JP2010276286A - Auger type ice making machine - Google Patents

Auger type ice making machine Download PDF

Info

Publication number
JP2010276286A
JP2010276286A JP2009129613A JP2009129613A JP2010276286A JP 2010276286 A JP2010276286 A JP 2010276286A JP 2009129613 A JP2009129613 A JP 2009129613A JP 2009129613 A JP2009129613 A JP 2009129613A JP 2010276286 A JP2010276286 A JP 2010276286A
Authority
JP
Japan
Prior art keywords
evaporator
ice making
refrigerant
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009129613A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Seki
和芳 関
Masayuki Kuroyanagi
正行 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2009129613A priority Critical patent/JP2010276286A/en
Publication of JP2010276286A publication Critical patent/JP2010276286A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an auger type ice making machine strong against environmental fluctuation. <P>SOLUTION: A cooling device 38 of this auger type ice making machine includes a vapor compression type primary circuit 40, and a secondary circuit 50 constituted by connecting a secondary heat exchange part 52 cooled by a heat exchanger HE by the primary circuit 40, and an evaporator EP positioned at a lower part of the heat exchanger HE in a contact state with a refrigerating casing 22, by refrigerant pipes 54, 56. The cooling device 38 is constituted to naturally circulate the refrigerant by temperature gradient of the secondary heat exchange part 52 cooled by the heat exchanger HE and the evaporator EP, and to cool the refrigerating casing 22 by the evaporator EP. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、オーガ式製氷機に関するものである。   The present invention relates to an auger type ice making machine.

図10は、オーガ式製氷機の製氷機構100を破断して示した概略構成図である。この製氷機構100は、ハウジング101の上部に配設された冷凍ケーシング102および該冷凍ケーシング102の内側に配設されたオーガ104から基本的に構成され、冷凍ケーシング102が冷却装置(図示せず)によって冷却されるようになっている。冷凍ケーシング102は、円形の筒状体を立てた姿勢で配設されており、外周面に冷却装置の蒸発器106を構成する蒸発管108が螺旋状に巻き掛けられると共に、外周面および蒸発器106が断熱部材110で被覆されている。このようなオーガ式製氷機に関しては、例えば特許文献1に開示されている。   FIG. 10 is a schematic configuration diagram showing the ice making mechanism 100 of the auger type ice making machine in a broken state. The ice making mechanism 100 basically includes a refrigeration casing 102 disposed on an upper portion of a housing 101 and an auger 104 disposed inside the refrigeration casing 102. The refrigeration casing 102 is a cooling device (not shown). It is supposed to be cooled by. The refrigeration casing 102 is arranged in a posture in which a circular cylindrical body is erected, and an evaporation pipe 108 constituting the evaporator 106 of the cooling device is spirally wound around the outer peripheral surface, and the outer peripheral surface and the evaporator. 106 is covered with a heat insulating member 110. Such an auger type ice making machine is disclosed in Patent Document 1, for example.

前記冷却装置は、気相一次冷媒を圧縮する圧縮機と、圧縮した一次冷媒を液化する凝縮器と、液相一次冷媒の圧力を低下させる膨張弁と、前記蒸発器106とを配管で接続して構成された所謂蒸気圧縮式の冷凍回路を備えている。冷却装置は、圧縮機の駆動によって冷媒を回路内を循環させることで、蒸発器106において冷凍ケーシング102に接する蒸発管108によって冷凍ケーシング102を氷点以下まで冷却するようになっている。蒸発器106は、銅等の熱伝導性のよい金属からなる蒸発管108と冷凍ケーシング102との接触伝熱によって該冷凍ケーシング102を冷却するので、断面円形の金属パイプを断面小判形になるよう扁平に押し潰す加工を施し、蒸発管108の平面部分を冷凍ケーシング102に密着させることで互いの接触面積を確保している。   The cooling device connects a compressor that compresses the gas-phase primary refrigerant, a condenser that liquefies the compressed primary refrigerant, an expansion valve that reduces the pressure of the liquid-phase primary refrigerant, and the evaporator 106 by piping. A so-called vapor compression refrigeration circuit. The cooling device circulates the refrigerant in the circuit by driving the compressor, thereby cooling the refrigeration casing 102 to below the freezing point by the evaporation pipe 108 in contact with the refrigeration casing 102 in the evaporator 106. The evaporator 106 cools the refrigeration casing 102 by contact heat transfer between the evaporation pipe 108 made of a metal having good thermal conductivity such as copper and the refrigeration casing 102, so that the metal pipe having a circular cross section has an oval cross section. A flat crushing process is performed, and the flat portion of the evaporation pipe 108 is brought into close contact with the refrigeration casing 102 to ensure a mutual contact area.

実公平8−3897号公報Japanese Utility Model Publication 8-3897

蒸気圧縮式の冷凍回路からなる前記冷却装置は、外気温や製氷水の水温が高い場合は冷凍能力が下がり、外気温や製氷水の水温が低い場合は冷凍能力が高くなる特性を有している。すなわち、オーガ式製氷機は、外気温および水温の影響を受け易く、例えば夏季には氷の製造能力が低下傾向になり、冬季には氷の製造能力が向上する傾向にある。ここで、オーガ式製氷機は、氷の需要が大きくなる夏季に合わせて冷却装置の能力が設定されており、冬季に冷凍ケーシング102で氷が成長し過ぎてオーガ104に過負荷がかかり、電気代等が嵩んだり、冷凍ケーシング102、オーガ104または駆動手段等の製氷機構100の破損に繋がるおそれが指摘される。   The cooling device comprising a vapor compression refrigeration circuit has a characteristic that the refrigeration capacity decreases when the outside air temperature or ice making water temperature is high, and the refrigeration capacity increases when the outside air temperature or ice making water temperature is low. Yes. That is, the auger type ice making machine is easily affected by the outside air temperature and the water temperature. For example, the ice production capacity tends to decrease in the summer, and the ice production capacity tends to improve in the winter. Here, the auger type ice making machine has the capacity of the cooling device set in accordance with the summer when the demand for ice increases, and in the winter season, ice grows too much in the refrigeration casing 102, overloading the auger 104, and the electric It is pointed out that the cost may increase, or the ice making mechanism 100 such as the refrigeration casing 102, the auger 104 or the driving means may be damaged.

すなわち本発明は、従来の技術に係るオーガ式製氷機に内在する前記問題に鑑み、これらを好適に解決するべく提案されたものであって、環境変動に強いオーガ式製氷機を提供することを目的とする。   That is, the present invention has been proposed to solve these problems inherently in the auger type ice making machine according to the prior art, and provides an auger type ice making machine that is resistant to environmental fluctuations. Objective.

前記課題を克服し、所期の目的を達成するため、本願の請求項1に係る発明のオーガ式製氷機は、
冷却装置を構成する蒸発器により冷却された冷凍ケーシングに成長した氷をオーガで削り取ってフレーク状の氷を製造するオーガ式製氷機において、
前記冷却装置は、熱交換器で冷却される熱交換部および該熱交換器の下方に位置して前記冷凍ケーシングに接するように設けた蒸発器を冷媒配管で接続した回路を備え、熱交換部と蒸発器との温度勾配で冷媒を自然循環させて蒸発器によって冷凍ケーシングを冷却するよう構成したことを特徴とする。
請求項1に係る発明によれば、蒸発器が接する冷凍ケーシングの製氷水等の温度変動に応じて回路の冷凍能力が変動するので、例えば製氷水等が低温であっても冷凍ケーシングに氷が過剰に成長することを抑制でき、製氷機構の過負荷を回避し得る。
In order to overcome the above-mentioned problems and achieve the intended purpose, an auger type ice making machine according to claim 1 of the present application is
In an auger type ice making machine that produces ice in the form of flakes by scraping ice grown on a refrigeration casing cooled by an evaporator constituting a cooling device with an auger,
The cooling device includes a heat exchange section cooled by a heat exchanger and a circuit in which an evaporator disposed below the heat exchanger and in contact with the refrigeration casing is connected by a refrigerant pipe, and the heat exchange section The refrigerant is naturally circulated by a temperature gradient between the evaporator and the evaporator, and the refrigeration casing is cooled by the evaporator.
According to the first aspect of the present invention, since the refrigeration capacity of the circuit varies depending on the temperature variation of the ice making water etc. of the refrigeration casing in contact with the evaporator, for example, ice is not in the refrigeration casing even if the ice making water etc. Overgrowth can be suppressed and overloading of the ice making mechanism can be avoided.

請求項2に係る発明では、前記回路は、冷媒として二酸化炭素が循環し、
前記蒸発器は、金属製で断面円形の蒸発管を前記冷凍ケーシングに巻き掛けて構成されることを要旨とする。
請求項2に係る発明によれば、蒸発管の断面形状を円形にすることで外圧に強くすることができる。
In the invention according to claim 2, the circuit circulates carbon dioxide as a refrigerant,
The gist of the evaporator is that a metal-made evaporation tube having a circular cross section is wound around the refrigeration casing.
According to the invention which concerns on Claim 2, it can strengthen to external pressure by making the cross-sectional shape of an evaporation pipe circular.

請求項3に係る発明では、前記蒸発管は、直径が1mm〜6.35mmの範囲に設定されることを要旨とする。
請求項3に係る発明によれば、蒸発管を細径化しているので、蒸発管の巻き数を増やして冷凍ケーシングの回りに密に配置することができ、伝熱面積を確保することができる。
The gist of the invention according to claim 3 is that the evaporation tube has a diameter set in a range of 1 mm to 6.35 mm.
According to the invention of claim 3, since the diameter of the evaporation pipe is reduced, the number of turns of the evaporation pipe can be increased and densely arranged around the refrigeration casing, and a heat transfer area can be secured. .

本発明に係るオーガ式製氷機によれば、環境が変動しても回路の冷凍能力が自然に調節されるので、製氷機構の過負荷や製氷能力不足を回避でき、環境変動に強い。   According to the auger type ice making machine according to the present invention, since the refrigeration capacity of the circuit is naturally adjusted even if the environment changes, it is possible to avoid overloading of the ice making mechanism and insufficient ice making capacity, and is resistant to environmental changes.

本発明の好適な実施例に係る製氷機の要部を示す縦断側面図である。It is a vertical side view which shows the principal part of the ice making machine which concerns on the suitable Example of this invention. 実施例の製氷機を機械室で破断して示す横断平面図である。It is a cross-sectional top view which fractures | ruptures and shows the ice making machine of an Example in a machine room. 実施例の冷却装置を示す概略図である。It is the schematic which shows the cooling device of an Example. 実施例の製氷機構を示す縦断面図である。It is a longitudinal cross-sectional view which shows the ice making mechanism of an Example. 実施例の熱交換器を一部破断して示す側面図である。It is a side view which shows the heat exchanger of an Example partially broken. 実施例の熱交換器を示す平面図である。It is a top view which shows the heat exchanger of an Example. 図6のA−A断面を示す概略斜視図である。It is a schematic perspective view which shows the AA cross section of FIG. 実施例の蒸発器を示す側面図である。It is a side view which shows the evaporator of an Example. 実施例の蒸発器を示す平面図である。It is a top view which shows the evaporator of an Example. 従来のオーガ式製氷機の製氷機構を示す縦断面図である。It is a longitudinal cross-sectional view which shows the ice making mechanism of the conventional auger type ice making machine.

次に、本発明に係るオーガ式製氷機につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。なお、実施例の構成は、店舗等の業務用途に用いられる比較的大型の製氷機に適用するのが好適である。   Next, an auger type ice making machine according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments. In addition, it is suitable to apply the structure of an Example to the comparatively large-sized ice making machine used for business uses, such as a store.

図1〜図2および図4に示すように、実施例に係るオーガ式製氷機10は、チップ状またはフレーク状の氷を製造する所謂オーガ式である。オーガ式製氷機10は、機械室14が内部画成された箱体12と、この箱体12の下方に設けられ、貯氷室16が内部画成された断熱構造の貯氷庫15とからなるスタックオンタイプである。箱体12は、金属製のフレームを組み合わせた骨組みの各面に金属製のパネルを取り付けて構成され、機械室14の上側を覆って天板12aが設けられている。   As shown in FIGS. 1 to 2 and 4, the auger type ice making machine 10 according to the embodiment is a so-called auger type that produces chip-shaped or flake-shaped ice. The auger type ice making machine 10 includes a stack 12 having a box 12 in which a machine room 14 is defined, and an ice storage 15 having a heat insulating structure provided below the box 12 and having an ice storage 16 defined therein. On-type. The box 12 is configured by attaching a metal panel to each surface of a framework in which metal frames are combined, and a top plate 12 a is provided to cover the upper side of the machine room 14.

前記オーガ式製氷機10は、氷を製造する製氷機構20およびこの製氷機構20を冷却する冷却装置38が機械室14に設置され、製氷機構20で製造された氷が製氷機構20から放出部32を介して貯氷室16で貯留されるようになっている(図1および図2参照)。製氷機構20は、円筒形の冷凍ケーシング(製氷部)22と、この冷凍ケーシング22の内部に回転可能に配設されたオーガ30と、このオーガ30を回転する駆動手段(図示せず)と、冷凍ケーシング22に製氷水を供給する製氷水タンク(図示せず)とから基本的に構成されている(図4参照)。冷凍ケーシング22は、熱伝導率のよい金属製であって、機械室14において立てた姿勢で配設されている。実施例では、冷凍ケーシング22が機械室14における前側の一側方(左側)に偏倚して配置されている。また、冷凍ケーシング22の外周面には、冷却装置38の後述する蒸発器EPを構成する冷媒配管(特に区別する場合は蒸発管という)58が巻き掛けられると共に、該外周面および冷媒配管の外側を覆ってウレタン発泡体等の断熱部材23が配設されている。   In the auger type ice making machine 10, an ice making mechanism 20 for producing ice and a cooling device 38 for cooling the ice making mechanism 20 are installed in the machine room 14, and the ice produced by the ice making mechanism 20 is discharged from the ice making mechanism 20 to the discharge unit 32. Is stored in the ice storage chamber 16 (see FIGS. 1 and 2). The ice making mechanism 20 includes a cylindrical refrigeration casing (ice making part) 22, an auger 30 rotatably disposed inside the refrigeration casing 22, drive means (not shown) for rotating the auger 30, An ice making water tank (not shown) for supplying ice making water to the refrigeration casing 22 is basically configured (see FIG. 4). The refrigeration casing 22 is made of a metal having good thermal conductivity, and is arranged in a standing posture in the machine room 14. In the embodiment, the refrigeration casing 22 is arranged biased to one side (left side) of the front side in the machine room 14. In addition, a refrigerant pipe (which will be referred to as an evaporation pipe in particular) 58 that constitutes an evaporator EP (described later) of the cooling device 38 is wound around the outer peripheral surface of the refrigeration casing 22, and the outer peripheral surface and the outer side of the refrigerant pipe. A heat insulating member 23 such as urethane foam is disposed.

前記オーガ30は、冷凍ケーシング22の内部に該冷凍ケーシング22と同軸的に配設されて、該オーガ30の外周面に螺旋状に形成された切削刃30aが、冷凍ケーシング22の内周面(製氷面)22aに僅かな隙間をあけて臨むようになっている(図4参照)。オーガ30は、下部が冷凍ケーシング22の下部に設けられた下軸受31に回転可能に支持されて、上部が冷凍ケーシング22の上部内側に配設された押圧頭24に回転可能に支持されている。下軸受31は、メカニカルシール等の封水機能を有し、冷凍ケーシング22の内部には、製氷水タンク28から供給された製氷水が所定レベルで満たされるようになっている。そして、オーガ30は、下軸受31から下方に延出した下端が駆動手段に連結し、駆動手段によって冷凍ケーシング22の内部で回転するよう構成される。製氷機構20は、蒸発器EPによって冷却された冷凍ケーシング22の製氷面22aに成長した氷を、駆動手段によりオーガ30を回転することで切削刃30aで削り取り、削り取った水分を含んだ氷をオーガ30の回転下に上方に移送するよう構成される。   The auger 30 is disposed coaxially with the refrigeration casing 22 inside the refrigeration casing 22, and a cutting blade 30 a formed in a spiral shape on the outer peripheral surface of the auger 30 is provided on the inner peripheral surface of the refrigeration casing 22 ( (Ice making surface) 22a is opened with a slight gap (see FIG. 4). The auger 30 has a lower portion rotatably supported by a lower bearing 31 provided at a lower portion of the refrigeration casing 22, and an upper portion rotatably supported by a pressing head 24 disposed inside the upper portion of the refrigeration casing 22. . The lower bearing 31 has a water sealing function such as a mechanical seal, and the ice making water supplied from the ice making water tank 28 is filled in the freezing casing 22 at a predetermined level. And the auger 30 is comprised so that the lower end extended below from the lower bearing 31 may be connected with a drive means, and it may rotate inside the freezing casing 22 with a drive means. The ice making mechanism 20 scrapes the ice grown on the ice making surface 22a of the refrigeration casing 22 cooled by the evaporator EP with the cutting blade 30a by rotating the auger 30 by a driving means, and removes the ice containing the scraped water into the auger. It is configured to move upward under 30 rotations.

前記押圧頭24には、円筒状本体の外周面に、複数の固定刃が周方向に離間して放射状に設けられ、円筒状本体の外壁面と冷凍ケーシング22の内周面との間に、周方向に離間して複数の圧縮通路が画成されている。また、押圧頭24の上部には、オーガ30の上側の軸部に着脱可能に配設されて該オーガ30と一体的に回転するヘッド部26が臨み、押圧頭24で水分が絞られて圧縮された氷を該ヘッド部26で所定寸法毎に折るように構成されている。   In the pressing head 24, a plurality of fixed blades are radially provided on the outer peripheral surface of the cylindrical main body, spaced apart in the circumferential direction, and between the outer wall surface of the cylindrical main body and the inner peripheral surface of the freezing casing 22, A plurality of compression passages are defined apart from each other in the circumferential direction. In addition, a head portion 26 that is detachably disposed on the upper shaft portion of the auger 30 and rotates integrally with the auger 30 faces the upper portion of the pressing head 24, and moisture is squeezed and compressed by the pressing head 24. The formed ice is configured to be folded at a predetermined dimension by the head portion 26.

前記オーガ式製氷機10には、製氷機構20と貯氷室16との間に該冷凍ケーシング22の上部から放出された氷を案内する放出部32が設けられている。放出部32は、冷凍ケーシング22の上部に取り付けられて、機械室14の上部に横方向に延在する筒状のスパウト33と、上下方向に延在する筒状に形成されて、スパウト33の放出端に上部開口が接続すると共に下部開口が貯氷室16に臨むシュート34とから構成されている(図1参照)。スパウト33は、下方に開口する開口部内に冷凍ケーシング22の上部(押圧頭24およびヘッド部26に対応する部分)を収容して冷凍ケーシング22の上部に取り付けられ、内部に臨む冷凍ケーシング22の上部から放出された氷を受容し得るようになっている。そして、放出部32は、スパウト33で冷凍ケーシング22から氷を受けて、オーガ30による氷のラジアル方向の押し出しにより氷がスパウト33を介してシュート34に押送され、シュート34の上下に延在する通路で案内して貯氷室16に氷を放出するようになっている。なお、実施例のオーガ式製氷機10では、シュート34が機械室14の略中央部に配置されている(図2参照)。   The auger type ice making machine 10 is provided with a discharge portion 32 for guiding ice discharged from the upper portion of the refrigeration casing 22 between the ice making mechanism 20 and the ice storage chamber 16. The discharge part 32 is attached to the upper part of the refrigeration casing 22, and is formed into a cylindrical spout 33 extending in the lateral direction at the upper part of the machine room 14 and a cylindrical shape extending in the vertical direction. An upper opening is connected to the discharge end, and a lower opening is constituted by a chute 34 facing the ice storage chamber 16 (see FIG. 1). The spout 33 accommodates the upper part (the part corresponding to the pressing head 24 and the head part 26) of the refrigeration casing 22 in the opening part opened downward, is attached to the upper part of the refrigeration casing 22, and the upper part of the refrigeration casing 22 facing the inside. The ice released from can be received. And the discharge | release part 32 receives ice from the freezing casing 22 with the spout 33, and ice is pushed to the chute | shoot 34 via the spout 33 by the radial direction extrusion of the ice by the auger 30, and it extends up and down of the chute | shoot 34. The ice is guided to the ice storage chamber 16 through the passage. In the auger type ice making machine 10 according to the embodiment, the chute 34 is disposed at a substantially central portion of the machine room 14 (see FIG. 2).

ここで、オーガ式製氷機10では、放出部32のスパウト33を冷凍ケーシング22の上部に設けることで、冷凍ケーシング22において蒸発器EPが設けられる部分より上方にスパウト33の上下寸法分のスペースが必要とされる。すなわち、機械室14には、製氷機構20の横側に、冷凍ケーシング22において蒸発器EPが設けられる部位より上方で、冷凍ケーシング22の上方を覆う天板12aより下方に位置して、スパウト33の上下寸法分のスペースが形成されている(図2参照)。   Here, in the auger type ice making machine 10, by providing the spout 33 of the discharge part 32 on the upper part of the refrigeration casing 22, a space corresponding to the vertical dimension of the spout 33 is provided above the part where the evaporator EP is provided in the refrigeration casing 22. Needed. That is, the spout 33 is located in the machine room 14 on the side of the ice making mechanism 20 above the portion where the evaporator EP is provided in the refrigeration casing 22 and below the top plate 12a covering the top of the refrigeration casing 22. A space corresponding to the vertical dimension is formed (see FIG. 2).

図3に示す如く、冷却装置38は、冷媒を強制循環する機械圧縮式の一次回路40と、冷媒が自然対流するサーモサイフォンからなる二次回路50との2系統の回路を、熱交換器HEを介して熱交換するように接続(カスケード接続)してある。熱交換器HEは、一次回路40を構成する一次熱交換部42と、この一次熱交換部42と別系統に形成されて、二次回路50を構成する二次熱交換部52とを備え、一次熱交換部42と二次熱交換部52とが熱交換可能になっている。すなわち、一次回路40および二次回路50には、独立した冷媒循環経路が夫々形成され、二次回路50を循環する二次冷媒としては、毒性、可燃性および腐食性を有していない安全性の高い二酸化炭素が採用される。これに対し、一次回路40を循環する一次冷媒としては、蒸発熱や飽和圧等の冷媒としての特性に優れているブタンやプロパン等のHC系の冷媒またはアンモニアなどが採用され、実施例ではイソブタンまたはプロパンが用いられている。二次回路50は、フロン等に比べて粘度が低い二酸化炭素が二次冷媒として採用されると共に、圧力損失が少ない回路構成であるので、冷媒の流通路をなす二次冷媒配管の径を小さくすることが可能であり、例えば直径1.0mm〜6.35mmの如き細いものを用いることができる。   As shown in FIG. 3, the cooling device 38 includes two circuits, a primary circuit 40 of a mechanical compression type that forcibly circulates a refrigerant and a secondary circuit 50 that includes a thermosiphon in which the refrigerant naturally convects, as a heat exchanger HE. Is connected (cascade connection) so as to exchange heat. The heat exchanger HE includes a primary heat exchange part 42 that constitutes the primary circuit 40, and a secondary heat exchange part 52 that is formed in a separate system from the primary heat exchange part 42 and constitutes the secondary circuit 50, The primary heat exchange unit 42 and the secondary heat exchange unit 52 can exchange heat. That is, independent refrigerant circulation paths are formed in the primary circuit 40 and the secondary circuit 50, respectively, and the secondary refrigerant circulating in the secondary circuit 50 has safety that is not toxic, flammable, and corrosive. High carbon dioxide is adopted. On the other hand, as the primary refrigerant circulating in the primary circuit 40, an HC refrigerant such as butane or propane having excellent characteristics as a refrigerant such as heat of evaporation and saturation pressure, ammonia, or the like is adopted. In the embodiment, isobutane is used. Or propane is used. Since the secondary circuit 50 employs carbon dioxide, which has a lower viscosity than chlorofluorocarbon, as a secondary refrigerant and has a low pressure loss, the diameter of the secondary refrigerant pipe forming the refrigerant flow path is reduced. For example, a thin one having a diameter of 1.0 mm to 6.35 mm can be used.

前記一次回路40は、気相一次冷媒を圧縮する圧縮機CMと、圧縮した一次冷媒を液化する凝縮器CDと、液相一次冷媒の圧力を低下させる減圧手段としての膨張弁EVと、液相一次冷媒を気化する熱交換器HEの一次熱交換部42とを一次冷媒配管44で接続して構成される(図3参照)。一次回路40では、圧縮機CMによる一次冷媒の圧縮により、圧縮機CM、凝縮器CD、膨張弁EV、熱交換器HEの一次熱交換部42および圧縮機CMの順に、一次冷媒が循環して各機器の作用下に一次熱交換部42において所要の冷却を行なうようになっている。   The primary circuit 40 includes a compressor CM for compressing the gas phase primary refrigerant, a condenser CD for liquefying the compressed primary refrigerant, an expansion valve EV as a pressure reducing means for reducing the pressure of the liquid phase primary refrigerant, and a liquid phase The primary heat exchange part 42 of the heat exchanger HE that vaporizes the primary refrigerant is connected by a primary refrigerant pipe 44 (see FIG. 3). In the primary circuit 40, the primary refrigerant is circulated in the order of the compressor CM, the condenser CD, the expansion valve EV, the primary heat exchange unit 42 of the heat exchanger HE, and the compressor CM by the compression of the primary refrigerant by the compressor CM. Necessary cooling is performed in the primary heat exchange section 42 under the action of each device.

前記一次回路40を構成する機器は、何れも機械室14に設置されている。ここで、圧縮機CMは、冷凍ケーシング22と比較して高さが低い機器であるので、圧縮機CMの上側であってスパウト33の横側のスペースに熱交換器HEを配設するとよい。   All the devices constituting the primary circuit 40 are installed in the machine room 14. Here, since the compressor CM is a device whose height is lower than that of the refrigeration casing 22, the heat exchanger HE may be disposed in a space above the compressor CM and lateral to the spout 33.

前記二次回路50は、気相二次冷媒(気化冷媒)を液化する熱交換器HEの二次熱交換部52と、液相二次冷媒(液化冷媒)を気化する蒸発器EPとを備え、二次熱交換部52と蒸発器EPとが1対1の関係で対応している(図3参照)。オーガ式製氷機10では、二次熱交換部52が熱交換器HEに設けられる一方、蒸発器EPが製氷機構20における冷凍ケーシング22の外周面に設けられ、蒸発器EPより上側に二次熱交換部52が設置される。また、二次回路50は、二次熱交換部52と蒸発器EPとを接続して二次冷媒の流通路をなす液配管(二次冷媒配管)54およびガス配管(二次冷媒配管)56を備え、液配管54を介して二次熱交換部52から蒸発器EPへ重力の作用下に液相二次冷媒を供給し、ガス配管56を介して蒸発器EPから二次熱交換部52へ気相二次冷媒を還流させるようになっている。なお、後述する凝縮管53,液配管54,ガス配管56および蒸発管58としては、熱伝導率のよい銅やステンレス等の金属管が用いられる。   The secondary circuit 50 includes a secondary heat exchange unit 52 of a heat exchanger HE that liquefies a gas phase secondary refrigerant (vaporized refrigerant) and an evaporator EP that vaporizes the liquid phase secondary refrigerant (liquefied refrigerant). The secondary heat exchange unit 52 and the evaporator EP correspond to each other in a one-to-one relationship (see FIG. 3). In the auger type ice making machine 10, the secondary heat exchange part 52 is provided in the heat exchanger HE, while the evaporator EP is provided on the outer peripheral surface of the refrigeration casing 22 in the ice making mechanism 20, and the secondary heat is disposed above the evaporator EP. An exchange unit 52 is installed. Further, the secondary circuit 50 connects the secondary heat exchange unit 52 and the evaporator EP to form a secondary refrigerant flow passage (secondary refrigerant pipe) 54 and gas pipe (secondary refrigerant pipe) 56. The liquid phase secondary refrigerant is supplied from the secondary heat exchange unit 52 to the evaporator EP through the liquid pipe 54 under the action of gravity, and the secondary heat exchange unit 52 is supplied from the evaporator EP through the gas pipe 56. The gas phase secondary refrigerant is refluxed. In addition, as a condensing pipe 53, a liquid pipe 54, a gas pipe 56, and an evaporation pipe 58, which will be described later, a metal pipe such as copper or stainless steel having a good thermal conductivity is used.

図3に示すように、前記二次熱交換部52には、二次冷媒が流通する凝縮経路(流通路)53aを有する凝縮管53が、並列して複数(実施例では3本)設けられている。また蒸発器EPには、二次冷媒が流通する蒸発経路(流通路)58aを有する蒸発管58が、並列して複数(実施例では3本)設けられている。なお、実施例では、配管で蒸発経路58aが構成されるが、冷凍ケーシング22に蒸発経路を形成してもよい。ここで、二次回路50では、複数の凝縮経路53a、複数の蒸発経路58a、複数の液配管54および複数のガス配管56が同数に設定されている。液配管54は、上端(始端)が二次熱交換部52における凝縮管53(凝縮経路53a)の流出端に接続され、下端(終端)が蒸発器EPにおける蒸発管58(蒸発経路58a)の流入端に接続されている。ガス配管56は、下端(始端)が蒸発器EPにおける蒸発管58(蒸発経路58a)の流出端に接続されて、上端(終端)が二次熱交換部52における凝縮管53(凝縮経路53a)の流入端に接続されている。実施例では、蒸発器EPにおける二次冷媒の流入側が冷凍ケーシング22の下部に設定される一方、二次冷媒の流出側が冷凍ケーシング22の上部に設定されて、二次冷媒が蒸発器EPを下から上に向けて流通するよう構成されている。   As shown in FIG. 3, the secondary heat exchanging section 52 is provided with a plurality of (three in the embodiment) condensing pipes 53 having a condensing path (flow passage) 53a through which the secondary refrigerant flows. ing. The evaporator EP is provided with a plurality of (three in the embodiment) evaporation pipes 58 having an evaporation path (flow path) 58a through which the secondary refrigerant flows. In the embodiment, the evaporation path 58 a is configured by piping, but the evaporation path may be formed in the refrigeration casing 22. Here, in the secondary circuit 50, the plurality of condensation paths 53a, the plurality of evaporation paths 58a, the plurality of liquid pipes 54, and the plurality of gas pipes 56 are set to the same number. The liquid pipe 54 has an upper end (starting end) connected to the outflow end of the condensation pipe 53 (condensation path 53a) in the secondary heat exchange section 52, and a lower end (end) of the evaporation pipe 58 (evaporation path 58a) in the evaporator EP. Connected to the inflow end. The gas pipe 56 has a lower end (starting end) connected to the outflow end of the evaporation pipe 58 (evaporation path 58a) in the evaporator EP, and an upper end (terminal end) of the condensation pipe 53 (condensation path 53a) in the secondary heat exchange section 52. It is connected to the inflow end. In the embodiment, the inflow side of the secondary refrigerant in the evaporator EP is set at the lower part of the refrigeration casing 22, while the outflow side of the secondary refrigerant is set in the upper part of the refrigeration casing 22 so that the secondary refrigerant passes through the evaporator EP. It is configured to circulate upward from the top.

前記二次回路50では、凝縮経路53aの流出端に接続する液配管54を、当該凝縮経路53aの流入端に連結したガス配管56が接続している蒸発経路58aと別の蒸発経路58aに接続するよう構成される(図3参照)。また、二次回路50では、蒸発経路58aの流出端に接続するガス配管56を、当該蒸発経路58aの流入端に連結した液配管54が接続している凝縮経路53aと別の凝縮経路53aに接続している。このように、二次回路50には、複数の凝縮経路53a、複数の蒸発経路58a、複数の液配管54および複数のガス配管56によって擬似的に並列する複数(実施例では3つ)のパスが形成されるが、これらのパスはシリアル接続されて全体として1つの回路が構成されている。すなわち、二次回路50は、二次熱交換部52および蒸発器EPの間で二次冷媒を循環させる3つのパスが連続して二次冷媒が循環する1つの回路となっており、各パスにおいて凝縮経路53a、蒸発経路58a、液配管54およびガス配管56が対応する関係になっている。   In the secondary circuit 50, the liquid pipe 54 connected to the outflow end of the condensation path 53a is connected to an evaporation path 58a connected to the gas pipe 56 connected to the inflow end of the condensation path 53a. (See FIG. 3). In the secondary circuit 50, the gas pipe 56 connected to the outflow end of the evaporation path 58a is connected to a condensing path 53a different from the condensing path 53a connected to the liquid pipe 54 connected to the inflow end of the evaporation path 58a. Connected. As described above, the secondary circuit 50 includes a plurality of (three in the embodiment) paths that are pseudo-parallel by the plurality of condensing paths 53a, the plurality of evaporation paths 58a, the plurality of liquid pipes 54, and the plurality of gas pipes 56. However, these paths are serially connected to form one circuit as a whole. That is, the secondary circuit 50 is one circuit in which the secondary refrigerant circulates continuously through three paths for circulating the secondary refrigerant between the secondary heat exchange unit 52 and the evaporator EP. In FIG. 5, the condensing path 53a, the evaporation path 58a, the liquid pipe 54, and the gas pipe 56 have a corresponding relationship.

前記二次回路50は、パスを構成する液配管54同士が接触するように配設された部位を有すると共に、パスを構成するガス配管56同士が接触するように配設された部位を有している(図3参照)。また、二次回路50は、蒸発器EPを構成するパスの蒸発管58が並列するように配置されると共に、隣り合うパスの蒸発管58が接触するようになっている。更に、二次回路50は、二次熱交換部52を構成するパスの凝縮管53が並列するように配置されると共に、隣り合うパスの凝縮管53が接触するようになっている。二次回路50は、当該配管接触部位において熱伝導性を有する配管を介して該配管を流通する二次冷媒間で熱交換可能に構成される。二次回路50は、配管接触部位を設けることで、パス間で配管53,54,56,58を流通する二次冷媒の温度を配管同士の接触伝熱によって均一化することができる。すなわち、二次回路50は、パス間での二次冷媒の温度差に起因するパス間での二次冷媒流量の偏りや蒸発器EPにおける蒸発経路58a間での蒸発温度の相違等を解消することができ、冷凍ケーシング22の製氷面22aに均等に氷を成長させることが可能となる。実施例の二次回路50では、二次熱交換部52の凝縮経路53a同士、蒸発器EPの蒸発経路58a同士、液配管54の蒸発器EPへの流入部位近傍およびガス配管56の蒸発器EPからの流出部位近傍で配管を互いに接触させるよう構成したが、回路全体に亘ってパスを構成する配管同士を接触させてもよい。   The secondary circuit 50 has a part arranged so that the liquid pipes 54 constituting the path are in contact with each other, and a part arranged so that the gas pipes 56 constituting the path are in contact with each other. (See FIG. 3). In addition, the secondary circuit 50 is arranged so that the evaporation pipes 58 of the paths constituting the evaporator EP are arranged in parallel, and the evaporation pipes 58 of adjacent paths are in contact with each other. Further, the secondary circuit 50 is arranged so that the condensing pipes 53 of the paths constituting the secondary heat exchange section 52 are arranged in parallel, and the condensing pipes 53 of adjacent paths are in contact with each other. The secondary circuit 50 is configured to be able to exchange heat between the secondary refrigerants flowing through the pipe through the pipe having thermal conductivity at the pipe contact portion. By providing the pipe contact portion, the secondary circuit 50 can make the temperature of the secondary refrigerant flowing through the pipes 53, 54, 56, and 58 between the paths uniform by contact heat transfer between the pipes. That is, the secondary circuit 50 eliminates a deviation in the flow rate of the secondary refrigerant between the paths due to the temperature difference of the secondary refrigerant between the paths, a difference in evaporation temperature between the evaporation paths 58a in the evaporator EP, and the like. Thus, it is possible to grow ice evenly on the ice making surface 22a of the refrigeration casing 22. In the secondary circuit 50 of the embodiment, the condensation paths 53a of the secondary heat exchange unit 52, the evaporation paths 58a of the evaporator EP, the vicinity of the inflow site of the liquid pipe 54 to the evaporator EP, and the evaporator EP of the gas pipe 56 are used. Although the pipes are configured to contact each other in the vicinity of the outflow portion from the pipe, the pipes constituting the path may be contacted over the entire circuit.

前記二次回路50には、強制冷却される一次熱交換部42との熱交換により冷却される二次熱交換部52と蒸発器EPとの間に温度勾配が形成され、二次冷媒が二次熱交換部52、液配管54、蒸発器EPおよびガス配管56を自然対流して二次熱交換部52に再び戻る冷媒の循環サイクルが形成される。なお、符号62は、二次回路50に冷媒を充填するために設けられた冷媒チャージポートであって、実施例の二次回路50は、単一の回路で構成されるから、冷媒チャージポート62および安全弁(図示せず)等の付帯設備が1組で足りる。   In the secondary circuit 50, a temperature gradient is formed between the secondary heat exchange part 52 cooled by heat exchange with the primary heat exchange part 42 to be forcedly cooled and the evaporator EP, so that the secondary refrigerant is secondarily cooled. A refrigerant circulation cycle is formed in which the secondary heat exchange section 52, the liquid pipe 54, the evaporator EP, and the gas pipe 56 are naturally convected and returned to the secondary heat exchange section 52 again. Reference numeral 62 denotes a refrigerant charge port provided to fill the secondary circuit 50 with the refrigerant. Since the secondary circuit 50 of the embodiment is configured by a single circuit, the refrigerant charge port 62 is provided. A single set of incidental facilities such as a safety valve (not shown) is sufficient.

前記蒸発器EPは、各パスを構成する蒸発管58を並列した状態で冷凍ケーシング22の外周面に螺旋状に巻き掛けて構成され、3本の蒸発経路58aが並列して螺旋状に設けられている(図8参照)。蒸発器EPは、各パスの蒸発管58の流入端が冷凍ケーシング22の周回りに異なる位置に設けられると共に、各パスの蒸発管58の流出端が冷凍ケーシング22の周回りに異なる位置に設けられている(図9参照)。実施例の蒸発器EPでは、3つのパスの蒸発経路58aの流入端が互いに120°ずつの間隔をあけて配置され、3つのパスの蒸発経路58aの流出端が互いに120°ずつの間隔をあけて配置されている。すなわち、蒸発器EPは、各パスの液配管54に接続する蒸発管58が所定角度ずつ離れた位置から冷凍ケーシング22の外周面に接するように巻き掛けられ、各パスのガス配管56に接続する蒸発管58が所定角度ずつ離れた位置から冷凍ケーシング22の外周面から離間するように引き出されている。   The evaporator EP is configured by spirally winding the outer peripheral surface of the refrigeration casing 22 in a state where the evaporation pipes 58 constituting each path are arranged in parallel, and three evaporation paths 58a are provided in a spiral shape in parallel. (See FIG. 8). In the evaporator EP, the inflow end of the evaporation pipe 58 of each path is provided at a different position around the circumference of the refrigeration casing 22, and the outflow end of the evaporation pipe 58 of each path is provided at a different position around the circumference of the refrigeration casing 22. (See FIG. 9). In the evaporator EP of the embodiment, the inflow ends of the three paths of the evaporation paths 58a are arranged at intervals of 120 ° from each other, and the outflow ends of the three paths of the evaporation paths 58a are spaced from each other by 120 °. Are arranged. That is, the evaporator EP is wound so that the evaporation pipe 58 connected to the liquid pipe 54 of each path is in contact with the outer peripheral surface of the refrigeration casing 22 from a position separated by a predetermined angle, and is connected to the gas pipe 56 of each path. The evaporating pipe 58 is drawn away from the outer peripheral surface of the refrigeration casing 22 from a position separated by a predetermined angle.

前記蒸発器EPは、複数のパスの蒸発経路58aを並列させて構成されることから、冷凍ケーシング22において例えば複数の蒸発経路58aの流入端を揃えると、冷凍ケーシング22における該流入端と巻き掛け方向反対側には、蒸発経路58aをなす蒸発管58が配置されない非接触領域が最大で蒸発経路58aの並列幅で生じることになる。同様に、冷凍ケーシング22において例えば複数の蒸発経路58aの流出端を揃えると、冷凍ケーシング22における該流出端と引き出し方向反対側には、蒸発経路58aをなす蒸発管58が配置されない非接触領域が最大で蒸発経路58aの並列幅で生じることになる。これに対して、実施例の蒸発器EPの如く、各パスの蒸発経路58aの流入端を冷凍ケーシング22の周回りに異なる位置に設けると共に、各パスの蒸発経路58aの流出端を冷凍ケーシング22の周回りに異なる位置に設けることで、蒸発管58を均等に配置して非接触領域を減らすことができる。従って、製氷機構20は、蒸発器EPによって冷凍ケーシング22を均等に冷却することができるので、製氷面22aでの氷の偏った成長を抑制することができ、オーガ30への負荷を回避すると共に効率よく氷を製造し得る。   Since the evaporator EP is configured by arranging the evaporation paths 58a of a plurality of paths in parallel, when the inflow ends of the plurality of evaporation paths 58a are aligned in the refrigeration casing 22, for example, the evaporator EP is wound around the inflow ends of the refrigeration casing 22. On the opposite side of the direction, a non-contact region where the evaporation pipe 58 forming the evaporation path 58a is not arranged is generated with the parallel width of the evaporation path 58a at the maximum. Similarly, when the outflow ends of the plurality of evaporation paths 58a are aligned in the refrigeration casing 22, for example, a non-contact area where the evaporation pipe 58 forming the evaporation path 58a is not disposed on the opposite side to the outflow end of the refrigeration casing 22 in the pulling direction. It occurs with the parallel width of the evaporation path 58a at the maximum. In contrast, like the evaporator EP of the embodiment, the inflow end of the evaporation path 58a of each path is provided at a different position around the circumference of the refrigeration casing 22, and the outflow end of the evaporation path 58a of each path is provided in the refrigeration casing 22. By providing them at different positions around the circumference, it is possible to uniformly arrange the evaporation tubes 58 and reduce the non-contact area. Therefore, since the ice making mechanism 20 can cool the refrigeration casing 22 evenly by the evaporator EP, it is possible to suppress the uneven growth of ice on the ice making surface 22a, and avoid the load on the auger 30. Ice can be produced efficiently.

前記蒸発管58は、熱伝導性のよい銅等の金属パイプであって、断面円形のものが採用される(図5参照)。すなわち、蒸発管58は、従来例の如く扁平状に加工する必要がなく、一般に流通している断面円形のまま用いることができる。また、蒸発管58としては、直径(外径)が1.0mm以上で、6.35mm以下の範囲のものが用いられている。蒸発管58は、上下方向に隣り合うもの同士が接するように冷凍ケーシング22に巻き掛けられている。   The evaporation pipe 58 is a metal pipe made of copper or the like having a good thermal conductivity and has a circular cross section (see FIG. 5). That is, the evaporation pipe 58 does not need to be processed into a flat shape as in the conventional example, and can be used with a generally circular cross section. Further, as the evaporation pipe 58, one having a diameter (outer diameter) of 1.0 mm or more and 6.35 mm or less is used. The evaporation pipe 58 is wound around the refrigeration casing 22 so that adjacent ones in the vertical direction are in contact with each other.

実施例の熱交換器HEについて具体的に説明する。図5〜図7に示すように、熱交換器HEは、熱伝導性に優れた金属材料からなる管状の二次熱交換部52を内管とし、この二次熱交換部52の外側を一次冷媒の流通空間をあけて被覆する一次熱交換部42を外管とする二重管式熱交換器であって、並列する3本の凝縮管53をまとめて一次熱交換部42で覆うよう構成される。なお、一次熱交換部42は、扁平形状に形成された銅等の金属管であって、該一次熱交換部42の広がり方向に凝縮管53が並んでいる。熱交換器HEは、平面に環を描くように構成された螺旋状の管状体であって(図3参照)、二次熱交換部52における各凝縮経路53aの上端にガス配管56が接続され、各凝縮経路53aの下端に液配管54が接続されて、各凝縮経路53aを二次冷媒が螺旋形状に沿って渦巻きながら上方から下方に流通するようになっている。すなわち、熱交換器HEは、並列するよう配置された二次熱交換部52の凝縮管53が、上下方向を軸とする螺旋状に延在するよう配設され、これら凝縮管53の外側を覆って一次熱交換部42が二次熱交換部52と同様に螺旋状に延在するよう構成される。一次熱交換部42は、下端に膨張弁EVに接続する流入側の一次冷媒配管44が接続され、上端に圧縮機CMに接続する流出側の一次冷媒配管44が接続されて、該一次熱交換部42の流通空間を一次冷媒が螺旋形状に沿って渦巻きながら下方から上方に流通するようになっている。すなわち、熱交換器HEは、二次熱交換部52の各凝縮経路53aを流通する二次冷媒の流通方向と一次熱交換部42を流通する一次冷媒の流通方向とが反対向きの対向流になるよう構成される。   The heat exchanger HE of the embodiment will be specifically described. As shown in FIGS. 5 to 7, the heat exchanger HE has a tubular secondary heat exchange portion 52 made of a metal material having excellent heat conductivity as an inner tube, and the outside of the secondary heat exchange portion 52 is primary. A double-pipe heat exchanger having an outer pipe serving as a primary heat exchanging section 42 that covers a refrigerant circulation space, and is configured to cover three condensing pipes 53 in parallel with the primary heat exchanging section 42. Is done. The primary heat exchanging unit 42 is a flat metal tube made of copper or the like, and the condensing tubes 53 are arranged in the spreading direction of the primary heat exchanging unit 42. The heat exchanger HE is a spiral tubular body configured to draw a ring on a plane (see FIG. 3), and a gas pipe 56 is connected to the upper end of each condensing path 53a in the secondary heat exchange section 52. The liquid pipes 54 are connected to the lower ends of the respective condensation paths 53a so that the secondary refrigerant flows through the respective condensation paths 53a from above while swirling along the spiral shape. That is, in the heat exchanger HE, the condensing pipes 53 of the secondary heat exchanging parts 52 arranged in parallel are arranged so as to extend in a spiral shape with the vertical direction as an axis, and the outer sides of the condensing pipes 53 are arranged. The primary heat exchange unit 42 is configured to extend in a spiral manner like the secondary heat exchange unit 52. The primary heat exchange section 42 has an inflow-side primary refrigerant pipe 44 connected to the expansion valve EV at the lower end, and an outflow-side primary refrigerant pipe 44 connected to the compressor CM at the upper end. The primary refrigerant circulates in the circulation space of the portion 42 from below while swirling along the spiral shape. That is, in the heat exchanger HE, the flow direction of the secondary refrigerant flowing through each condensation path 53a of the secondary heat exchange unit 52 and the flow direction of the primary refrigerant flowing through the primary heat exchange unit 42 are opposite to each other. Configured to be.

前記熱交換器HEは、放出部32のスパウト33の横側に配設されている(図1または図2参照)。ここで、熱交換器HEは、管状体からなるので、延在形状を任意に形成することができ、例えば実施例の如く、管状体を螺旋状に形成して横方向に冷媒が流通する経路を長くとり、上下の重なり方向の寸法を小さくして、全体として横長の形状とすることが可能である。すなわち、熱交換器HEは、上下にコンパクトであるので、製氷機構20の冷凍ケーシング22に設けられた蒸発器EPより上方で、該製氷機構20において蒸発器EPの上方に延在する部位から製氷機構20が配設されている機械室(区画)14の上面を塞ぐ天板12aまでの範囲内に設置することができる。   The heat exchanger HE is disposed on the side of the spout 33 of the discharge part 32 (see FIG. 1 or FIG. 2). Here, since the heat exchanger HE is formed of a tubular body, the extending shape can be arbitrarily formed. For example, as in the embodiment, the tubular body is formed in a spiral shape and the passage of the refrigerant in the lateral direction. It is possible to take a long shape and reduce the size in the upper and lower overlapping directions to form a horizontally long shape as a whole. That is, since the heat exchanger HE is compact in the vertical direction, ice making is performed from a portion extending above the evaporator EP in the ice making mechanism 20 and above the evaporator EP provided in the refrigeration casing 22 of the ice making mechanism 20. It can be installed in a range up to the top plate 12a that closes the upper surface of the machine room (section) 14 in which the mechanism 20 is disposed.

〔実施例の作用〕
次に、実施例に係るオーガ式製氷機10の作用について説明する。オーガ式製氷機10は、冷却装置38の冷却運転を開始すると、一次回路40および二次回路50の夫々で冷媒の循環が開始される。先ず、一次回路40について説明すると、圧縮機CMおよび凝縮器ファンFMが駆動され、圧縮機CMで気相一次冷媒が圧縮されて、この一次冷媒を一次冷媒配管44を介して凝縮器CDに供給して、凝縮器ファンFMによる強制冷却により凝縮液化することで液相とする。液相一次冷媒は、膨張弁EVで減圧され、熱交換器HEの一次熱交換部42において二次熱交換部52を流通する二次冷媒から熱を奪って(吸熱)一挙に膨張気化する。このように、一次回路40は、熱交換器HEにおいて一次熱交換部42により二次熱交換部52を強制冷却するように機能している。そして、一次熱交換部42で気化した気相一次冷媒は、一次冷媒配管44を経て圧縮機CMに帰還する強制循環サイクルを繰返す。
(Effects of Example)
Next, the operation of the auger type ice making machine 10 according to the embodiment will be described. When the auger type ice making machine 10 starts the cooling operation of the cooling device 38, the circulation of the refrigerant is started in each of the primary circuit 40 and the secondary circuit 50. First, the primary circuit 40 will be described. The compressor CM and the condenser fan FM are driven, the gas-phase primary refrigerant is compressed by the compressor CM, and this primary refrigerant is supplied to the condenser CD through the primary refrigerant pipe 44. Then, the liquid phase is obtained by condensing and liquefying by forced cooling by the condenser fan FM. The liquid phase primary refrigerant is decompressed by the expansion valve EV, and in the primary heat exchanging portion 42 of the heat exchanger HE, heat is taken from the secondary refrigerant flowing through the secondary heat exchanging portion 52 (heat absorption) and is vaporized at once. Thus, the primary circuit 40 functions to forcibly cool the secondary heat exchange unit 52 by the primary heat exchange unit 42 in the heat exchanger HE. Then, the gas phase primary refrigerant vaporized in the primary heat exchange unit 42 repeats the forced circulation cycle that returns to the compressor CM through the primary refrigerant pipe 44.

前記二次回路50は、二次熱交換部52をスパウト33の横側に配置する一方、蒸発器EPがスパウト33より下側の冷凍ケーシング22に配設されて、二次熱交換部52と蒸発器EPとの間に落差を設けてある。二次回路50は、一次熱交換部42により冷却された二次熱交換部52で気相二次冷媒が放熱して凝縮し、気相から液相に状態変化することで比重が増加することから、液相二次冷媒を二次熱交換部52の下部に接続した液配管54を介して蒸発器EPへ向けて重力の作用下に自然流下させることができる。液相二次冷媒は、蒸発器EPの蒸発経路58aを流通する過程で該蒸発器EPに接する冷凍ケーシング22から熱を奪って気化して気相に移行する。気相二次冷媒は、ガス配管56を介して蒸発器EPから二次熱交換部52へ還流し、二次回路50ではポンプやモータ等の動力を用いることなく、簡単な構成で二次冷媒が自然循環するサイクルが繰返される。   In the secondary circuit 50, the secondary heat exchange unit 52 is disposed on the side of the spout 33, while the evaporator EP is disposed in the refrigeration casing 22 below the spout 33, A head is provided with the evaporator EP. In the secondary circuit 50, the vapor phase secondary refrigerant dissipates heat and condenses in the secondary heat exchange unit 52 cooled by the primary heat exchange unit 42, and the specific gravity increases by changing the state from the gas phase to the liquid phase. Thus, the liquid phase secondary refrigerant can be naturally flowed to the evaporator EP through the liquid pipe 54 connected to the lower part of the secondary heat exchange section 52 under the action of gravity. In the process of flowing through the evaporation path 58a of the evaporator EP, the liquid phase secondary refrigerant takes heat from the refrigeration casing 22 in contact with the evaporator EP, vaporizes, and moves to the gas phase. The gas phase secondary refrigerant flows back from the evaporator EP to the secondary heat exchange unit 52 through the gas pipe 56, and the secondary circuit 50 has a simple configuration without using power from a pump, a motor, or the like. A cycle in which natural circulation occurs is repeated.

前記製氷機構20では、蒸発器EPによって冷凍ケーシング22が冷却されて、製氷水タンク28から冷凍ケーシング22の内部に供給された製氷水が氷結して製氷面22aに層状の薄氷が形成される。製氷機構20は、オーガ30が駆動手段によって回転されて、オーガ30の切削刃30aにより薄氷がフレーク状に削り取られつつ、このフレーク状氷が上方に移送される。フレーク状氷は、押圧頭24の圧縮通路に押込まれて圧縮され、圧縮氷がヘッド部26によって折られてオーガ30の半径方向に送り出される。そして、氷は、放出部32を通って貯氷室16に放出される。   In the ice making mechanism 20, the refrigeration casing 22 is cooled by the evaporator EP, and the ice making water supplied from the ice making water tank 28 to the inside of the refrigeration casing 22 freezes to form layered thin ice on the ice making surface 22a. In the ice making mechanism 20, the auger 30 is rotated by the driving means, and the flake ice is transferred upward while the thin ice is scraped into flakes by the cutting blade 30 a of the auger 30. The flaky ice is pushed into the compression passage of the pressing head 24 and compressed, and the compressed ice is folded by the head portion 26 and sent out in the radial direction of the auger 30. Then, the ice is discharged to the ice storage chamber 16 through the discharge portion 32.

前記二次回路50では、熱交換器HEの二次熱交換部52と蒸発器EPとの高低差に加えて蒸発器EPの内部で液相二次冷媒が気化して膨張することによる押し出し効果によって二次冷媒が循環し、二次冷媒による冷凍能力の伝達を行っている。すなわち、二次回路50では、蒸発器EPでの二次冷媒の膨張度合いが二次冷媒の循環量を決定する一つの要素になる。例えば、二次回路50は、液相二次冷媒が蒸発器EPで高温の熱源(外気温が高く、製氷水の水温が高いとき)によって気化して膨張する場合に、二次冷媒の強い循環力が生じ、効率よく冷凍能力が伝達される。従って、オーガ式製氷機10は、夏季のように多くの冷凍能力が必要になった際に、二次冷媒によって効率よく冷凍能力が伝達される運転条件に自然になるので、製氷能力を設定通りに維持することができる。これに対して、二次回路50は、液相二次冷媒が蒸発器EPで低温の熱源(外気温が低く、製氷水の水温が低いとき)によって気化して膨張する場合に、二次冷媒の循環力が弱くなり、二次冷媒による冷凍能力の伝達が抑制される。よって、オーガ式製氷機10は、冬季のように多くの冷凍能力が必要ない際に、二次冷媒による冷凍能力の伝達が抑えられる運転条件に自然になるので、製氷能力を抑制することができる。   In the secondary circuit 50, in addition to the difference in height between the secondary heat exchanging section 52 of the heat exchanger HE and the evaporator EP, an extrusion effect caused by the liquid phase secondary refrigerant evaporating and expanding inside the evaporator EP. As a result, the secondary refrigerant circulates and the refrigeration capacity is transmitted by the secondary refrigerant. That is, in the secondary circuit 50, the degree of expansion of the secondary refrigerant in the evaporator EP is one element that determines the circulation amount of the secondary refrigerant. For example, the secondary circuit 50 has a strong circulation of the secondary refrigerant when the liquid phase secondary refrigerant evaporates and expands in the evaporator EP with a high-temperature heat source (when the outside air temperature is high and the ice-making water temperature is high). Power is generated and refrigeration capacity is efficiently transmitted. Therefore, the auger type ice making machine 10 naturally becomes the operating condition in which the refrigeration capacity is efficiently transmitted by the secondary refrigerant when a lot of refrigeration capacity is required as in the summer, so the ice making capacity is set as set. Can be maintained. On the other hand, the secondary circuit 50, when the liquid phase secondary refrigerant evaporates and expands with a low-temperature heat source (when the outside air temperature is low and the ice water temperature is low) in the evaporator EP, the secondary refrigerant 50 The circulation power of the refrigerant becomes weak, and the transmission of the refrigerating capacity by the secondary refrigerant is suppressed. Therefore, the auger type ice making machine 10 can naturally suppress the ice making capacity because the natural condition is such that the transmission of the cooling capacity by the secondary refrigerant is suppressed when a lot of freezing capacity is not required as in winter. .

このように、オーガ式製氷機10は、冬季のように冷凍ケーシング22に氷が多くでき易い環境において、操作することなく製氷能力を抑えることができ、冷凍ケーシング22において過剰な氷の成長を回避することができる。すなわち、オーガ式製氷機10は、氷の過剰な成長に起因する冷凍ケーシング22、オーガ30や駆動手段への過負荷を防ぐことができ、冷凍ケーシング22、オーガ30および駆動手段の破損や電気代浪費の一因を解消することができる。   As described above, the auger type ice making machine 10 can suppress the ice making capability without operation in an environment where a lot of ice can be generated in the refrigeration casing 22 as in winter, and avoids excessive ice growth in the refrigeration casing 22. can do. That is, the auger type ice making machine 10 can prevent overloading of the refrigeration casing 22, the auger 30 and the driving means due to excessive ice growth, and the refrigeration casing 22, the auger 30 and the driving means can be damaged and the electricity cost can be reduced. One cause of waste can be eliminated.

前記オーガ式製氷機10は、機械室14において最も高くなる製氷機構20の放出部32の上端を収容し得るように、天板12aの位置(機械室14の上下寸法)が設定されており、熱交換器HEをスパウト33の横側において該スパウト33の上下寸法分のスペースに配置することで、天板12aの位置を上方にずらすことなく天板12aと熱交換器HEとの干渉を回避できる。このように、実施例のオーガ式製氷機10は、機械室14のスペースを有効利用して熱交換器HEを配置しているので、機械室14をコンパクトにでき、全体として小型化できる。   In the auger type ice making machine 10, the position of the top 12a (the vertical dimension of the machine room 14) is set so that the upper end of the discharge part 32 of the ice making mechanism 20 that is the highest in the machine room 14 can be accommodated. By arranging the heat exchanger HE in a space corresponding to the vertical dimension of the spout 33 on the side of the spout 33, interference between the top board 12a and the heat exchanger HE can be avoided without shifting the position of the top board 12a upward. it can. As described above, the auger type ice making machine 10 according to the embodiment has the heat exchanger HE arranged by effectively using the space of the machine room 14, so that the machine room 14 can be made compact and can be downsized as a whole.

前記二次回路50は、前述の如く二次熱交換部52で液化した二次冷媒を重力の作用下に液配管54を介して蒸発器EPに流下させる構成であるから、熱交換器HEの二次熱交換部52と蒸発器EPとの落差を確保する必要がある。オーガ式製氷機10は、スパウト33の横側に熱交換器HEを配置することで、熱交換器HEが蒸発器EPの上側に位置することになるから、二次熱交換部52と蒸発器EPとの落差を確保し得る。これにより、二次回路50では、二次冷媒を蒸発器EPへ向けて自然流下させる駆動力の一つである位置エネルギーが大きくなり、二次冷媒を二次回路50において円滑に循環させて冷却能力を向上させることができる。しかも、オーガ式製氷機10は、機械室14の上部に熱交換器HEを配置することで、熱交換器HEに対する液配管54やガス配管56の接続作業が行ない易く、また熱交換器HEのメンテナンス性を向上し得る。   Since the secondary circuit 50 is configured to flow the secondary refrigerant liquefied in the secondary heat exchange unit 52 as described above to the evaporator EP via the liquid pipe 54 under the action of gravity, the secondary circuit 50 of the heat exchanger HE It is necessary to ensure a drop between the secondary heat exchange unit 52 and the evaporator EP. Since the auger type ice making machine 10 arranges the heat exchanger HE on the side of the spout 33 so that the heat exchanger HE is positioned above the evaporator EP, the secondary heat exchanger 52 and the evaporator A drop with EP can be secured. As a result, in the secondary circuit 50, the potential energy, which is one of the driving forces that cause the secondary refrigerant to naturally flow down toward the evaporator EP, increases, and the secondary refrigerant is smoothly circulated in the secondary circuit 50 for cooling. Ability can be improved. In addition, the auger type ice making machine 10 has the heat exchanger HE arranged in the upper part of the machine room 14 so that the liquid pipe 54 and the gas pipe 56 can be easily connected to the heat exchanger HE. Maintenance can be improved.

前記二次回路50は、複数の凝縮経路53aとこの凝縮経路53aと同数の蒸発管(蒸発経路58a)58とを互い違いに接続することで、1本の凝縮経路53aと1本の蒸発経路58aとに交互に二次冷媒を流通させる1つのサーモサイフォンを形成してある。すなわち、二次回路50によれば、液配管54、ガス配管56、凝縮経路53aおよび蒸発経路58aを分岐させることなく、1つの回路の中に複数の凝縮経路53aおよび複数の蒸発経路58aを設けることができる。このように、二次回路50が全体として1つの冷媒の経路で構成されているから、各パスで二次冷媒が偏在することを抑制できる。オーガ式製氷機10は、外気温の変動等の外因によって、二次回路50を循環する二次冷媒が何れかのパスに偏在する場合がある。前述の如く、二次回路50は、1つのサーモサイフォンから構成されているので、各パスの二次冷媒の量が一致するように、二次冷媒のバランスが自然に調節される。すなわち、二次回路50は、二次冷媒のバランスを調節するために弁等の調節手段を設ける必要がなく、冷却装置38の構成を簡易にできる。   The secondary circuit 50 connects one condensation path 53a and one evaporation path 58a by alternately connecting a plurality of condensation paths 53a and the same number of evaporation pipes (evaporation paths 58a) 58 as the condensation paths 53a. One thermosyphon that alternately circulates the secondary refrigerant is formed. That is, according to the secondary circuit 50, a plurality of condensation paths 53a and a plurality of evaporation paths 58a are provided in one circuit without branching the liquid pipe 54, the gas pipe 56, the condensation path 53a, and the evaporation path 58a. be able to. Thus, since the secondary circuit 50 is comprised by the path | route of one refrigerant | coolant as a whole, it can suppress that a secondary refrigerant is unevenly distributed by each path | pass. In the auger type ice making machine 10, the secondary refrigerant circulating in the secondary circuit 50 may be unevenly distributed in any path due to external factors such as fluctuations in the outside air temperature. As described above, since the secondary circuit 50 is composed of one thermosiphon, the balance of the secondary refrigerant is naturally adjusted so that the amount of secondary refrigerant in each path matches. That is, the secondary circuit 50 does not need to be provided with adjusting means such as a valve in order to adjust the balance of the secondary refrigerant, and the configuration of the cooling device 38 can be simplified.

前記二次回路50は、熱交換器HEおよび蒸発器EPの夫々に凝縮経路53aおよび蒸発経路58aを複数配置している。すなわち、1本当たりの凝縮経路53aおよび蒸発経路58aに要求される熱交換面積が小さくなり、各凝縮経路53aおよび蒸発経路58aの配管長を短くすることが可能となり、当該凝縮経路53aおよび蒸発経路58aを流通する二次冷媒の圧力損失を小さくすることができる。また、二次回路50は、液配管54、ガス配管56、凝縮経路53aおよび蒸発経路58aを分岐させることなく、全体として1つの冷媒の経路で構成しているから、配管等の分岐部に起因する圧力損失が発生しない。すなわち、二次回路50では、凝縮経路53aと蒸発経路58aとの間で自然対流に必要とされる二次冷媒のヘッド差を小さくできるので、二次熱交換部52と蒸発器EPとの間で要求される落差が小さくなる。従って、オーガ式製氷機10は、二次熱交換部46と蒸発器EPとの上下の配置間隔を狭くすることが可能となり、コンパクトにできる。また、二次回路50には、蒸気圧縮式の回路の如く圧縮機CMの機械油が循環することはないので、機械油によって二次冷媒の流通が阻害されることはない。   In the secondary circuit 50, a plurality of condensation paths 53a and evaporation paths 58a are arranged in each of the heat exchanger HE and the evaporator EP. That is, the heat exchange area required for each condensation path 53a and evaporation path 58a is reduced, and the piping length of each condensation path 53a and evaporation path 58a can be shortened. The pressure loss of the secondary refrigerant flowing through 58a can be reduced. In addition, the secondary circuit 50 is configured by a single refrigerant path as a whole without branching the liquid pipe 54, the gas pipe 56, the condensation path 53a, and the evaporation path 58a. No pressure loss occurs. That is, in the secondary circuit 50, the head difference of the secondary refrigerant required for natural convection between the condensation path 53a and the evaporation path 58a can be reduced, so that the secondary circuit 50 is connected between the secondary heat exchange unit 52 and the evaporator EP. The head required by the is reduced. Therefore, the auger type ice making machine 10 can reduce the vertical arrangement interval between the secondary heat exchange unit 46 and the evaporator EP, and can be made compact. Further, since the machine oil of the compressor CM does not circulate in the secondary circuit 50 unlike the vapor compression circuit, the circulation of the secondary refrigerant is not hindered by the machine oil.

前記二次回路50は、二次冷媒の圧力損失が小さいので、該二次回路50を構成する凝縮管53、液配管54、ガス配管56および蒸発管58として蒸気圧縮式の冷凍回路と比較して細い管径を選定しても、同一冷凍能力の二次冷媒を回路内に循環させることができる。ここで、二次冷媒として、フロン等に比べて粘度が低い二酸化炭素を採用することで、更に圧力損失を低下させて、二次冷媒配管53,54,56,58の細径化を図ることができる。すなわち、蒸気圧縮式の冷凍回路では、圧力損失等の都合により直径6.35mm以下の配管を用いるのは事実上不可能であるが、実施例の二次回路50によれば、直径6.35mm以下の二次冷媒配管を採用することが可能である。   Since the secondary circuit 50 has a small pressure loss of the secondary refrigerant, the condenser circuit 53, the liquid pipe 54, the gas pipe 56, and the evaporation pipe 58 constituting the secondary circuit 50 are compared with a vapor compression refrigeration circuit. Even if a thin pipe diameter is selected, a secondary refrigerant having the same refrigeration capacity can be circulated in the circuit. Here, as the secondary refrigerant, carbon dioxide having a lower viscosity than that of chlorofluorocarbon or the like is adopted, thereby further reducing the pressure loss and reducing the diameter of the secondary refrigerant pipes 53, 54, 56, and 58. Can do. That is, in the vapor compression refrigeration circuit, it is practically impossible to use a pipe having a diameter of 6.35 mm or less due to pressure loss or the like, but according to the secondary circuit 50 of the embodiment, the diameter is 6.35 mm. The following secondary refrigerant piping can be employed.

このように、二次回路50は、各凝縮経路53aおよび各蒸発経路58aの長さや断面積を減じることが可能であるので、二次熱交換部52や蒸発器EPをコンパクトにできる。また、凝縮管53,液配管54,ガス配管56および蒸発管58を細径化または断面円形にすることで、これらの二次冷媒配管53,54,56,58において耐圧性能を確保するために必要な肉厚を減ずることが可能となる。すなわち、二次冷媒配管53,54,56,58が細径化したことだけでなく、各配管53,54,56,58の肉厚が減少することとの相乗によって、配管重量を一層削減することができ、コストを更に低減し得る。   Thus, since the secondary circuit 50 can reduce the length and the cross-sectional area of each condensation path 53a and each evaporation path 58a, the secondary heat exchange part 52 and the evaporator EP can be made compact. In addition, by condensing the condensing pipe 53, the liquid pipe 54, the gas pipe 56, and the evaporation pipe 58 to have a reduced diameter or a circular cross section, the secondary refrigerant pipes 53, 54, 56, 58 are provided with a pressure resistance performance. It is possible to reduce the required wall thickness. That is, not only the secondary refrigerant pipes 53, 54, 56, and 58 are reduced in diameter but also the pipe weight is further reduced by synergy with the reduction in the thickness of the pipes 53, 54, 56, and 58. The cost can be further reduced.

前記蒸発器EPは、蒸発管58の径が小さくなることで、蒸発管58を冷凍ケーシング22の外周面に密に並べることが可能となる。すなわち、蒸発器EPは、蒸発管58を断面円形とすることで、冷凍ケーシング22の外周面に対して蒸発管58の周面が線接触する関係になるが、蒸発管58が密に並んでいるので冷凍ケーシング22に対する伝熱面積を確保することができる。よって、蒸発器EPは、冷凍ケーシング22に対する伝熱面積を得るために蒸発管58を扁平状に加工する必要がなく、加工手間を減らしてコストダウンし得る。しかも、断面円形の蒸発管58は、扁平状の蒸発管と比べて外圧に強いので、冷凍ケーシング22と蒸発管58との間に入り込んだ水が氷結することに起因する蒸発管58の変形を抑制できる。更に、製氷機構20では、冷凍ケーシング22と蒸発管58との間の隙間を金属性のろう等によって埋めることがあるが、蒸発管58の配管径が細くなることで、当該加工も容易になる。   In the evaporator EP, the diameter of the evaporation pipe 58 is reduced, so that the evaporation pipe 58 can be arranged closely on the outer peripheral surface of the refrigeration casing 22. In other words, the evaporator EP has a circular cross-section of the evaporator tube 58 so that the peripheral surface of the evaporator tube 58 is in line contact with the outer peripheral surface of the refrigeration casing 22, but the evaporator tubes 58 are closely arranged. Therefore, the heat transfer area for the refrigeration casing 22 can be ensured. Therefore, the evaporator EP does not need to process the evaporation pipe 58 into a flat shape in order to obtain a heat transfer area with respect to the refrigeration casing 22, and can reduce the labor and cost. In addition, since the evaporation pipe 58 having a circular cross section is more resistant to external pressure than the flat evaporation pipe, deformation of the evaporation pipe 58 caused by freezing of water that has entered between the refrigeration casing 22 and the evaporation pipe 58 is prevented. Can be suppressed. Further, in the ice making mechanism 20, the gap between the refrigeration casing 22 and the evaporation pipe 58 may be filled with a metallic wax or the like, but the processing becomes easy because the pipe diameter of the evaporation pipe 58 is reduced. .

ここで、二次冷媒配管53,54,56,58の細径化によるコストの低減について具体的に説明する。
例えば、耐圧性能Pを有する配管の肉厚tは、以下の式で求められる。なお、σは材料の許容応力であり、Dは配管の外径である。
t=PD/2(σ+P)…(イ)
長さLの配管重量Mは、以下の式で求められる。なお、Cは材料の比重であり、Dは配管の内径である。
M=πLC(D−D )/4…(ロ)
また、D=D−2tと表わすことができるので、これを(ロ)式に代入すると、以下の式が導き出される。
M=πLC(Dt−t)…(ハ)
そして(ハ)式に(イ)式を代入すると、以下の式が導き出される。
M=(1−P/2(σ+P))×πLCPD/2(σ+P)…(ニ)
前記(ニ)式は、耐圧性能Pを有する配管の重量を示している。(ニ)式において、D以外の条件は不変とすると、π、L、C、P、σの条件は定数として扱うことができる。よって、耐圧性能Pを有する配管重量(配管の外径D)は、以下の式で表わすことができる。
M={(1−P/2(σ+P))×πLCP/2(σ+P)}×D…(ホ)
(ホ)式における{ }内は前述の如く定数であるから、M=ADと表わすことができる。
そして、耐圧性能Pを有する外径Dの配管の配管重量MDは、AD であり、耐圧性能Pを有する外径Dの配管の配管重量MDは、AD である。
更に、配管重量MDと配管重量MDとの比は、以下のように表わされる。
MD/MD=D /D …(ヘ)
Here, cost reduction by reducing the diameter of the secondary refrigerant pipes 53, 54, 56, and 58 will be specifically described.
For example, the wall thickness t of the pipe having the pressure resistance performance P is obtained by the following equation. Here, σ is the allowable stress of the material, and D is the outer diameter of the pipe.
t = PD / 2 (σ + P) (B)
The pipe weight M of the length L is calculated | required with the following formula | equation. Incidentally, C is the specific gravity of the material, D i is the internal diameter of the pipe.
M = πLC (D 2 −D i 2 ) / 4 (b)
Further, since it can be expressed as D i = D−2t, substituting this into the expression (b) yields the following expression.
M = πLC (Dt−t 2 ) (C)
Then, by substituting (A) into (C), the following equation is derived.
M = (1-P / 2 (σ + P)) × πLCPD 2/2 (σ + P) ... ( d)
The expression (d) indicates the weight of the pipe having the pressure resistance performance P. In the expression (D), if conditions other than D are unchanged, the conditions of π, L, C, P, and σ can be treated as constants. Therefore, the weight of the pipe having the pressure resistance performance P (the outer diameter D of the pipe) can be expressed by the following expression.
M = {(1−P / 2 (σ + P)) × πLCP / 2 (σ + P)} × D 2 (e)
Since the value in {} in the expression (e) is a constant as described above, it can be expressed as M = AD 2 .
Then, the pipe weight MD 1 of the pipe outside diameter D 1 having a pressure resistance P is AD 1 2, pipe weight MD 2 of the outer diameter D 2 pipe having a pressure resistance P is AD 2 2.
Furthermore, the ratio of the pipe weight MD 1 and the pipe weight MD 2 is expressed as follows.
MD 2 / MD 1 = D 2 2 / D 1 2 (f)

前記(ヘ)式に具体的な数字を当てはめて説明する。蒸気圧縮式の一般的な冷却装置では、蒸発管の外径は9.52mmに設定されることが多い。これに対して、実施例の冷却装置38であれば、二次回路50に外径6.35mmの蒸発管58を用いることができる。これらの条件を前記(へ)式に当てはめると、以下のようになる。
MDφ6.35/MDφ9.52=(6.35)/(9.52)=0.44
また、実施例の冷却装置において、外径4.76mmの蒸発管を用いた場合は、以下のようになる。
MDφ4.76/MDφ9.52=(4.76)/(9.52)=0.25
すなわち、配管の重量比は、配管の材料価格の比であるともいえるから、実施例の冷却装置38によれば、従来の冷却装置と比較して配管が細径化することにより大幅なコスト削減を達成し得ることは明らかである。
The description will be made by applying specific numbers to the formula (f). In a general vapor compression cooling device, the outer diameter of the evaporation pipe is often set to 9.52 mm. On the other hand, in the cooling device 38 of the embodiment, the evaporation pipe 58 having an outer diameter of 6.35 mm can be used for the secondary circuit 50. When these conditions are applied to the above equation (f), the following is obtained.
MD φ6.35 / MD φ9.52 = (6.35) 2 /(9.52) 2 = 0.44
Further, in the cooling device of the example, when an evaporation tube having an outer diameter of 4.76 mm is used, it is as follows.
MD φ4.76 / MD φ9.52 = (4.76) 2 /(9.52) 2 = 0.25
That is, the weight ratio of the pipe can be said to be a ratio of the material price of the pipe. Therefore, according to the cooling device 38 of the embodiment, the pipe is reduced in diameter as compared with the conventional cooling device, thereby greatly reducing the cost. It is clear that can be achieved.

(変更例)
(1)熱交換器は、実施例の如く管状体を小判形状に積層する例に限定されず、蛇行状や、円形、角状、楕円状等の環状や渦巻き状またはその他の延在形状であってもよい。
(2)実施例では、熱交換器を放出部の横側に配置したが、管状の熱交換器を蒸発器と放出部との間で冷凍ケーシングを取り囲むように配置してもよく、この場合冷凍ケーシングを覆う断熱部材で熱交換器を一体に覆ってもよい。
(3)実施例のオーガ式製氷機において、熱交換器を放出部と蒸発器との間に位置するよう冷凍ケーシングの横側に配置し、この熱交換器を冷凍ケーシングを覆う断熱部材で熱交換器を一体に覆ってもよい。
(4)熱交換器は、内管として二次熱交換部を配置した二重管構造を説明したが、一次熱交換部を内管としてもよい。また二重管構造において、内管と外管とを複数対一の関係であっても、一対一の関係であってもよい。更に、内管の配置は、並列に限定されず、台形状や三角形等の適宜配置が可能である。管の内部を壁で区切って一次熱交換部と二次熱交換部とに用いてもよい。更にまた、3以上の多重管構造であってもよい。
(5)熱交換器は、実施例の如く二重管式熱交換器に限定されず、スパイラル式熱交換器、プレート式熱交換器、多管円筒式熱交換器、多重円管式熱交換器、渦巻管式熱交換器、渦巻板式熱交換器、タンクコイル式熱交換器、タンクジャケット式熱交換器およびマイクロチャネル熱交換器等を採用することができる。なお、熱交換器として特にマイクロチャネル熱交換器を採用すれば、蒸発管の直径を1.0mmをするような細径化を図り易くなる。
(6)実施例では、一次回路の減圧手段として膨張弁を用いたが、キャピラリーチューブやその他の手段を採用することができる。
(7)実施例において、冷凍ケーシングの内部にオーガを配設する例を挙げたが、冷凍ケーシングの外周を囲うようにオーガを設け、冷凍ケーシングの外周面に成長した氷をオーガの内周面に設けた切削刃で削り取る構成であってもよい。
(8)二次回路には、一次回路または該二次回路においてガス配管を流通する気相二次冷媒より温度が低い部位(例えば一次熱交換部の外郭等)に対して接触して冷却される予備熱交換部をガス配管に設けてもよい。
(Example of change)
(1) The heat exchanger is not limited to the example in which the tubular bodies are stacked in an oval shape as in the embodiment, but in a meandering shape, a circular shape, a rectangular shape, an elliptical shape, a spiral shape, or other extending shape. There may be.
(2) In the embodiment, the heat exchanger is arranged on the side of the discharge part, but the tubular heat exchanger may be arranged so as to surround the refrigeration casing between the evaporator and the discharge part. The heat exchanger may be integrally covered with a heat insulating member that covers the refrigeration casing.
(3) In the auger type ice making machine of the embodiment, the heat exchanger is arranged on the side of the refrigeration casing so as to be positioned between the discharge section and the evaporator, and this heat exchanger is heated by a heat insulating member covering the refrigeration casing. The exchanger may be integrally covered.
(4) The heat exchanger has been described as having a double-pipe structure in which a secondary heat exchange unit is disposed as an inner tube, but the primary heat exchange unit may be an inner tube. In the double tube structure, the inner tube and the outer tube may have a one-to-one relationship or a one-to-one relationship. Furthermore, arrangement | positioning of an inner tube is not limited to parallel, trapezoid shape, a triangle, etc. can be arrange | positioned suitably. You may divide the inside of a pipe | tube with a wall and use it for a primary heat exchange part and a secondary heat exchange part. Furthermore, three or more multi-tube structures may be used.
(5) The heat exchanger is not limited to the double tube heat exchanger as in the embodiment, but is a spiral heat exchanger, a plate heat exchanger, a multi-tube cylindrical heat exchanger, a multi-tube heat exchanger. A heat exchanger, a spiral tube heat exchanger, a spiral plate heat exchanger, a tank coil heat exchanger, a tank jacket heat exchanger, a microchannel heat exchanger, and the like can be employed. If a microchannel heat exchanger is employed as the heat exchanger, it is easy to reduce the diameter of the evaporation tube to 1.0 mm.
(6) In the embodiment, the expansion valve is used as the pressure reducing means of the primary circuit, but a capillary tube or other means can be adopted.
(7) In the embodiment, the example in which the auger is disposed inside the refrigeration casing has been described. However, the auger is provided so as to surround the outer periphery of the refrigeration casing, and the ice grown on the outer peripheral surface of the refrigeration casing The structure which scrapes off with the cutting blade provided in may be sufficient.
(8) The secondary circuit is cooled in contact with the primary circuit or a part of the secondary circuit whose temperature is lower than that of the gas-phase secondary refrigerant flowing through the gas pipe (for example, the outer shell of the primary heat exchange unit). A preliminary heat exchange unit may be provided in the gas pipe.

22 冷凍ケーシング,30 オーガ,38 冷却装置,50 二次回路(回路),
52 二次熱交換部(熱交換部),54 液配管(冷媒配管),
56 ガス配管(冷媒配管), 58 蒸発管,EP 蒸発器,HE 熱交換器
22 refrigeration casing, 30 auger, 38 cooling device, 50 secondary circuit (circuit),
52 secondary heat exchange part (heat exchange part), 54 liquid pipe (refrigerant pipe),
56 Gas piping (refrigerant piping), 58 Evaporating pipe, EP evaporator, HE Heat exchanger

Claims (3)

冷却装置(38)を構成する蒸発器(EP)により冷却された冷凍ケーシング(22)に成長した氷をオーガ(30)で削り取ってフレーク状の氷を製造するオーガ式製氷機において、
前記冷却装置(38)は、熱交換器(HE)で冷却される熱交換部(52)および該熱交換器(HE)の下方に位置して前記冷凍ケーシング(22)に接するように設けた蒸発器(EP)を冷媒配管(54,56)で接続した回路(50)を備え、熱交換部(HE)と蒸発器(EP)との温度勾配で冷媒を自然循環させて蒸発器(EP)によって冷凍ケーシング(22)を冷却するよう構成した
ことを特徴とするオーガ式製氷機。
In an auger type ice making machine that produces flake ice by scraping the ice grown on the refrigeration casing (22) cooled by the evaporator (EP) constituting the cooling device (38) with an auger (30),
The cooling device (38) is provided so as to be in contact with the refrigeration casing (22) positioned below the heat exchanger (52) cooled by the heat exchanger (HE) and the heat exchanger (HE). Equipped with a circuit (50) in which the evaporator (EP) is connected by refrigerant piping (54, 56), and the refrigerant is naturally circulated by the temperature gradient between the heat exchange section (HE) and the evaporator (EP), and the evaporator (EP The auger type ice making machine, wherein the refrigeration casing (22) is cooled by the above.
前記回路(50)は、冷媒として二酸化炭素が循環し、
前記蒸発器(EP)は、金属製で断面円形の蒸発管(58)を前記冷凍ケーシング(22)に巻き掛けて構成される請求項1記載のオーガ式製氷機。
The circuit (50) circulates carbon dioxide as a refrigerant,
The auger type ice making machine according to claim 1, wherein the evaporator (EP) is configured by winding an evaporation pipe (58) made of metal and having a circular cross section around the refrigeration casing (22).
前記蒸発管(58)は、直径が1mm〜6.35mmの範囲に設定される請求項2記載のオーガ式製氷機。   The auger type ice making machine according to claim 2, wherein the evaporation pipe (58) has a diameter set in a range of 1 mm to 6.35 mm.
JP2009129613A 2009-05-28 2009-05-28 Auger type ice making machine Pending JP2010276286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129613A JP2010276286A (en) 2009-05-28 2009-05-28 Auger type ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129613A JP2010276286A (en) 2009-05-28 2009-05-28 Auger type ice making machine

Publications (1)

Publication Number Publication Date
JP2010276286A true JP2010276286A (en) 2010-12-09

Family

ID=43423405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129613A Pending JP2010276286A (en) 2009-05-28 2009-05-28 Auger type ice making machine

Country Status (1)

Country Link
JP (1) JP2010276286A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913025A (en) * 2014-04-30 2014-07-09 东莞嘉丰机电设备有限公司 Multi-functional environment-friendly ice maker
JP2019066167A (en) * 2017-09-28 2019-04-25 株式会社Lixil Hot water supply system
CN114562835A (en) * 2022-02-28 2022-05-31 佛山市顺德区美的饮水机制造有限公司 Condenser, water route subassembly and drinking water equipment
WO2023159630A1 (en) * 2022-02-28 2023-08-31 佛山市顺德区美的饮水机制造有限公司 Condenser, water path assembly and drinking water apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913025A (en) * 2014-04-30 2014-07-09 东莞嘉丰机电设备有限公司 Multi-functional environment-friendly ice maker
JP2019066167A (en) * 2017-09-28 2019-04-25 株式会社Lixil Hot water supply system
WO2020066110A1 (en) * 2017-09-28 2020-04-02 株式会社Lixil Hot water supply system
CN114562835A (en) * 2022-02-28 2022-05-31 佛山市顺德区美的饮水机制造有限公司 Condenser, water route subassembly and drinking water equipment
WO2023159630A1 (en) * 2022-02-28 2023-08-31 佛山市顺德区美的饮水机制造有限公司 Condenser, water path assembly and drinking water apparatus

Similar Documents

Publication Publication Date Title
JP5275929B2 (en) Cooling system
JP5203702B2 (en) Refrigerant heat storage and cooling system with enhanced heat exchange function
CN109477691A (en) Cylindrical heat exchanger
US8534086B2 (en) Direct expansion evaporator
US8505316B2 (en) Direct expansion evaporator
EP2284460B1 (en) Refrigeration apparatus
KR20080050473A (en) Air conditioner
JP2010276286A (en) Auger type ice making machine
CN102650480A (en) Heat exchanger
KR100296653B1 (en) Heat exchanger for ice making apparatus in cooling system
JP2007163013A (en) Refrigerating cycle device
KR200393464Y1 (en) Ice making system
JP2006023068A (en) Ice making machine
US20120247114A1 (en) Water Cooling System For Intercooled Turbines
EP2818809B1 (en) Condenser and refrigerator having the same
CN101990619B (en) Refrigeration device
JP2010276285A (en) Ice making machine
JP2017036900A (en) Radiator and super-critical pressure refrigerating-cycle using the radiator
CN209978450U (en) Composite screw type ice making device
JP4994111B2 (en) Refrigeration apparatus and ice making machine using the refrigeration apparatus
JP2011012865A (en) Auger type ice making machine
JP5020159B2 (en) Heat exchanger, refrigerator and air conditioner
JP2007303790A (en) Beer dispenser
EP2626657B1 (en) Direct expansion evaporator
CN114791234B (en) Shell-and-tube variable-volume coaxial sleeve heat exchanger