JP2010276524A - Electrode system of electrostatic proximity sensor having excellent noise resistance, and electrostatic proximity sensor - Google Patents

Electrode system of electrostatic proximity sensor having excellent noise resistance, and electrostatic proximity sensor Download PDF

Info

Publication number
JP2010276524A
JP2010276524A JP2009130586A JP2009130586A JP2010276524A JP 2010276524 A JP2010276524 A JP 2010276524A JP 2009130586 A JP2009130586 A JP 2009130586A JP 2009130586 A JP2009130586 A JP 2009130586A JP 2010276524 A JP2010276524 A JP 2010276524A
Authority
JP
Japan
Prior art keywords
electrode film
strip electrode
film
proximity sensor
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009130586A
Other languages
Japanese (ja)
Inventor
Hiroshi Abe
宏 阿部
Hiroyasu Yamaguchi
浩保 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACT LSI KK
SYNERGIC CO Ltd
Original Assignee
ACT LSI KK
SYNERGIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACT LSI KK, SYNERGIC CO Ltd filed Critical ACT LSI KK
Priority to JP2009130586A priority Critical patent/JP2010276524A/en
Publication of JP2010276524A publication Critical patent/JP2010276524A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode system of an electrostatic proximity sensor, and the electrostatic proximity sensor, mountable easily on a curved mounted surface such as a vehicle bumper easily along the curve of the mounted surface without impeding its design, and without obstructing surface painting or the like, capable of detecting evenly detection objects at close range, having high environment resistance having small sensitivity reduction and stable operability even when having heavy rainfall or freezing, or adhesion of mud, a snow melting agent or the like, and operable stably without malfunction even under a noise environment wherein a strong electromagnetic wave such as car radio exists. <P>SOLUTION: A shield electrode film is formed on an insulating base, and the shield electrode film is covered with an insulating film, and a first belt-like electrode film A and a second belt-like electrode film B narrower than the first belt-like electrode film are arranged close in parallel on the insulating film. The shield electrode film surrounds the outer edge of the first and second belt-like electrode films from the surface direction, and the same voltage as the first and second belt-like electrode films is applied thereto, and further, a peripheral part of the shield electrode film is projected from the outer edge of the first and second belt-like electrode films. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、薄型帯状で、湾曲した被装着面にも装着可能で、耐ノイズ性にすぐれた静電式近接センサの電極システムおよびこの電極システムを用いた近接センサに関し、たとえば自動車バンパーの表面に装着してそのバンパーに近接する人体等を検出するのに利用して有効である。   The present invention relates to an electrode system of an electrostatic proximity sensor that is thin and can be mounted on a curved mounting surface and has excellent noise resistance, and a proximity sensor using this electrode system, for example, on the surface of an automobile bumper. It is effective for use in detecting a human body or the like that is mounted and close to the bumper.

静電式近接センサについては、たとえば、特開2003−202383号公報(特許文献1)やJPWO2004/059343号公報(特許文献2)にそれぞれ開示されている。   The electrostatic proximity sensor is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-202383 (Patent Document 1) and JPWO 2004/059343 (Patent Document 2).

特許文献1には、物体検出領域に配置される平板状に形成された金属板からなる電極と、直流電源を有する充電系と、電流検出手段を有する放電系と、上記電極に対して上記充電系と上記放電系とを所定の切換周波数で交互に切り換えるスイッチとを含み、被検出物体と上記電極との間の静電容量を上記放電系に流れる電流として検出する近接スイッチが開示されている。   In Patent Document 1, an electrode made of a flat metal plate disposed in an object detection region, a charging system having a DC power source, a discharging system having a current detecting means, and the charging for the electrode are described. A proximity switch is disclosed that includes a switch that alternately switches a system and the discharge system at a predetermined switching frequency, and detects a capacitance between a detected object and the electrode as a current flowing through the discharge system. .

さらに、その特許文献1には、接近する物体を高感度に検出するため、ともに平板状に形成された同一サイズの金属板からなり、物体検出領域内でほぼ同一平面上に並設される第1および第2電極と、直流電源を有する充電系と、電流検出手段を有する放電系と、上記第1および第2電極をともに所定の切換周波数で上記充電系と上記放電系とに交互に切り換えるスイッチ手段とを備えた構成も開示されている。   Furthermore, in Patent Document 1, in order to detect an approaching object with high sensitivity, both are made of metal plates of the same size formed in a flat plate shape, and are arranged in parallel on substantially the same plane in the object detection region. The first and second electrodes, a charging system having a DC power source, a discharging system having a current detecting means, and the first and second electrodes are alternately switched between the charging system and the discharging system at a predetermined switching frequency. A configuration comprising switch means is also disclosed.

特許文献2には、U字断面のレール状に形成されたシールド電極(遮蔽電極)のU字溝内に、共に帯板状の第1検出電極と第2検出電極が電極面の高さを違えた状態で収容された電極システムと、この電極システムを用いた近接センサが開示されている。このセンサは、シールド電極のU字溝の開口方向が検出領域となり、それ以外の方向はシールド電極でU字状に囲まれて非検出領域となる。   In Patent Document 2, the first detection electrode and the second detection electrode, both of which are in the shape of strips, have heights of electrode surfaces in a U-shaped groove of a shield electrode (shield electrode) formed in a rail shape with a U-shaped cross section. An electrode system accommodated in a different state and a proximity sensor using the electrode system are disclosed. In this sensor, the opening direction of the U-shaped groove of the shield electrode is a detection region, and the other direction is surrounded by the shield electrode in a U shape to be a non-detection region.

被検出体が2つの検出電極から十分な距離で離れている場合、その被検出体によって2つの検出電極にそれぞれ生じる静電容量はそれほど大きくなく、また距離による変化も緩慢であるが、距離がある程度以下になると、そこから急に増大するようになる。この急増大は被検出体に近い方の検出電極にて先に生じる。これより、2つの静電容量間の差が急激に拡大する。   When the object to be detected is separated from the two detection electrodes by a sufficient distance, the capacitance generated by the object to be detected on the two detection electrodes is not so large, and the change due to the distance is slow. When it falls below a certain level, it suddenly increases. This sudden increase first occurs at the detection electrode closer to the detection target. As a result, the difference between the two capacitances increases rapidly.

したがって、その2つの静電容量をそれぞれに測定してその差出力を取り出せば、その差出力のレベル状態は、被検出体がある程度のところまで近接したところで大きく変化(急増大)する。この急増大によって被検出体の接近を検出することができる。   Therefore, if the two capacitances are measured and the difference output is taken out, the level state of the difference output changes greatly (abrupt increase) when the detected object comes close to a certain point. Due to this sudden increase, the approach of the detected object can be detected.

上述した近接センサは、ワゴン車などの車両等に取付けられている引き戸式または扉式の自動開閉ドアにおいて指挟み込みを自動的に防止させるためのセンサとして使用される。   The proximity sensor described above is used as a sensor for automatically preventing finger pinching in a sliding door type or door type automatic opening / closing door attached to a vehicle such as a wagon car.

特開2003−202383号公報JP 2003-202383 A JPWO2004/059343号公報JPWO 2004/059343 gazette

たとえば自動車においては、運転者からの死角となる車両の前後至近距離に対する安全確認がとくに求められている。このために、たとえば車両の前後至近距離での映像を撮影して表示させるモニターカメラが提供されている。しかし、そのモニターカメラにも死角があって、たとえばバンパーの下方の狭い空間に屈んでいる幼児の存在を高い確度で発見することは困難であった。モニターカメラの死角は撮影レンズの広角化によりある程度縮小可能であるが、過度の広角化は映像の歪みを大きくして視認性を低下させるため、この種の安全確認用途には不適である。   For example, in automobiles, there is a particular demand for safety confirmation of the vehicle's front and rear close distance, which is a blind spot from the driver. For this reason, for example, a monitor camera that captures and displays a video at a close distance in the front-rear direction of the vehicle is provided. However, the monitor camera also has a blind spot, and for example, it was difficult to detect with high accuracy the existence of an infant bent in a narrow space under the bumper. The blind spot of the monitor camera can be reduced to some extent by widening the photographing lens. However, excessive widening is unsuitable for this kind of safety confirmation application because it increases the distortion of the image and lowers the visibility.

車両の前後至近距離に存在する幼児等の障害物を確実に検出する候補手段としては、たとえば特許文献2に開示されているレール状の近接センサの利用が考えられる。この近接センサをバンパーの横幅に沿って装着すれば、バンパー下方の死角空間に隠れている幼児の存在も高い確度で検出可能になるであろう。   As a candidate means for reliably detecting an obstacle such as an infant existing at a very short distance in the front-rear direction of the vehicle, for example, use of a rail-shaped proximity sensor disclosed in Patent Document 2 can be considered. If this proximity sensor is mounted along the width of the bumper, the presence of an infant hidden in the blind spot space below the bumper will be detected with high accuracy.

しかし、特許文献2の近接センサは、U字溝をなすシールド電極内に第1検出電極と第2検出電極体を、高さを違えた状態で収納するという立体構造を有する。この立体構造は検出領域外からの誘導ノイズを遮蔽するために必要な構造であるが、このような立体構造の近接センサをたとえば自動車のバンパーに装着することは、バンパーのデザインを大きく阻害し、また表面塗装の支障にもなってしまうという問題が生じる。   However, the proximity sensor of Patent Document 2 has a three-dimensional structure in which the first detection electrode and the second detection electrode body are housed in a shield electrode having a U-shaped groove with different heights. This three-dimensional structure is a structure that is necessary to shield the induced noise from outside the detection area, but mounting such a three-dimensional proximity sensor on, for example, an automobile bumper greatly hinders the design of the bumper, Moreover, the problem that it also becomes obstructive of surface coating arises.

また、自動車のバンパー付近は風雨等の自然環境や路面状況等にもっとも過酷に曝される部分であって、この部分に装着されるセンサには、とくに高い耐環境性が要求される。特許文献1,2には、これらの問題の解決に有効な手段が開示されていなかった。   In addition, the vicinity of the bumper of an automobile is a part that is most severely exposed to a natural environment such as wind and rain, road conditions, and the like, and a sensor mounted on this part is required to have particularly high environmental resistance. Patent Documents 1 and 2 do not disclose effective means for solving these problems.

この発明は以上のような問題を鑑みたものであって、その目的は、自動車バンパー等の湾曲した被装着面に、そのデザインを阻害することなく、また表面塗装等の支障になることもなく、その被装着面の湾曲に沿って容易に装着できるとともに、至近距離の被検出物体を満遍なく検出でき、さらに、激しい降雨や凍結、泥や融雪剤等の付着があっても、感度低下が小さく安定に動作できる高い耐環境性を備え、カー無線等の強い電磁波が存在するノイズ環境下でも、誤動作無く安定に動作できる静電式近接センサの電極システムおよびこの電極システムを用いた近接センサを提供することにある。   The present invention has been made in view of the above problems, and its purpose is not to hinder the design of a curved mounting surface such as an automobile bumper, nor to obstruct surface coating or the like. In addition, it can be easily mounted along the curved surface of the mounting surface, can detect all objects to be detected at close range, and even if it is exposed to heavy rain, freezing, mud, snow melting agent, etc., the decrease in sensitivity is small. Providing an electrode system for an electrostatic proximity sensor that has high environmental resistance that can operate stably and that can operate stably without malfunction even in a noise environment where strong electromagnetic waves such as car radio waves exist, and a proximity sensor that uses this electrode system There is to do.

この発明による静電式近接センサの電極システムは、次の(11)〜(18)により特定されるものである。
(11)誘電体である絶縁ベースをそなえること
(12)絶縁ベースの上面に配置されたシールド電極膜を備えること
(13)シールド電極膜の上面を覆う誘電体である第1絶縁膜を備えること
(14)第1絶縁膜の上面に配置された第1および第2帯状電極膜を備えること
(15)第1および第2帯状電極膜の上面を覆う誘電体である第2絶縁膜を備えること
(16)第1帯状電極膜と第2帯状電極膜は長さがほぼ同じで近接して平行に並んで配置されること
(17)第1帯状電極膜の幅は第2帯状電極膜の幅より大きいこと
(18)シールド電極膜は、第1および第2帯状電極膜が配置された部分の周囲を取り囲むようにはみ出して広がっていること
The electrode system of the electrostatic proximity sensor according to the present invention is specified by the following (11) to (18).
(11) Provide an insulating base that is a dielectric (12) Provide a shield electrode film disposed on the upper surface of the insulating base (13) Provide a first insulating film that is a dielectric covering the upper surface of the shield electrode film (14) Provide first and second strip electrode films disposed on the top surface of the first insulation film. (15) Provide a second insulation film that is a dielectric covering the top surfaces of the first and second strip electrode films. (16) The first strip electrode film and the second strip electrode film have substantially the same length and are arranged close to each other in parallel. (17) The width of the first strip electrode film is the width of the second strip electrode film. (18) The shield electrode film extends so as to surround the portion where the first and second strip electrode films are disposed.

この発明による静電式近接センサは、次の(21)〜(28)により特定されるものである。
(21)電極システムと、回路システムを備えた静電式近接センサであること
(22)電極システムは、誘電体である絶縁ベースと、絶縁ベースの上面に配置されたシールド電極膜と、シールド電極膜の上面を覆う誘電体である第1絶縁膜と、第1絶縁膜の上面に配置された第1および第2帯状電極膜と、第1および第2帯状電極膜の上面を覆う誘電体である第2絶縁膜を備えること
(23)第1帯状電極膜と第2帯状電極膜は長さがほぼ同じで近接して平行に並置されること
(24)第1帯状電極膜の幅は第2帯状電極膜の幅より大きいこと
(25)シールド電極膜は、第1および第2帯状電極膜が配置された部分の周囲を取り囲むようにはみ出して広がっていること
(26)回路システムは、電圧印加手段と、差検出手段を備えること
(27)電圧印加手段は、第1帯状電極膜・第2帯状電極膜・シールド電極膜のそれぞれにほぼ等しい電圧を印加するとともに、印加電圧を繰り返し変化させること
(28)差検出手段は、第1帯状電極膜の蓄積電荷量と第2帯状電極膜の蓄積電荷量の差分に対応した電圧信号を出力すること
The electrostatic proximity sensor according to the present invention is specified by the following (21) to (28).
(21) Electrostatic proximity sensor provided with an electrode system and a circuit system. (22) The electrode system includes a dielectric insulating base, a shield electrode film disposed on the top surface of the insulating base, and a shield electrode. A first insulating film that is a dielectric covering the upper surface of the film, first and second strip electrode films disposed on the upper surface of the first insulating film, and a dielectric covering the upper surfaces of the first and second strip electrode films (23) The first strip electrode film and the second strip electrode film have substantially the same length and are juxtaposed in parallel. (24) The width of the first strip electrode film is the first. It must be larger than the width of the two-band electrode film. (25) The shield electrode film should extend so as to surround the periphery of the portion where the first and second band-shaped electrode films are disposed. Application means and difference detection means are provided. (27) Voltage application The stage applies a substantially equal voltage to each of the first strip electrode film, the second strip electrode film, and the shield electrode film, and repeatedly changes the applied voltage. (28) The difference detecting means Output a voltage signal corresponding to the difference between the accumulated charge amount and the accumulated charge amount of the second strip electrode film.

自動車バンパー等の湾曲した被装着面に、そのデザインを阻害することなく、また表面塗装等の支障になることもなく、その被装着面の湾曲に沿って容易に装着できるとともに、至近距離の被検出物体を満遍なく検出でき、さらに、激しい降雨や凍結、泥や融雪剤等の付着があっても、感度低下が小さく安定に動作できる高い耐環境性を備え、カー無線等の強い電磁波が存在するノイズ環境下でも、誤動作無く安定に動作できる静電式近接センサの電極システム、および静電式近接センサを実現できる。   It can be easily mounted on the curved mounting surface of an automobile bumper or the like along the curved surface of the mounting surface without obstructing the design and without hindering surface coating. Detecting objects can be detected evenly, and even if there is heavy rain or freezing, mud or snow-melting agent, etc., it has high environmental resistance that can operate stably with little decrease in sensitivity, and there is strong electromagnetic waves such as car radio It is possible to realize an electrostatic proximity sensor electrode system and an electrostatic proximity sensor that can operate stably without malfunction even in a noisy environment.

この発明に係る静電式近接センサの電極システムの第1実施形態を示す平面図およびその一部断面図である。It is the top view which shows 1st Embodiment of the electrode system of the electrostatic proximity sensor which concerns on this invention, and its partial sectional view. この発明の電極システムを用いた静電式近接センサ回路システムの第1実施形態を示す回路図である。1 is a circuit diagram showing a first embodiment of an electrostatic proximity sensor circuit system using an electrode system of the present invention. FIG. この発明の近接センサを自動車バンパーに装着した場合の近接物検出範囲を示す図である。It is a figure which shows the proximity | contact thing detection range at the time of mounting | wearing the vehicle bumper with the proximity sensor of this invention. この発明に係る静電式近接センサの電極システムの第2〜4実施形態を示す平面図である。It is a top view which shows 2nd-4th embodiment of the electrode system of the electrostatic proximity sensor which concerns on this invention. この発明に係る静電式近接センサの電極システムの第5〜7実施形態を示す平面図である。It is a top view which shows 5-7 embodiment of the electrode system of the electrostatic proximity sensor which concerns on this invention. この発明に係る静電式近接センサの電極システムの変形例的な第8実施形態を示す平面図である。It is a top view which shows 8th Embodiment like the modification of the electrode system of the electrostatic proximity sensor which concerns on this invention. この発明に係る静電式近接センサ回路システムの第2実施形態を示す回路図である。It is a circuit diagram which shows 2nd Embodiment of the electrostatic proximity sensor circuit system which concerns on this invention. この発明に係る静電式近接センサ回路システムの第3実施形態を示す回路図である。It is a circuit diagram which shows 3rd Embodiment of the electrostatic proximity sensor circuit system which concerns on this invention. この発明に係る静電式近接センサの電極システムの第9実施形態を示す平面図および断面図である。It is the top view and sectional drawing which show 9th Embodiment of the electrode system of the electrostatic proximity sensor which concerns on this invention. この発明に係る静電式近接センサの電極システムの第10実施形態を示す平面図である。It is a top view which shows 10th Embodiment of the electrode system of the electrostatic proximity sensor which concerns on this invention.

===この発明に係る静電式近接センサの電極システムの第1実施形態===
図1は、この発明に係る静電式近接センサの電極システムの第1実施形態を平面図と厚みを誇張した部分断面図によって示す。
=== First Embodiment of Electrode Proximity Sensor Electrode System According to the Invention ===
FIG. 1 shows a first embodiment of an electrode system of an electrostatic proximity sensor according to the present invention by a plan view and a partial sectional view with exaggerated thickness.

同図に示す静電式近接センサの電極システム20は、自動車バンパー等の被装着面に装着されて使用されるものであって、その被装着面と反対側面上の空間領域を検出領域とする。装着は接着剤や粘着剤等を使って行われるが、電極システム20全体を薄型帯状の可撓構成とすることにより、自動車バンパー等の湾曲した被装着面に沿って面状に装着させることが簡単にできる。これにより、被装着面であるバンパーのデザインを阻害することなく、また塗装等を阻害する突起を形成することなく、そのバンパーの幅長全体に跨って近接センサの電極システム20を装着させることができる。   The electrode system 20 of the electrostatic proximity sensor shown in the figure is used by being mounted on a mounting surface such as an automobile bumper, and a detection region is a spatial region on the side surface opposite to the mounting surface. . The mounting is performed using an adhesive, a pressure sensitive adhesive, or the like, but the entire electrode system 20 can be mounted in a plane along a curved mounting surface such as an automobile bumper by adopting a thin strip-like flexible configuration. Easy to do. Thereby, the electrode system 20 of the proximity sensor can be mounted across the entire width of the bumper without hindering the design of the bumper which is the mounting surface, and without forming a protrusion that hinders painting or the like. it can.

この近接センサの電極システム20は、第1帯状電極膜A、第2帯状電極膜B、シールド電極膜S、および各電極膜A,B,Sを相互に絶縁隔離するとともに被装着体からも絶縁隔離する絶縁ベース30および絶縁膜31により構成される。   The electrode system 20 of the proximity sensor includes a first strip electrode film A, a second strip electrode film B, a shield electrode film S, and the electrode films A, B, and S that are insulated from each other and insulated from the mounted body. The insulating base 30 and the insulating film 31 are isolated.

第1帯状電極膜Aは所定の長さと幅に形成される。第2帯状電極膜Bは第1帯状電極膜Aと同じ長さで、幅だけを狭くして形成される。第1帯状電極膜Aと第2帯状電極膜Bは面方向に並んだ状態で平行に近接配置される。シールド電極膜Sは、第1および第2帯状電極膜A,Bが配置された部分の周囲を取り囲むべく、はみ出して広がるように形成される。このシールド電極膜Sは絶縁ベース30上に形成されていて自動車バンパー等の被装着体から絶縁されている。   The first strip electrode film A is formed to have a predetermined length and width. The second strip electrode film B has the same length as the first strip electrode film A, and is formed by narrowing only the width. The first strip electrode film A and the second strip electrode film B are arranged close to each other in parallel in a state of being aligned in the plane direction. The shield electrode film S is formed to protrude and spread so as to surround the periphery of the portion where the first and second strip electrode films A and B are disposed. The shield electrode film S is formed on the insulating base 30 and is insulated from a mounted body such as an automobile bumper.

シールド電極膜Sの上面と、第1および第2帯状電極膜A,Bの上面はそれぞれ、誘電体である絶縁膜で覆われている。シールド電極膜Sと第1および第2帯状電極膜A,Bの間は誘電体である絶縁膜31で絶縁隔離されている。各絶縁膜31はそれぞれ絶縁フィルムの添着あるいは絶縁材の塗布もしくは印刷等により積層形成される。   The upper surface of the shield electrode film S and the upper surfaces of the first and second strip electrode films A and B are each covered with an insulating film that is a dielectric. The shield electrode film S and the first and second strip electrode films A and B are insulated and separated by an insulating film 31 which is a dielectric. Each insulating film 31 is formed by laminating by attaching an insulating film or applying or printing an insulating material.

シールド電極膜Sは、その周縁部が第1および第2帯状電極膜A,Bの外縁を面方向から取り囲む。この際、第1および第2帯状電極膜A,Bの外縁からシールド電極膜Sの外縁までの間には、ある程度以上の沿面距離(はみ出し幅)dが確保されている。   The periphery of the shield electrode film S surrounds the outer edges of the first and second strip electrode films A and B from the surface direction. At this time, a creepage distance (protrusion width) d of a certain degree or more is secured between the outer edge of the first and second strip electrode films A and B and the outer edge of the shield electrode film S.

さらに、図1に示した近接センサの電極システム20では、第1および第2帯状電極膜A,Bを同一面上で面方向から取り囲む環状シールド電極膜24が設けられている。この環状シールド電極膜24は、第1および第2帯状電極膜A,Bに対して同一層面に形成されるとともに、その下側に位置するシールド電極膜Sにビア25を介して導電接続されている。この環状シールド電極膜24の上側面は、第1および第2帯状電極膜A,Bと共に、誘電体である絶縁膜31で覆われている。   Further, the proximity sensor electrode system 20 shown in FIG. 1 is provided with an annular shield electrode film 24 that surrounds the first and second strip electrode films A and B on the same plane from the surface direction. The annular shield electrode film 24 is formed on the same layer surface with respect to the first and second strip electrode films A and B, and is conductively connected to the shield electrode film S located below the first and second strip electrode films A and B through vias 25. Yes. The upper side surface of the annular shield electrode film 24 is covered with an insulating film 31 that is a dielectric, together with the first and second strip electrode films A and B.

===静電式近接センサの回路システムの実施形態===
図2は、図1に示した電極システム20を用いる静電式近接センサの回路システムを示す。
同図において、SIAは第1帯状電極膜Aの接続端子、SIBは第2帯状電極膜Bの接続端子、SISはシールド電極膜Sの接続端子をそれぞれ示す。また、Caは被検出体の近接により第1帯状電極膜Aに形成される静電容量、Cbはその被検出体の近接により第2帯状電極膜Bに形成される静電容量をそれぞれ示す。
=== Embodiment of Circuit System of Electrostatic Proximity Sensor ===
FIG. 2 shows a circuit system of an electrostatic proximity sensor using the electrode system 20 shown in FIG.
In the figure, SIA represents a connection terminal of the first strip electrode film A, SIB represents a connection terminal of the second strip electrode film B, and SIS represents a connection terminal of the shield electrode film S. Further, Ca represents a capacitance formed on the first strip-shaped electrode film A due to the proximity of the detected body, and Cb represents a capacitance formed on the second strip-shaped electrode film B due to the proximity of the detected body.

近接センサ電極システム20の検出領域に被検出体が近接すると、その被検出体により、第1および第2帯状電極膜A,Bにそれぞれ静電容量Ca,Cbが生じる。この静電容量Ca,Cbは被検出体が帯状電極膜A,Bに接近するにしたがって増大する。この接近したときの静電容量Ca,Cbは、第1帯状電極膜Aは第2帯状電極膜Bに対して長さは同じだが幅広に形成されて電極面積が相対的に大きいことにより、CaがCbよりも相対的に大きくなる。この静電容量の差(Ca−cb)の大きさを所定のしきい値でレベル弁別することにより、被検出体の接近を検出することができる。   When a detection object approaches the detection region of the proximity sensor electrode system 20, capacitances Ca and Cb are generated in the first and second strip electrode films A and B, respectively, by the detection object. The capacitances Ca and Cb increase as the detected object approaches the strip electrode films A and B. Capacitances Ca and Cb when approached are such that the first strip electrode film A has the same length as the second strip electrode film B but is formed wider and the electrode area is relatively large. Becomes relatively larger than Cb. By approaching the level of the difference in capacitance (Ca−cb) with a predetermined threshold, the approach of the detected object can be detected.

この検出を行わせるため、図示の回路システムは、充放電回路、第1および第2の電荷電圧変換回路、差動回路、電圧印加手段(アクティブシールド駆動手段)を備えている。   In order to perform this detection, the illustrated circuit system includes a charge / discharge circuit, first and second charge-voltage conversion circuits, a differential circuit, and voltage application means (active shield drive means).

充放電回路は、第1および第2帯状電極膜A,Bの接続端子SIA,SIBにそれぞれ電位の異なる2つの所定電圧Vs1,Vs2(Vs1>Vs2)を、スイッチング回路Sasにより、周期的に交互に与えてその第1および第2帯状電極膜A,Bがそれぞれに形成する静電容量Ca,Cbを充放電駆動する。この充放電回路は、単独に形成してもよいが、図示の実施形態では、後述する電圧印加手段と共に構成される。   In the charging / discharging circuit, two predetermined voltages Vs1, Vs2 (Vs1> Vs2) having different potentials are periodically and alternately applied to the connection terminals SIA, SIB of the first and second strip electrode films A, B by the switching circuit Sas. To charge and discharge the electrostatic capacitances Ca and Cb formed by the first and second strip electrode films A and B, respectively. This charging / discharging circuit may be formed independently, but in the illustrated embodiment, it is configured with voltage applying means described later.

第1および第2の電荷電圧変換回路は演算増幅器(オペアンプ)51,52を用いて構成され、第1および第2帯状電極膜A,Bの充電電荷(電圧印加により充電された蓄積電荷)を電極膜A,Bごとに電圧変換する。   The first and second charge-voltage conversion circuits are configured by using operational amplifiers (operational amplifiers) 51 and 52, and charge charges (accumulated charges charged by voltage application) of the first and second strip electrode films A and B are used. Voltage conversion is performed for each of the electrode films A and B.

差動回路は演算増幅器53と抵抗R1,R2および容量素子C2を用いて構成され、第1および第2の電荷電圧変換回路の各出力電圧Va,Vbの差(Va−Vb)を抽出して出力する。この差出力(Va−Vb)はアクティブ・ローパスフィルタ(LPF)54を介して出力される。この出力電圧Vo(=Va−Vb)に基づいて被検出物体の有無が判定される。   The differential circuit is configured by using an operational amplifier 53, resistors R1 and R2, and a capacitive element C2, and extracts a difference (Va−Vb) between the output voltages Va and Vb of the first and second charge voltage conversion circuits. Output. This difference output (Va−Vb) is output through an active low-pass filter (LPF) 54. Based on this output voltage Vo (= Va−Vb), the presence / absence of the object to be detected is determined.

上記構成において、第1および第2の電荷電圧変換回路を構成する演算増幅器51,52は、その出力と反転入力(−)間に負帰還容量素子Cfa,Cfbおよび放電リセット用スイッチング回路Sa,Sbが接続されるとともに、その非反転入力(+)に電位の異なる第1電位Vs1と第2電位Vs2が、スイッチング回路Sasにより、周期的に切り換えられて印加されるようになっている。そして、その非反転入力(+)に切り換えられて印加される第1電位Vs1と第2電位Vs2がシールド電極膜Sにも印加されるようになっている。   In the above-described configuration, the operational amplifiers 51 and 52 constituting the first and second charge-voltage conversion circuits have negative feedback capacitance elements Cfa and Cfb and discharge reset switching circuits Sa and Sb between the output and the inverting input (−). Are connected, and the first potential Vs1 and the second potential Vs2 having different potentials are periodically switched by the switching circuit Sas and applied to the non-inverting input (+). Then, the first potential Vs1 and the second potential Vs2 applied by switching to the non-inverting input (+) are also applied to the shield electrode film S.

===充放電回路と電圧印加手段(アクティブシールド駆動手段)====
図2において、演算増幅器51,52の非反転入力(+)には、スイッチング回路Sasにより、第1電位Vs1と第2電位Vs2が周期的に切り換えられて印加される。演算増幅器51,52は、負帰還容量素子Cfa,Cfbおよび放電リセット用スイッチング回路Sa,Sbにより、その反転入力(−)が非反転入力(+)と同電位になるように負帰還動作する。つまり、反転入力(−)が非反転入力(+)に仮想短絡されるように負帰還動作が行われる。
=== Charging / Discharging Circuit and Voltage Application Unit (Active Shield Driving Unit) ====
In FIG. 2, the first potential Vs1 and the second potential Vs2 are periodically switched and applied to the non-inverting input (+) of the operational amplifiers 51 and 52 by the switching circuit Sas. The operational amplifiers 51 and 52 perform a negative feedback operation by the negative feedback capacitance elements Cfa and Cfb and the discharge reset switching circuits Sa and Sb so that the inverting input (−) becomes the same potential as the non-inverting input (+). That is, the negative feedback operation is performed so that the inverting input (−) is virtually short-circuited to the non-inverting input (+).

ここで、その演算増幅器51,52の非反転入力(+)に第1電位Vs1が印加されると、これに追従して反転入力(−)が第1電位Vs1となる。同様に、演算増幅器51,52の非反転入力(+)に第2電位Vs1が印加されると、反転入力(−)も第2電位Vs2となる。   Here, when the first potential Vs1 is applied to the non-inverting input (+) of the operational amplifiers 51 and 52, the inverting input (−) becomes the first potential Vs1 following this. Similarly, when the second potential Vs1 is applied to the non-inverting input (+) of the operational amplifiers 51 and 52, the inverting input (−) also becomes the second potential Vs2.

したがって、演算増幅器51,52の反転入力(−)に接続端子SIA,SIBを介して第1および第2帯状電極膜A,Bを接続すると、この第1および第2帯状電極膜A,Bに第1電位Vs1と第2電位Vs2が周期的に切り換えられて印加されて、その電位Vs1,Vs2の差電圧(Vs1−Vs2)と帯状電極膜A,Bが形成する静電容量Ca,Cbに応じた電荷の充放電がそれぞれに行われる。Ca,Cbの充放電電荷はそれぞれ、演算増幅器51,52が形成する電荷電圧変換回路によって電圧Va,Vbに変換される。   Therefore, when the first and second strip electrode films A and B are connected to the inverting inputs (−) of the operational amplifiers 51 and 52 through the connection terminals SIA and SIB, the first and second strip electrode films A and B are connected to the first and second strip electrode films A and B. The first potential Vs1 and the second potential Vs2 are periodically switched and applied to the difference voltage (Vs1−Vs2) between the potentials Vs1 and Vs2 and the capacitances Ca and Cb formed by the strip electrode films A and B. Charge / discharge of the corresponding charge is performed for each. The charge and discharge charges of Ca and Cb are converted into voltages Va and Vb by charge-voltage conversion circuits formed by operational amplifiers 51 and 52, respectively.

演算増幅器51,52の放電リセット用スイッチング回路Sa,Sbは、スイッチング回路Sasと一定の同期関係でオンオフ動作し、第1電位Vs1と第2電位Vs2の切り換えごとにオンして負帰還容量素子Cfa,Cfbを放電リセットする。これにより、第1電位Vs1と第2電位Vs2の切り換えごとに、Ca,Cbに充電された電荷が電圧変化される。   The discharge reset switching circuits Sa and Sb of the operational amplifiers 51 and 52 are turned on and off in a constant synchronous relationship with the switching circuit Sas, and are turned on each time the first potential Vs1 and the second potential Vs2 are switched, and the negative feedback capacitance element Cfa. , Cfb is reset to discharge. As a result, every time the first potential Vs1 and the second potential Vs2 are switched, the charges charged in the Ca and Cb change in voltage.

このとき、第1の電位Vs1と第2の電位Vs2はシールド電極膜Sにも印加されるので、第1および第2帯状電極膜A,Bはシールド電極膜Sと同電位に保持される。これにより、第1および第2帯状電極膜A,Bとシールド電極膜S間では電荷の充放電が行われず、両者間での見かけの静電容量は等価的にゼロとなる。   At this time, since the first potential Vs1 and the second potential Vs2 are also applied to the shield electrode film S, the first and second strip electrode films A and B are held at the same potential as the shield electrode film S. As a result, charge is not charged or discharged between the first and second strip electrode films A and B and the shield electrode film S, and the apparent capacitance between them is equivalently zero.

このようにして、第1および第2帯状電極膜A,Bがそれぞれに形成する静電容量Ca,Cbを充放電駆動する充放電回路が形成されるとともに、第1および第2帯状電極膜A,Bとシールド電極膜S間での等価的な静電容量はゼロにする電圧印加手段(アクティブシールド駆動手段)が形成されている。   In this manner, a charge / discharge circuit for charging / discharging the electrostatic capacitances Ca and Cb formed by the first and second strip electrode films A and B is formed, and the first and second strip electrode films A are formed. , B and the shield electrode film S are formed with voltage applying means (active shield driving means) for reducing the equivalent capacitance to zero.

このアクティブシールド駆動が行われるシールド電極膜Sが、第1および第2帯状電極膜A,Bと被装着面との間に介在して両者間を電気的に遮蔽することにより、第1および第2帯状電極膜A,Bによる検出動作を、被装着体に影響されることなく、的確に行わせることができる。   The shield electrode film S on which the active shield drive is performed is interposed between the first and second strip electrode films A and B and the mounting surface to electrically shield the first and second electrodes. The detection operation by the two strip electrode films A and B can be accurately performed without being affected by the mounted body.

===耐ノイズ性について===
静電式の電極システムを用いた静電式近接センサは、カー無線等の環境ノイズの影響を受けて誤動作しやすいという問題があったが、この発明の近接センサ電極システム20では、第1帯状電極膜Aと第2帯状電極膜Bを面方向に並んだ状態で平行に近接配置することにより、高い耐環境ノイズ性能を得ることを可能にした。
=== Noise resistance ===
The electrostatic proximity sensor using the electrostatic electrode system has a problem that it is likely to malfunction due to the influence of environmental noise such as car radio. However, in the proximity sensor electrode system 20 of the present invention, the first belt-shaped sensor is used. By arranging the electrode film A and the second strip-shaped electrode film B in parallel in a state of being aligned in the plane direction, it is possible to obtain high environmental noise resistance.

すなわち、同じ長さで近接して平行する帯状電極膜A,Bには、位相や振幅等が同じように揃った電磁波ノイズが誘導される。このようなノイズは差動キャンセルにより簡単かつ高効率に相殺・除去させることができる。これにより、カー無線等の強い電磁波が存在するノイズ環境下でも、誤動作無く安定に動作することが可能になる。   That is, electromagnetic noise having the same phase, amplitude, and the like is induced in the strip-shaped electrode films A and B that are close to each other and have the same length. Such noise can be canceled and removed easily and with high efficiency by differential cancellation. This makes it possible to operate stably without malfunction even in a noise environment where strong electromagnetic waves such as car radio exist.

===耐環境性について===
この発明に係る近接センサの電極システム20の主要な利用形態としては、自動車バンパーに装着して使用することが想定されている。しかし、自動車のバンパー付近は風雨等の自然環境や路面状況等にもっとも過酷に曝される部分であって、この部分に装着されるセンサには、とくに高い耐環境性が要求される。上述した近接センサ電極システム20をバンパーに装着した場合、激しい降雨や凍結、泥や融雪剤等の付着が予想される。
=== Environmental resistance ===
As a main usage pattern of the proximity sensor electrode system 20 according to the present invention, it is assumed that the proximity sensor electrode system 20 is used by being mounted on an automobile bumper. However, the vicinity of the bumper of an automobile is a part that is most severely exposed to a natural environment such as wind and rain, road conditions, and the like, and particularly high environmental resistance is required for a sensor attached to this part. When the proximity sensor electrode system 20 described above is mounted on a bumper, heavy rainfall, freezing, adhesion of mud, snow melting agent, or the like is expected.

このため、この発明の近接センサ電極システム20では、図1に示すように、シールド電極膜Sと第1および第2帯状電極膜A,Bの表面を誘電体である絶縁膜31で覆い、さらに、第1および第2帯状電極膜A,Bの外縁からシールド電極膜Sの外縁までの間にはある程度以上の沿面距離(はみ出し幅)dを確保している。   For this reason, in the proximity sensor electrode system 20 of the present invention, as shown in FIG. 1, the surfaces of the shield electrode film S and the first and second strip electrode films A and B are covered with an insulating film 31 that is a dielectric. A certain creeping distance (protrusion width) d is secured between the outer edge of the first and second strip electrode films A and B and the outer edge of the shield electrode film S.

まず、シールド電極膜Sと第1および第2帯状電極膜A,Bの表面を誘電体である絶縁膜31で覆うことにより、雨水、泥、融雪剤などが電極A,Bに直接接触して浸食するのを防ぐことができる。   First, by covering the surfaces of the shield electrode film S and the first and second strip electrode films A and B with an insulating film 31 that is a dielectric, rainwater, mud, snow melting agent, etc. are in direct contact with the electrodes A and B. Erosion can be prevented.

次に、第1および第2帯状電極膜A,Bの外縁からシールド電極膜Sの外縁までの間にある程度以上の沿面距離dを確保することにより、第1および第2帯状電極膜A,Bによる検出動作が抵抗導電性の水膜によって阻害されるのを回避させることができる。   Next, by securing a creepage distance d of a certain extent or more between the outer edge of the first and second strip electrode films A and B and the outer edge of the shield electrode film S, the first and second strip electrode films A and B are secured. It is possible to avoid that the detection operation by is hindered by the resistive conductive water film.

第1および第2帯状電極膜A,Bの表面は絶縁膜31によって保護されるが、その絶縁膜31の表面が雨水や融雪剤を含んだ水などで濡れて水膜ができると、この水膜は抵抗性導電膜として第1および第2帯状電極膜A,Bに覆い被さる。   The surfaces of the first and second strip electrode films A and B are protected by the insulating film 31. If the surface of the insulating film 31 is wetted with rainwater or water containing a snow melting agent to form a water film, The film covers the first and second strip electrode films A and B as a resistive conductive film.

この抵抗性導電膜は電極システム20と被装着体に跨って覆い被さるため、第1および第2帯状電極膜A,Bが、被装着体に導電接続している導電膜で覆われてしまったのと同じような作用を受け、正常な検出動作が阻害されてしまう。   Since this resistive conductive film covers the electrode system 20 and the mounted body, the first and second strip electrode films A and B are covered with the conductive film conductively connected to the mounted body. As a result, the normal detection operation is hindered.

しかし、この発明の電極システム20では、第1および第2帯状電極膜A,Bの外縁からシールド電極膜Sの外縁までの間にある程度以上の沿面距離dを確保することにより、第1および第2帯状電極膜A,Bに覆い被さる抵抗性導電膜を、その沿面距離d部分にて被装着体から交流的に分離させることができる。これにより、その抵抗性導電膜による検出動作への影響を回避させることができる。   However, in the electrode system 20 of the present invention, the first and second creeping distances d are secured between the outer edge of the first and second strip electrode films A and B and the outer edge of the shield electrode film S to some extent. The resistive conductive film covering the two-band electrode films A and B can be separated from the mounted body in an alternating manner at the creeping distance d. Thereby, the influence on the detection operation by the resistive conductive film can be avoided.

雨水や融雪剤を含んだ水などの水膜は、1cm平方あたり数百Kオーム〜数Mオームの抵抗性導電膜を形成するが、シールド電極膜Sに覆い被さる部分の抵抗性導電膜は、そのシールド電極膜Sとの間で絶縁膜31を介して分布容量を形成する。この分布容量がある程度以上の沿面距離dにわたって形成されることにより、帯状電極膜A,Bを囲む環状部分の内側と外側を交流的に遮断するローパス・フィルタの分離帯が分布形成される。これにより、激しい降雨や凍結、泥や融雪剤等の付着があっても、感度低下が小さく安定に動作できる高い耐環境性を得ることができる。   A water film such as rainwater or water containing a snow melting agent forms a resistive conductive film of several hundred K ohms to several M ohms per 1 cm 2, but the resistive conductive film of the portion covering the shield electrode film S is A distributed capacitance is formed between the shield electrode film S and the insulating film 31. By forming this distributed capacity over a certain creepage distance d, a low-pass filter separation band that interrupts the inside and outside of the annular portions surrounding the strip electrode films A and B in an alternating manner is distributed. Thereby, even if there is intense rain or freezing, adhesion of mud, snow melting agent, etc., high environmental resistance that can be stably operated with small sensitivity reduction can be obtained.

===沿面距離(はみ出し幅)dについて===
沿面距離dは、雨水や融雪剤を含んだ水などの水膜が形成する抵抗性導電膜の抵抗率、第1および第2帯状電極膜A,Bの充放電駆動周波数、沿面距離d部分にてシールド電極膜Sを覆う絶縁体の厚さと誘電率等によって決めることができる。具体的には、帯状電極膜A,Bの充放電駆動周波数よりも低いカットオフ周波数を持つローパス・フィルタが分布形成されるように沿面距離dを設定すればよい。一般的構造では、沿面距離dは1cm以上さらに好ましくは2cm以上確保されていることが望ましい。
=== Creepage distance (protruding width) d ===
The creepage distance d is the resistivity of the resistive conductive film formed by a water film such as rain water or water containing a snow melting agent, the charge / discharge drive frequency of the first and second strip electrode films A and B, and the creepage distance d portion. The thickness of the insulator covering the shield electrode film S and the dielectric constant can be determined. Specifically, the creeping distance d may be set so that low-pass filters having a cut-off frequency lower than the charge / discharge driving frequency of the strip electrode films A and B are distributed. In a general structure, the creepage distance d is preferably 1 cm or more, more preferably 2 cm or more.

===近接センサ電極システムの使用状態===
図3は、この発明の近接センサ電極システム20を自動車10のバンパー11に装着した使用例を示す。同図において、(a)は上面図、(b)は側面図をそれぞれ示す。
同図に示すように、この発明の近接センサの電極システム20は、自動車パンパー11のほぼ全幅に沿って、デザインや塗装を阻害する突起を作ることなく、そのバンパー11の曲面形状に適合しながら面状に装着することができる。
=== Use status of proximity sensor electrode system ===
FIG. 3 shows an example of use in which the proximity sensor electrode system 20 of the present invention is mounted on the bumper 11 of the automobile 10. In the figure, (a) shows a top view and (b) shows a side view.
As shown in the figure, the electrode system 20 of the proximity sensor of the present invention conforms to the curved surface shape of the bumper 11 without making a protrusion that obstructs the design and painting along almost the entire width of the automobile bumper 11. Can be mounted in a planar shape.

このように装着された近接センサの電極システム20は、図中にその検出範囲を斜線ハッチングで示すように、バンパー11の下方を含む周辺40〜50cmの空間に接近した物体を満遍なく検出することができる。たとえば幼児などがバンパー11下方の死角空間に隠れていても、確実に検出することが可能である。   The electrode system 20 of the proximity sensor thus mounted can uniformly detect an object approaching a space of 40 to 50 cm around the periphery including the lower side of the bumper 11 as indicated by hatching in the drawing. it can. For example, even if an infant or the like is hidden in the blind spot space below the bumper 11, it can be reliably detected.

===近接センサ電極システムの第2〜4実施形態===
図4は、この発明に係る静電式近接センサの電極システムの第2〜4実施形態を示す。
同図の(a)に示す電極システム20では、シールド電極膜Sの上に絶縁膜31を介して第1および第2帯状電極膜A,Bを設けるとともに、第1および第2帯状電極膜A,Bは、その下に位置するシールド電極膜Sの周縁部によってほぼ面方向から環状に囲繞されている。
同図の(b)に示す電極システム20では、第1帯状電極膜Aの両幅にそれぞれ第2帯状電極膜B,Bが平行に近接配置されている。
同図の(c)に示す電極システム20では、第2帯状電極膜Bの両幅にそれぞれ第1帯状電極膜A,Aが平行に近接配置されている。
=== Second to Fourth Embodiments of Proximity Sensor Electrode System ===
FIG. 4 shows second to fourth embodiments of the electrode system of the electrostatic proximity sensor according to the present invention.
In the electrode system 20 shown in FIG. 6A, the first and second strip electrode films A and B are provided on the shield electrode film S via the insulating film 31, and the first and second strip electrode films A are provided. , B are surrounded by a peripheral portion of the shield electrode film S located thereunder in an annular shape from substantially the surface direction.
In the electrode system 20 shown in FIG. 5B, the second strip electrode films B and B are arranged in parallel and in close proximity to both widths of the first strip electrode film A, respectively.
In the electrode system 20 shown in (c) of the same figure, the first strip electrode films A and A are arranged close to each other in parallel to both widths of the second strip electrode film B, respectively.

===近接センサ電極システムの第5〜7実施形態===
図5は、この発明に係る静電式近接センサの電極システムの第5〜7実施形態を示す。
同図の(a)に示す電極システム20では、第1および第2帯状電極膜A,Bの外縁を面方向から取り囲むシールド電極膜S周縁部に沿って、高抵抗の導電性被覆26が環状に設けられている。導電性被覆26は上面が露出されているとともに、シールド電極膜Sに接続されている。この導電性被覆26は、雨水等による抵抗性導電膜が形成される場合に、第1および第2帯状電極膜A,Bと被装着体間を一層確実に分離させるのに有効である。
同図の(b)に示す電極システム20では、第1および第2帯状電極膜A,Bの外縁を面方向から取り囲むシールド電極膜S周縁部の幅の一部を露出させている。
同図の(c)に示す電極システム20では、第1および第2帯状電極膜A,Bの外縁を面方向から取り囲むシールド電極膜S周縁部の幅の全部を露出させている。
=== Fifth to Seventh Embodiments of Proximity Sensor Electrode System ===
FIG. 5 shows fifth to seventh embodiments of the electrode system of the electrostatic proximity sensor according to the present invention.
In the electrode system 20 shown in FIG. 6A, the high-resistance conductive coating 26 is annular along the peripheral edge of the shield electrode film S that surrounds the outer edges of the first and second strip electrode films A and B from the surface direction. Is provided. The upper surface of the conductive coating 26 is exposed and is connected to the shield electrode film S. The conductive coating 26 is effective in further reliably separating the first and second strip electrode films A and B and the mounted body when a resistive conductive film is formed by rainwater or the like.
In the electrode system 20 shown in FIG. 6B, a part of the width of the periphery of the shield electrode film S that surrounds the outer edges of the first and second strip electrode films A and B from the surface direction is exposed.
In the electrode system 20 shown in FIG. 5C, the entire width of the periphery of the shield electrode film S that surrounds the outer edges of the first and second strip electrode films A and B from the surface direction is exposed.

上記のように、シールド電極膜Sのはみだし部分上の誘電体層を削除すること、あるいはその厚さを薄くすることは、第1および第2帯状電極膜A,Bと被装着体間の交流的分離を一層確実にする上で有効であり、これにより、そのはみ出し部分の幅(沿面距離d)を縮小させることができる。   As described above, the removal of the dielectric layer on the protruding portion of the shield electrode film S or the reduction of the thickness of the shield electrode film S is an alternating current between the first and second strip electrode films A and B and the mounted body. This is effective in further ensuring the target separation, whereby the width of the protruding portion (creeping distance d) can be reduced.

===近接センサ電極システムの第8実施形態===
図6は、この発明に係る静電式近接センサの電極システムの第8実施形態を、厚みを誇張した断面図によって示す。
同図に示す電極システム20では、第1帯状電極膜Aの上に絶縁膜31を介して第2帯状電極膜Bが配置されている。この場合、第1帯状電極膜Aの面積のうち、第2帯状電極膜Bが重なる部分の面積は、センサ電極としては機能しない無効な面積となる。したがって、第1帯状電極膜Aの幅は少なくとも、第2帯状電極膜Bが重なる部分の幅を差し引いた幅が第2帯状電極膜Bの幅よりも大きく形成されている。
=== Eighth Embodiment of Proximity Sensor Electrode System ===
FIG. 6 shows an eighth embodiment of the electrode system of the electrostatic proximity sensor according to the present invention by a sectional view exaggerating the thickness.
In the electrode system 20 shown in the figure, the second strip electrode film B is disposed on the first strip electrode film A via the insulating film 31. In this case, of the area of the first strip electrode film A, the area of the portion where the second strip electrode film B overlaps is an invalid area that does not function as a sensor electrode. Therefore, the width of the first strip electrode film A is formed so that at least the width of the portion where the second strip electrode film B overlaps is larger than the width of the second strip electrode film B.

この実施形態では、第1帯状電極膜Aの有効幅が第2帯状電極膜Bの幅分だけ減じられてしまうが、その幅分を減じた第1帯状電極膜Aの有効幅が第2帯状電極膜Bの幅よりも大きければ、この発明の静電式近接センサ電極システムとして動作することができる。   In this embodiment, the effective width of the first strip electrode film A is reduced by the width of the second strip electrode film B, but the effective width of the first strip electrode film A reduced by the width is the second strip shape. If it is larger than the width of the electrode film B, it can operate as the electrostatic proximity sensor electrode system of the present invention.

===近接センサ回路システムの他の実施形態===
図7は、この発明に係る静電式近接センサ回路システムの第2実施形態を示す。
図2に示した第1実施形態との相違に着目して説明すると、同図に示す第2実施形態では、第1帯状電極膜Aの接続端子SIA、第2帯状電極膜Bの接続端子SIB、シールド電極膜Sの接続端子SISへの電圧印加を、互いに同期動作するスイッチング回路Scb−Stb,Sca−Sta,Scr−Ssrにより、2つの電位Vs1,Vs2(Vs1>Vs2)間を切り換えている。
また、同図に示す実施形態の回路システムでは、演算増幅器53が形成する差動回路の出力Vdをスイッチング回路Sshでサンプリングして後段の回路(図示省略)へ出力するようにしている。
=== Other Embodiments of Proximity Sensor Circuit System ===
FIG. 7 shows a second embodiment of the electrostatic proximity sensor circuit system according to the present invention.
Description will be made by paying attention to the difference from the first embodiment shown in FIG. 2. In the second embodiment shown in FIG. 2, the connection terminal SIA of the first strip electrode film A and the connection terminal SIB of the second strip electrode film B are used. The voltage application to the connection terminal SIS of the shield electrode film S is switched between the two potentials Vs1, Vs2 (Vs1> Vs2) by the switching circuits Scb-Stb, Sca-Sta, Scr-Ssr that operate in synchronization with each other. .
Further, in the circuit system of the embodiment shown in the figure, the output Vd of the differential circuit formed by the operational amplifier 53 is sampled by the switching circuit Ssh and output to the subsequent circuit (not shown).

図8は、この発明に係る静電式近接センサ回路システムの第3実施形態を示す。
図7に示した第2実施形態との相違に着目して説明すると、同図に示す第3実施形態では、第1帯状電極膜Aが形成する静電容量Caと第2帯状電極膜Bが形成する静電容量Cbとの差(Ca−Cb)を縮小補正するための容量素子Ccが設けられている。
FIG. 8 shows a third embodiment of the electrostatic proximity sensor circuit system according to the present invention.
When focusing attention on the difference from the second embodiment shown in FIG. 7, in the third embodiment shown in FIG. 7, the capacitance Ca and the second strip electrode film B formed by the first strip electrode film A are the same. A capacitive element Cc for reducing and correcting the difference (Ca−Cb) from the capacitance Cb to be formed is provided.

この補正用容量素子Ccは、スイッチング回路Ssb,Sscを介して第2帯状電極膜Bの静電容量Cbに並列加算されることにより、第2帯状電極膜Bの静電容量Cbと第1帯状電極膜Aが形成する静電容量Caとの差(Ca−Cb)を縮小させることができる。これにより、その容量差(Ca−Cb)に基づく被検出体の接近検出を行いやすくすることができる。   The correcting capacitive element Cc is added in parallel to the electrostatic capacitance Cb of the second strip electrode film B via the switching circuits Ssb and Ssc, so that the electrostatic capacitance Cb of the second strip electrode film B and the first strip The difference (Ca−Cb) from the capacitance Ca formed by the electrode film A can be reduced. Thereby, it is possible to easily detect the approach of the detection object based on the capacity difference (Ca−Cb).

同図に示す実施形態の回路システムでは、図中に各スイッチング回路Ssc,Ssb,Ssa,Sss,Sa,Sbのオン/オフと要部における電圧Vd,Ssh,Voのタイミングチャートを示すように、各電極膜A,B,Sに所定電圧VrとGND(Vr>GND)が周期的に交互に切り換えて印加されることにより、Ca,Cb,Ccを充放電駆動するとともに、シールド電極膜Sを第1および第2電極膜A,Bと同電位にするアクティブシールド駆動が行われる。   In the circuit system of the embodiment shown in the figure, as shown in the figure, a timing chart of on / off of each switching circuit Ssc, Ssb, Ssa, Sss, Sa, Sb and voltages Vd, Ssh, Vo at the main parts is shown. A predetermined voltage Vr and GND (Vr> GND) are periodically and alternately applied to the electrode films A, B, and S, so that Ca, Cb, and Cc are charged and discharged, and the shield electrode film S is Active shield driving is performed so as to have the same potential as that of the first and second electrode films A and B.

===近接センサ電極システムの第9,10の実施形態===
図9は、この発明に係る静電式近接センサの電極システムの第9実施形態を平面図および断面図により示す。同図に示すように、第1帯状電極膜Aの上に第2帯状電極膜Bを配置する場合、シードル電極膜Sがフィルム状の絶縁ベース30上に配置されるとともに、各電極膜S,A,B間および最上層の電極膜Aの上にそれぞれ絶縁膜が配置される。第1帯状電極膜Aと第2帯状電極膜Bは長手方向で完全に重なり合うように配置されることが理論上は望ましいが、同図に示すように、若干のオフセットが生じてもよい。
=== Ninth and Tenth Embodiments of Proximity Sensor Electrode System ===
FIG. 9 shows a ninth embodiment of an electrode system for an electrostatic proximity sensor according to the present invention by a plan view and a sectional view. As shown in the figure, when the second strip electrode film B is disposed on the first strip electrode film A, the cider electrode film S is disposed on the film-like insulating base 30, and each electrode film S, An insulating film is disposed between A and B and on the uppermost electrode film A. Although it is theoretically desirable that the first strip electrode film A and the second strip electrode film B are disposed so as to be completely overlapped in the longitudinal direction, a slight offset may occur as shown in FIG.

図10は、この発明に係る静電式近接センサの電極システムの第10実施形態を平面図により示す。同図に示すように、第1帯状電極膜A上に第2帯状電極膜Bを配置する場合、その第2帯状電極膜Bに重なる部分の第1帯状電極膜A部分は、センサ電極としては機能しない無効な面積となる。したがって、同図に示すように、その第2帯状電極膜Bのパターンを変形させるとともに、その変形パターンにより、センサに不感帯を設けること、あるいはセンサの感度範囲を制御することができる。   FIG. 10 is a plan view showing a tenth embodiment of an electrode system for an electrostatic proximity sensor according to the present invention. As shown in the figure, when the second strip electrode film B is disposed on the first strip electrode film A, the portion of the first strip electrode film A that overlaps the second strip electrode film B is the sensor electrode. Invalid area that does not work. Therefore, as shown in the figure, while the pattern of the second strip electrode film B is deformed, the sensor can be provided with a dead band or the sensitivity range of the sensor can be controlled by the deformation pattern.

10 自動車
11 バンパー
20 静電式近接センサの電極システム
A 第1帯状電極膜
B 第2帯状電極膜
S シールド電極膜
24 環状シールド電極膜
25 ビア
26 高抵抗の導電性被覆
30 絶縁ベース
31 絶縁膜
51 第1電荷電圧変換回路を構成する演算増幅器
52 第2電荷電圧変換回路を構成する演算増幅器
53 差動回路を構成する演算増幅器
54 アクティブ・ローパスフィルタ(LPF)
d 沿面距離(はみ出し幅)
SIA 第1帯状電極膜Aの接続端子
SIB 第2帯状電極膜Bの接続端子
SIS シールド電極膜Sの接続端子
Ca 第1帯状電極膜Aに形成される静電容量
Cb 第2帯状電極膜Bに形成される静電容量
Cfa,Cfb 負帰還容量素子
Sa,Sb 放電リセット用スイッチング回路
Vs1 第1電位
Vs2 第2電位
Sas 第1電位Vs1と第2電位Vs2を切り換えるスイッチング回路
Vo 出力電圧
DESCRIPTION OF SYMBOLS 10 Automobile 11 Bumper 20 Electrostatic proximity sensor electrode system A 1st strip electrode film B 2nd strip electrode film S Shield electrode film 24 Annular shield electrode film 25 Via 26 High resistance conductive coating 30 Insulation base 31 Insulation film 51 Operational amplifier constituting the first charge-voltage conversion circuit 52 Operational amplifier constituting the second charge-voltage conversion circuit 53 Operational amplifier constituting the differential circuit 54 Active low-pass filter (LPF)
d Creepage distance (extrusion width)
SIA connection terminal of the first strip electrode film A SIB connection terminal of the second strip electrode film B SIS connection terminal of the shield electrode film S Ca capacitance formed on the first strip electrode film A Cb on the second strip electrode film B Capacitance formed Cfa, Cfb Negative feedback capacitance element Sa, Sb Discharge reset switching circuit Vs1 First potential Vs2 Second potential Sas Switching circuit for switching between first potential Vs1 and second potential Vs2 Vo Output voltage

Claims (9)

誘電体である絶縁ベースと、
絶縁ベースの上面に配置されたシールド電極膜と、
シールド電極膜の上面を覆う誘電体である第1絶縁膜と、
第1絶縁膜の上面に配置された第1および第2帯状電極膜と、
第1および第2帯状電極膜の上面を覆う誘電体である第2絶縁膜と、を備え、
第1帯状電極膜と第2帯状電極膜は長さがほぼ同じで近接して平行に並んで配置され、
第1帯状電極膜の幅は第2帯状電極膜の幅より大きく、
シールド電極膜は、第1および第2帯状電極膜が配置された部分の周囲を取り囲むようにはみ出して広がっている
静電式近接センサの電極システム。
An insulating base that is a dielectric;
A shield electrode film disposed on the upper surface of the insulating base;
A first insulating film that is a dielectric covering the upper surface of the shield electrode film;
First and second strip electrode films disposed on the upper surface of the first insulating film;
A second insulating film that is a dielectric covering the upper surfaces of the first and second strip electrode films,
The first strip electrode film and the second strip electrode film are substantially the same in length and are arranged close to each other in parallel,
The width of the first strip electrode film is larger than the width of the second strip electrode film,
The shield electrode film extends and extends so as to surround the periphery of the portion where the first and second strip electrode films are disposed.
請求項1において、第1および第2帯状電極膜を同一面上で面方向から取り囲む環状シールド電極膜が設けられ、この環状シールド電極膜は、第1および第2帯状電極膜に対して同一層面に形成されるとともに、その下側に位置するシールド電極膜に導電接続され、その上側面が第1および第2帯状電極膜と共に、誘電体である絶縁膜で覆われていることを特徴とする静電式近接センサの電極システム。   2. The annular shield electrode film is provided on the same plane so as to surround the first and second strip electrode films from the surface direction, and the annular shield electrode film is formed on the same layer surface with respect to the first and second strip electrode films. And the conductive film is conductively connected to the shield electrode film located on the lower side thereof, and the upper side surface thereof is covered with an insulating film as a dielectric together with the first and second strip electrode films. Electrostatic proximity sensor electrode system. 請求項1または2において、第1帯状電極膜の両幅にそれぞれ第2帯状電極膜が平行に近接配置されていることを特徴とする静電式近接センサの電極システム。   3. The electrode system for an electrostatic proximity sensor according to claim 1, wherein a second strip electrode film is disposed in parallel and close to both widths of the first strip electrode film. 請求項1または2において、第2帯状電極膜の両幅にそれぞれ第1帯状電極膜が平行に近接配置されていることを特徴とする静電式近接センサの電極システム。   3. The electrode system for an electrostatic proximity sensor according to claim 1, wherein the first strip electrode film is disposed in parallel and close to both widths of the second strip electrode film. 請求項1〜4において、第1および第2帯状電極膜の外縁を面方向から取り囲むシールド電極膜周縁部に沿って、高抵抗の導電性被覆を環状に設けたことを特徴とする静電式近接センサの電極システム。   5. The electrostatic method according to claim 1, wherein a high-resistance conductive coating is provided in an annular shape along a peripheral edge portion of the shield electrode film that surrounds the outer edges of the first and second strip electrode films from the surface direction. Proximity sensor electrode system. 請求項1〜4において、第1および第2帯状電極膜の外縁を面方向から取り囲むシールド電極膜周縁部の幅の一部または全部を露出させたことを特徴とする静電式近接センサの電極システム。   5. The electrode of an electrostatic proximity sensor according to claim 1, wherein a part or all of the width of the peripheral edge of the shield electrode film surrounding the outer edges of the first and second strip electrode films from the surface direction is exposed. system. 請求項1〜6において、第1帯状電極膜の上に絶縁膜を介して第2帯状電極膜が配置されることを特徴とする静電式近接センサの電極システム。   7. The electrode system for an electrostatic proximity sensor according to claim 1, wherein a second strip electrode film is disposed on the first strip electrode film via an insulating film. 電極システムと、回路システムを備えた静電式近接センサであって、
電極システムは、誘電体である絶縁ベースと、絶縁ベースの上面に配置されたシールド電極膜と、シールド電極膜の上面を覆う誘電体である第1絶縁膜と、第1絶縁膜の上面に配置された第1および第2帯状電極膜と、第1および第2帯状電極膜の上面を覆う誘電体である第2絶縁膜を備え、
第1帯状電極膜と第2帯状電極膜は長さがほぼ同じで近接して平行に並置され、
第1帯状電極膜の幅は第2帯状電極膜の幅より大きく、
シールド電極膜は、第1および第2帯状電極膜が配置された部分の周囲を取り囲むようにはみ出して広がっており、
回路システムは、電圧印加手段と、差検出手段を備え、
電圧印加手段は、第1帯状電極膜・第2帯状電極膜・シールド電極膜のそれぞれにほぼ等しい電圧を印加するとともに、印加電圧を繰り返し変化させ、
差検出手段は、第1帯状電極膜の蓄積電荷量と第2帯状電極膜の蓄積電荷量の差分に対応した電圧信号を出力する
静電式近接センサ。
An electrostatic proximity sensor comprising an electrode system and a circuit system,
The electrode system includes an insulating base that is a dielectric, a shield electrode film disposed on an upper surface of the insulating base, a first insulating film that is a dielectric covering the upper surface of the shield electrode film, and an upper surface of the first insulating film. The first and second strip electrode films, and a second insulating film that is a dielectric covering the top surfaces of the first and second strip electrode films,
The first strip electrode film and the second strip electrode film are substantially the same in length and are juxtaposed in parallel,
The width of the first strip electrode film is larger than the width of the second strip electrode film,
The shield electrode film extends so as to surround the periphery of the portion where the first and second strip electrode films are disposed,
The circuit system includes a voltage application unit and a difference detection unit,
The voltage application means applies a substantially equal voltage to each of the first strip electrode film, the second strip electrode film, and the shield electrode film, and repeatedly changes the applied voltage,
The difference detecting means outputs a voltage signal corresponding to the difference between the accumulated charge amount of the first strip electrode film and the accumulated charge amount of the second strip electrode film.
請求項8において、差検出手段は、第1帯状電極膜の蓄積電荷量を電圧変換する第1の電荷電圧変換回路と、第2帯状電極膜の蓄積電荷量を電圧変換する第2の電荷電圧変換回路と、第1および第2の電荷電圧変換回路の各出力電圧の差を抽出する差動回路とを備え、 第1および第2の電荷電圧変換回路はそれぞれ演算増幅器を用いて構成され、
各演算増幅器は、その出力と反転入力間に負帰還容量素子および放電リセット用スイッチング回路が接続されるとともに、その非反転入力に電位の異なる第1電位と第2電位が周期的に切り換えて印加され、その非反転入力に切り換えて印加される第1電位と第2電位がシールド電極膜にも印加されることを特徴とする静電式静電式近接センサ。
9. The difference detecting means according to claim 8, wherein the difference detecting means converts the accumulated charge amount of the first strip electrode film into a voltage, and the second charge voltage converts the accumulated charge amount of the second strip electrode film into a voltage. A conversion circuit, and a differential circuit for extracting a difference between the output voltages of the first and second charge-voltage conversion circuits. The first and second charge-voltage conversion circuits are each configured using an operational amplifier,
In each operational amplifier, a negative feedback capacitive element and a discharge reset switching circuit are connected between the output and the inverting input, and a first potential and a second potential having different potentials are periodically switched and applied to the non-inverting input. The electrostatic electrostatic proximity sensor, wherein the first potential and the second potential applied by switching to the non-inverting input are also applied to the shield electrode film.
JP2009130586A 2009-05-29 2009-05-29 Electrode system of electrostatic proximity sensor having excellent noise resistance, and electrostatic proximity sensor Pending JP2010276524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130586A JP2010276524A (en) 2009-05-29 2009-05-29 Electrode system of electrostatic proximity sensor having excellent noise resistance, and electrostatic proximity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130586A JP2010276524A (en) 2009-05-29 2009-05-29 Electrode system of electrostatic proximity sensor having excellent noise resistance, and electrostatic proximity sensor

Publications (1)

Publication Number Publication Date
JP2010276524A true JP2010276524A (en) 2010-12-09

Family

ID=43423617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130586A Pending JP2010276524A (en) 2009-05-29 2009-05-29 Electrode system of electrostatic proximity sensor having excellent noise resistance, and electrostatic proximity sensor

Country Status (1)

Country Link
JP (1) JP2010276524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161585A (en) * 2016-03-07 2017-09-14 キヤノン株式会社 Image forming apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235961A (en) * 1998-02-20 1999-08-31 Aisin Seiki Co Ltd Object detecting device for vehicle
JP2003202383A (en) * 2001-10-31 2003-07-18 Honda Denshi Giken:Kk Proximity switch and object detector
JP2005227243A (en) * 2004-02-16 2005-08-25 Honda Motor Co Ltd Electrostatic capacity type sensor
JP2005227225A (en) * 2004-02-16 2005-08-25 Honda Motor Co Ltd Capacitance type sensor and body catch preventive device
WO2007018056A1 (en) * 2005-08-05 2007-02-15 Freund Corporation Preservative detecting method and preservative detecting apparatus
JP2007214958A (en) * 2006-02-10 2007-08-23 Act Lsi:Kk Cv conversion circuit for differential type switched capacitor
WO2009044920A1 (en) * 2007-10-04 2009-04-09 Fujikura Ltd. Capacitive proximity sensor and proximity detection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11235961A (en) * 1998-02-20 1999-08-31 Aisin Seiki Co Ltd Object detecting device for vehicle
JP2003202383A (en) * 2001-10-31 2003-07-18 Honda Denshi Giken:Kk Proximity switch and object detector
JP2005227243A (en) * 2004-02-16 2005-08-25 Honda Motor Co Ltd Electrostatic capacity type sensor
JP2005227225A (en) * 2004-02-16 2005-08-25 Honda Motor Co Ltd Capacitance type sensor and body catch preventive device
WO2007018056A1 (en) * 2005-08-05 2007-02-15 Freund Corporation Preservative detecting method and preservative detecting apparatus
JP2007214958A (en) * 2006-02-10 2007-08-23 Act Lsi:Kk Cv conversion circuit for differential type switched capacitor
WO2009044920A1 (en) * 2007-10-04 2009-04-09 Fujikura Ltd. Capacitive proximity sensor and proximity detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161585A (en) * 2016-03-07 2017-09-14 キヤノン株式会社 Image forming apparatus

Similar Documents

Publication Publication Date Title
JP4578980B2 (en) Capacitance detection proximity sensor
JP4897886B2 (en) Capacitive proximity sensor and proximity detection method
JP4009953B2 (en) Object detection sensor
US20090045824A1 (en) Proximity sensor with an edge connection, and method for manufacturing the same
US20030080755A1 (en) Proximity sensor and object detecting device
US8547116B2 (en) Position detector
US20160239700A1 (en) Sensing method of fingerprint sensor and related sensing circuit
JP2008108534A (en) Human body approach detection device
US20050257628A1 (en) Hybrid sensor including electrostatic capacitance sensor
GB2404443A (en) Capacitive proximity sensor
JP2004219311A (en) Electrostatic capacity sensor, and opening/closing body clipping-in sensing device
JP2010249531A (en) Raindrop detector and wiper operation controller
JP2010236329A (en) Vehicle door opening/closing angle control device
JP2010286314A (en) Electrode system of electrostatic type proximity sensor being of thin type and excellent in noise resistance, and electrostatic type proximity sensor
JP5315529B2 (en) Capacitive proximity sensor, proximity detection method, and electrode structure of capacitive proximity sensor
JP2010276524A (en) Electrode system of electrostatic proximity sensor having excellent noise resistance, and electrostatic proximity sensor
JP2010236316A (en) Catch preventing device
JP2010286384A (en) Electrostatic type proximity sensor
JP2017161494A (en) Proximity sensor
JP2004114752A (en) Pedestrian hitting protective device for vehicle and hitting part detector for vehicle
JP2009250857A (en) Capacitance sensor
JP5391411B2 (en) Obstacle detection device for vehicle and airbag deployment control device for pedestrian protection
JP2010235022A (en) Door-mirror operation control device
JP4524166B2 (en) Obstacle discrimination device for vehicle
WO2008088333A1 (en) Capacitive proximity sensor with connector tongue

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A02 Decision of refusal

Effective date: 20131029

Free format text: JAPANESE INTERMEDIATE CODE: A02