JP2010276325A - 調湿空調機及び空調システム - Google Patents

調湿空調機及び空調システム Download PDF

Info

Publication number
JP2010276325A
JP2010276325A JP2009132188A JP2009132188A JP2010276325A JP 2010276325 A JP2010276325 A JP 2010276325A JP 2009132188 A JP2009132188 A JP 2009132188A JP 2009132188 A JP2009132188 A JP 2009132188A JP 2010276325 A JP2010276325 A JP 2010276325A
Authority
JP
Japan
Prior art keywords
heat
water
heat exchanger
heat source
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009132188A
Other languages
English (en)
Other versions
JP5266141B2 (ja
Inventor
Kazuki Wada
一樹 和田
Mikio Takahashi
幹雄 高橋
Noritoshi Tanaka
規敏 田中
Saburo Totani
三郎 戸谷
Ryotaro Tateyama
陵太郎 舘山
Kazuhiro Miyamoto
和弘 宮本
Shoji Funaki
昭二 船木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Takenaka Komuten Co Ltd
Sinko Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Shinko Electric Industries Co Ltd
Tokyo Electric Power Co Inc
Takenaka Komuten Co Ltd
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd, Tokyo Electric Power Co Inc, Takenaka Komuten Co Ltd, Sinko Industries Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2009132188A priority Critical patent/JP5266141B2/ja
Publication of JP2010276325A publication Critical patent/JP2010276325A/ja
Application granted granted Critical
Publication of JP5266141B2 publication Critical patent/JP5266141B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】水熱源ヒートポンプの蒸発熱及び凝縮熱を収着用空気の予冷及び再生用空気の加熱に使用するとともに、これら予冷の熱量及び再生の熱量の過不足分を外部熱源からの熱で補うことが可能な調湿空調機を提案する。
【解決手段】給気通路及び排気通路と、両通路の隣接部分に取り付けられたデシカントローターと、デシカントローター上流の給気通路部分に設置された第1の主熱交換器と、デシカントローター上流の排気通路部分に設置された第2の主熱交換器とを具備し、第2の熱媒供給手段として、凝縮器及び蒸発器として機能する第1、第2の補助熱交換器と膨張弁と圧縮機とで水熱源ヒートポンプを構築して、外部熱源から導水管路を経て供給される冷熱(温熱)に水熱源ヒートポンプの蒸発熱(凝縮熱)を上乗せして、予冷機(加熱機)へ供給し、かつ水熱源ヒートポンプの凝縮熱(蒸発熱)を加熱機(予冷機)へ供給する。
【選択図】図1

Description

本発明は、調湿空調機及び空調システムに関する。
空調用空気の除湿の方法として、露点温度以下に冷却することにより空気中の水分を凝集させて取り除く冷却方式と、乾燥剤(デシカント)を使って吸湿するデシカント方式とがある。デシカント方式では、隣り合う給気通路と排気通路の隣接部分に両通路内へまたがって、乾燥剤を包含するデシカントローターを回転可能に取り付け、かつこの取付け箇所より上流の排気通路部分に加熱機(再生コイル)を配置する。そしてデシカントローターが回転しながら、給気通路内で水分を吸着し、排気通路内で水を放出することを繰り返す(特許文献1)。
デシカント式の除湿機において、相対湿度の増大に伴って水の吸着量が増えるシリカゲルなどを吸湿剤として、デシカントローターへ向かう給気空気を予冷し、除湿効果を高めることも行われている(例えば特許文献2の段落0014、図1・図2参照)。
特許第3123971号 特開2004−271081 特開2008−304113 特許第3927377号
http://www.aist.go.jp/aist_j/research/patent/2008/11_1/index.html独立行政法人 産業技術総合研究所 「低温廃熱を利用した吸着式ヒートポンプシステム」検索日:2009年4月25日 http://www.aist.go.jp/aist_j/press_release/pr2008/pr20081008_2/pr20081008_2.html 独立行政法人 産業技術総合研究所 「安価な高性能無機系吸放湿材を開発」発表日:2008年10月8日
特許文献1の湿度調整装置は、水分を取り除くための再生用空気を100℃以上に加熱する必要があり、電気ヒーターや高温の熱媒体が必要であったため、さらにエネルギー消費を削減したいとの要請が強い。とくに特許文献2の如く冷却機を併用したときには、冷却機に供給するエネルギーがさらに必要となる。
そこで予冷のエネルギー効率を高めるため、高湿度領域で吸湿率が高くかつ40〜80℃の低温で再生可能な乾燥剤(高分子収着材又はイモゴライト)も提案されている(特許文献3、非特許文献1)。
これに対して、冷却機と加熱機とを含むデシカント式空調機の全体の効率を高めるために、デシカントローターを通過した乾燥空気の冷却(顕熱交換)と、再生用空気の加熱とに、空冷ヒートポンプ熱源装置の蒸発熱と凝縮熱とを使用し、熱のリサイクルを行うことが提案されている(特許文献4)。
ところが、ヒートポンプは、一方側から蒸発器が奪った熱を凝縮器によって他方側へ放出するから、凝縮熱の熱量はおおよそ蒸発熱の熱量に相応し、各熱量を別々にコントロールすることができない。他方、空調機の外部から取り込む給気エアの冷却に必要な熱量は、外気温度などの気候条件に左右され、必ずしも再生用空気の加熱に必要な熱量とは一致しない。このため、除湿に必要な冷却熱量と加熱熱量とのバランスがとれず、バランスが大きく崩れると湿度制御が困難になるという問題点がある。具体的には本願図6を用いて後で説明する。
本発明の目的は、水熱源ヒートポンプの蒸発熱及び凝縮熱を収着用空気の予冷及び再生用空気の加熱に使用するとともに、これら予冷の熱量及び再生の熱量の過不足分を外部熱源からの熱で補うことが可能な調湿空調機及び空調システムを提案することである。
第1の手段は、隣り合わせて設けた給気通路及び排気通路と、
これら給気通路及び排気通路の隣接部分に取り付けられたデシカントローターと、
デシカントローターよりも上流の給気通路部分に設置された第1の主熱交換器と、
デシカントローターよりも上流の排気通路部分に設置された第2の主熱交換器と、
を具備し、
第1の主熱交換器及び第2の主熱交換器のうちの一方を予冷機として、他方を加熱機として機能させるように各主熱交換器に熱媒を供給するように設けた調湿空調機であって、
第1の熱媒供給手段として、第1の主熱交換器への送水管及び第1の主熱交換器からの還水管を含む導水管路を設けるとともに、
第2の熱媒供給手段として、凝縮器及び蒸発器として機能する第1、第2の補助熱交換器と膨張弁と圧縮機とで水熱源ヒートポンプを構築して、第1の補助熱交換器を送水管中の熱媒との間で、また第2の補助熱交換器をデシカントローター上流の排気通路部分内の気流との間で熱の授受交換をすることが可能にそれぞれ形成しており、
水熱源ヒートポンプは、少なくとも次の(a)又は(b)の態様で予冷機又は加熱機である第1、第2の主熱交換器に対して熱を供給することを特徴とする。
(a)外部熱源から導水管路を経て供給される冷熱に水熱源ヒートポンプの蒸発熱を上乗せして、予冷機へ供給し、かつ水熱源ヒートポンプの凝縮熱を加熱機へ供給すること。
(b)外部熱源から導水管路を経て供給される温熱に水熱源ヒートポンプの凝縮熱を上乗せして、加熱機へ供給し、かつ水熱源ヒートポンプの蒸発熱を予冷機へ供給すること。
本手段は、図3に示す給気通路及び排気通路にそれぞれ設置した2つの主熱交換器(予冷機及び再生加熱機)の間で水熱源ヒートポンプを経由して熱のリサイクルを行う調湿空調機に関する。そして概略図である図8(A)に示すように、除湿過程で必要により外部熱源から供給される冷熱Hを水熱源ヒートポンプの蒸発熱Hに上乗せできるようにしたものである(加湿過程も同様)。
換言すれば、本手段のシステムは、水熱源ヒートポンプを経由して、熱を融通する機能を有する。熱の融通とは、調湿空調機の予冷及び再生加熱に必要な熱量のうち水熱源ヒートポンプの蒸発熱及び凝縮熱で足りない部分を、外部熱源で補うという意味である。好適な一例として、補充熱量が不要な場合や蒸発熱すら不要である場合に熱媒を外部熱源に戻すという形態を含む。外部熱源で補うと言っても、水熱源ヒートポンプの供給熱量及び外部からの補充熱量のうちどちらが大きいかを問わない。
「第1の補助熱交換器」は、上記(a)又は(b)の態様専用でもよいが、両態様を切替可能とすることが好ましい。(a)(b)以外の態様(モード)を有していてもよい。
第2の手段は、第1の手段を有し、かつ
さらに、セントラル熱源などの外部熱源から供給され導水管路内を流通する熱媒の流量と水熱源ヒートポンプの出力とのうち何れか一方又は双方を制御する制御装置を設けている。
本手段では、予冷機の必要熱量と加熱機の必要熱量との必要熱量との不均衡を補うための制御部を設けることを提案している。外部熱源からの供給熱量及び水熱源ヒートポンプの出力の双方を制御することが望ましいが、その一方を人間が手動調整し、他方を自動制御するような構成も考えられる。セントラル熱源への応用を考慮して、外部熱源からの熱の供給は、熱媒の流量制御により調整する。
第3の手段は、第2の手段を有し、かつ
上記制御装置は、
給気通路及び排気通路内の通気条件に応じて第1の主熱交換器及び第2の主熱交換器に対する水熱源ヒートポンプの供給熱量を調整する、インバータなどの第1の制御部と、
導水管路の一部又は全部の流量を調整するための第2の制御部とを含むことを特徴とする。
本手段の構成中、第1の制御部は、外気や室内空気の温湿度に対応するものであり、水熱源ヒートポンプとしての普通の制御を行う。除湿の場合には再生加熱機に必要なエネルギーに、また加湿の場合には冷却機に必要なエネルギーにそれぞれ合わせて、ヒートポンプの熱供給量を制御し、第1の主熱交換器側においてエネルギーが不足するときには外部熱源のエネルギーで補えばよい。外部からの供給エネルギーは第2の制御部により制御される。
第4の手段は、第3の手段を有し、かつ
上記水熱源ヒートポンプは、圧縮機から第1の補助熱交換器と膨張弁と第2の補助熱交換器とを通過して圧縮機へ戻る循環管路において、第1、第2の補助熱交換器の順序を入れ替える流路切替弁を有し、
この流路切替弁を手動又は第1の制御部からの指令により切り替えることで、上記(a)の態様と(b)の態様とを切り替えることが可能に構成している。
本手段では、図3及び図4に示す如く水熱源ヒートポンプの蒸発器及び凝縮器の役割を入れ替えることを提案している。切替の方法には従来公知の方法(四方弁など)を用いるとよい。
第5の手段は、第2の手段から第4の手段のいずれかを有し、かつ
上記デシカントローターに内蔵する乾燥剤を、40℃から80℃の範囲で再生可能な乾燥剤としている。
本手段では、低温度で再生可能な乾燥剤として使用することを提案している。低温度再生タイプの乾燥剤として、前述の高分子収着剤またはイモゴライトなどがある。「収着」とは物質の表面への吸着と物質内部への吸収とが並行することをいう。低温度とは40℃から80℃程度とし、さらに好ましくは40〜50℃の範囲とすることが望ましい。一般的な水熱源ヒートポンプでは温熱媒の温度の限界が50℃程度であることが多いからである。もっとも50℃以上で再生可能な乾燥剤を用いたときでも、実施例で述べるように水熱源ヒートポンプの熱と別の補助熱交換器の熱とを併用して、乾燥剤を加熱することは可能である。
第6の手段は、第2の手段から第5の手段のいずれかを有し、かつ
第2の主熱交換器と第2の補助熱交換器とを、一つの熱交換器で兼用したことを特徴としている。
本手段では、図5に示す如く水熱源ヒートポンプの第2の補助熱交換器を、排気通路内に設置された第2の主熱交換器で兼用している。これにより熱効率が高く簡易な構成の調湿空調機を実現できる。
第7の手段は、空調システムであり、
空調領域の冷却又は暖房用の水熱源であるセントラル熱源と、第1の手段に記載した調湿空調機とを具備し、
さらに調湿空調機の給気通路を含む給気ラインと、調湿空調機の排気通路を含む排気ラインとを設けている。
本手段は、図1に示す如く調湿空調機の水熱源ヒートポンプと水熱源であるセントラル熱源との間で熱を融通することを提案している。ともに熱媒を水とすることが熱の融通を容易としている。水熱源ヒートポンプの蒸発熱の温度はセントラル熱源が供給する冷水よりも低温であり、水熱源ヒートポンプの凝縮熱の温度はセントラル熱源が供給する温水よりも高温であるものとする。
第1の手段に係る発明によれば、水熱源ヒートポンプによる発生熱量を、導水管路を介して外部から供給される熱量に上乗せして、再生用空気の加熱、収着用空気の冷却に利用するから、エネルギー効率がよく、加熱側と冷却側との所要熱量のバランスが崩れても調湿が可能である。
第2の手段に係る発明によれば、導水管路内の流量及び水熱源ヒートポンプの出力の一方又は双方を制御する制御装置を設けたから、外部からの供給熱量及び水熱源ヒートポンプの発生熱量の割合を最適化することができる。
第3の手段に係る発明によれば、水熱源ヒートポンプを制御する第1の制御部と、流量調整を制御する第2の制御部を設けたから、出力量及び流量を好適に制御することができる。
第4の手段に係る発明によれば、除湿運転態様と加湿運転態様とを切り替えることができるから汎用性が高い。
第5の手段に係る発明によれば、低温度での再生が可能としたから、水熱源ヒートポンプの凝縮熱を乾燥剤の再生に活用できる。
第6の手段に係る発明によれば、第2の主熱交換器と第2の補助熱交換器とを、一つの熱交換器で兼用したから、除湿機全体の構成を簡易にすることができる。
第7の手段に係る発明によれば、セントラル熱源を本発明の上記調湿空調機の外部熱源としたから、多数の用途に一定温度の熱媒水を供給するセントラル熱源と、冷熱及び温熱のバランスをとる必要がある除湿空調機との機能を補い合い、好適に熱の融通を行うことができる。
本発明の実施形態に係る調湿空調機を適用した空調システムでの空気の流れを示す図である。 図1の空調システムでの熱媒の供給系統の回路図である。 図1のシステムに用いた調湿空調機の構成図である。 図3の調湿空調機の異なる運転モードでの構成図である。 図3の調湿空調機の変形例を示す図である。 図3の調湿空調機の除湿時の空気に対する作用を示す図である。 図3の調湿空調機の加湿時の空気に対する作用を示す図である。 図3の調湿空調機への熱媒の供給の様子を示す説明図である。
図1から図8は、本発明の実施形態に係る調湿空調機及び空調システムを示す。
説明の都合上から、空調システムの構成を最初に説明する。
図1は、空調システムの空気の流通系統(通気系統という)を表わす図である。空調システム1の通気系統は、外部空間から空調領域Aへ至る給気ライン100と、空調領域Aから外部空間へ至る排気ライン110とで構成される。
給気ライン100は、外気取入れ口102から、調湿空調機2、顕熱処理用空調機104を経由して、空調領域Aに至る。
排気ライン110は、空調領域から調湿空調機2を経由して外部空間へ連通する。図示例の排気ラインは、空調領域から調湿空調機2までの経路より2本の分岐ライン112、114を分岐させている。第1の分岐ライン112は、顕熱処理用空調機の入口側で給気ライン100へ合流している。第2の分岐ライン114は排気ファン116を経由して外部空間へ連通する。
図2は、空調システムの熱媒の供給系統を表わす図である。空調システムの熱媒供給系統は、熱媒供給手段120と、熱媒供給手段から調湿空調機2側へ延びる送水ライン130と、調湿空調機2側から熱媒供給手段120へ至る還水ライン132とで構成される。
熱媒供給手段120は、水熱源装置122から送水側ヘッダー124へ送水通路を介して送水し、還水側ヘッダー126から水熱源装置122へ還水通路を介して還水する構造を有する。この還水通路には、バッファタンク127、送水ポンプ128が付設してある。
上記送水ライン130及び還水ライン132は、各ヘッダー及び調湿空調機2をつなぐメインラインに対して、これらメインラインの途中箇所を、顕熱処理空調機104を介して連続する補助ライン134を形成している。
調湿空調機2は、図3に示す如く、給気通路4と、排気通路6と、デシカントローター10と、第1の主熱交換器12と、第2の主熱交換器14と、導水管路20と、水熱源ヒートポンプ50と、導水管路20と、制御装置70とで構成されている。
上記給気通路4は給気ライン100の一部であり、また排気通路6は、排気ライン110の一部である。給気通路4を形成するケーシングと排気通路6を形成するケーシングとは、通気方向を平行かつ逆向きとして隣り合わせに接合し、2つの通路のケーシング部分にデシカントローター取付け用の貫通孔8を穿設する。
上記デシカントローター10は、貫通孔8を挿通して給気通路4及び排気通路6にまたがるように貫通孔穿設箇所に回動可能に取り付けている。デシカントローター10を回転させるためのモーター(図示せず)を設け、ローターの各部分が給気通路内で水分を吸い込み、次に排気通路内で水分を放出するように構成する。デシカントローター10の内部には乾燥剤が内蔵されている。この乾燥剤は、高湿度で高い吸水率を示す性質のものであることが必要である。この性質を前提としてデシカントローターへの給気を予冷することにより高い除湿性能が得られるからである。さらに乾燥剤は、40〜80℃程度の温度で再生可能なものであることが望ましい。乾燥剤に関しては実施例の欄で述べる。
また給気通路4内には第1の送風ファン16を、排気通路6内には第2の送風ファン18をそれぞれ設置している。しかしながらこれら送風ファンを各通路以外の給気ラインないし排気ラインの適所に設置しても構わない。
上記第1の主熱交換器12は、デシカントローターよりも上流側(図面左側)の通気路部分に設けられている。また、上記第2の主熱交換器14は、デシカントローターよりも上流側(図面右側)の通気路部分に設けられている。これら第1の主熱交換器12及び第2の主熱交換器14は、好適な本実施形態において熱媒を通過させることで熱を生ずるコイルとしている。この構成によれば、除湿モードでは、第1の主熱交換器12に冷水を、また第2の主熱交換器14に温熱媒をそれぞれ流すことで、第1の主熱交換器12が予冷機として、また第2の主熱交換器が再生用加熱機として機能する。また加湿モードでは、第1の主熱交換器12に温水を、また第2の主熱交換器14に冷熱媒をそれぞれ流して、冷却機及び加熱機の役割が入れ替えることができる。
第1の主熱交換器12は導水管路から、また第2の主熱交換器14は、水熱源ヒートポンプから、それぞれ熱の提供を受ける。
図6に夏季の除湿モードでの調湿空調機の作用による空気の状態の変化を空気線図に載せて描いている。給気通路4の入口では、外気の状態は空気線図の(1)の位置にある。温度35℃、湿度は50%強である。予冷機によって空気が冷却されると、乾球温度の減少とともに相対湿度が増加し、相対湿度が100%に達した後にも飽和状態のままで温度が冷却され、予冷機を通過したときには(2)に至る。このときの温度は16℃である。デシカントローターを通過することで、温度上昇を伴いながら絶対湿度が低下して(3)の状態となる。このときの相対湿度は20%、温度は33℃である。この除湿された空気が顕熱処理用空調機104へ送られる。他方、排気通路6の入口では、空気の状態は空気線図の(4)の位置にある。相対湿度は50%で温度は27℃である。再生用加熱機を通ることで温度が50℃まで上昇し、(5)に至る。その後に温度が24℃程度まで低下し、(6)の状態で外界へ放出される。ここで空気線図では比エンタルピ線が斜めに描かれており、この線は空気の等エネルギー線としての意味をもつ。この比エンタルピ線と、給気通路内での空気の(1)→(2)という状態変化、及び排気通路内での(4)→(5)という状態変化を比較する。そうすると、給気通路内では比エンタルピは86[kJ/kg]から44[kJ/kg]まで変化しており、他方、排気通路内では比エンタルピは53[kJ/kg]から77[kJ/kg]まで変化している。従って予冷に必要な冷熱は−42[kJ/kg]であるのに対して、再生加熱に必要な温熱は35[kJ/kg]である。これにより必要な冷熱量と温熱量とがバランスしていないことが判る。図7は冬季の加湿モードでの同様の変化を示している。給気通路内での(1)→(2)の行程における比エンタルピの変化と、排気通路内での(4)→(5)の行程における比エンタルピの変化を比較すると、図6の場合ほどではないが、所要冷熱量と所要温熱量との不均衡が生じていることが判る。両者をバランスさせるように目標値を変更すると僅かの巾でしか除湿又は加湿を行うことしかできない。そこで不足する熱量を補うために導水管路を通じて外部熱源の熱量を導入する。
導水管路20は、図3に示す如く、送水管22と、還水管38と含み、さらに第1のバイパス管34と第2のバイパス管44とを有する。導水管路20の構造をより単純化した説明図を図8に示すので併せて参照されたい。
送水管22は、上記送水ライン130から第1の主熱交換器12へ至る。図示例では、上記送水ライン130との接続用の入口端部24から、第1分岐点26を経て後述の第1の補助熱交換器内へ入り、この第1の補助熱交換器から第1の自動制御弁28及び第2分岐点30を経由して第1の主熱交換器12に至るように構成している。
第1の自動制御弁28は、三方弁であり、2つの入口の一方を第1の補助熱交換器側へ接続し、他方を、第1の分岐点から分岐する第1バイパス管34に接続している。上記自動制御弁は、流路の切替とともに流量調整の機能を兼ねている。好適な一例としてそれぞれ入口に繋がる二つの弁座の間を弁体が移動し、大きく動くと流路の切替、小さく動くと流量の調節が可能となるように構成できる。後述の第2の自動制御弁も同様である。
上記還水管38は、第1の主熱交換器12から第2の自動制御弁40を経て還水ライン132との接続用の出口端部42に至る。
第2の自動制御弁40は、三方弁であり、2つの入口の一方を第1の主熱交換器側へ接続し、他方を、第2の分岐点から分岐する第2バイパス管44に接続している。このように構成した理由は、第1に、第1の主熱交換器における熱交換量を調整するため、第2に、予冷機を停止して再生加熱機のみを作動させる場合に、第1の補助熱交換器に対して最低限の必要流量を流すようにするためである。具体的には後述する。
水熱源ヒートポンプ50は、第1の補助熱交換器52と、アキュムレータ54と、圧縮機56と、第2の補助熱交換器58と、膨張弁60と、四方弁である流路切替弁62と、これらの各要素を連続する第1の循環管路64とで形成される。第1の補助熱交換器52は、上記送水管22に接続しており、第2の補助熱交換器58は、第2の主熱交換器14に対して、両熱交換器を通過する第2の循環管路を経由して、熱を供給し、或いは熱を受け取るように構成している。上記第2の循環管路には循環ポンプ66を設置する。
従来公知の如く第1の循環管路64は、流路切替弁62の回動により、経路を切り替えることが可能である。図3に示す経路は除湿モード用であり、第1の補助熱交換器52が蒸発器として、第2の補助熱交換器58が凝縮器としてそれぞれ機能する。図4に示す経路は、加湿モード用であり、第1の補助熱交換器52が凝縮器として、第2の補助熱交換器58が蒸発器としてそれぞれ機能する。
図5は、水熱源ヒートポンプ50の変形例であり、第2の補助熱交換器と第2の主熱交換器14とを一つの熱交換器として兼用したものである。前述の第1の循環管路及び第2の循環管路に代わり、一つの循環管路を採用している。
制御装置70は、第1の制御部72と、第2の制御部82とで構成される。
第1の制御部72は、給気通路4及び排気通路6内の通気条件に応じて第1の主熱交換器12及び第2の主熱交換器14に対する水熱源ヒートポンプ50の供給熱量を調整する。通気条件とは、室内の目標湿度の他に、少なくとも給気通路4内へ流入する外気の温湿度、排気通路8に流入する室内空気の温湿度が該当する。これらを測定するために給気通路4の入口及び排気通路6の入口にそれぞれ第1の温湿度センサ74及び第2の温湿度センサ76を設置している。また第2の主熱交換器14のすぐ下流に温度センサ80を設置している。これらの測定値を第1の制御部72に送り、これに基づいて水熱源ヒートポンプ50の出力値を指令するようにしている。また、図示していないが第1の送風ファン16及び第2の送風ファン18に対しても第1の制御部72から出力値を指令する。なお、図示例では、説明の都合上、通気系統の制御手段を全て第1の制御部にまとめて描いているが、相互に連携する複数の制御手段(インバータやマイクロコンピュータなど)で制御してもよい。
第2の制御部82は、外部熱源からの供給熱量を制御する。制御の方法として、第1の制御部から熱のリサイクルで生ずる熱量の不足分を第2の制御部へ伝達し、これに応じて外部熱源からの熱媒の供給流量を制御するとすることも可能である。もっとも本発明では、第1の主熱交換器を通過した残熱を外部熱源側へ回収して再使用することを特徴としているので、それほど厳密に熱量の不足分に外部熱源からの供給熱量を一致させなくてもよい。しかしながら、第1の制御部からの指令に応じて第2の制御部の出力を制御するという構造を有するものであっても構わない。
上記構成において、除湿を行うときには、流路切替弁62を図3の状態にして、蒸発器である第1の補助熱交換器52から第1の主熱交換器12へ、また凝縮器である第2の補助熱交換器58から第2の主熱交換器14へそれぞれ熱を供給し、除湿用空気を予冷し、再生用空気を加熱する。これにより、効率よく除湿を行うことができる。加湿を行うときには、流路切替弁62を図4の状態にして、それぞれ熱をリサイクルしながら供給する。
熱のリサイクルにより所要冷熱量と所要温熱量とがバランスしないときには、不足分をセントラル熱源などの外部熱源から導入する。導水管路20及び水熱源ヒートポンプ50の構成を単純化した図8を用いて熱の流れの様子を説明する。
除湿モードでは、図8(A)に矢示するように送水管22内を流れる冷水に第1補助熱交換機52を介して冷熱が供給され、さらに低温度となって第1の主熱交換器12内に流入する。セントラル熱源からの冷水を、水熱源ヒートポンプが供給する冷熱(蒸発熱)を第1の主交換器へ搬送する手段として使っており、従って装置の構造が簡単となる。セントラル熱源から供給される冷熱は水熱源ヒートポンプの蒸発熱に上乗せされて、給気通路4に供給される。この作用を実現するためには、第2の補助熱交換器の温度がセントラル熱源から供給される冷水よりも低温でなければならない。第1の主熱交換器12を通過して生暖かくなった水は、還水管38を経由してセントラル熱源に戻される。戻された水は再度冷却されて他の用途に使用される。このことは、送水管を通じて供給される冷熱の全部が給気通路側へ放出されなくても、システム全体としての熱の損失にはならないことを意味する。再冷却のためのエネルギーが少なくて済むからである。
加湿モードでは、送水管22内を流れる温熱に第1補助熱交換機52を介して温熱が供給され、さらに高温度となって第1の主熱交換器12内に流入する(図8A参照)。
春・秋などの中間期には、予冷機を停止して、再生用加熱機だけを作動させたい場合がある。しかしながら水熱源ヒートポンプの構造上、凝縮器側で発熱するときには、蒸発器側で冷熱を生じさせなければならず、蒸発器に通水することが必要である。こうした場合には図8(B)に矢示するように送水管22の上流部分から第2分岐点30から第2バイパス管44を介して還水管の下流部分に水が流れるように、第2自動制御弁40を制御すればよい。
また予冷機の作用を弱めたい場合に、第2バイパス管の連通を遮断したままで第1の主熱交換器12に流れる水の流量を制限するように第2自動制御弁40を制御することができる。
(1)乾燥剤の吸湿性及び低温再生性に関して
特許文献3は、高湿度領域で優れた吸湿率を示す高分子収着剤又はイモゴライトを使用しており、これらは相対湿度50%又はその近傍での吸湿率に比べて乾燥湿度100%又はその近傍での吸湿率が2倍以上となる。また相対湿度100%近傍での高分子収着材の吸湿率は120重量%以上となる。高分子収着剤などの高湿度領域での吸湿率は、代表的な乾燥剤であるシリカゲルと比較すると、十分に高い。
上記の高分子収着材は、アニオン交換性基およびカチオン交換性基を有する両性イオン交換体である有機高分子からなり、架橋構造を有する高分子収着材である。また、イモゴライトとは、ナノチューブ状をした低結晶性アルミニウムケイ酸塩(SiO・Al・2HO)であり、高い比表面積を有するものである。さらに非特許文献2は、イモゴライトと類似の機能を有する物質として、Si−Alを主成分とする低結晶性粘土と非晶質アルミニウムケイ酸塩の複合体を開示している。
(2)第2の主熱交換器に関して
排気用空気の加熱又は冷却には、水熱源ヒートポンプの凝縮熱ないし蒸発熱以外の熱を併用するものであっても構わない。例えば図3又は図5に示す構成において、デシカントローターと第2の主熱交換器との間、又は第2の主熱交換器の上流側に、補助的な熱交換器(例えば電気ヒータやコ・ジェネレーション廃熱利用の発熱器)を配置してもよい。
2…調湿空調機 4…給気通路 6…排気通路 8…貫通孔
10…デシカントローター 12…第1の主熱交換器 14…第2の主熱交換器
16…第1の送風ファン 18…第2の送風ファン 20…導水管路
22…送水管 24…入口端部 26…第1分岐点 28…第1の自動制御弁
30…第2分岐点 34…第1バイパス管
38…還水管 40…第2の自動制御弁 42…出口端部
44…第2バイパス管
50…水熱源ヒートポンプ 52…第1の補助熱交換器 54…アキュムレータ
56…圧縮機 58…第2の補助熱交換器 60…膨張弁 62…流路切替弁
64…第1の循環管路 65…第2の循環管路 66…循環ポンプ
70…制御装置 72…第1の制御部 74…第1の温度センサ
76…第2の温度センサ 80…温度センサ
82…第2の制御部
100…給気ライン 102…外気取入れ口 104…顕熱処理用空調機
110…排気ライン 112…第1の分岐ライン 114…第2の分岐ライン
116…排気ファン
120…熱媒供給手段 122…水熱源装置 124…送水側ヘッダー
126…還水側ヘッダー 127…バッファタンク 128…送水ポンプ
130…送水ライン 132…還水ライン 134…補助ライン

Claims (7)

  1. 隣り合わせて設けた給気通路及び排気通路と、
    これら給気通路及び排気通路の隣接部分に取り付けられたデシカントローターと、
    デシカントローターよりも上流の給気通路部分に設置された第1の主熱交換器と、
    デシカントローターよりも上流の排気通路部分に設置された第2の主熱交換器と、
    を具備し、
    第1の主熱交換器及び第2の主熱交換器のうちの一方を予冷機として、他方を加熱機として機能させるように各主熱交換器に熱媒を供給するように設けた調湿空調機であって、
    第1の熱媒供給手段として、第1の主熱交換器への送水管及び第1の主熱交換器からの還水管を含む導水管路を設けるとともに、
    第2の熱媒供給手段として、凝縮器及び蒸発器として機能する第1、第2の補助熱交換器と膨張弁と圧縮機とで水熱源ヒートポンプを構築して、第1の補助熱交換器を送水管中の熱媒との間で、また第2の補助熱交換器をデシカントローター上流の排気通路部分内の気流との間で熱の授受交換をすることが可能にそれぞれ形成しており、
    水熱源ヒートポンプは、少なくとも次の(a)又は(b)の態様で予冷機又は加熱機である第1、第2の主熱交換器に対して熱を供給することを特徴とする、調湿空調機。
    (a)外部熱源から導水管路を経て供給される冷熱に水熱源ヒートポンプの蒸発熱を上乗せして、予冷機へ供給し、かつ水熱源ヒートポンプの凝縮熱を加熱機へ供給すること。
    (b)外部熱源から導水管路を経て供給される温熱に水熱源ヒートポンプの凝縮熱を上乗せして、加熱機へ供給し、かつ水熱源ヒートポンプの蒸発熱を予冷機へ供給すること。
  2. さらに、セントラル熱源などの外部熱源から供給され導水管路内を流通する熱媒の流量と水熱源ヒートポンプの出力とのうち何れか一方又は双方を制御する制御装置を設けたことを特徴とする、請求項1記載の調湿空調機。
  3. 上記制御装置は、
    給気通路及び排気通路内の通気条件に応じて第1の主熱交換器及び第2の主熱交換器に対する水熱源ヒートポンプの供給熱量を調整する、インバータなどの第1の制御部と、
    導水管路の一部又は全部の流量を調整するための第2の制御部とを含むことを特徴とする、請求項2記載の調湿空調機。
  4. 上記水熱源ヒートポンプは、圧縮機から第1の補助熱交換器と膨張弁と第2の補助熱交換器とを通過して圧縮機へ戻る循環管路において、第1、第2の補助熱交換器の順序を入れ替える流路切替弁を有し、
    この流路切替弁を手動又は第1の制御部からの指令により切り替えることで、上記(a)の態様と(b)の態様とを切り替えることが可能に構成したことを特徴とする、請求項3に記載の調湿空調機。
  5. 上記デシカントローターに内蔵する乾燥剤を、40℃から80℃の範囲で再生可能な乾燥剤としたことを特徴とする、請求項2から請求項4の何れかに記載の調湿空調機。
  6. 第2の主熱交換器と第2の補助熱交換器とを、一つの熱交換器で兼用したことを特徴とする、請求項2から請求項5のいずれかに記載の調湿空調機。
  7. 空調領域の冷却又は暖房用の水熱源であるセントラル熱源と、請求項1に記載した調湿空調機とを具備し、
    さらに調湿空調機の給気通路を含む給気ラインと、調湿空調機の排気通路を含む排気ラインとを設けたことを特徴とする、空調システム。
JP2009132188A 2009-06-01 2009-06-01 調湿空調機及び空調システム Active JP5266141B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132188A JP5266141B2 (ja) 2009-06-01 2009-06-01 調湿空調機及び空調システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132188A JP5266141B2 (ja) 2009-06-01 2009-06-01 調湿空調機及び空調システム

Publications (2)

Publication Number Publication Date
JP2010276325A true JP2010276325A (ja) 2010-12-09
JP5266141B2 JP5266141B2 (ja) 2013-08-21

Family

ID=43423440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132188A Active JP5266141B2 (ja) 2009-06-01 2009-06-01 調湿空調機及び空調システム

Country Status (1)

Country Link
JP (1) JP5266141B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034268A (ja) * 2018-08-28 2020-03-05 株式会社前川製作所 除湿装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196482A (ja) * 1996-01-12 1997-07-31 Ebara Corp デシカント空調装置
JP2005195285A (ja) * 2004-01-09 2005-07-21 Hitachi Ltd 空気調和機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09196482A (ja) * 1996-01-12 1997-07-31 Ebara Corp デシカント空調装置
JP2005195285A (ja) * 2004-01-09 2005-07-21 Hitachi Ltd 空気調和機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020034268A (ja) * 2018-08-28 2020-03-05 株式会社前川製作所 除湿装置
JP7442984B2 (ja) 2018-08-28 2024-03-05 株式会社前川製作所 除湿装置

Also Published As

Publication number Publication date
JP5266141B2 (ja) 2013-08-21

Similar Documents

Publication Publication Date Title
US9885486B2 (en) Heat pump humidifier and dehumidifier system and method
CA2966046C (en) Dehumidification system and method
CN105757836B (zh) 基于除湿换热器的再生除湿热泵系统及其运行方法
CN103717976A (zh) 调湿装置以及空气调节系统
JP3861902B2 (ja) 調湿装置
CN102506475A (zh) 冷凝废热驱动的基于固体除湿的热湿独立控制的热泵系统
JP5542701B2 (ja) 低温再生デシカント空調機
US10274210B2 (en) Heat pump humidifier and dehumidifier system and method
CN105823171B (zh) 一种增强除湿功能的空调系统
JP6018938B2 (ja) 外気処理用空調システム
CN211424563U (zh) 一种节能型变除湿量热泵式转轮除湿机组
CN107575967A (zh) 一种适用于全年工况的热泵空调系统及其运行方法
JP3821031B2 (ja) デシカント空調システム
CN101832606A (zh) 溶液除湿空调系统及其制冷除湿方法
CN105805868A (zh) 再生回热除湿热泵系统及其运行方法
JP2016205642A (ja) 低温再生デシカント空調機
JP5266141B2 (ja) 調湿空調機及び空調システム
CN104534591A (zh) 一种热泵式双冷源溶液除湿机组
JP2004257677A (ja) 複合熱源システムと空調システムの連系システム
JP2010243003A (ja) 除湿システム
JP5917787B2 (ja) 空気調和システム
US11815286B1 (en) Dual-wheel HVAC system and method having improved dew point control
CN105737287B (zh) 一种增强除湿功能的空调系统及其单独除湿温控方法
JP2015114039A (ja) 空気調和システム
WO2022252467A1 (zh) 一种新风空调系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5266141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250