傾向がみられる。メチル基のような複数の水素原子を有する終端基がa−SiC表面層中に存在すると、a−SiCの構造中に大きな空間を形成するとともに、周囲に存在する原子間の結合にひずみを生じさせる。このような構造上弱い部分は、酸化に対して非常に弱い部分となってしまうと考えられる。
また、水素原子をa−SiC表面層中に多量に含有させると、a−SiC表面層における骨格原子であるケイ素原子と炭素原子のネットワーク化の促進が図りづらくなる。
このような理由により、H原子比を0.45以下とすることで、a−SiC表面層における骨格原子であるケイ素原子と炭素原子のネットワーク化の促進及び原子間の結合に生じていたひずみの低減が可能となると考えられる。その結果、更にa−SiC表面層の酸化が抑制され、かつ耐磨耗性も良好となる。
よって、原子密度の高いa−SiC表面層においては、H原子比を0.30以上0.45以下にすることにより、電子写真用感光体特性が良好で、且つ、更なる高湿流れ及び耐磨耗性の向上が可能となる。
On the other hand, when the H atom ratio is larger than 0.45, there is a tendency that terminal groups with many hydrogen atoms such as methyl groups increase in the a-SiC surface layer. When a terminal group having a plurality of hydrogen atoms such as a methyl group is present in the a-SiC surface layer, a large space is formed in the structure of the a-SiC, and a bond between adjacent atoms is distorted. Let Such a structurally weak part is considered to be a very weak part against oxidation.
Further, when a large amount of hydrogen atoms are contained in the a-SiC surface layer, it becomes difficult to promote networking of silicon atoms and carbon atoms, which are skeleton atoms in the a-SiC surface layer.
For these reasons, by setting the H atom ratio to 0.45 or less, the networking of silicon atoms and carbon atoms, which are skeleton atoms, in the a-SiC surface layer is promoted, and the strain generated in the bonds between the atoms is reduced. It is thought that reduction is possible. As a result, the oxidation of the a-SiC surface layer is further suppressed, and the wear resistance is improved.
Therefore, in the a-SiC surface layer having a high atomic density, by setting the H atomic ratio to 0.30 or more and 0.45 or less, the electrophotographic photoreceptor characteristics are good, and further high humidity flow and resistance Abrasion can be improved.

また、a−SiC表面層のラマンスペクトルにおける1480cm−1のピーク強度Iに対する1390cm−1のピーク強度Iの比を、0.20以上0.70以下にすることにより、更に高湿流れ及び耐磨耗性の向上に大きな効果が得られる。
まず、a−SiC表面層のラマンスペクトルについて、ダイヤモンドライクカーボン(以下、「DLC」とも称する)と比較しながら説明する。
sp構造とsp構造から形成されているDLCのラマンスペクトルは、1540cm-1付近に主ピークを持ち、1390cm-1付近にショルダーバンドを有する非対称なラマンスペクトルが観察される。RF-CVD法で作製されたa−SiC表面層では、1480cm-1付近に主ピークを持ち、1390cm-1付近にショルダーバンドを有するDLCに類似したラマンスペクトルが観察される。a−SiC表面層の主ピークがDLCよりも低波数側にシフトしているのは、a−SiC表面層にはケイ素原子が含まれているためである。このことから、RF-CVD法で作製されたa−SiC表面層は、DLCに非常に近い構造を有する材料であることが分かる。
一般的に、DLCのラマンスペクトルにおいて、高波数バンドのピーク強度に対する低波数バンドのピーク強度の比が小さいほど、DLCのsp性が高い傾向があることが知られている。よって、a−SiC表面層においても、DLCと非常に近い構造であることから、高波数バンドのピーク強度に対する低波数バンドのピーク強度の比が小さいほど、sp性が高い傾向を示すと考えられる。
Further, the ratio of the peak intensity I D of 1390 cm -1 to the peak intensity I G of 1480 cm -1 in the Raman spectrum of the a-SiC surface layer, by 0.20 to 0.70, further high humidity flows and A great effect is obtained in improving the wear resistance.
First, the Raman spectrum of the a-SiC surface layer will be described in comparison with diamond-like carbon (hereinafter also referred to as “DLC”).
Raman spectra of DLC formed of sp 3 structure and sp 2 structure has a main peak near 1540 cm -1, asymmetrical Raman spectrum having a shoulder band is observed around 1390 cm -1. The RF-CVD method a-SiC surface layer made of, has a main peak near 1480 cm -1, the Raman spectrum similar to the DLC having a shoulder band around 1390 cm -1 is observed. The main peak of the a-SiC surface layer is shifted to the lower wavenumber side than DLC because the a-SiC surface layer contains silicon atoms. From this, it can be seen that the a-SiC surface layer produced by the RF-CVD method is a material having a structure very close to DLC.
In general, it is known that in the Raman spectrum of DLC, the smaller the ratio of the peak intensity of the low wave number band to the peak intensity of the high wave number band, the higher the sp 3 property of DLC. Therefore, since the a-SiC surface layer has a structure very close to DLC, it is considered that the smaller the ratio of the peak intensity of the low wave number band to the peak intensity of the high wave number band, the higher the sp 3 property. It is done.

本発明の原子密度の高いa−SiC表面層において、a−SiC表面層のラマンスペクトルにおける1480cm−1のピーク強度Iに対する1390cm−1のピーク強度Iの比を0.70以下にすることにより、更なる耐磨耗性の向上に大きな効果が得られる。
この理由としては、sp性が向上すると、spの2次元のネットワーク数が減少し、spの3次元ネットワークが増加するため、骨格原子の結合数が増加し、強固な構造体が形成可能となるためだと考えている。
そのため、a−SiC表面層のラマンスペクトルにおける1480cm−1のピーク強度Iに対する1390cm−1のピーク強度Iの比が小さくい方がより好ましいが、量産レベルで作製されるa−SiC表面層では、完全にsp構造を取り除くことはできない。そのため、本発明において、a−SiC表面層のラマンスペクトルにおける1480cm−1のピーク強度Iに対する1390cm−1のピーク強度Iの比の下限値としては、本実施例で高湿流れ及び耐磨耗性の良好な範囲として確認された0.2とする。
At high a-SiC surface layer of atom density of the present invention, that the ratio of the peak intensity I D of 1390 cm -1 to the peak intensity I G of 1480 cm -1 in the Raman spectrum of the a-SiC surface layer to 0.70 or less Thus, a great effect can be obtained for further improvement of wear resistance.
The reason for this is that if the sp 3 property is improved, the number of sp 2 two-dimensional networks decreases and the number of sp 3 three-dimensional networks increases, so the number of skeletal atoms increases and a strong structure is formed. I think it is possible.
Therefore, it is more preferred ratio had decreased how the peak intensity I D of 1390 cm -1 to the peak intensity I G of 1480 cm -1 in the Raman spectrum of the a-SiC surface layer, a-SiC surface layer is made of a mass-production level Then, the sp 2 structure cannot be completely removed. Therefore, in the present invention, the lower limit of the ratio of the peak intensity I D of 1390 cm -1 to the peak intensity I G of 1480 cm -1 in the Raman spectrum of the a-SiC surface layer, the high-humidity image flow and耐磨in this embodiment It is set to 0.2, which has been confirmed as a good range of wear.

本発明の電子写真用感光体において、クリーニングブレードによる電子写真用感光体表面のクリーニング性の観点から、原子間力顕微鏡(AFM)により電子写真用感光体表面を10μm×10μmの範囲で測定したときに得られる微視的形状から求められる表面粗さRaは、10nm以上80nm以下の範囲が好ましく、10nm以上50nm以下の範囲がより好ましい。
また、同様にクリーニング性の観点から、AFMにより電子写真用感光体表面を10μm×10μmの範囲で測定したときに得られる微視的形状から求められる平均傾斜Δaは、0.10以上0.40以下の範囲が好ましい。
In the electrophotographic photoreceptor of the present invention, when the surface of the electrophotographic photoreceptor is measured in the range of 10 μm × 10 μm with an atomic force microscope (AFM) from the viewpoint of the cleaning property of the surface of the electrophotographic photoreceptor with a cleaning blade. The surface roughness Ra obtained from the microscopic shape obtained in the above is preferably in the range of 10 nm to 80 nm, and more preferably in the range of 10 nm to 50 nm.
Similarly, from the viewpoint of cleaning properties, the average inclination Δa obtained from the microscopic shape obtained when the surface of the electrophotographic photoreceptor is measured in the range of 10 μm × 10 μm by AFM is 0.10 or more and 0.40. The following ranges are preferred.

<本発明の電子写真用感光体を製造するための製造装置及び製造方法>
図3は本発明のa−Si系感光体を作製するための高周波電源を用いたRFプラズマCVD法による感光体の堆積装置の一例を模式的に示した図である。
この装置は大別すると、反応容器3110を有する堆積装置3100、原料ガス供給装置3200、及び、反応容器3110内を減圧する為の排気装置(図示せず)から構成されている。
堆積装置3100中の反応容器3110内にはアースに接続された導電性基体3112、導電性基体加熱用ヒーター3113、及び、原料ガス導入管3114が設置されている。更にカソード電極3111には高周波マッチングボックス3115を介して高周波電源3120が接続されている。
原料ガス供給装置3200は、SiH4,H2,CH4,NO,B26等の原料ガスボンベ3221〜3225、バルブ3231〜3235、圧力調整器3261〜3265、流入バルブ3241〜3245、流出バルブ3251〜3255及びマスフローコントローラ3211〜3215から構成されている。各原料ガスを封入したガスのボンベは補助バルブ3260を介して反応容器3110の中の原料ガス導入管3114に接続されている。
<Production apparatus and production method for producing the electrophotographic photoreceptor of the present invention>
FIG. 3 is a diagram schematically showing an example of an apparatus for depositing a photoconductor by the RF plasma CVD method using a high frequency power source for producing the a-Si type photoconductor of the present invention.
This apparatus is roughly composed of a deposition apparatus 3100 having a reaction vessel 3110, a source gas supply device 3200, and an exhaust device (not shown) for depressurizing the inside of the reaction vessel 3110.
In the reaction vessel 3110 in the deposition apparatus 3100, a conductive substrate 3112, a conductive substrate heating heater 3113, and a source gas introduction pipe 3114 connected to the ground are installed. Further, a high frequency power source 3120 is connected to the cathode electrode 3111 via a high frequency matching box 3115.
The source gas supply device 3200 includes source gas cylinders 3221 to 3225 such as SiH 4 , H 2 , CH 4 , NO, and B 2 H 6 , valves 3231 to 3235, pressure regulators 3261 to 3265, inflow valves 3241 to 3245, and outflow valves. 3251 to 3255 and mass flow controllers 3211 to 3215. A gas cylinder filled with each source gas is connected to a source gas introduction pipe 3114 in the reaction vessel 3110 via an auxiliary valve 3260.

次にこの装置を使った堆積膜の形成方法について説明する。まず、あらかじめ脱脂洗浄した導電性基体3112を反応容器3110に受け台3123を介して設置する。次に、排気装置(図示せず)を運転し、反応容器3110の中を排気する。真空計3119の表示を見ながら、反応容器3110の中の圧力がたとえば1Pa以下の所定の圧力になったところで、基体加熱用ヒーター3113に電力を供給し、導電性基体3112を例えば50℃から350℃の所望の温度に加熱する。このとき、原料ガス供給装置3200より、Ar、He等の不活性ガスを反応容器3110の中に供給して、不活性ガス雰囲気中で加熱を行うこともできる。
次に、ガス供給装置3200より堆積膜形成に用いるガスを反応容器3110に供給する。すなわち、必要に応じバルブ3231〜3235、流入バルブ3241〜3245、流出バルブ3251〜3255を開き、マスフローコントローラ3211〜3215に流量設定を行う。各マスフローコントローラの流量が安定したところで、真空計3119の表示を見ながらメインバルブ3118を操作し、反応容器3110内の圧力が所望の圧力になるように調整する。所望の圧力が得られたところで高周波電源3120より高周波電力を印加すると同時に高周波マッチングボックス3115を操作し、反応容器3110内にプラズマ放電を生起する。その後、速やかに高周波電力を所望の電力に調整し、堆積膜の形成を行う。
Next, a method for forming a deposited film using this apparatus will be described. First, a conductive substrate 3112 that has been degreased and washed in advance is placed in the reaction vessel 3110 via a cradle 3123. Next, an exhaust device (not shown) is operated to exhaust the reaction vessel 3110. While viewing the display of the vacuum gauge 3119, when the pressure in the reaction vessel 3110 reaches a predetermined pressure of, for example, 1 Pa or less, power is supplied to the heater 3113 for heating the substrate, and the conductive substrate 3112 is moved from 50 ° C. to 350 ° C., for example. Heat to the desired temperature of ° C. At this time, an inert gas such as Ar or He can be supplied from the source gas supply device 3200 into the reaction vessel 3110 and heated in an inert gas atmosphere.
Next, a gas used to form a deposited film is supplied from the gas supply device 3200 to the reaction vessel 3110. That is, if necessary, the valves 3231 to 3235, the inflow valves 3241 to 3245, and the outflow valves 3251 to 3255 are opened, and the flow rate is set in the mass flow controllers 3211 to 3215. When the flow rate of each mass flow controller is stabilized, the main valve 3118 is operated while viewing the display of the vacuum gauge 3119 to adjust the pressure in the reaction vessel 3110 to a desired pressure. When a desired pressure is obtained, high-frequency power is applied from the high-frequency power source 3120 and simultaneously the high-frequency matching box 3115 is operated to generate plasma discharge in the reaction vessel 3110. Thereafter, the high frequency power is quickly adjusted to a desired power, and a deposited film is formed.

所定の堆積膜の形成が終わったところで、高周波電力の印加を停止し、バルブ3231〜3235、流入バルブ3241〜3245、流出バルブ3251〜3255、及び補助バルブ3260を閉じ、原料ガスの供給を終える。同時に、メインバルブ3118を全開にし、反応容器3110内を1Pa以下の圧力まで排気する。
以上で、堆積層の形成を終えるが、複数の堆積層を形成する場合、再び上記の手順を繰り返してそれぞれの層を形成すれば良い。原料ガス流量や、圧力等を光導電層形成用の条件に一定の時間で変化させて、接合領域の形成を行うこともできる。
すべての堆積膜形成が終わったのち、メインバルブ3118を閉じ、反応容器3110内に不活性ガスを導入し大気圧に戻した後、導電性基体3112を取り出す。
When the formation of the predetermined deposited film is finished, the application of the high-frequency power is stopped, the valves 3231 to 3235, the inflow valves 3241 to 3245, the outflow valves 3251 to 3255, and the auxiliary valve 3260 are closed, and the supply of the raw material gas is finished. At the same time, the main valve 3118 is fully opened, and the reaction vessel 3110 is evacuated to a pressure of 1 Pa or less.
The formation of the deposited layers is completed as described above. When a plurality of deposited layers are formed, the above procedure is repeated again to form each layer. The bonding region can also be formed by changing the raw material gas flow rate, pressure, and the like to the conditions for forming the photoconductive layer in a certain time.
After all the deposited films are formed, the main valve 3118 is closed, an inert gas is introduced into the reaction vessel 3110 to return to atmospheric pressure, and then the conductive substrate 3112 is taken out.

本発明の電子写真用感光体は、従来周知の電子写真用感光体の表面層に比べてa−SiCを構成しているケイ素原子及び炭素原子の原子密度を上げて、原子密度の高い膜構造の表面層を形成している。上述したように、本発明の原子密度の高いa−SiC表面層を作製する場合には、表面層形成時の条件にもよるが、一般的に、反応容器に供給するガス量が少ない方が良く、高周波電力は高い方が良く、反応容器内の圧力が高い方が良く、更に、導電性基体の温度が高い方が良い。
まず、反応容器内に供給するガス量を減らし、且つ高周波電力を上げることにより、ガスの分解を促進させることができる。これにより、ケイ素原子供給源(例えば、SiH)よりも分解し難い炭素原子供給源(例えば、CH)を効率良く分解することができる。その結果、水素原子の少ない活性種が生成され、基体の表面に堆積した膜中の水素原子が減少するため原子密度の高いa−SiC表面層が形成可能となる。
The electrophotographic photoreceptor of the present invention is a film structure having a high atomic density by increasing the atomic density of silicon atoms and carbon atoms constituting a-SiC as compared with the surface layer of a conventionally known electrophotographic photoreceptor. The surface layer is formed. As described above, when the a-SiC surface layer having a high atomic density according to the present invention is produced, generally, the amount of gas supplied to the reaction vessel is smaller, although it depends on the conditions at the time of forming the surface layer. It is better that the high frequency power is higher, the pressure in the reaction vessel is higher, and the temperature of the conductive substrate is higher.
First, the gas decomposition can be promoted by reducing the amount of gas supplied into the reaction vessel and increasing the high-frequency power. Thereby, a carbon atom supply source (for example, CH 4 ) that is harder to decompose than a silicon atom supply source (for example, SiH 4 ) can be efficiently decomposed. As a result, active species having a small number of hydrogen atoms are generated, and the number of hydrogen atoms in the film deposited on the surface of the substrate is reduced, so that an a-SiC surface layer having a high atomic density can be formed.

また、反応容器内の圧力を高めることで、反応容器内に供給された原料ガスの滞留時間が長くなる、また、原料ガスの分解により生じた水素原子により弱結合水素の引き抜き反応が生じるために、ケイ素原子と炭素原子のネットワーク化が促進したためだと考えている。
更に、導電性基体の温度を上げることにより、導電性基体に到達した活性種の表面移動距離が長くなり、より安定した結合をつくることができる。その結果、a−SiC表面層として、より構造的に安定した配置に各原子が結合できると考えられる。
In addition, by increasing the pressure in the reaction vessel, the residence time of the raw material gas supplied into the reaction vessel becomes longer, and a weakly bonded hydrogen abstraction reaction occurs due to hydrogen atoms generated by the decomposition of the raw material gas. This is because the networking of silicon and carbon atoms has been promoted.
Furthermore, by increasing the temperature of the conductive substrate, the surface movement distance of the active species that has reached the conductive substrate becomes longer, and a more stable bond can be created. As a result, it is considered that each atom can be bonded to a more structurally stable arrangement as the a-SiC surface layer.

<本発明の電子写真用感光体を用いた電子写真装置>
図6を用いて、a−Si系電子写真用感光体を用いた電子写真装置による電子写真の形成方法を説明する。まず、感光体6001を回転させ、感光体表面を主帯電器6002により均一に帯電させる。その後、静電潜像手段6006により感光体表面に露光光を照射して、感光体表面に静電潜像を形成した後、現像器6012より供給されるトナーを用いて現像を行う。この結果、感光体表面にトナー像が形成される。そして、このトナー像を転写帯電器6004により転写材6010に転写し、感光体6001から転写材6010を分離した後、トナー像を転写材6010に定着させる。
一方、トナー像が転写された感光体表面に残留するトナーをクリーナー6009により除去し、その後、感光体表面を露光することにより感光体表面の静電潜像形成時の残キャリアを除電する。この一連のプロセスを繰り返すことで連続して画像形成が行われる。
図6に示す従来の電子写真装置であっても本発明の電子写真用感光体を搭載する事で、高湿流れの抑制、耐磨耗性において、従来の電子写真用感光体よりも大きな効果が得られる。
<Electrophotographic apparatus using electrophotographic photoreceptor of the present invention>
An electrophotographic forming method using an electrophotographic apparatus using an a-Si based electrophotographic photoreceptor will be described with reference to FIG. First, the photosensitive member 6001 is rotated, and the surface of the photosensitive member is uniformly charged by the main charger 6002. Thereafter, the electrostatic latent image means 6006 irradiates the surface of the photosensitive member with exposure light to form an electrostatic latent image on the surface of the photosensitive member, and then develops using toner supplied from the developing device 6012. As a result, a toner image is formed on the surface of the photoreceptor. The toner image is transferred to a transfer material 6010 by a transfer charger 6004, and the transfer material 6010 is separated from the photoreceptor 6001, and then the toner image is fixed to the transfer material 6010.
On the other hand, the toner remaining on the surface of the photoconductor to which the toner image has been transferred is removed by a cleaner 6009, and thereafter, the surface of the photoconductor is exposed to discharge the remaining carrier when forming the electrostatic latent image on the surface of the photoconductor. Image formation is continuously performed by repeating this series of processes.
Even in the conventional electrophotographic apparatus shown in FIG. 6, by mounting the electrophotographic photoreceptor of the present invention, it is more effective than the conventional electrophotographic photoreceptor in suppressing high-humidity flow and wear resistance. Is obtained.

しかしながら、絶対湿度の非常に高い環境においては、主に「帯電器下流れ」による高湿流れが発生する場合もある。
このような状況下では、本発明の電子写真用感光体を用いた電子写真装置において、前記電子写真用感光体に対向する帯電器の開口部を遮蔽可能な遮蔽部材を設けることにより、高湿流れに対して更なる大きな効果が得られる。
このような構成とすることで、帯電器下流れの1原因である帯電生成物が多量に発生した場合でも、電子写真プロセス終了時に帯電器と電子写真用感光体の間に遮蔽部材をいれることで、帯電生成物の電子写真用感光体表面への付着抑制が可能となる。
この結果、a−SiC表面層最表面での酸化抑制による吸着性の低下に加え、付着物質の低減が可能となるため、帯電生成物の生成が多い電子写真プロセスにおいても、高湿流れ抑制に更に大きな効果が得られる。
However, in an environment where the absolute humidity is very high, a high-humidity flow may occur mainly due to “flow under the charger”.
Under such circumstances, in the electrophotographic apparatus using the electrophotographic photoreceptor of the present invention, by providing a shielding member capable of shielding the opening of the charger facing the electrophotographic photoreceptor, high humidity is provided. An even greater effect on the flow is obtained.
By adopting such a configuration, even when a large amount of charged product that is one cause of the flow under the charger is generated, a shielding member can be inserted between the charger and the electrophotographic photoreceptor at the end of the electrophotographic process. Thus, it is possible to suppress adhesion of the charged product to the surface of the electrophotographic photoreceptor.
As a result, in addition to the decrease in adsorbability due to the suppression of oxidation at the outermost surface of the a-SiC surface layer, it is possible to reduce the amount of adhered substances, so even in an electrophotographic process in which a large amount of charged products are generated, high humidity flow can be suppressed. A greater effect can be obtained.

この電子写真用感光体に対向するコロナ帯電器の開口部を遮蔽する遮蔽手段を模式的な概略図で示した図4を用いて説明する。
図4(a)はコロナ帯電器の開口部が開口した状態を示し、図4(b)はコロナ帯電器の開口部を遮蔽部材により遮蔽した状態を示している。
このコロナ帯電器4111の開口部とはシールド4110で構成された開口のことを示し、コロナ帯電器4111による帯電領域Wに対応している。従って帯電領域Wは電子写真用感光体4101が帯電線4102のコロナ放電によって帯電され得る領域とほぼ一致する。
図4(a)は遮蔽部材4103が矢印のX方向に巻き取られることによりコロナ帯電器4111の開口部が開口された状態を示している。
コロナ帯電器4111は帯電線4102とシールド4110から構成され、開口部を電子写真用感光体4101に対向して配置される。
コロナ帯電器4111には、帯電線4102を清掃するための帯電線清掃部材4108が移動部材4107に設置されている。
この帯電線清掃部材4108は、駆動モーター4106により回転部材4109が回転することで、コロナ帯電器4111の長手方向に移動し帯電線4102を清掃する構成になっている。
移動部材4107には遮蔽部材4103が取り付けられており、駆動モーター4106と連動して、ガイドローラー4105で支持された遮蔽部材4103が巻き取り装置4104によって巻き取られる。巻き取り装置4104は、長手方向に遮蔽部材を巻き取る機構の一例である。
従って遮蔽部材4103は、コロナ放電がオンする画像形成動作時には、コロナ放電に影響を与えない退避位置まで、移動可能な構成になっている。
The shielding means for shielding the opening of the corona charger facing this electrophotographic photoreceptor will be described with reference to FIG. 4 which is a schematic diagram.
4A shows a state where the opening of the corona charger is opened, and FIG. 4B shows a state where the opening of the corona charger is shielded by a shielding member.
The opening of the corona charger 4111 indicates an opening formed by the shield 4110, and corresponds to the charging region W by the corona charger 4111. Accordingly, the charging region W substantially coincides with the region where the electrophotographic photoreceptor 4101 can be charged by the corona discharge of the charging wire 4102.
FIG. 4A shows a state where the opening of the corona charger 4111 is opened by winding the shielding member 4103 in the X direction indicated by the arrow.
The corona charger 4111 includes a charging wire 4102 and a shield 4110, and an opening is disposed to face the electrophotographic photoreceptor 4101.
In the corona charger 4111, a charging line cleaning member 4108 for cleaning the charging line 4102 is installed on the moving member 4107.
The charging wire cleaning member 4108 is configured to move in the longitudinal direction of the corona charger 4111 and clean the charging wire 4102 when the rotating member 4109 is rotated by the drive motor 4106.
A shield member 4103 is attached to the moving member 4107, and the shield member 4103 supported by the guide roller 4105 is wound up by the winding device 4104 in conjunction with the drive motor 4106. The winding device 4104 is an example of a mechanism that winds the shielding member in the longitudinal direction.
Accordingly, the shielding member 4103 is configured to be movable to a retracted position that does not affect the corona discharge during an image forming operation in which the corona discharge is turned on.

また図4(b)はプリントジョブが終了し、遮蔽部材4103が退避位置から閉塞位置へ移動して、コロナ帯電器4111の開口部を閉じた状態を示している。
移動部材4107に設置された遮蔽部材4103は、移動部材4107が矢印のY方向に移動することによりコロナ帯電器4111の開口部を遮蔽する構成になっている。
これにより、コロナ帯電器4111中に浮遊している帯電生成物は、遮蔽部材4103の表面に吸着するため、電子写真用感光体表面への吸着を抑制することができる。
本発明では図4(a)及び図4(b)に示すように、コロナ帯電器4111の開口部を遮蔽する遮蔽部材4103として、巻き取り装置4104によりロール状に収納可能なシート状遮蔽部材を採用している。
これにより、画像形成動作時は、シート状の遮蔽部材4103がコロナ帯電器4111の一端側にロール状態で収納されるので、小スペースで収納することが可能である。
また、シート状の遮蔽部材4103の材質に関してはコロナ帯電器4111の開口部を移動する際に電子写真用感光体4101表面に接触する場合があるため、ポリイミド樹脂シートを採用している。
更に、本発明に用いる電子写真用感光体4101の表面は機械的強度が高いため、遮蔽部材4103を積極的に接触させて、電子写真用感光体4101の表面の帯電生成物を除去することも可能である。
この場合、遮蔽部材4103の電子写真用感光体4101との対向面にファーブラシを設けることが望ましい。
FIG. 4B shows a state where the print job is finished, the shielding member 4103 is moved from the retracted position to the closed position, and the opening of the corona charger 4111 is closed.
The shielding member 4103 installed on the moving member 4107 is configured to shield the opening of the corona charger 4111 when the moving member 4107 moves in the Y direction of the arrow.
As a result, the charged product floating in the corona charger 4111 is adsorbed on the surface of the shielding member 4103, so that adsorption to the surface of the electrophotographic photoreceptor can be suppressed.
In the present invention, as shown in FIGS. 4A and 4B, a sheet-like shielding member that can be stored in a roll shape by the winding device 4104 is used as the shielding member 4103 that shields the opening of the corona charger 4111. Adopted.
Thereby, during the image forming operation, the sheet-like shielding member 4103 is stored in a roll state on one end side of the corona charger 4111, and thus can be stored in a small space.
Further, regarding the material of the sheet-like shielding member 4103, a polyimide resin sheet is employed because it may come into contact with the surface of the electrophotographic photoreceptor 4101 when moving through the opening of the corona charger 4111.
Further, since the surface of the electrophotographic photoreceptor 4101 used in the present invention has high mechanical strength, the charged product on the surface of the electrophotographic photoreceptor 4101 can be removed by positively contacting the shielding member 4103. Is possible.
In this case, it is desirable to provide a fur brush on the surface of the shielding member 4103 facing the electrophotographic photoreceptor 4101.

以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらにより何ら制限されるものではない。
<実施例1>
図3に示すプラズマ処理装置を用いて、円筒状基体の表面に表1及び2に示す条件で電荷注入阻止層、光導電層、表面層の順に成膜を行い、プラス帯電a−Si感光体を作製した。周波数がRF帯の高周波電源を用いた。円筒状基体は、直径80mm、長さ358mm、厚さ3mmで鏡面加工を施した円筒状のアルミニウム基体を用いた。表面層作製時の高周波電力、SiH流量及びCH流量を表2に示す条件とした。また、電子写真用感光体の作製本数は、各成膜条件で2本ずつ作製した。
作製した電子写真用感光体を以下の構成の電子写真装置に設置し、後述の評価を行った。
図6に示した構成のキヤノン製電子写真装置iR−5065をベースとし、実験用として、主帯電手段用送風ファンを取り除いた電子写真装置を準備した。更に、主帯電器6002、転写帯電器6004及び分離帯電器6005を図4に示した構成の帯電手段に改造した。
なお遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。
更に電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited at all by these.
<Example 1>
Using the plasma processing apparatus shown in FIG. 3, a charge injection blocking layer, a photoconductive layer, and a surface layer are formed in this order on the surface of the cylindrical substrate under the conditions shown in Tables 1 and 2, and a positively charged a-Si photoconductor Was made. A high frequency power source having a frequency in the RF band was used. As the cylindrical substrate, a cylindrical aluminum substrate having a diameter of 80 mm, a length of 358 mm, and a thickness of 3 mm and subjected to mirror finishing was used. The high frequency power, the SiH 4 flow rate, and the CH 4 flow rate at the time of preparing the surface layer were the conditions shown in Table 2. Two electrophotographic photoreceptors were produced under each film forming condition.
The produced electrophotographic photosensitive member was installed in an electrophotographic apparatus having the following configuration, and evaluation described below was performed.
An Canon electrophotographic apparatus iR-5065 having the configuration shown in FIG. 6 was used as a base, and an electrophotographic apparatus was prepared for the experiment by removing the blower fan for main charging means. Further, the main charging device 6002, the transfer charging device 6004, and the separation charging device 6005 are modified to charging means having the configuration shown in FIG.
The shielding member 4103 is made of a polyimide resin sheet having a thickness of 30 μm.
Further, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

Figure 2010276795
Figure 2010276795

実施例1により作製した各成膜条件2本ずつの電子写真用感光体について後述の条件にて表面粗さ測定を行い、Ra及びΔaを算出した。その後、各成膜条件1本の電子写真用感光体を用いて、ケイ素原子の原子数と炭素原子の原子数の和に対する炭素原子の原子数の比(以下、C/(Si+C)とも称する。)、ケイ素原子の原子密度(以下、「Si原子密度」とも称する。)を後述の条件で算出した。また、炭素原子の原子密度(以下、「C原子密度」とも称する。)、前記Si原子密度と前記C原子密度の和(以下、「Si+C原子密度」とも称する。)を後述の条件で算出した。更に、ケイ素原子の原子数と炭素原子の原子数と水素原子の原子数の和に対する水素原子の原子数の比(以下、「H原子比」とも称する。)、水素原子の原子密度(以下、「H原子密度」とも称する。)、及びsp性を後述の条件で算出した。そして、各成膜条件の残りの1本の電子写真用感光体により、後述の評価条件にて高湿流れ、耐磨耗性、階調性及び感度の評価を後述の条件で行った。これら結果を表5に示す。 The surface roughness of the two electrophotographic photoreceptors produced in Example 1 was measured under the conditions described below, and Ra and Δa were calculated. Thereafter, using one electrophotographic photoreceptor for each film formation condition, the ratio of the number of carbon atoms to the sum of the number of silicon atoms and the number of carbon atoms (hereinafter referred to as C / (Si + C)) The atomic density of silicon atoms (hereinafter also referred to as “Si atomic density”) was calculated under the conditions described below. Further, the atomic density of carbon atoms (hereinafter also referred to as “C atom density”) and the sum of the Si atom density and the C atom density (hereinafter also referred to as “Si + C atom density”) under the conditions described later. Calculated. Furthermore, the ratio of the number of hydrogen atoms to the sum of the number of silicon atoms, the number of carbon atoms and the number of hydrogen atoms (hereinafter also referred to as “H atom ratio”), the atomic density of hydrogen atoms (hereinafter, Also referred to as “H atom density”), and sp 3 properties were calculated under the conditions described below. The remaining one electrophotographic photosensitive member under each film formation condition was evaluated under the conditions described later under high humidity flow, wear resistance, gradation, and sensitivity under the evaluation conditions described later. These results are shown in Table 5.

<比較例1>
実施例1と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表1に示す条件で各層を成膜して、プラス帯電a−Si感光体を2本作製した。但し、表面層作製時の高周波電力、SiH流量及びCH流量を表3に示す条件とした。
作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Comparative Example 1>
Using the plasma processing apparatus having the same configuration as in Example 1, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 1 to produce two positively charged a-Si photosensitive members. However, the high frequency power, the SiH 4 flow rate, and the CH 4 flow rate during the surface layer preparation were set as the conditions shown in Table 3.
The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed. Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

比較例1により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。これら結果を表5に示す。 For the electrophotographic photoreceptor produced in Comparative Example 1, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. These results are shown in Table 5.

<比較例2>
実施例1と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表4に示す条件で各層を成膜して、プラス帯電a−Si感光体を2本作製した。作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。
実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Comparative example 2>
Using the plasma processing apparatus having the same configuration as in Example 1, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 4 to produce two positively charged a-Si photosensitive members. The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed.
Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

比較例2により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。これら結果を表5に示す。なお、比較例2で作製した電子写真用感光体の成膜条件No.を6とした。 For the electrophotographic photoreceptor produced in Comparative Example 2, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. These results are shown in Table 5. The film forming condition No. of the electrophotographic photoreceptor produced in Comparative Example 2 was measured. Was set to 6.

(C/(Si+C)の測定、Si+C原子密度、H原子比の測定)
まず、表1の電荷注入阻止層及び光導電層のみを積層させたリファレンス電子写真用感光体を作製し、任意の周方向における長手方向の中央部を15mm□で切り出し、リファレンス試料を作製した。次に、電荷注入阻止層、光導電層及び表面層を積層させた電子写真用感光体を同様に切り出し、測定用試料を作製した。リファレンス試料と測定用試料を分光エリプソメトリー(J.A.Woollam社製:高速分光エリプソメトリー M−2000)により測定し、表面層の膜厚を求めた。
分光エリプソメトリーの具体的な測定条件は、入射角:60°、65°、70°、測定波長:195nmから700nm、ビーム径:1mm×2mmである。
まず、リファレンス試料について分光エリプソメトリーにより各入射角で波長と振幅比Ψ及び位相差Δの関係を求めた。
(Measurement of C / (Si + C), Si + C atom density, H atom ratio)
First, a reference electrophotographic photoreceptor in which only the charge injection blocking layer and the photoconductive layer shown in Table 1 were laminated was prepared, and a central portion in the longitudinal direction in an arbitrary circumferential direction was cut out by 15 mm □ to prepare a reference sample. Next, the electrophotographic photoreceptor in which the charge injection blocking layer, the photoconductive layer and the surface layer were laminated was cut out in the same manner to prepare a measurement sample. The reference sample and the measurement sample were measured by spectroscopic ellipsometry (manufactured by JA Woollam: high-speed spectroscopic ellipsometry M-2000) to determine the film thickness of the surface layer.
Specific measurement conditions of spectroscopic ellipsometry are incident angles: 60 °, 65 °, 70 °, measurement wavelengths: 195 nm to 700 nm, and beam diameter: 1 mm × 2 mm.
First, the relationship between the wavelength, the amplitude ratio Ψ, and the phase difference Δ was determined for each reference angle by spectroscopic ellipsometry for the reference sample.

次に、リファレンス試料の測定結果をリファレンスとして、測定用試料についてリファレンス試料と同様に分光エリプソメトリーにより各入射角で波長と振幅比Ψ及び位相差Δの関係を求めた。
更に、電荷注入阻止層、光導電層及び表面層を順次積層し、最表面に表面層と空気層が共存する粗さ層を有する層構成を計算モデルとして用いて、解析ソフトにより粗さ層の表面層と空気層の体積比を変化させて、各入射角における波長とΨ及びΔの関係を計算により求めた。そして、各入射角における上記計算により求めた波長とΨ及びΔの関係と測定用試料を測定して求めた波長とΨ及びΔの関係の平均二乗誤差が最小となるときの計算モデルを選択した。この選択した計算モデルにより表面層の膜厚を算出し、得られた値を表面層の膜厚とした。なお、解析ソフトはJ.A.Woollam社製のWVASE32を用いた。また、粗さ層の表面層と空気層の体積比に関しては、表面層:空気層を10:0から1:9まで粗さ層における空気層の比率を1ずつ変化させて計算をした。本実施例のプラス帯電a−Si感光体においては、粗さ層の表面層と空気層の体積比が8:2のときに計算によって求められた波長とΨ及びΔの関係と測定して求められた波長とΨ及びΔの関係の平均二乗誤差が最小となった。
Next, using the measurement result of the reference sample as a reference, the relationship between the wavelength, the amplitude ratio Ψ, and the phase difference Δ at each incident angle was obtained by spectroscopic ellipsometry for the measurement sample in the same manner as the reference sample.
Furthermore, a charge injection blocking layer, a photoconductive layer, and a surface layer are sequentially laminated, and a layer structure having a roughness layer in which the surface layer and the air layer coexist on the outermost surface is used as a calculation model. By changing the volume ratio of the surface layer to the air layer, the relationship between the wavelength at each incident angle and Ψ and Δ was calculated. Then, a calculation model was selected when the mean square error of the relationship between the wavelength, Ψ and Δ obtained by measuring the measurement sample and the relationship between the wavelength obtained by the above calculation at each incident angle and Ψ and Δ was minimized. . The film thickness of the surface layer was calculated using the selected calculation model, and the obtained value was used as the film thickness of the surface layer. The analysis software is J.I. A. Woolase WVASE32 was used. The volume ratio of the surface layer to the air layer in the roughness layer was calculated by changing the ratio of the air layer in the roughness layer by 1 from 10: 0 to 1: 9 in the surface layer: air layer. In the positively charged a-Si photoconductor of the present embodiment, it is obtained by measuring the relationship between the wavelength obtained by calculation and Ψ and Δ when the volume ratio of the surface layer to the air layer of the roughness layer is 8: 2. The mean square error of the relationship between the obtained wavelength and Ψ and Δ was minimized.

分光エリプソメトリーによる測定が終了した後、上記測定用試料について日新ハイボルテージ(株)製AN−2500を用いてRBS(ラザフォード後方散乱法)により、RBSの測定面積における表面層中のケイ素原子及び炭素原子の原子数を測定した。測定したケイ素原子及び炭素原子の原子数から、C/(Si+C)を求めた。次に、RBSの測定面積から求めたケイ素原子及び炭素原子に対し、分光エリプソメトリーにより求めた表面層の膜厚を用いて、Si原子密度、C原子密度及びSi+C原子密度を求めた。
RBSと同時に、上記測定用試料について日新ハイボルテージ(株)製AN−2500を用いてHFS(水素前方散乱法)により、HFSの測定面積における表面層中の水素原子の原子数を測定した。HFSの測定面積から求めた水素原子の原子数と、RBSの測定面積から求めたケイ素原子の原子数及び炭素原子の原子数により、H原子比を求めた。次に、HFSの測定面積から求めた水素原子の原子数に対し、分光エリプソメトリーにより求めた表面層の膜厚を用いて、H原子密度を求めた。
RBS及びHFSの具体的な測定条件は、入射イオン:4He+、入射エネルギー:2.3MeV、入射角:75°、試料電流:35nA、入射ビーム経:1mmであり、RBSの検出器は、散乱角:160°、アパーチャ径:8mm、HFSの検出器は、反跳角:30°、アパーチャ径:8mm+Slitで測定を行った。
After the measurement by spectroscopic ellipsometry is completed, silicon atoms in the surface layer in the RBS measurement area are measured by RBS (Rutherford backscattering method) using AN-2500 manufactured by Nisshin High Voltage Co., Ltd. The number of carbon atoms was measured. C / (Si + C) was determined from the measured number of silicon atoms and carbon atoms. Next, Si atom density, C atom density, and Si + C atom density were determined using the surface layer thickness determined by spectroscopic ellipsometry for silicon atoms and carbon atoms determined from the RBS measurement area.
Simultaneously with RBS, the number of hydrogen atoms in the surface layer in the measurement area of HFS was measured by HFS (hydrogen forward scattering method) using AN-2500 manufactured by Nissin High Voltage Co., Ltd. for the measurement sample. The H atom ratio was determined from the number of hydrogen atoms determined from the HFS measurement area and the number of silicon atoms and carbon atoms determined from the RBS measurement area. Next, H atom density was calculated | required using the film thickness of the surface layer calculated | required by spectroscopic ellipsometry with respect to the atomic number of the hydrogen atom calculated | required from the measurement area of HFS.
Specific measurement conditions for RBS and HFS are incident ion: 4He +, incident energy: 2.3 MeV, incident angle: 75 °, sample current: 35 nA, incident beam length: 1 mm, and the detector of RBS has a scattering angle. : 160 °, aperture diameter: 8 mm, HFS detector measured at recoil angle: 30 °, aperture diameter: 8 mm + Slit.

(高湿流れ評価)
高湿流れ評価で使用した電子写真装置は、図6に示した構成のキヤノン製電子写真装置iR−5065をベースとし、実験用として、主帯電手段用送風ファンを取り除いた電子写真装置を準備した。更に、主帯電器6002、転写帯電器6004及び分離帯電器6005を図4に示した構成の帯電手段に改造した。なお遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。
更に電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
上記電子写真装置に作製した電子写真用感光体を設置し、温度30℃、相対湿度80%(容積絶対湿度24.3g/単位cm)の高湿環境下で連続通紙試験前のA3文字チャート(4pt、印字率4%)を出力する。このとき、感光体ヒーターをONにする条件で実施した。
連続通紙試験前の画像出力後、連続通紙試験を実施した。連続通紙試験時は、電子写真装置を稼働して連続通紙試験を実施している間及び電子写真装置を停止している間を通じて常に感光体ヒーターをOFFにする条件で実施した。
(High humidity flow evaluation)
The electrophotographic apparatus used in the high-humidity flow evaluation was based on the Canon electrophotographic apparatus iR-5065 having the configuration shown in FIG. 6, and an electrophotographic apparatus was prepared for the experiment by removing the blower fan for main charging means. . Further, the main charging device 6002, the transfer charging device 6004, and the separation charging device 6005 are modified to charging means having the configuration shown in FIG. The shielding member 4103 is made of a polyimide resin sheet having a thickness of 30 μm.
Further, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.
The A3 character before the continuous paper passing test in a high humidity environment where the electrophotographic photosensitive member produced in the above electrophotographic apparatus was installed and the temperature was 30 ° C. and the relative humidity was 80% (volume absolute humidity 24.3 g / unit cm 3 ). A chart (4 pt, printing rate 4%) is output. At this time, it carried out on the conditions which turn on a photoconductor heater.
After the image output before the continuous paper passing test, the continuous paper passing test was performed. The continuous sheet passing test was performed under the condition that the photoconductor heater was always turned off while the electrophotographic apparatus was operated and the continuous sheet passing test was performed and while the electrophotographic apparatus was stopped.

具体的には、印字率1%のA4テストパターンを用いて、一日当り2.5万枚の連続通紙試験を10日間実施して25万枚まで行う。連続通紙試験終了後、温度30℃、相対湿度80%の環境下で感光体ヒーターをOFFしたまま15時間放置する。
15時間後、感光体ヒーターをOFFのまま遮蔽部材4103を巻き取り装置4104により収納した後、A3文字チャート(4pt、印字率4%)を出力した。連続通紙試験前に出力した画像と、15時間放置後に出力した画像を、それぞれキヤノン製デジタル電子写真装置iRC−5870を用いて、モノクロ300dpiの2値の条件でPDFファイルに電子化した。
Specifically, using the A4 test pattern with a printing rate of 1%, a continuous sheet passing test of 25,000 sheets per day is performed for 10 days and up to 250,000 sheets. After completion of the continuous paper passing test, the photoconductor heater is left off for 15 hours in an environment of a temperature of 30 ° C. and a relative humidity of 80%.
After 15 hours, the shielding member 4103 was stored by the winding device 4104 with the photoconductor heater turned off, and then an A3 character chart (4 pt, printing rate 4%) was output. An image output before the continuous paper passing test and an image output after being left for 15 hours were digitized into PDF files using a Canon digital electrophotographic apparatus iRC-5870 under binary conditions of monochrome 300 dpi.

そして、Adobe製画像編集ソフト「Adobe Photoshop」(商品名)を用いて、15時間放置後に出力した画像において電子写真用感光体が主帯電器6002、転写帯電器6004、分離帯電器6005に対面していた個所に対応する領域の黒比率を測定した。また、上記帯電器に対面していなかった個所に対応する領域の黒比率も測定した。同様の黒比率測定を連続通紙試験前に出力した画像においても測定した。そして、各々の領域での連続通紙試験前に出力した画像の黒比率に対する15時間放置後に出力した画像の黒比率の割合を求めることで、高湿流れの評価を行った。
この評価において、帯電器に対面していた領域の黒比率の割合が帯電器下流れの評価であり、帯電器に対面していなかった領域の黒比率の割合が耐久流れの評価である。
Then, using the Adobe image editing software “Adobe Photoshop” (trade name), the electrophotographic photoreceptor faces the main charger 6002, transfer charger 6004, and separation charger 6005 in the image output after being left for 15 hours. The black ratio of the area corresponding to the spot was measured. In addition, the black ratio of the area corresponding to the portion not facing the charger was also measured. A similar black ratio measurement was also performed on an image output before the continuous paper passing test. Then, the high-humidity flow was evaluated by determining the ratio of the black ratio of the image output after being left for 15 hours to the black ratio of the image output before the continuous paper passing test in each region.
In this evaluation, the ratio of the black ratio in the area facing the charger is the evaluation of the flow under the charger, and the ratio of the black ratio in the area not facing the charger is the evaluation of the durable flow.

帯電器下流れ及び耐久流れが発生した場合、画像全体で文字がぼける、または、文字が印字されずに白抜けするため、連続通紙試験前の画像と比較した場合、黒比率が低下する。よって、連続通紙試験前の画像に対する15時間放置後に出力した画像の黒比率の割合が100%に近いほど高湿流れが良好となる。なお、D以上で本発明の効果が得られていると判断した。A〜Fの内容は以下のとおりである。
A‥連続通紙試験前に出力した画像に対する連続通紙試験後に出力した画像の黒比率が95%以上105%以下。
B‥連続通紙試験前に出力した画像に対する連続通紙試験後に出力した画像の黒比率が90%以上95%未満。
C‥連続通紙試験前に出力した画像に対する連続通紙試験後に出力した画像の黒比率が85%以上90%未満。
D‥連続通紙試験前に出力した画像に対する連続通紙試験後に出力した画像の黒比率が80%以上85%未満。
E‥連続通紙試験前に出力した画像に対する連続通紙試験後に出力した画像の黒比率が70%以上80%未満。
F‥連続通紙試験前に出力した画像に対する連続通紙試験後に出力した画像の黒比率が70%未満。
When the flow under the charger and the endurance flow are generated, characters are blurred in the entire image, or the characters are not printed and white spots are lost, so that the black ratio is reduced when compared with the image before the continuous paper passing test. Therefore, as the ratio of the black ratio of the image output after standing for 15 hours with respect to the image before the continuous paper passing test is closer to 100%, the high humidity flow becomes better. In addition, it was judged that the effect of this invention was acquired by D or more. The contents of A to F are as follows.
A: The black ratio of the image output after the continuous sheet passing test to the image output before the continuous sheet passing test is 95% or more and 105% or less.
B: The black ratio of the image output after the continuous paper test to the image output before the continuous paper test is 90% or more and less than 95%.
C: The black ratio of the image output after the continuous paper test to the image output before the continuous paper test is 85% or more and less than 90%.
D: The black ratio of the image output after the continuous paper passing test to the image output before the continuous paper passing test is 80% or more and less than 85%.
E. The black ratio of the image output after the continuous sheet passing test to the image output before the continuous sheet passing test is 70% or more and less than 80%.
F: The black ratio of the image output after the continuous paper test to the image output before the continuous paper test is less than 70%.

(耐磨耗性評価)
耐磨耗性の評価方法は、作製直後の電子写真用感光体の表面層膜厚を電子写真用感光体の任意の周方向で長手方向9点(電子写真用感光体の長手方向中央を基準として、0mm、±50mm、±90mm、±130mm、±150mm)、及び前記任意の周方向から180°回転させた位置での長手方向9点、合計18点を測定し、その18点の平均値により算出した。
測定方法は、電子写真用感光体表面に垂直にスポット径2mmの光を照射し、分光計(大塚電子製:MCPD−2000)を用いて、反射光の分光測定を行った。得られた反射波形をもとに表面層膜厚を算出した。このとき、波長範囲を500nmから750nm、光導電層の屈折率は3.30とし、表面層の屈折率は前述したSi+C原子密度測定の際に行った分光エリプソメトリーの測定より求まる値を用いた。
膜厚測定後、高湿流れ評価と同様に、キヤノン製デジタル電子写真装置iR−5065改造機に電子写真用感光体を設置し、温度30℃、相対湿度80%の高湿環境下で高湿流れ評価と同様の条件により連続通紙試験を実施した。25万枚連続通紙試験が終了した後、電子写真用感光体を電子写真装置から取り出し、作製直後と同じ位置で膜厚を測定し、作製直後と同様に連続通紙試験した後の表面層膜厚を算出した。そして、作製直後及び連続通紙試験後で得られた表面層の平均膜厚から差分を求め25万枚での磨耗量を算出した。
(Abrasion resistance evaluation)
The abrasion resistance evaluation method is as follows. The film thickness of the surface layer of the electrophotographic photoreceptor immediately after the production is 9 points in the longitudinal direction in the arbitrary circumferential direction of the electrophotographic photoreceptor (based on the longitudinal center of the electrophotographic photoreceptor). , And measuring the total of 18 points in the longitudinal direction at the position rotated by 180 ° from the arbitrary circumferential direction, and the average value of the 18 points as 0 mm, ± 50 mm, ± 90 mm, ± 130 mm, ± 150 mm) Calculated by
The measurement was performed by irradiating light with a spot diameter of 2 mm perpendicularly to the surface of the electrophotographic photosensitive member, and performing spectroscopic measurement of reflected light using a spectrometer (manufactured by Otsuka Electronics: MCPD-2000). The surface layer thickness was calculated based on the obtained reflection waveform. At this time, the wavelength range was 500 nm to 750 nm, the refractive index of the photoconductive layer was 3.30, and the refractive index of the surface layer was a value obtained from the spectroscopic ellipsometry measurement performed during the Si + C atom density measurement described above. .
After film thickness measurement, as in the high humidity flow evaluation, an electrophotographic photoconductor was installed on a Canon digital electrophotographic apparatus iR-5065 remodeled machine, and the high humidity was maintained in a high humidity environment at a temperature of 30 ° C. and a relative humidity of 80%. A continuous paper feeding test was performed under the same conditions as in the flow evaluation. After completion of the 250,000-sheet continuous sheet passing test, the electrophotographic photoreceptor is taken out of the electrophotographic apparatus, the film thickness is measured at the same position as immediately after the preparation, and the surface layer after the continuous sheet passing test is performed in the same manner as immediately after the preparation. The film thickness was calculated. And the difference was calculated | required from the average film thickness of the surface layer obtained immediately after preparation and after a continuous paper passing test, and the amount of wear in 250,000 sheets was computed.

比較例2で作製した成膜条件No.6の電子写真用感光体の作製直後及び連続通紙試験後で得られた表面層の平均膜厚の差分に対する各電子写真用感光体表面層の平均膜厚の差分の比率を求め、相対評価を行った。なお、耐磨耗性評価に対して、D以上で本発明の効果が得られていると判断した。A〜Fの内容は以下のとおりである。
A‥比較例2で作製した成膜条件No.6の電子写真用感光体の表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真用感光体の表面層の平均膜厚の差分の比率が60%以下。
B‥比較例2で作製した成膜条件No.6の電子写真用感光体の表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真用感光体の表面層の平均膜厚の差分の比率が60%より大きく70%以下。
C‥比較例2で作製した成膜条件No.6の電子写真用感光体の表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真用感光体の表面層の平均膜厚の差分の比率が70%より大きく80%以下。
D‥比較例2で作製した成膜条件No.6の電子写真用感光体の表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真用感光体の表面層の平均膜厚の差分の比率が80%より大きく90%以下。
E‥比較例2で作製した成膜条件No.6の電子写真用感光体の表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真用感光体の表面層の平均膜厚の差分の比率が90%より大きく100%未満。
F‥比較例2で作製した成膜条件No.6の電子写真用感光体の表面層の平均膜厚の差分に対する各成膜条件にて作製された電子写真用感光体の表面層の平均膜厚の差分の比率が100%以上。
Film formation conditions No. 1 prepared in Comparative Example 2 were used. The ratio of the difference in the average film thickness of each electrophotographic photoreceptor surface layer to the difference in the average film thickness of the surface layer obtained immediately after the production of the electrophotographic photoreceptor of No. 6 and after the continuous paper passing test was obtained, and the relative evaluation was performed. Went. In addition, it was judged that the effect of this invention was acquired by D or more with respect to abrasion resistance evaluation. The contents of A to F are as follows.
A: Film formation conditions No. 1 prepared in Comparative Example 2 The ratio of the difference in the average film thickness of the surface layer of the electrophotographic photosensitive member produced under each film forming condition to the difference in the average film thickness of the surface layer of the electrophotographic photosensitive member 6 is 60% or less.
B: Film formation condition No. 1 prepared in Comparative Example 2 The ratio of the difference in the average film thickness of the surface layer of the electrophotographic photosensitive member produced under each film forming condition to the difference in the average film thickness of the surface layer of the electrophotographic photosensitive member 6 is more than 60% and not more than 70%. .
C: Film formation condition No. 1 prepared in Comparative Example 2 The ratio of the difference in the average film thickness of the surface layer of the electrophotographic photoreceptor produced under each film forming condition to the difference in the average film thickness of the surface layer of the electrophotographic photoreceptor of 6 is greater than 70% and 80% or less. .
D: Film formation condition No. 1 prepared in Comparative Example 2 The ratio of the difference in the average film thickness of the surface layer of the electrophotographic photosensitive member produced under each film forming condition to the difference in the average film thickness of the surface layer of the electrophotographic photosensitive member 6 is greater than 80% and 90% or less. .
E ... Film formation conditions No. 1 prepared in Comparative Example 2 The ratio of the difference in the average film thickness of the surface layer of the electrophotographic photoreceptor produced under each film forming condition to the difference in the average film thickness of the surface layer of the electrophotographic photoreceptor of 6 is greater than 90% and less than 100%. .
F: Film formation condition No. 1 prepared in Comparative Example 2 The ratio of the difference in the average film thickness of the surface layer of the electrophotographic photoreceptor produced under each film forming condition with respect to the difference in the average film thickness of the surface layer of the electrophotographic photoreceptor of 6 is 100% or more.

(階調性評価)
階調性評価は、高湿流れ評価に使用したキヤノン製デジタル電子写真装置iR−5065の改造機を用いた。そして、まず、画像露光を行うドット部分の面積階調によって、全階調範囲を18段階に均等配分した階調データを作成した。このとき最も濃い階調を17、最も薄い階調を0として各階調に番号を割り当て、階調段階とする。
次に、上記の改造した電子写真装置に電子写真用感光体を設置し、上記階調データを用いて、テキストモードでA3用紙に出力する。このとき、高湿流れが発生すると画像ボケの評価に影響が出るため、22℃、50%の環境下で、感光体ヒーターをONにして、電子写真用感光体の表面を約40℃に保った条件で出力した。
(Gradation evaluation)
For the gradation evaluation, a modified machine of Canon digital electrophotographic apparatus iR-5065 used for high humidity flow evaluation was used. First, gradation data was created in which the entire gradation range was evenly distributed in 18 stages according to the area gradation of the dot portion for image exposure. At this time, the darkest gradation is set to 17, the thinnest gradation is set to 0, and a number is assigned to each gradation to obtain a gradation step.
Next, an electrophotographic photosensitive member is installed in the modified electrophotographic apparatus, and is output to A3 paper in the text mode using the gradation data. At this time, if high-humidity flow occurs, the evaluation of image blurring will be affected. Therefore, in an environment of 22 ° C. and 50%, the photoconductor heater is turned on to keep the surface of the electrophotographic photoconductor at about 40 ° C. Was output under different conditions.

得られた画像を各階調ごとに反射濃度計(X−Rite Inc製:504 分光濃度計)により画像濃度を測定した。なお、反射濃度測定では各々の階調毎に3枚の画像を出力し、それら濃度の平均値を評価値とした。
こうして得られた評価値と階調段階との相関係数を算出し、各階調の反射濃度が完全に直線的に変化する階調表現が得られた場合である相関係数=1.00からの差分を求めた。そして、成膜条件No.2で作製した電子写真用感光体の相関係数から算出される差分に対する各成膜条件にて作製された電子写真用感光体の相関係数から算出される差分の比を階調性の指標として評価した。この評価において、数値が小さいほど階調性が優れており、直線的に近い階調表現がなされていることを示している。なお、階調性評価に対して、Aで本発明の効果が得られていると判断した。A,Bの内容は以下のとおりである。
A‥成膜条件No.2で作製した電子写真用感光体の相関係数から算出される相関係数=1.00からの差分に対する各成膜条件にて作製された電子写真用感光体から算出される相関係数=1.00からの差分の比が1.80以下。
B‥成膜条件No.2で作製した電子写真用感光体の相関係数から算出される相関係数=1.00からの差分に対する各成膜条件にて作製された電子写真用感光体から算出される相関係数=1.00からの差分の比が1.80より大きい。
The image density of the obtained image was measured with a reflection densitometer (manufactured by X-Rite Inc: 504 spectral densitometer) for each gradation. In the reflection density measurement, three images were output for each gradation, and the average value of the densities was used as the evaluation value.
The correlation coefficient between the evaluation value thus obtained and the gradation stage is calculated, and the correlation coefficient = 1.00, which is a case where a gradation expression in which the reflection density of each gradation changes completely linearly is obtained. The difference of was calculated. And film-forming conditions No. The ratio of the difference calculated from the correlation coefficient of the electrophotographic photosensitive member manufactured under each film forming condition with respect to the difference calculated from the correlation coefficient of the electrophotographic photosensitive member manufactured in Step 2 is an index of gradation. As evaluated. In this evaluation, the smaller the numerical value is, the better the gradation is, and it is shown that gradation expression that is close to linear is performed. Note that it was judged that the effect of the present invention was obtained with A for the gradation evaluation. The contents of A and B are as follows.
A ... Film formation condition No. Correlation coefficient calculated from the correlation coefficient of the electrophotographic photoreceptor prepared in Step 2 = correlation coefficient calculated from the electrophotographic photoreceptor prepared under each film forming condition with respect to the difference from 1.00 = The ratio of the difference from 1.00 is 1.80 or less.
B ... Film formation condition No. Correlation coefficient calculated from the correlation coefficient of the electrophotographic photoreceptor prepared in Step 2 = correlation coefficient calculated from the electrophotographic photoreceptor prepared under each film forming condition with respect to the difference from 1.00 = The ratio of the difference from 1.00 is greater than 1.80.

(感度評価)
高湿流れ評価と同様のキヤノン製デジタル電子写真装置iR−5065の改造機を用いた。画像露光を切った状態で帯電器のワイヤー及びグリットに、それぞれ高圧電源を接続し、グリット電位を820Vとし、帯電器のワイヤーへ供給する電流を調整して電子写真用感光体の表面電位を400Vとなるように設定した。
次に、先に設定した帯電条件で帯電させた状態で、画像露光光を照射し、その照射エネルギーを調整することにより現像器位置の電位を100Vとした。
(Sensitivity evaluation)
A Canon digital electrophotographic apparatus iR-5065 modified machine similar to the high-humidity flow evaluation was used. With the image exposure turned off, a high voltage power supply is connected to the charger wire and grit, the grit potential is set to 820 V, and the current supplied to the charger wire is adjusted so that the surface potential of the electrophotographic photoreceptor is 400 V. It set so that it might become.
Next, the image exposure light was irradiated in a state where it was charged under the previously set charging conditions, and the potential at the developing unit position was set to 100 V by adjusting the irradiation energy.

感度評価で用いた電子写真装置の画像露光光源は、発振波長が658nmの半導体レーザーである。評価結果は比較例2で作製した成膜条件No.6の電子写真用感光体を搭載した場合の照射エネルギーを1.00とした相対比較で示した。なお、感度評価に対して、B以上で本発明の効果が得られていると判断した。A〜Cの内容は以下のとおりである。
A‥比較例2で作製した成膜条件No.6の電子写真用感光体での照射エネルギーに対する照射エネルギーの比が1.10未満。
B‥比較例2で作製した成膜条件No.6の作製した電子写真用感光体での照射エネルギーに対する照射エネルギーの比が1.10以上1.15未満。
C‥比較例2で作製した成膜条件No.6の電子写真用感光体での照射エネルギーに対する照射エネルギーの比が1.15以上。
The image exposure light source of the electrophotographic apparatus used for sensitivity evaluation is a semiconductor laser having an oscillation wavelength of 658 nm. The evaluation result is the film formation condition No. 1 prepared in Comparative Example 2. The results are shown in a relative comparison in which the irradiation energy when the electrophotographic photosensitive member No. 6 is mounted is 1.00. In addition, it was judged that the effect of this invention was acquired by B or more with respect to sensitivity evaluation. The contents of A to C are as follows.
A: Film formation conditions No. 1 prepared in Comparative Example 2 The ratio of the irradiation energy to the irradiation energy in the electrophotographic photoreceptor of 6 is less than 1.10.
B: Film formation condition No. 1 prepared in Comparative Example 2 The ratio of the irradiation energy to the irradiation energy in the produced electrophotographic photoreceptor of 6 is 1.10 or more and less than 1.15.
C: Film formation condition No. 1 prepared in Comparative Example 2 The ratio of the irradiation energy to the irradiation energy in the electrophotographic photosensitive member 6 is 1.15 or more.

(sp性評価)
sp性は、電子写真用感光体の任意の周方向における長手方向の中央部を10mm□で切り出した試料から、レーザーラマン分光光度計(日本分光(株)製:NRS−2000)を用いて算出した。
具体的な測定条件は、光源:Ar+レーザー 波長514.5nm、レーザー強度:20mA、対物レンズ:50倍とし、中心波長を1380cm−1、露光時間30秒、積算5回で3回測定した。得られたラマンスペクトルの解析方法を以下に示す。ショルダーラマンバンドのピーク波数を1390cm−1で固定し、主ラマンバンドのピーク波数を1480cm−1に設定して固定せずに、ガウシアン分布を用いてカーブフィッティングを行った。このとき、ベースラインは直線近似とした。カーブフィッティングより得られた主ラマンバンド(Gバンド)のピーク強度Iとショルダーラマンバンド(Dバンド)のピーク強度IよりI/Iを求め、3回の平均値をsp性の評価に用いた。
(Sp 3 sex evaluation)
The sp 3 property is determined by using a laser Raman spectrophotometer (manufactured by JASCO Corporation: NRS-2000) from a sample obtained by cutting a central portion in the longitudinal direction of an electrophotographic photoreceptor in an arbitrary circumferential direction with 10 mm □. Calculated.
The specific measurement conditions were as follows: light source: Ar + laser wavelength 514.5 nm, laser intensity: 20 mA, objective lens: 50 times, center wavelength 1380 cm −1 , exposure time 30 seconds, total 5 times. The analysis method of the obtained Raman spectrum is shown below. The peak wavenumber of a shoulder Raman band was fixed at 1390 cm -1, the peak wavenumber of a main Raman band without fixation is set to 1480 cm -1, were curve fitting using a Gaussian distribution. At this time, the baseline was linear approximation. Seeking I D / I G of the peak intensity I D of curve fitting from the resulting main Raman band (G-band) of the peak intensity I G and the shoulder Raman band (D-band), the average value of sp 3 of the three Used for evaluation.

(表面粗さの測定)
2本の電子写真用感光体において、任意の周方向における長手方向の中央部を原子間力顕微鏡(AFM、Quesant社製:Q−SCOPE250 Version3.181)により測定し、Ra及び平均傾斜Δaを算出した。得られたRa及びΔaの平均値をRa及びΔaの値とした。
具体的には、ヘッド:Tape10、プローブ:NSC16を用い、10μm×10μmの範囲をSCAN RATE:4Hz、Integral Gain:600、Proportional Gain:500、Scan Resolution:300の測定条件で、Wave modeにて測定した。解析ソフト:Quesant社製 Q−SCOPE250により得られたAFM観察像をTilt RemovalのParabolic Line By Lineを用いて、補正を行った。補正したAFM観察像をHistogram AnalysisにてRa、Δaを算出した。但し、Histogram AnalysisでのRaは、Meas Deviationで表される値を用いた。
実施例1及び比較例1、2について、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、sp性、高湿流れ、耐磨耗性、階調性及び感度に関する結果を表5に示す。
(Measurement of surface roughness)
In two electrophotographic photoreceptors, the central portion in the longitudinal direction in an arbitrary circumferential direction is measured with an atomic force microscope (AFM, manufactured by Questant: Q-SCOPE250 Version 3.181), and Ra and average inclination Δa are calculated. did. The average values of Ra and Δa obtained were taken as Ra and Δa values.
Specifically, a head: Tape 10 and a probe: NSC 16 are used, and a range of 10 μm × 10 μm is measured with Wave mode under the measurement conditions of SCAN RATE: 4 Hz, Integral Gain: 600, Proportional Gain: 500, and Scan Resolution: 300. did. Analysis software: AFM observation image obtained by Q-SCOPE250 manufactured by Questant Co. was corrected by using Parabolic Line By Line of Tilt Removal. Ra and Δa were calculated from the corrected AFM observation image by Histogram Analysis. However, for Ra in Histogram Analysis, a value represented by Meas Deviation was used.
About Example 1 and Comparative Examples 1 and 2, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom ratio, H atom density, sp 3 property, high humidity flow, wear resistance, Table 5 shows the results regarding gradation and sensitivity.

Figure 2010276795
Figure 2010276795

表5に示すように、表面層のSi+C原子密度を6.60×1022原子/cm以上にすることにより、高湿流れ及び耐磨耗性が良化することが解った。また、Si+C原子密度を6.81×1022原子/cm以上にすることにより、高湿流れ及び耐磨耗性が更に良好となることが解った。
この結果より、表面層のSi+C原子密度を上記範囲とすることで、高湿流れに優れた電子写真用感光体が得られることが解った。
また、感光体ヒーターをなくしても高湿流れが良好となることから、表面層のSi+C原子密度を上記範囲とすることで省エネルギー性に対しても良好な電子写真用感光体が得られたことが解った。
比較例1、2では、遮蔽部材の退避側の部位の高湿流れが悪化する場合があった。当該部位は、コロナ帯電器開口部の遮蔽動作及び開口動作を繰り返す事により、遮蔽部材と接触する頻度が高いためと考えられる。
実施例1及び比較例1、2で作製した電子写真用感光体の表面粗さは、Raが32nm〜36nm、Δaが0.13〜0.16の範囲であった。
As shown in Table 5, it was found that the high-humidity flow and the wear resistance were improved by setting the Si + C atomic density of the surface layer to 6.60 × 10 22 atoms / cm 3 or more. It was also found that the high humidity flow and the wear resistance are further improved by setting the Si + C atom density to 6.81 × 10 22 atoms / cm 3 or more.
From this result, it was found that an electrophotographic photoreceptor excellent in high-humidity flow can be obtained by setting the Si + C atom density of the surface layer within the above range.
In addition, since the high-humidity flow is good even without the photoreceptor heater, an electrophotographic photoreceptor excellent in energy saving can be obtained by setting the Si + C atom density of the surface layer in the above range. I understood that.
In Comparative Examples 1 and 2, the high-humidity flow at the retreating side of the shielding member sometimes deteriorated. It is considered that this part is frequently contacted with the shielding member by repeating the shielding operation and the opening operation of the corona charger opening.
The surface roughness of the electrophotographic photoreceptors produced in Example 1 and Comparative Examples 1 and 2 was in the range of Ra of 32 nm to 36 nm and Δa of 0.13 to 0.16.

<実施例2>
実施例1と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表1に示す条件で各層を成膜して、プラス帯電a−Si感光体を作製した。但し、表面層作製時の高周波電力、SiH及びCHの流量を表6に示す条件とした。
作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Example 2>
Using the plasma processing apparatus having the same configuration as in Example 1, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 1 to produce a positively charged a-Si photosensitive member. However, the conditions shown in Table 6 were the high-frequency power and the flow rates of SiH 4 and CH 4 when the surface layer was produced.
The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed. Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

実施例2により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。それら結果を表8に示す。 For the electrophotographic photoreceptor produced in Example 2, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. The results are shown in Table 8.

<比較例3>
実施例2と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表1に示す条件で各層を成膜して、プラス帯電a−Si感光体を作製した。但し、表面層作製時の高周波電力、SiH及びCHの流量を表7に示す条件とした。
作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Comparative Example 3>
Using the plasma processing apparatus having the same configuration as that of Example 2, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 1 to produce a positively charged a-Si photosensitive member. However, the high frequency power and SiH 4 and CH 4 flow rates at the time of preparing the surface layer were the conditions shown in Table 7.
The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed. Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

比較例3により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。その評価結果を実施例2と合わせて表8に示す。 For the electrophotographic photoreceptor produced in Comparative Example 3, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. The evaluation results are shown in Table 8 together with Example 2.

Figure 2010276795
Figure 2010276795

表8に示すように、表面層のSi+C原子密度を6.60×1022原子/cm以上とした上でC/(Si+C)を0.61以上にすることで階調性が良好となることが解った。また、表面層のSi+C原子密度を6.60×1022原子/cm以上とした上でC/(Si+C)を0.75以下にすることで、光吸収が抑制され、感度が良好となることが解った。
この結果より、Si+C原子密度を6.60×1022原子/cm以上とし、表面層のC/(Si+C)を上記範囲とすることで、高湿流れが抑制され、かつ、階調性及び感度に優れた電子写真用感光体が得られ、電子写真用感光体特性として優れた電子写真用感光体が得られたことが解った。
但し、コロナ帯電器開口部の遮蔽動作及び開口動作を繰り返す事により比較例3では遮蔽部材と接触する頻度の高い遮蔽部材の退避側の高湿流れが悪化する場合があった。
実施例2及び比較例3で作製した電子写真用感光体の表面粗さは、Raが32nm〜36nm、Δaが0.13〜0.16の範囲であった。
As shown in Table 8, the surface layer has a Si + C atom density of 6.60 × 10 22 atoms / cm 3 or more, and C / (Si + C) is set to 0.61 or more. Was found to be good. Further, by setting the Si + C atom density of the surface layer to 6.60 × 10 22 atoms / cm 3 or more and setting C / (Si + C) to 0.75 or less, light absorption is suppressed, and sensitivity is increased. Was found to be good.
From this result, Si + C atom density is 6.60 × 10 22 atoms / cm 3 or more, and C / (Si + C) of the surface layer is in the above range, the high humidity flow is suppressed, and It was found that an electrophotographic photoreceptor excellent in gradation and sensitivity was obtained, and an electrophotographic photoreceptor excellent in electrophotographic photoreceptor characteristics was obtained.
However, by repeating the shielding operation and the opening operation of the opening portion of the corona charger, in Comparative Example 3, the high-humidity flow on the retracting side of the shielding member that frequently contacts the shielding member may be deteriorated.
The surface roughness of the electrophotographic photoreceptors produced in Example 2 and Comparative Example 3 was such that Ra was in the range of 32 nm to 36 nm, and Δa was in the range of 0.13 to 0.16.

<実施例3>
実施例1と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表1に示す条件で各層を成膜して、プラス帯電a−Si感光体を作製した。但し、表面層作製時の高周波電力、SiH及びCHの流量を表9に示す条件とした。
作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Example 3>
Using the plasma processing apparatus having the same configuration as in Example 1, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 1 to produce a positively charged a-Si photosensitive member. However, the high-frequency power and the flow rates of SiH 4 and CH 4 at the time of preparing the surface layer were the conditions shown in Table 9.
The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed. Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

実施例3により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。その評価結果を実施例2の成膜条件No.9と合わせて表10に示す。 For the electrophotographic photoreceptor produced in Example 3, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. The evaluation results are shown in Table 10 together with the film formation condition No. 9 of Example 2.

Figure 2010276795
Figure 2010276795

表10に示すように、表面層のH原子比を0.30以上にすることにより、光吸収が抑制されたため感度が良化した。また、表面層のH原子比を0.45以下にすることにより、高湿流れ及び耐磨耗性が更に良化した。
この結果より、Si+C原子密度を6.60×1022原子/cm以上とし、C/(Si+C)を0.61以上0.75以下とした上で、表面層のH原子比を上記範囲とすることで、高湿流れが抑制され、かつ、階調性及び感度に優れた電子写真用感光体が得られることが解った。
また、感光体ヒーターをなくしても高湿流れが良好となることから、表面層のH原子比を上記範囲(0.3以上0.45以下)とすることで、省エネルギー性に対しても良好な電子写真用感光体が得られたことが解った。
更に、コロナ帯電器開口部の遮蔽動作及び開口動作を繰り返しても遮蔽部材と接触する頻度の高い遮蔽部材の退避側の高湿流れの悪化がないことが解った。
実施例3で作製した電子写真用感光体の表面粗さは、Raが32nm〜36nm、Δaが0.13〜0.16の範囲であった。
As shown in Table 10, when the H atomic ratio of the surface layer was set to 0.30 or more, the light absorption was suppressed, so that the sensitivity was improved. Further, by setting the H atom ratio of the surface layer to 0.45 or less, the high-humidity flow and wear resistance were further improved.
From this result, the Si + C atom density is set to 6.60 × 10 22 atoms / cm 3 or more and C / (Si + C) is set to 0.61 or more and 0.75 or less, and the H atom ratio of the surface layer is determined. It was found that by setting the value in the above range, an electrophotographic photosensitive member having a high gradation flow and excellent sensitivity can be obtained.
Further, even if the photoconductor heater is omitted, high-humidity flow is good. Therefore, by setting the H atom ratio of the surface layer within the above range (0.3 or more and 0.45 or less), energy saving is also good. It was found that a satisfactory electrophotographic photoreceptor was obtained.
Further, it has been found that even if the shielding operation and the opening operation of the corona charger opening are repeated, there is no deterioration of the high-humidity flow on the retracting side of the shielding member that frequently contacts the shielding member.
The surface roughness of the electrophotographic photoreceptor produced in Example 3 was such that Ra was 32 nm to 36 nm, and Δa was 0.13 to 0.16.

<実施例4>
実施例1と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表1に示す条件で各層を成膜して、プラス帯電a−Si感光体を作製した。但し、表面層作製時の高周波電力、SiH及びCHの流量を表11に示す条件とした。
作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Example 4>
Using the plasma processing apparatus having the same configuration as in Example 1, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 1 to produce a positively charged a-Si photosensitive member. However, the conditions shown in Table 11 were used for the high-frequency power and the flow rate of SiH 4 and CH 4 during the surface layer preparation.
The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed. Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

実施例4により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。それら結果を、実施例1の成膜条件No.4、実施例2の成膜条件No.8、10及び実施例4と合わせて表12に示す。 For the electrophotographic photoreceptor produced in Example 4, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. The results are shown in Table 12 together with the film formation conditions No. 4 of Example 1, the film formation conditions Nos. 8 and 10 of Example 2, and Example 4.

Figure 2010276795
Figure 2010276795

表12に示すように、表面層のsp性を0.70以下にすることにより、更に高湿流れ及び耐磨耗性が良化することが解った。そして、表面層のsp性が0.20以上では、高湿流れ及び耐磨耗性が良好であることが解った。
更に、コロナ帯電器開口部の遮蔽動作及び開口動作を繰り返しても遮蔽部材と接触する頻度の高い遮蔽部材の退避側の高湿流れの悪化がないことが解った。
この結果より、表面層のsp性を0.20以上0.70以下の範囲とすることで、更に高湿流れ及び耐磨耗性の優れた電子写真装置が得られることが解った。
As shown in Table 12, it was found that when the sp 3 property of the surface layer was 0.70 or less, the high-humidity flow and the wear resistance were further improved. Then, sp 3 of the surface layer is at 0.20 or higher, high-humidity image flow resistance and wear resistance was found to be good.
Further, it has been found that even if the shielding operation and the opening operation of the corona charger opening are repeated, there is no deterioration of the high-humidity flow on the retracting side of the shielding member that frequently contacts the shielding member.
From this result, it was found that an electrophotographic apparatus with even higher wet flow and excellent wear resistance can be obtained by setting the sp 3 property of the surface layer in the range of 0.20 to 0.70.

<比較例4>
実施例1と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表1に示す条件で各層を成膜して、プラス帯電a−Si感光体を作製した。但し、表面層作製時の高周波電力を表13に示す条件とした。
作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Comparative example 4>
Using the plasma processing apparatus having the same configuration as in Example 1, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 1 to produce a positively charged a-Si photosensitive member. However, the high frequency power at the time of producing the surface layer was set to the conditions shown in Table 13.
The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed. Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

比較例4により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。それら結果を実施例1の成膜条件No.4、実施例2の成膜条件No.11、実施例3の成膜条件No.21、22と合わせて表14に示す。 For the electrophotographic photoreceptor produced in Comparative Example 4, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. The results are shown as film formation conditions No. 4 in Example 1, film formation conditions No. 11 in Example 2, and film formation conditions No. 11 in Example 3. These are shown in Table 14 together with 21 and 22.

Figure 2010276795
Figure 2010276795

表14に示すように、表面層のSi+C原子密度を6.60×1022原子/cm以上、且つ、C/(Si+C)を0.61以上0.75以下にすることにより高湿流れ、耐磨耗性、階調性、感度に優れた電子写真用感光体が得られた。
また、H原子比の範囲を0.30以上0.45以下とすることにより、より高湿流れ、耐磨耗性及び感度に優れた電子写真用感光体が得られることが解った。
更に、sp性の範囲を0.20以上0.70以下とすることにより更に耐磨耗性に優れた電子写真用感光体が得られることが解った。
つまり、Si+C原子密度、C/(Si+C)、H原子比、及びsp性を上記範囲とすることで、a−SiC表面層最表面での酸化の抑制が可能となり、高湿流れ、省エネルギー性に優れ、且つ、耐磨耗性及び電子写真用感光体特性の優れた電子写真用感光体が得られることが解った。
但し、コロナ帯電器開口部の遮蔽動作及び開口動作を繰り返す事により比較例4では遮蔽部材と接触する頻度の高い遮蔽部材の退避側の高湿流れが悪化する場合があった。
実施例4及び比較例4で作製した電子写真用感光体の表面粗さは、Raが32nm〜36nm、Δaが0.13〜0.16の範囲であった。
As shown in Table 14, by setting the surface layer Si + C atom density to 6.60 × 10 22 atoms / cm 3 or more and C / (Si + C) to 0.61 or more and 0.75 or less. An electrophotographic photoreceptor excellent in high humidity flow, abrasion resistance, gradation and sensitivity was obtained.
It has also been found that by setting the H atomic ratio range to 0.30 or more and 0.45 or less, an electrophotographic photoreceptor excellent in higher humidity flow, wear resistance and sensitivity can be obtained.
Furthermore, it has been found that an electrophotographic photoreceptor having further excellent wear resistance can be obtained by setting the sp 3 property range to 0.20 or more and 0.70 or less.
In other words, by setting the Si + C atom density, C / (Si + C), H atom ratio, and sp 3 property in the above ranges, it becomes possible to suppress oxidation at the outermost surface of the a-SiC surface layer, and to achieve high humidity. It has been found that an electrophotographic photoreceptor excellent in flow, energy saving, abrasion resistance and electrophotographic photoreceptor characteristics can be obtained.
However, by repeating the shielding operation and opening operation of the corona charger opening, in Comparative Example 4, the high-humidity flow on the retreat side of the shielding member that frequently contacts the shielding member may be deteriorated.
As for the surface roughness of the electrophotographic photoreceptors produced in Example 4 and Comparative Example 4, Ra was in the range of 32 nm to 36 nm, and Δa was in the range of 0.13 to 0.16.

<実施例5>
実施例1と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表1に示す条件で各層を成膜して、プラス帯電a−Si感光体を作製した。但し、表面層作製時の高周波電力を表15に示す条件とした。
作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Example 5>
Using the plasma processing apparatus having the same configuration as in Example 1, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 1 to produce a positively charged a-Si photosensitive member. However, the high frequency power at the time of producing the surface layer was set to the conditions shown in Table 15.
The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed. Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

実施例5により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。それら結果を表17に示す。 For the electrophotographic photoreceptor produced in Example 5, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. The results are shown in Table 17.

<比較例5>
実施例1と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表1に示す条件で各層を成膜して、プラス帯電a−Si感光体を作製した。但し、表面層作製時の高周波電力を表16に示す条件とした。
作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Comparative Example 5>
Using the plasma processing apparatus having the same configuration as in Example 1, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 1 to produce a positively charged a-Si photosensitive member. However, the high frequency power at the time of preparing the surface layer was set to the conditions shown in Table 16.
The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed. Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

比較例5により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。それら結果を表17に示す。
実施例5及び比較例5について、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、sp性、高湿流れ、耐磨耗性、階調性及び感度に関する結果を、実施例2の成膜条件No.7、比較例3の成膜条件No.14、実施例3の成膜条件No.17、18、20と合わせて表17に示す。
For the electrophotographic photoreceptor produced in Comparative Example 5, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. The results are shown in Table 17.
For Example 5 and Comparative Example 5, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom ratio, H atom density, sp 3 property, high humidity flow, wear resistance, The results relating to the gradation and sensitivity are shown in Table 17 together with the film formation condition No. 7 of Example 2, the film formation condition No. 14 of Comparative Example 3, and the film formation conditions No. 17, 18, and 20 of Example 3. Shown in

Figure 2010276795
Figure 2010276795

表17に示すように、表面層のSi+C原子密度を6.60×1022原子/cm以上、且つ、C/(Si+C)を0.61以上0.75以下にすることで高湿流れ、耐磨耗性、階調性、感度に優れた電子写真用感光体が得られることが解った。
また、H原子比の範囲を0.30以上0.45以下とすることにより、より高湿流れ、耐磨耗性及び感度に優れた電子写真用感光体が得られることが解った。
更に、sp性の範囲を0.20以上0.70以下とすることにより更に耐磨耗性に優れた電子写真用感光体が得られることが解った。
つまり、Si+C原子密度、C/(Si+C)、H原子比、及びsp性を上記範囲とすることで、a−SiC表面層最表面での酸化の抑制が可能となり、高湿流れ、省エネルギー性に優れ、且つ、耐磨耗性及び電子写真用感光体特性の優れた電子写真用感光体が得られることが解った。
但し、コロナ帯電器開口部の遮蔽動作及び開口動作を繰り返す事により比較例5では遮蔽部材と接触する頻度の高い遮蔽部材の退避側の高湿流れが悪化する場合があった。
実施例5及び比較例5で作製した電子写真用感光体の表面粗さは、Raが32nm〜36nm、Δaが0.13〜0.16の範囲であった。
As shown in Table 17, the surface layer has a Si + C atom density of 6.60 × 10 22 atoms / cm 3 or more and C / (Si + C) of 0.61 or more and 0.75 or less. It has been found that an electrophotographic photoreceptor excellent in high humidity flow, abrasion resistance, gradation and sensitivity can be obtained.
It has also been found that by setting the H atomic ratio range to 0.30 or more and 0.45 or less, an electrophotographic photoreceptor excellent in higher humidity flow, wear resistance and sensitivity can be obtained.
Furthermore, it has been found that an electrophotographic photoreceptor having further excellent wear resistance can be obtained by setting the sp 3 property range to 0.20 or more and 0.70 or less.
In other words, by setting the Si + C atom density, C / (Si + C), H atom ratio, and sp 3 property in the above ranges, it becomes possible to suppress oxidation at the outermost surface of the a-SiC surface layer, and to achieve high humidity. It has been found that an electrophotographic photoreceptor excellent in flow, energy saving, abrasion resistance and electrophotographic photoreceptor characteristics can be obtained.
However, by repeating the shielding operation and the opening operation of the corona charger opening, in Comparative Example 5, the high-humidity flow on the retracting side of the shielding member that frequently contacts the shielding member may be deteriorated.
As for the surface roughness of the electrophotographic photoreceptors produced in Example 5 and Comparative Example 5, Ra was in the range of 32 nm to 36 nm, and Δa was in the range of 0.13 to 0.16.

<比較例6>
実施例1と同じ構成のプラズマ処理装置を用いて、円筒状基体の表面に表1に示す条件で各層を成膜して、プラス帯電a−Si感光体を作製した。但し、表面層作製時の高周波電力を表18に示す条件とした。
作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置し、後述の評価を行った。実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
<Comparative Example 6>
Using the plasma processing apparatus having the same configuration as in Example 1, each layer was formed on the surface of the cylindrical substrate under the conditions shown in Table 1 to produce a positively charged a-Si photosensitive member. However, the high frequency power at the time of producing the surface layer was set to the conditions shown in Table 18.
The produced electrophotographic photoreceptor was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the evaluation described later was performed. Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.

Figure 2010276795
Figure 2010276795

比較例6により作製した電子写真用感光体について、実施例1と同様に、表面粗さを算出した後、C/(Si+C)、Si原子密度、C原子密度、Si+C原子密度、H原子比、H原子密度、及びsp性を求め高湿流れ、耐磨耗性、階調性、感度を評価した。それら結果を、実施例1の成膜条件No.1、実施例2の成膜条件No.10、実施例4の成膜条件No.26、28と合わせて表19に示す。 For the electrophotographic photoreceptor produced in Comparative Example 6, after calculating the surface roughness in the same manner as in Example 1, C / (Si + C), Si atom density, C atom density, Si + C atom density, H atom The ratio, H atom density, and sp 3 property were determined to evaluate high-humidity flow, wear resistance, gradation, and sensitivity. The results are shown in Table 19 together with the film formation condition No. 1 of Example 1, the film formation condition No. 10 of Example 2, and the film formation conditions No. 26 and 28 of Example 4.

Figure 2010276795
Figure 2010276795

表19に示すように、表面層のSi+C原子密度を6.60×1022原子/cm以上、且つ、C/(Si+C)を0.61以上0.75以下にすることで高湿流れ、耐磨耗性、階調性、感度に優れた電子写真用感光体が得られることが解った。
また、H原子比の範囲を0.30以上0.45以下とすることにより、より高湿流れ、耐磨耗性及び感度に優れた電子写真用感光体が得られることが解った。
更に、sp性の範囲を0.20以上0.70以下とすることにより更に耐磨耗性に優れた電子写真用感光体が得られることが解った。
つまり、Si+C原子密度、C/(Si+C)、H原子比、及びsp性を上記範囲とすることで、a−SiC表面層最表面での酸化の抑制が可能となり、高湿流れ、省エネルギー性に優れ、且つ、耐磨耗性及び電子写真用感光体特性の優れた電子写真用感光体が得られることが解った。
但し、コロナ帯電器開口部の遮蔽動作及び開口動作を繰り返す事により比較例6では遮蔽部材と接触する頻度の高い遮蔽部材の退避側の高湿流れが悪化する場合があった。
比較例6で作製した電子写真用感光体の表面粗さは、Raが32nm〜36nm、Δaが0.13〜0.16の範囲であった。
As shown in Table 19, the surface layer has a Si + C atom density of 6.60 × 10 22 atoms / cm 3 or more and C / (Si + C) of 0.61 or more and 0.75 or less. It has been found that an electrophotographic photoreceptor excellent in high humidity flow, abrasion resistance, gradation and sensitivity can be obtained.
It has also been found that by setting the H atomic ratio range to 0.30 or more and 0.45 or less, an electrophotographic photoreceptor excellent in higher humidity flow, wear resistance and sensitivity can be obtained.
Furthermore, it has been found that an electrophotographic photoreceptor having further excellent wear resistance can be obtained by setting the sp 3 property range to 0.20 or more and 0.70 or less.
In other words, by setting the Si + C atom density, C / (Si + C), H atom ratio, and sp 3 property in the above ranges, it becomes possible to suppress oxidation at the outermost surface of the a-SiC surface layer, and to achieve high humidity. It has been found that an electrophotographic photoreceptor excellent in flow, energy saving, abrasion resistance and electrophotographic photoreceptor characteristics can be obtained.
However, by repeating the shielding operation and the opening operation of the opening portion of the corona charger, in Comparative Example 6, the high-humidity flow on the retracting side of the shielding member that frequently contacts the shielding member may be deteriorated.
The surface roughness of the electrophotographic photoreceptor produced in Comparative Example 6 was in the range of Ra of 32 nm to 36 nm and Δa of 0.13 to 0.16.

<実施例6>
実施例3の成膜条件No.24で作製した電子写真用感光体を、実施例1と同じ構成の電子写真装置に設置して、高湿流れの評価を行った。その結果を実施例3の成膜条件No.24の結果と合せて表20に示す。
実施例1と同様に、遮蔽部材4103は厚さ30μmのポリイミド樹脂シートで構成した。実施例1と同様に、電子写真装置を停止している間は遮蔽部材4103をY方向に移動させ主帯電器6002、転写帯電器6004及び分離帯電器6005の開口部を遮蔽した。
更に、本実施例6では遮蔽部材4103の電子写真用感光体4101との対向面にファーブラシを設け電子写真用感光体4101の表面を摺擦可能としている。即ち、電子写真装置を停止している間は電子写真用感光体4101の表面にファーブラシを当接した状態で各帯電器の開口部が遮蔽部材4103で遮蔽された状態となっている。
<Example 6>
The electrophotographic photoreceptor produced under the film forming condition No. 24 of Example 3 was installed in an electrophotographic apparatus having the same configuration as that of Example 1, and the high humidity flow was evaluated. The results are shown in Table 20 together with the results of film formation condition No. 24 of Example 3.
Similarly to Example 1, the shielding member 4103 was formed of a polyimide resin sheet having a thickness of 30 μm. As in Example 1, while the electrophotographic apparatus was stopped, the shielding member 4103 was moved in the Y direction to shield the openings of the main charger 6002, the transfer charger 6004, and the separation charger 6005.
Further, in the sixth embodiment, a fur brush is provided on the surface of the shielding member 4103 facing the electrophotographic photoreceptor 4101 so that the surface of the electrophotographic photoreceptor 4101 can be rubbed. That is, while the electrophotographic apparatus is stopped, the opening of each charger is shielded by the shielding member 4103 while the fur brush is in contact with the surface of the electrophotographic photoreceptor 4101.

<比較例7>
実施例3の成膜条件No.24で作製した電子写真用感光体を下記電子写真装置に設置して高湿流れの評価を行った。本比較例に用いた電子写真装置は、図4に示した遮蔽部材4103を設けない構成とする以外は実施例6と同様とした。実施例6、実施例3及び比較例7について、高湿流れに関する評価結果を表20に示す。
<Comparative Example 7>
The electrophotographic photoreceptor produced under the film forming condition No. 24 of Example 3 was installed in the following electrophotographic apparatus, and the high humidity flow was evaluated. The electrophotographic apparatus used in this comparative example was the same as that in Example 6 except that the shielding member 4103 shown in FIG. 4 was not provided. Table 20 shows the evaluation results regarding the high-humidity flow for Example 6, Example 3, and Comparative Example 7.

Figure 2010276795
Figure 2010276795

表20に示すように、コロナ帯電器の開口部を遮蔽部材で遮蔽する事により、電子写真装置停止時に電子写真用感光体表面への帯電生成物の付着が低減され特に、帯電器下流れに効果的であることが解った。
また、遮蔽部材にファーブラシを設け、電子写真用感光体表面を摺擦した場合、帯電器に対面した領域及び対面していない領域とも高湿流れは更に良化すること、及び摺擦傷のない画像均一性に優れた良好な画像が得られることが解った。
As shown in Table 20, by blocking the opening of the corona charger with a shielding member, the adhesion of charged products to the surface of the electrophotographic photosensitive member is reduced when the electrophotographic apparatus is stopped. It turns out to be effective.
Further, when a fur brush is provided on the shielding member and the surface of the electrophotographic photosensitive member is rubbed, the high-humidity flow is further improved in the area facing the charger and the area not facing, and there is no rubbing scratch. It was found that a good image with excellent image uniformity can be obtained.

4101‥‥‥‥‥‥‥‥電子写真用感光体
4102‥‥‥‥‥‥‥‥帯電線
4103‥‥‥‥‥‥‥‥遮蔽部材
4104‥‥‥‥‥‥‥‥巻き取り装置
4105‥‥‥‥‥‥‥‥ガイドローラー
4106‥‥‥‥‥‥‥‥駆動モーター
4107‥‥‥‥‥‥‥‥移動部材
4108‥‥‥‥‥‥‥‥帯電線清掃部材
4109‥‥‥‥‥‥‥‥回転部材
4110‥‥‥‥‥‥‥‥シールド
4111‥‥‥‥‥‥‥‥コロナ帯電器
4101 · · · · · · · · · · Electrophotographic photoconductor 4102 · · · · · · · · · Charged wire 4103 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Winding device 4105 ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Corona Chargers.

Claims (5)

少なくとも電子写真用感光体と、前記電子写真用感光体に対向する開口部を有するコロナ帯電器を有し、
前記コロナ帯電器は、前記開口部を遮蔽可能なシート状の遮蔽部材と、長手方向に前記遮蔽部材を巻き取る機構を有する電子写真装置であって、
前記電子写真用感光体は、少なくとも基体の表面に、水素化アモルファスシリコンで形成された光導電層及び、水素化アモルファスシリコンカーバイドで形成された表面層を順次形成したものであり、
前記表面層は、ケイ素原子の原子密度と炭素原子の原子密度の和が6.60×1022原子/cm以上であり、更に、ケイ素原子の原子数と炭素原子の原子数の和に対する炭素原子の原子数の比が0.61以上0.75以下であることを特徴とする電子写真装置。
A corona charger having at least an electrophotographic photoreceptor and an opening facing the electrophotographic photoreceptor,
The corona charger is an electrophotographic apparatus having a sheet-like shielding member capable of shielding the opening and a mechanism for winding the shielding member in a longitudinal direction,
The electrophotographic photoreceptor is one in which a photoconductive layer formed of hydrogenated amorphous silicon and a surface layer formed of hydrogenated amorphous silicon carbide are sequentially formed on at least the surface of the substrate.
In the surface layer, the sum of the atomic density of silicon atoms and the atomic density of carbon atoms is 6.60 × 10 22 atoms / cm 3 or more, and carbon relative to the sum of the number of silicon atoms and the number of carbon atoms An electrophotographic apparatus wherein the ratio of the number of atoms is from 0.61 to 0.75.
前記表面層において、ケイ素原子の原子数、炭素原子の原子数及び水素原子の原子数の和に対する水素原子の原子数の比が0.30以上0.45以下であることを特徴とする請求項1に記載の電子写真装置。 The ratio of the number of hydrogen atoms to the sum of the number of silicon atoms, the number of carbon atoms and the number of hydrogen atoms in the surface layer is 0.30 or more and 0.45 or less. 2. The electrophotographic apparatus according to 1. 前記表面層において、ケイ素原子の原子密度と炭素原子の原子密度の和が6.81×1022原子/cm以上であることを特徴とする請求項1乃至2に記載の電子写真装置。 3. The electrophotographic apparatus according to claim 1, wherein in the surface layer, a sum of an atomic density of silicon atoms and an atomic density of carbon atoms is 6.81 × 10 22 atoms / cm 3 or more. 前記表面層において、ラマンスペクトルにおける1480cm−1のピーク強度Iに対する1390cm−1のピーク強度Iの比が、0.20以上0.70以下であることを特徴とする請求項1乃至3の何れかに記載の電子写真装置。 In the surface layer, the ratio of the peak intensity I D of 1390 cm -1 to the peak intensity I G of 1480 cm -1 in the Raman spectrum of claims 1 to 3, characterized in that 0.20 to 0.70 The electrophotographic apparatus according to any one of the above. 前記遮蔽部材は、前記電子写真用感光体の表面を摺擦する清掃部材を兼ねることを特徴とする1乃至4の何れかに記載の電子写真装置。 5. The electrophotographic apparatus according to claim 1, wherein the shielding member also serves as a cleaning member that rubs the surface of the electrophotographic photoreceptor.
JP2009128064A 2009-05-27 2009-05-27 Electrophotographic device Pending JP2010276795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128064A JP2010276795A (en) 2009-05-27 2009-05-27 Electrophotographic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128064A JP2010276795A (en) 2009-05-27 2009-05-27 Electrophotographic device

Publications (1)

Publication Number Publication Date
JP2010276795A true JP2010276795A (en) 2010-12-09

Family

ID=43423826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128064A Pending JP2010276795A (en) 2009-05-27 2009-05-27 Electrophotographic device

Country Status (1)

Country Link
JP (1) JP2010276795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014084177A1 (en) * 2012-11-30 2017-01-05 京セラ株式会社 Electrophotographic photoreceptor and image forming apparatus provided with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014084177A1 (en) * 2012-11-30 2017-01-05 京セラ株式会社 Electrophotographic photoreceptor and image forming apparatus provided with the same

Similar Documents

Publication Publication Date Title
JP5121785B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP4910851B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP4506805B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
EP1887427B1 (en) Electrophotographic photosensitive body and image-forming device comprising same
JP4743000B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP5081199B2 (en) Method for producing electrophotographic photosensitive member
JP4735724B2 (en) Electrophotographic photosensitive member, process cartridge using the same, and image forming apparatus
JP2008076520A (en) Electrophotographic photoreceptor, and process cartridge and image forming apparatus using the same
JP5447062B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
EP2310916B1 (en) Image-forming method
JP5675287B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP5675289B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP4764954B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP2010276795A (en) Electrophotographic device
JP2004133397A (en) Electrophotographic photoreceptor
JP5479557B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP2006189823A (en) Electrophotographic photoreceptor
JP5447063B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2015007753A (en) Electrophotographic photoreceptor
JP5121796B2 (en) Image forming method
JP2011138033A (en) Electrophotographic photoreceptor
JP5387272B2 (en) Image forming apparatus and process cartridge
JP5440062B2 (en) Image forming apparatus and process cartridge
JP2020071276A (en) Image forming method
JP4500878B2 (en) Method for producing electrophotographic photosensitive member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110112