JP2010276203A - Control device of power plant condensate system - Google Patents

Control device of power plant condensate system Download PDF

Info

Publication number
JP2010276203A
JP2010276203A JP2009125954A JP2009125954A JP2010276203A JP 2010276203 A JP2010276203 A JP 2010276203A JP 2009125954 A JP2009125954 A JP 2009125954A JP 2009125954 A JP2009125954 A JP 2009125954A JP 2010276203 A JP2010276203 A JP 2010276203A
Authority
JP
Japan
Prior art keywords
condensate
pump
power source
frequency power
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009125954A
Other languages
Japanese (ja)
Other versions
JP5350076B2 (en
Inventor
Hideki Asano
秀基 浅野
Yuichi Hanawa
祐一 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009125954A priority Critical patent/JP5350076B2/en
Publication of JP2010276203A publication Critical patent/JP2010276203A/en
Application granted granted Critical
Publication of JP5350076B2 publication Critical patent/JP5350076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the control device of a condensate system improving efficiency, in particular, in the condensate system to improve efficiency of thermal power and nuclear power plants. <P>SOLUTION: In this control device of the power plant condensate system having a condensate recirculating system for circulating a part of the condensate from between the condensate system and a water supply system to a condenser, in the power plant in which the condensate in the condenser is supplied to a boiler or a nuclear reactor from the condensate system through the water supply system, a pump disposed in the condensate system, a variable-frequency power source for driving the pump, and a speed control device for adjusting the output of the variable-frequency power source to control a rotational speed of the pump of the condensate system based on a load-equivalent signal of the power plant, are further disposed. As the condensate pump with the rotational speed controlled, supplies only the condensate of the adequate amount according to the load, the condensate of the optimum amount for the thermal power and nuclear power plants can be obtained without using unnecessary power, thus this control device can contribute to the improvement of efficiency as the thermal power and nuclear power plants. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は火力・原子力発電プラントの復水系統の制御装置に係り、特に復水系統内ポンプを可変速運転可能に構成した火力・原子力発電プラントの復水系統の制御装置に関する。   The present invention relates to a control device for a condensate system of a thermal / nuclear power plant, and more particularly to a control device for a condensate system of a thermal / nuclear power plant in which a pump in the condensate system can be operated at a variable speed.

火力・原子力発電プラントの復水系統は、復水器の復水を給水系統経由してボイラあるいは原子炉に給水するために設けられている。この復水系統を構成するポンプは、復水ポンプと、その下流側に配置される復水昇圧ポンプからなり、これを1系統として複数系統が並列に配置されている。また、下流側の復水昇圧ポンプと復水器との間に復水再循環系統が設けられこの系統内に復水再循環弁が設置される。   The condensate system of a thermal power / nuclear power plant is provided to supply the condensate of the condenser to the boiler or the reactor via the water supply system. The pump constituting this condensate system is composed of a condensate pump and a condensate booster pump arranged downstream thereof, and a plurality of systems are arranged in parallel with this as one system. In addition, a condensate recirculation system is provided between the condensate booster pump and the condenser on the downstream side, and a condensate recirculation valve is installed in this system.

係る火力・原子力発電プラントの復水系統において、復水系統のポンプはその運転台数制御が行われると共に、復水再循環系統に流れる流量を復水再循環弁にて調整して、復水器内の復水をボイラ・原子炉側に供給している。   In the condensate system of the thermal power / nuclear power plant, the number of operating pumps of the condensate system is controlled, and the flow rate flowing through the condensate recirculation system is adjusted by the condensate recirculation valve. The condensate inside is supplied to the boiler / reactor side.

このため、例えば並列2系統のポンプを用いて復水を供給する場合を例に考えると、火力・原子力発電プラントの起動過程で定格流量の30%程度をボイラ、原子炉側に供給する必要がある場合には、前記ポンプを1系統運転し、他の1系統を停止する。しかしこのままでは、50%の復水流量が供給されてしまい初期の目的を達成し得ないので、ポンプ出口と復水器の間に設置されている復水再循環系統の復水再循環弁を用いて、ポンプ流量の一部の20%程度を復水器に戻すことで30%の流量供給を実現する。   For this reason, for example, in the case of supplying condensate using two parallel pumps, it is necessary to supply about 30% of the rated flow to the boiler and reactor side during the startup process of the thermal power / nuclear power plant. In some cases, one system of the pump is operated and the other system is stopped. However, since the 50% condensate flow rate will be supplied and the initial purpose cannot be achieved, the condensate recirculation valve of the condensate recirculation system installed between the pump outlet and the condenser will be turned off. By using this, about 30% of the pump flow rate is returned to the condenser to achieve a 30% flow rate supply.

特許文献1には、上記のような並列ポンプを備えた復水系統とその制御装置が開示されている。   Patent Document 1 discloses a condensate system including the above-described parallel pump and its control device.

特開2001−4102号公報Japanese Patent Laid-Open No. 2001-4102

上記従来技術には、火力・原子力発電プラントの大容量ポンプである復水ポンプや復水昇圧ポンプを運転するにあたり省エネルギーの観点から検討する視点に欠けている。   The above prior art lacks a viewpoint to consider from the viewpoint of energy saving when operating a condensate pump and a condensate booster pump, which are large-capacity pumps of thermal power and nuclear power plants.

つまり、30%の流量を供給すべきところ、50%流量に相当する動力をポンプに費やしておいて、20%を復水器に戻すようなことは20%分の動力を無駄にしていることになる。   In other words, where 30% flow rate should be supplied, power equivalent to 50% flow is spent on the pump, and 20% is returned to the condenser is that 20% of power is wasted. become.

本発明は、省エネルギーの観点から考慮された火力・原子力発電プラントの復水系統の制御装置を提供することを目的とする。   An object of this invention is to provide the control apparatus of the condensate system of the thermal / nuclear power plant considered from the viewpoint of energy saving.

上記課題は、復水器内の復水を、復水系統から給水系統を経由してボイラあるいは原子炉に供給する発電プラントであって、復水系統と給水系統の間から復水の一部を復水器に循環するための復水再循環系統を備える発電プラント復水系統の制御装置において、復水系統に設けられたポンプ、該ポンプを駆動する可変周波数電源、前記復水系統のポンプの回転数を発電プラントの負荷相当信号により制御すべく前記可変周波数電源の出力を調整する速度制御装置を備えることで達成される。   The above problem is a power plant that supplies condensate in a condenser from a condensate system to a boiler or a reactor via a water supply system, and a part of the condensate is formed between the condensate system and the water supply system. In a control device for a power plant condensate system having a condensate recirculation system for circulating the water to the condenser, a pump provided in the condensate system, a variable frequency power source for driving the pump, and a pump of the condensate system This is achieved by providing a speed control device that adjusts the output of the variable frequency power source so as to control the rotational speed of the power source by a load equivalent signal of the power plant.

以上説明したように、本発明によれば復水系統内のポンプ回転数を負荷相当信号に応じて可変に調整するので、復水再循環量を極力低減することができる。この結果、火力・原子力発電プラントの補機動力が少なくてすむので発電プラント効率を高くすることができる。   As described above, according to the present invention, the pump rotation speed in the condensate system is variably adjusted according to the load equivalent signal, so that the condensate recirculation amount can be reduced as much as possible. As a result, the power plant efficiency can be increased because less auxiliary power is required for the thermal power / nuclear power plant.

本発明の一実施形態におけるタービン制御装置関係の制御機能ブロック図である。It is a control functional block diagram regarding the turbine control apparatus in one Embodiment of this invention. 本発明の一実施形態における火力・原子力発電プラントの復水系統,電源系統ならびにその制御装置の構成図である。1 is a configuration diagram of a condensate system, a power supply system, and a control device for a thermal power / nuclear power plant according to an embodiment of the present invention. 図1の再循環流量制御側の関数発生器909,911の関数を示す特性図である。It is a characteristic view which shows the function of the function generators 909 and 911 by the side of the recirculation flow rate control of FIG. 図1のポンプ制御側の関数発生器914,916の関数を示す特性図である。It is a characteristic view which shows the function of the function generators 914 and 916 of the pump control side of FIG. 火力・原子力発電プラントの起動過程における推移を示す図。The figure which shows the transition in the starting process of a thermal power / nuclear power plant.

以下、本発明の一実施形態を、図面を用いて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図2は、本発明を適用する火力・原子力発電プラントの復水系統とその駆動電力系統の構成を示している。   FIG. 2 shows a configuration of a condensate system of a thermal power / nuclear power plant to which the present invention is applied and a drive power system thereof.

まず復水系統であるが、復水器1から復水ポンプCP,復水ポンプ出口弁CPV,グランド蒸気復水器4,復水昇圧ポンプCBP,復水昇圧ポンプ出口弁CBPVを経由して図示せぬ給水系統に給水する。さらに給水系統手前と復水器1との間に復水再循環系統を儲け、ここに設けられた復水再循環弁8により、適宜復水の一部を復水器1に戻すことができるように構成されている。   First, the condensate system is shown in the figure from the condenser 1 through the condensate pump CP, the condensate pump outlet valve CPV, the ground steam condenser 4, the condensate boost pump CBP, and the condensate boost pump outlet valve CBPV. Supply water to a water supply system (not shown). Further, a condensate recirculation system is provided between the front of the water supply system and the condenser 1, and a part of the condensate can be appropriately returned to the condenser 1 by the condensate recirculation valve 8 provided here. It is configured as follows.

ここで、復水ポンプCPと復水ポンプ出口弁CPVから構成される機器群と、復水昇圧ポンプCBPと復水昇圧ポンプ出口弁CBPVから構成される機器群はそれぞれ並列に複数系統が設置されており、これらの記号(CP,CPV,CBP,CBPV)に付した数値「1」と「2」は第1復水系統と第2復水系統を意味している。なお、この図では復水系統を2系統とした例を示しているが、同様に3系統以上に構成することは容易に行いうる。   Here, the equipment group composed of the condensate pump CP and the condensate pump outlet valve CPV, and the equipment group composed of the condensate booster pump CBP and the condensate booster pump outlet valve CBPV are each provided with a plurality of systems in parallel. The numerical values “1” and “2” attached to these symbols (CP, CPV, CBP, CBPV) mean the first condensate system and the second condensate system. In addition, although the example which made the condensate system 2 systems is shown in this figure, it can carry out easily to comprise similarly 3 systems or more.

次に復水系統の各ポンプの駆動電力系統について説明する。図2では図示を省略しているが、各ポンプにはこれを駆動する電動機が設置されている。駆動電力系統とは電動機への電力供給系統を意味する。図2で、駆動電力系統は母線11,複数の遮断器CB,インバータINVから構成されている。ここで、記号CBに付した数値のうち、上位桁の数値(CB12の場合には「1」)の「1」が第1復水系統の駆動電力系統を、2が第2復水系統の駆動電力系統を構成する電力機器であることを意味している。   Next, the drive power system of each pump of the condensate system will be described. Although not shown in FIG. 2, each pump is provided with an electric motor for driving it. The drive power system means a power supply system to the motor. In FIG. 2, the drive power system includes a bus 11, a plurality of circuit breakers CB, and an inverter INV. Here, among the numerical values attached to the symbol CB, “1” of the high-order numerical value (“1” in the case of CB12) is the driving power system of the first condensate system, and 2 is the second condensing system. It means that the power device constitutes the drive power system.

この図から明らかなように、第1復水系統のポンプ(CP復水ポンプ1,CBP復水昇圧ポンプ1)に対しては、第1の駆動電力系統から給電され、第2復水系統のポンプ(CP2,CBP2)に対しては、第2の駆動電力系統から給電される。   As is clear from this figure, the pumps of the first condensate system (CP condensate pump 1, CBP condensate booster pump 1) are fed from the first drive power system, and the second condensate system The pumps (CP2, CBP2) are supplied with power from the second drive power system.

かつ、各ポンプは商用周波数電源と可変周波数電源のそれぞれから給電されるように構成されている。つまり、第1の駆動電力系統の例で説明すると、遮断器CB12,CB14が閉じられ遮断器CB13,CB16が開放された状態ではポンプCP1,CBP1の駆動電動機は商用周波数の電力を供給されてポンプCP1,CBP1を駆動する。また、遮断器CB14が開放され遮断器CB12,CB13,CB16が閉じられた状態では、インバータINVが作動して可変周波数の電力をポンプCP1,CBP1の駆動電動機に供給し、復水ポンプCP1,復水昇圧ポンプCBP1を可変速度に駆動する。   And each pump is comprised so that it may be electrically fed from each of a commercial frequency power supply and a variable frequency power supply. That is, in the example of the first drive power system, in the state where the circuit breakers CB12 and CB14 are closed and the circuit breakers CB13 and CB16 are opened, the drive motors of the pumps CP1 and CBP1 are supplied with power at commercial frequency. CP1 and CBP1 are driven. When the circuit breaker CB14 is opened and the circuit breakers CB12, CB13, and CB16 are closed, the inverter INV operates to supply variable frequency power to the drive motors of the pumps CP1 and CBP1, and the condensate pumps CP1 and CP1. The water booster pump CBP1 is driven at a variable speed.

このように、ポンプ(CP,CBP)の駆動電源は、商用周波数電源とインバータINVからの可変周波数電源に切替可能に使用される。このため、図示しないが商用周波数電源と可変周波数電源との電源切替手段を備えている。なお、この切替論理は適宜採用しえるが、ひとつの有効な使用法として、商用周波数電源をバックアップとして使用することが考えられる。つまり、通常はインバータINVからの可変周波数電源によりポンプ駆動して高効率運転を実現し、インバータINVやインバータ制御装置10の故障等により可変周波数電源が使用不能となった場合には、電源供給ラインをインバータ側から商用周波数電源側へと切替えるものである。   Thus, the drive power supply of the pumps (CP, CBP) is used so as to be switchable between the commercial frequency power supply and the variable frequency power supply from the inverter INV. For this reason, although not shown, power switching means between a commercial frequency power source and a variable frequency power source is provided. Although this switching logic can be adopted as appropriate, one effective use is to use a commercial frequency power supply as a backup. That is, normally, a high-efficiency operation is realized by pumping with a variable frequency power supply from the inverter INV, and when the variable frequency power supply becomes unusable due to a failure of the inverter INV or the inverter control device 10, the power supply line Is switched from the inverter side to the commercial frequency power supply side.

なお、図2では復水系統と駆動電力系統をそれぞれ2系統備える例を示しているが、3系統,4系統の復水系統とすることは容易に行えることである。   Although FIG. 2 shows an example in which two condensate systems and two drive power systems are provided, it is easy to make three or four condensate systems.

以上、図2を用いて火力・原子力発電プラントの復水系統とその駆動電力系統の構成を説明したが、これらを起動,運転,停止して復水流量を適正に制御する制御装置は、ポンプや各種弁の起動や停止に関わる順序制御やプロセス量の制御を行うタービン制御装置9と、インバータINVの出力制御を行うインバータ制御装置10から構成される。   As described above, the configuration of the condensate system of the thermal power / nuclear power plant and the drive power system thereof has been described with reference to FIG. 2, but the control device that appropriately controls the condensate flow rate by starting, operating, and stopping these is a pump. And a turbine control device 9 that performs sequence control and process amount control related to starting and stopping of various valves, and an inverter control device 10 that performs output control of the inverter INV.

タービン制御装置9は、タービン制御装置9に内蔵するあらかじめ決められた順序に従い復水ポンプCP,復水ポンプ出口弁CPV,復水昇圧ポンプCBP,復水昇圧ポンプ出口弁CBPV等の起動や停止を制御する指令19を出力する。なお、指令19による操作は火力・原子力発電プラントの運転員による手動制御でも行いうる。   The turbine controller 9 starts and stops the condensate pump CP, the condensate pump outlet valve CPV, the condensate booster pump CBP, the condensate booster pump outlet valve CBPV, etc., in accordance with a predetermined order built in the turbine controller 9. A command 19 to be controlled is output. The operation according to the command 19 can also be performed by manual control by an operator of the thermal power / nuclear power plant.

また、タービン制御装置9は、図1を用いて後述するように復水流量検出器7の出力を入力として、ポンプ回転数指令17と復水再循環弁8の流量制御信号20を出力する。   Further, as will be described later with reference to FIG. 1, the turbine control device 9 receives the output of the condensate flow rate detector 7 as an input and outputs a pump rotation speed command 17 and a flow rate control signal 20 of the condensate recirculation valve 8.

インバータ制御装置10は、タービン制御装置9からのポンプ回転数指令17に基づきインバータ出力指令18をそれぞれのインバータINV1,INV2に出力して、復水ポンプCP,復水昇圧ポンプCBPの回転数がタービン制御装置9からのポンプ回転数指令17と同じになるように制御する。   The inverter control device 10 outputs an inverter output command 18 to each of the inverters INV1 and INV2 based on the pump rotational speed command 17 from the turbine control device 9, and the rotational speeds of the condensate pump CP and the condensate booster pump CBP are turbines. Control is performed to be the same as the pump rotation speed command 17 from the control device 9.

次に、図1によりタービン制御装置9の詳細機能を説明する。タービン制御装置9は、復水流量検出器7の出力を入力し、復水再循環弁8の流量制御信号20と、インバータ制御装置10に対するポンプ回転数指令17を出力する。復水再循環弁8の流量制御信号20を導出する回路部分が、いわゆる復水再循環弁調整手段を構成している。またインバータ制御装置10に対するポンプ回転数指令17を出力する部分が復水ポンプ等の速度制御装置の一部を構成する。なお、復水再循環弁8の流量制御信号20は切替回路905,908,910,912により選択されて与えられる。これら切替回路は、ポンプの運転態様に応じて適宜選択されて最適の制御信号を復水再循環弁8の流量制御信号20として出力するものであり、復水再循環弁の開度制御特性を変更する特性の変更手段を構成する。また、ポンプの運転態様とは、駆動電源の組合せに応じて決定されている。   Next, detailed functions of the turbine control device 9 will be described with reference to FIG. The turbine control device 9 inputs the output of the condensate flow rate detector 7 and outputs the flow rate control signal 20 of the condensate recirculation valve 8 and the pump rotation speed command 17 for the inverter control device 10. The circuit part for deriving the flow rate control signal 20 of the condensate recirculation valve 8 constitutes a so-called condensate recirculation valve adjusting means. Moreover, the part which outputs the pump rotation speed instruction | command 17 with respect to the inverter control apparatus 10 comprises some speed control apparatuses, such as a condensate pump. The flow rate control signal 20 of the condensate recirculation valve 8 is selected and provided by the switching circuits 905, 908, 910, and 912. These switching circuits are appropriately selected according to the operation mode of the pump and output an optimal control signal as the flow rate control signal 20 of the condensate recirculation valve 8. A changing means for changing characteristics is configured. The operation mode of the pump is determined according to the combination of drive power sources.

以下図1の働きについて詳細に説明するが、その前に切替回路の切替論理を決定するポンプの運転態様について、図2の復水系統が3系統の場合を例にして説明する。   The operation of FIG. 1 will be described in detail below, but before that, the operation mode of the pump for determining the switching logic of the switching circuit will be described by taking the case of three condensing systems in FIG. 2 as an example.

3系統のポンプの運転態様として、可変周波数電源と商用周波数電源を用いる場合の組合せは、以下の10ケースがある。
(1)0系統運転(全停止)
(2)1系統運転(1系統可変周波数電源)
(3)1系統運転(1系統商用周波数電源)
(4)2系統運転(1系統可変周波数電源,1系統商用周波数電源)
(5)2系統運転(2系統可変周波数電源)
(6)2系統運転(2系統商用周波数電源)
(7)3系統運転(1系統可変周波数電源,2系統商用周波数電源)
(8)3系統運転(2系統可変周波数電源,1系統商用周波数電源)
(9)3系統運転(3系統可変周波数電源)
(10)3系統運転(3系統商用周波数電源)
この関係をより簡便に整理すると、以下の4タイプになる。
As operation modes of the three systems of pumps, there are the following 10 cases of combinations in the case of using a variable frequency power source and a commercial frequency power source.
(1) 0 system operation (all stops)
(2) 1 system operation (1 system variable frequency power supply)
(3) 1 system operation (1 system commercial frequency power supply)
(4) 2 system operation (1 system variable frequency power supply, 1 system commercial frequency power supply)
(5) 2-system operation (2-system variable frequency power supply)
(6) Two-line operation (two-line commercial frequency power supply)
(7) 3 system operation (1 system variable frequency power supply, 2 systems commercial frequency power supply)
(8) 3 system operation (2 system variable frequency power supply, 1 system commercial frequency power supply)
(9) 3 system operation (3 system variable frequency power supply)
(10) 3-system operation (3-system commercial frequency power supply)
When this relationship is arranged more simply, the following four types are obtained.

1.全停止状態(ケース(1))
2.起動中の全系統が可変周波数電源(ケース(2)(5)(9))
3.起動中の全系統が商用周波数電源(ケース(3)(6)(10))
4.可変周波数電源と商用周波数電源による運転((4)(7)(8))
1. Full stop state (Case (1))
2. All active systems are variable frequency power supplies (Case (2) (5) (9))
3. All active systems are commercial frequency power supplies (cases (3) (6) (10))
4). Operation with variable frequency power supply and commercial frequency power supply ((4) (7) (8))

ポンプの運転態様は、上記1,2,3,4に大別されるが、切替回路905,908,910,912はこの運転態様に応じてa側とb側に切替えられる。以下、各運転態様での図1回路の働きについて説明する。   The operation mode of the pump is roughly divided into the above 1, 2, 3, and 4. The switching circuits 905, 908, 910, and 912 are switched between the a side and the b side according to the operation mode. Hereinafter, the operation of the circuit of FIG. 1 in each operation mode will be described.

1.全停止状態(ケース1)
1)ポンプ側の制御
全停止状態では、図2の電源系統からの電力供給は行われず、ポンプは停止状態にある。従って、図1回路でインバータ制御装置10に対する制御信号はインバータを駆動するに有効なものではない。
1. Full stop state (Case 1)
1) Control on the pump side In the all-stop state, power is not supplied from the power supply system of FIG. 2, and the pump is in the stop state. Therefore, the control signal for the inverter control device 10 in the circuit of FIG. 1 is not effective for driving the inverter.

2)再循環流量制御弁側の制御
切替回路905はb側に、切替回路908はa側に切替えられて信号発生回路915の出力が切替回路908,905,変化率制限器906を経由して流量制御信号20として復水再循環弁8に与えられる。信号発生回路915の信号は復水再循環弁8の全閉を意味する大きさの信号であり、復水ポンプCP,復水昇圧ポンプCBPが全て停止した時には、切替回路908および905にて強制的に0%信号に切替え、復水再循環弁8を閉じて配管内の落水防止を図る。
2) Control on the recirculation flow rate control valve side The switching circuit 905 is switched to the b side, the switching circuit 908 is switched to the a side, and the output of the signal generation circuit 915 passes through the switching circuits 908 and 905 and the change rate limiter 906. The flow rate control signal 20 is given to the condensate recirculation valve 8. The signal of the signal generation circuit 915 is a signal having a magnitude that means that the condensate recirculation valve 8 is fully closed. Therefore, the signal is switched to 0% signal, and the condensate recirculation valve 8 is closed to prevent the water from falling in the pipe.

2.起動中の全系統が可変周波数運転(ケース(2)(5)(9))
全台数を可変周波数電源で運転するために最も効率が高い運転であることから、火力・原子力発電プラントの各種運転の中で最も採用機会の多いのがこの運転態様と考えられる。
2. All active systems are operating at variable frequency (Case (2) (5) (9))
Since this is the most efficient operation for operating all units with variable frequency power supplies, this operation mode is considered to have the most adoption opportunities among various operations of thermal power and nuclear power plants.

1)ポンプ側の制御
復水流量検出器7の出力を平方根演算回路901にて平方根演算し、この信号を関数発生器914,916に与え、ポンプ回転数プログラム信号958,959を得る。それぞれの信号は変化率制限器913,915,インバータ制御装置10を経由して復水系統内の各ポンプのポンプ回転数を制御する。
1) Pump-side control The output of the condensate flow rate detector 7 is square-root calculated by the square-root calculating circuit 901, and this signal is given to the function generators 914 and 916 to obtain the pump rotation speed program signals 958 and 959. Each signal controls the pump rotation speed of each pump in the condensate system via the change rate limiters 913, 915 and the inverter control device 10.

図4は、関数発生器914,916の関数を示している。このうち、関数発生器914の関数を図4(a)に示す。この関数は、運転中の第一復水系統内ポンプに与える制御信号を作成する。この関数は横軸の流量信号が0%から50%の範囲でそれぞれ0%から100%の出力(ポンプ回転数の設定信号)を与える。   FIG. 4 shows the functions of the function generators 914 and 916. Among these, the function of the function generator 914 is shown in FIG. This function creates a control signal that is fed to the first condensate pump in operation. This function gives an output of 0% to 100% (pump speed setting signal) when the flow signal on the horizontal axis ranges from 0% to 50%.

関数発生器916の関数を図4(b)に示す。この関数は、運転中の第二復水系統内ポンプに与えられる関数である。この関数は横軸の流量信号が50%から100%の範囲でそれぞれ0%から100%の出力(ポンプ回転数の設定信号)を与える。なお、関数発生器916が稼動しているときには関数発生器914と組合せて使用される。   The function of the function generator 916 is shown in FIG. This function is a function given to the pump in the second condensing system in operation. This function gives 0% to 100% output (pump speed setting signal) in the range of 50% to 100% of the flow signal on the horizontal axis. Note that the function generator 916 is used in combination with the function generator 914 when operating.

以上の説明から理解できるように、0%から100%に至る給水流量の全範囲において、2系統のポンプを可変速度に運転するための一つの手法として、0%から50%までの運転を第一復水系統の第一のポンプが賄い、50%から100%の範囲では追加起動された第二復水系統の第二のポンプとともに流量供給を行う。   As can be understood from the above description, the operation from 0% to 50% is performed as one method for operating the two pumps at a variable speed in the entire range of the feed water flow rate from 0% to 100%. The first pump of the single condensate system covers the flow, and in the range of 50% to 100%, the flow rate is supplied together with the second pump of the second condensate system that is additionally activated.

全ての復水系統が可変速度運転される態様では、復水系統のポンプ回転数制御自体により無駄のない最適流量が給水系統側に供給されているはずであるが、このときに再循環系統側は以下のように運転されるのが望ましい。   In an aspect where all the condensate systems are operated at a variable speed, the optimum flow rate without waste should be supplied to the water supply system side by the pump rotation speed control of the condensate system itself. It is desirable to operate as follows.

2)再循環流量制御弁側の制御
この運転態様では切替回路905,908がb側を選択しており、切替回路910がa側を選択することで、関数発生器909の信号956により復水再循環弁8が操作される。関数発生器909の関数は、図3(a)に示すように復水流量が多いほど復水再循環弁8の開度を絞り再循環量を減らすものであり、これによりポンプ回転数が低い領域でのポンプ保護の観点から再循環量を確保していることがわかる。
2) Control on the recirculation flow rate control valve side In this operation mode, the switching circuits 905 and 908 select the b side, and the switching circuit 910 selects the a side, so that the condensate is generated by the signal 956 of the function generator 909. The recirculation valve 8 is operated. As shown in FIG. 3A, the function of the function generator 909 is to reduce the recirculation amount by reducing the recirculation amount by reducing the opening degree of the condensate recirculation valve 8 as the condensate flow rate increases. It can be seen that the recirculation amount is secured from the viewpoint of pump protection in the area.

ここで、ポンプ制御側において、復水流量に応じて回転数制御を行うことの意味するところについて説明する。まず火力・原子力発電プラントにおける負荷制御は、ボイラの場合であれば、ボイラ制御装置が負荷要求信号に基づいて所望の電力量を得るべく燃料量,給水流量,発生蒸気流量等を適宜制御している。また原子力発電プラントであれば、これらに加えて原子炉再循環流量なども操作の対象となる。   Here, what is meant to mean that the rotational speed control is performed according to the condensate flow rate on the pump control side will be described. First, for load control in a thermal power / nuclear power plant, in the case of a boiler, the boiler control device appropriately controls the fuel amount, feed water flow rate, generated steam flow rate, etc. in order to obtain a desired power amount based on the load request signal. Yes. In addition, in the case of a nuclear power plant, in addition to these, the reactor recirculation flow rate and the like are also subject to operation.

このうち給水流量についてみると、発電プラントに対する負荷要求信号に応じて給水ポンプの回転数や運転台数が制御されてボイラに送る給水流量を決定している。そのため、給水系統の上流側にある復水系統での制御の役割は給水系統側での制御に追従して過不足なく流量(復水流量)を提供することであって、復水系統側が主体的に流量を決定する訳ではないということである。   Among these, regarding the feed water flow rate, the feed water flow rate to be sent to the boiler is determined by controlling the rotation speed and the number of operating pumps of the feed water pump according to the load request signal for the power plant. Therefore, the role of control in the condensate system on the upstream side of the water supply system is to provide a flow rate (condensate flow rate) without excess or deficiency following the control on the water supply system side. That is, the flow rate is not necessarily determined.

本発明では、復水ポンプを可変周波数電源で駆動することにより火力・原子力発電プラントの効率向上を図るに当り、復水系統を如何に操作すべきか検討した結果、給水系統と復水系統での役割を考慮のうえ、発電プラントの負荷に相当する信号に追従して復水ポンプの回転数を決定することで全体のバランスを図ったものである。   In the present invention, as a result of examining how the condensate system should be operated in order to improve the efficiency of a thermal power / nuclear power plant by driving the condensate pump with a variable frequency power source, In consideration of the role, the overall balance is achieved by determining the rotation speed of the condensate pump following the signal corresponding to the load of the power plant.

従って、図1の実施例では復水流量に追従して回転数制御することにしたが、負荷に相当する信号として各種のものを採用しえることは言うまでもない。例えば、火力・原子力発電プラントの負荷指令系統からの信号として、負荷要求信号,給水要求信号,発電機の出力量信号等のほかに制御された各プロセス量が負荷相当信号として、図1の実施例の復水流量の代わりに適用し得る。   Therefore, in the embodiment of FIG. 1, the rotational speed control is performed following the condensate flow rate, but it goes without saying that various signals can be adopted as signals corresponding to the load. For example, as a signal from a load command system of a thermal power / nuclear power plant, each controlled process quantity other than a load request signal, a water supply request signal, a generator output quantity signal, etc. is used as a load equivalent signal. It can be applied instead of the example condensate flow rate.

尚、これらの信号を使用するに当り、負荷相当信号と復水流量との関係に応じて、適宜の補正(制御ゲインとか,遅れ,進み等)を施すべきことは言うまでもない。   Needless to say, when using these signals, appropriate correction (control gain, delay, advance, etc.) should be made according to the relationship between the load equivalent signal and the condensate flow rate.

この結果、本発明においては、上記のようにポンプ側を制御する結果として、ポンプ動力は負荷相当信号に応じた適正量に制御され、再循環される水量をポンプ特性の観点からの最少量に抑制することができるため、システム全体としての効率を高くすることができる。   As a result, in the present invention, as a result of controlling the pump side as described above, the pump power is controlled to an appropriate amount according to the load equivalent signal, and the amount of water that is recirculated is minimized from the viewpoint of pump characteristics. Since it can suppress, the efficiency as the whole system can be made high.

3.起動中の全系統が商用周波数電源(ケース(3)(6)(10))
1)ポンプ側の制御
この運転状態は、従来の運転と変わるところがない。運転状態が商用周波数電源によるものであるために、図1のポンプ回転数制御側のインバータ制御装置10は、インバータINVに対する一切の制御を行っていない。
3. All active systems are commercial frequency power supplies (cases (3) (6) (10))
1) Control on the pump side This operating state is no different from the conventional operation. Since the operation state is based on the commercial frequency power supply, the inverter control device 10 on the pump rotation speed control side in FIG. 1 does not perform any control on the inverter INV.

2)再循環流量制御弁側の制御
このとき再循環系統制御側は、復水系統のポンプが100%流量に相当する動力で運転しているために、給水系統側の欲する流量との差分を復水器1に再循環する制御を行っている。この方式は従来方式を適用すればよいが、一例をあげれば以下のように行われる。
2) Control on the recirculation flow rate control valve side At this time, the recirculation system control side calculates the difference from the flow rate desired on the water supply system side because the condensate system pump is operated with power equivalent to 100% flow rate. Control to recirculate to the condenser 1 is performed. A conventional method may be applied to this method, but as an example, it is performed as follows.

復水流量検出器7から入力される復水流量を平方根演算回路901にて平方根演算し、一時遅れ回路902を通って復水再循環流量プロセス値951を導出する。他方、復水再循環流量設定信号発生器907は再循環量の設定信号954を与えており、減算器903により復水再循環流量偏差信号952を算出し、復水再循環流量偏差信号952を比例積分演算器904により比例積分演算を行って復水再循環流量制御信号953を作成する。この運転態様では、切替回路905はa側を選択しており、この結果復水再循環流量制御信号953は切替回路905,変化率制限器906を通った後、流量制御信号20となり、復水再循環弁8を開閉する。本回路方式によれば、復水再循環流量設定信号発生器907の信号により再循環量が決定され、結果として所望の給水量が実現される。   The condensate flow rate input from the condensate flow rate detector 7 is square root calculated by the square root calculation circuit 901, and the condensate recirculation flow rate process value 951 is derived through the temporary delay circuit 902. On the other hand, the condensate recirculation flow rate setting signal generator 907 gives a recirculation amount setting signal 954, the subtractor 903 calculates the condensate recirculation flow rate deviation signal 952, and the condensate recirculation flow rate deviation signal 952 is obtained. A proportional integral calculation is performed by the proportional integral calculator 904 to create a condensate recirculation flow rate control signal 953. In this operation mode, the switching circuit 905 selects the a side. As a result, the condensate recirculation flow rate control signal 953 passes through the switching circuit 905, the change rate limiter 906, and then becomes the flow rate control signal 20, which is the condensate. Open and close the recirculation valve 8. According to this circuit system, the recirculation amount is determined by the signal from the condensate recirculation flow rate setting signal generator 907, and as a result, a desired water supply amount is realized.

4.可変周波数電源と商用周波数電源による運転((4)(7)(8))
1)ポンプ側の制御
この運転態様は、図4に示した2つの関数発生器914,916のいずれかを使用することで実現される。
4). Operation with variable frequency power supply and commercial frequency power supply ((4) (7) (8))
1) Control on the pump side This operation mode is realized by using one of the two function generators 914 and 916 shown in FIG.

この場合の手法には2通りが考えられ、第1の手法は、図4(a)の関数を用いて第一復水系統のポンプを0%負荷から可変速度に起動し、50%負荷になった時点で第二復水系統のポンプを商用周波数電源で駆動すべく遮断器操作を行う。第2の手法はまず、第一復水系統のポンプを0%負荷時点で商用周波数電源で駆動すべく遮断器投入操作を行い、その後関数発生器916の出力を利用して50%から100%の範囲で第二復水系統のポンプを可変速度に制御するというものである。   There are two possible methods in this case. The first method uses the function shown in FIG. 4 (a) to start the pump of the first condensate system from 0% load to a variable speed to 50% load. At that time, the circuit breaker is operated to drive the pump of the second condensate system with the commercial frequency power supply. In the second method, first, the circuit breaker is turned on to drive the pump of the first condensate system with the commercial frequency power supply at the time of 0% load, and then the output of the function generator 916 is used to make 50% to 100%. In this range, the pump of the second condensate system is controlled to a variable speed.

2)再循環流量制御弁側の制御
次にこのときの再循環流量制御弁側の制御についてみると、切替回路905,908,910ともにb側を選択しており、関数発生器911の信号957により再循環量を決定している。ここで、信号957は図3(b)の特性のものであり、流量が50%超の領域での再循環流量を適宜の一定量確保することにしている。
2) Control on the side of the recirculation flow rate control valve Next, regarding the control on the side of the recirculation flow rate control valve at this time, the switching circuit 905, 908, 910 has selected the b side, and the signal 957 of the function generator 911 is selected. The recirculation amount is determined by Here, the signal 957 has the characteristics shown in FIG. 3B, and an appropriate amount of recirculation flow rate in a region where the flow rate exceeds 50% is secured.

なお、図1の実施例ではモニタリレー917を設置し、必要最小量が確保された場合には、切替回路905,908,910,912を切替えて信号発生回路915の信号を選択し、再循環流量の目標値を0%とする運転に切替える。   In the embodiment shown in FIG. 1, when the monitor relay 917 is installed and the necessary minimum amount is secured, the switching circuit 905, 908, 910, 912 is switched to select the signal of the signal generation circuit 915 and recirculation is performed. Switch to the operation where the target flow rate is 0%.

以上詳細に各運転態様での図1回路による制御手法を説明したが、この結果として行われる制御量の時系列的推移を説明する。   Although the control method by the circuit of FIG. 1 in each operation mode has been described in detail above, the time-series transition of the control amount performed as a result will be described.

図5は、火力・原子力発電プラントの起動過程での各種プロセス量(復水ポンプAの回転数,復水ポンプBの回転数,再循環制御弁開度)の推移を示している。   FIG. 5 shows changes in various process amounts (the number of revolutions of the condensate pump A, the number of revolutions of the condensate pump B, and the recirculation control valve opening degree) during the startup process of the thermal power / nuclear power plant.

まず図5(a)は、先ほど説明の「起動中の全系統が可変周波数運転(ケース(2)(5)(9))」のケースであり、1台目の復水ポンプAが復水流量に応じて可変速度に立ち上がり、その後50%負荷以上の状態では2台目の復水ポンプBも復水流量に応じて可変速度に立ち上がる。この間再循環弁の開度は関数発生回路909の関数(図3(a))に応じて100%負荷では全閉すべく操作される。   First, FIG. 5 (a) is a case of “all the systems that are running are variable frequency operation (cases (2), (5), (9))” described earlier, and the first condensing pump A is condensate. The second condensate pump B rises to a variable speed in accordance with the condensate flow rate. During this time, the opening degree of the recirculation valve is operated to be fully closed at 100% load according to the function of the function generation circuit 909 (FIG. 3A).

図5(b)は、「可変周波数電源と商用周波数電源による運転((4)(7)(8))」の第1の手法のケースであり、1台目の復水ポンプAが復水流量に応じて可変速度に立ち上がり、その後50%負荷以上の状態では2台目の復水ポンプBが商用周波数電源に投入されて起動される。この間再循環弁の開度は関数発生回路911の関数(図3(b))に応じて復水ポンプBの必要最小量が確保された場合には全閉すべく操作される。   FIG. 5B is a case of the first method of “operation with variable frequency power source and commercial frequency power source ((4) (7) (8))”, and the first condensing pump A is condensate. It rises to a variable speed according to the flow rate, and then, in a state where the load is 50% or more, the second condensate pump B is turned on and activated by the commercial frequency power supply. During this time, the opening degree of the recirculation valve is operated so as to be fully closed when the necessary minimum amount of the condensate pump B is secured according to the function of the function generation circuit 911 (FIG. 3B).

図5(c)は、「可変周波数電源と商用周波数電源による運転((4)(7)(8))」の第2の手法のケースであり、1台目の復水ポンプAが商用周波数電源に投入されて起動され、その後50%負荷以上の状態では2台目の復水ポンプBが復水流量に応じて可変速度に立ち上がる。この間再循環弁の開度は関数発生回路911の関数(図3(b))に応じて100%負荷では全閉すべく操作される。   FIG. 5C shows a case of the second method of “operation with variable frequency power source and commercial frequency power source ((4) (7) (8))”, and the first condensing pump A is at the commercial frequency. When the power is turned on and activated, the second condensate pump B rises to a variable speed according to the condensate flow rate when the load is 50% or more. During this time, the opening degree of the recirculation valve is operated to be fully closed at 100% load according to the function of the function generation circuit 911 (FIG. 3B).

図5(d)は、「起動中の全系統が商用周波数電源(ケース(3)(6)(10))」のケースであり、1台目の復水ポンプAが商用周波数電源に投入されて起動され、その後50%負荷以上の状態で2台目の復水ポンプBが商用周波数電源に投入されて起動される。この間再循環弁の開度は復水再循環流量設定信号発生器907の信号954に再循環流量を調整すべく自動制御される。従って、いかなる負荷状態においても再循環が行われる。この図5(d)は、従来方式のときの制御結果であり、本発明の場合との相違は明白である。   FIG. 5D shows a case where “all the systems that are activated are commercial frequency power supplies (cases (3), (6), and (10))”. The first condensate pump A is turned on to the commercial frequency power supply. Then, the second condensate pump B is turned on and started up with the commercial frequency power supply in a state where the load is 50% or more. During this time, the opening degree of the recirculation valve is automatically controlled by the signal 954 of the condensate recirculation flow rate setting signal generator 907 to adjust the recirculation flow rate. Thus, recirculation occurs at any load condition. FIG. 5D shows the control result in the conventional method, and the difference from the case of the present invention is clear.

述べたように、本発明では、複数の復水系統を並列運転するときに系統内のポンプを可変速度に制御可能とし、かつその回転数を負荷相当信号によって制御することにした。   As described above, in the present invention, when a plurality of condensate systems are operated in parallel, the pumps in the system can be controlled to a variable speed, and the rotation speed is controlled by a load equivalent signal.

1 復水器
7 復水流量検出器
8 復水再循環弁
9 タービン制御装置
10 インバータ制御装置
11 母線
17 ポンプ回転数指令
18 インバータ出力指令
20 流量制御信号
905,908,910,912 切替回路
909,911,914,916 関数発生器
CP 復水ポンプ
CBP 復水昇圧ポンプ
INV インバータ
CB 遮断器
1 Condenser 7 Condensate Flow Detector 8 Condensate Recirculation Valve 9 Turbine Controller 10 Inverter Controller 11 Bus 17 Pump Speed Command 18 Inverter Output Command 20 Flow Control Signals 905, 908, 910, 912 Switching Circuit 909, 911, 914, 916 Function generator CP Condensate pump CBP Condensate booster pump INV Inverter CB Breaker

Claims (5)

復水器内の復水を、復水系統から給水系統を経由してボイラあるいは原子炉に供給する発電プラントであって、復水系統と給水系統の間から復水の一部を復水器に循環するための復水再循環系統を備える発電プラント復水系統の制御装置において、復水系統に設けられたポンプ、該ポンプを駆動する可変周波数電源、前記復水系統のポンプの回転数を発電プラントの負荷相当信号により制御すべく前記可変周波数電源の出力を調整する速度制御装置を備えた発電プラント復水系統の制御装置。   A power generation plant that supplies condensate in a condenser to a boiler or a reactor from a condensate system via a water supply system, and a part of the condensate between the condensate system and the water supply system In a control device for a power plant condensate system having a condensate recirculation system for circulation to a pump, a pump provided in the condensate system, a variable frequency power source for driving the pump, and a rotation speed of the pump of the condensate system A control device for a power plant condensate system comprising a speed control device for adjusting the output of the variable frequency power source to be controlled by a load equivalent signal of the power plant. 請求項1において、復水系統のポンプを駆動する商用周波数電源、前記可変周波数電源異常時に商用周波数電源に切替える電源切替手段を備えることを特徴とする発電プラント復水系統の制御装置。   2. The control apparatus for a power plant condensate system according to claim 1, further comprising: a commercial frequency power source that drives a pump of the condensate system; and a power source switching unit that switches to the commercial frequency power source when the variable frequency power source is abnormal. 請求項1において、復水再循環系統設けられた復水再循環弁,復水系統からの復水流量に応じて前記復水再循環弁の開度を調整する復水再循環弁調整手段を備えたことを特徴とする発電プラント復水系統の制御装置。   The condensate recirculation valve adjusting means for adjusting the opening degree of the condensate recirculation valve according to the condensate recirculation valve provided in the condensate recirculation system and the condensate flow rate from the condensate system. A control device for a power plant condensate system, comprising: 復水器内の復水を、復水系統から給水系統を経由してボイラあるいは原子炉に供給する発電プラントであって、復水系統と給水系統の間から復水の一部を復水器に循環するための復水再循環系統を備えるとともに前記復水系統は複数台の復水ポンプが並列配置されて構成された発電プラント復水系統の制御装置において、
復水系統の復水ポンプを駆動する可変周波数電源、復水系統の復水ポンプを駆動する商用周波数電源、復水系統のポンプの駆動電源として可変周波数電源と商用周波数電源のいずれかを選択する電源選択手段、前記復水系統のポンプの回転数を発電プラントの負荷相当信号により制御すべく前記可変周波数電源の出力を調整する速度制御装置を備えた発電プラント復水系統の制御装置。
A power generation plant that supplies condensate in a condenser to a boiler or a reactor from a condensate system via a water supply system, and a part of the condensate between the condensate system and the water supply system A condensate recirculation system for circulation to the power plant condensate system control device configured by arranging a plurality of condensate pumps in parallel,
Select either the variable frequency power source that drives the condensate system condensate pump, the commercial frequency power source that drives the condensate system condensate pump, or the variable frequency power source or the commercial frequency power source as the condensate system pump drive power source A control device for a power plant condensate system comprising a power source selection means and a speed control device for adjusting the output of the variable frequency power source so as to control the rotation speed of the pump of the condensate system with a load equivalent signal of the power plant.
復水器内の復水を、復水系統から給水系統を経由してボイラあるいは原子炉に供給する発電プラントであって、復水系統と給水系統の間から復水の一部を復水器に循環するための復水再循環系統を備え、前記復水系統は複数台の復水ポンプが並列配置され、復水再循環系統には復水再循環弁が設置されて構成された発電プラント復水系統の制御装置において、
復水系統の復水ポンプを駆動する可変周波数電源,復水系統の復水ポンプを駆動する商用周波数電源,復水系統のポンプの駆動電源として可変周波数電源と商用周波数電源のいずれかを選択する電源選択手段、前記復水系統のポンプの回転数を発電プラントの負荷相当信号により制御すべく前記可変周波数電源の出力を調整する速度制御装置,復水系統からの復水流量に応じて前記復水再循環弁の開度を調整する復水再循環弁調整手段,複数台の復水ポンプの駆動電源の組合せに応じて前記復水再循環弁調整手段の特性を変更する変更手段を備えた発電プラント復水系統の制御装置。
A power generation plant that supplies condensate in a condenser to a boiler or a reactor from a condensate system via a water supply system, and a part of the condensate between the condensate system and the water supply system A condensate recirculation system for circulation to the power plant, wherein the condensate system has a plurality of condensate pumps arranged in parallel, and the condensate recirculation system is provided with a condensate recirculation valve. In the condensate system control device,
Select either the variable frequency power source that drives the condensate system condensate pump, the commercial frequency power source that drives the condensate system condensate pump, or the variable frequency power source or the commercial frequency power source as the condensate system pump drive power source A power source selection means, a speed control device for adjusting the output of the variable frequency power source to control the rotation speed of the pump of the condensate system by a load equivalent signal of the power plant, and the condensing system according to the condensate flow rate from the condensate system. Condensate recirculation valve adjusting means for adjusting the opening degree of the water recirculation valve, and changing means for changing the characteristics of the condensate recirculation valve adjusting means in accordance with the combination of drive power sources of a plurality of condensate pumps Control device for power plant condensate system.
JP2009125954A 2009-05-26 2009-05-26 Power plant condensate system controller Active JP5350076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125954A JP5350076B2 (en) 2009-05-26 2009-05-26 Power plant condensate system controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125954A JP5350076B2 (en) 2009-05-26 2009-05-26 Power plant condensate system controller

Publications (2)

Publication Number Publication Date
JP2010276203A true JP2010276203A (en) 2010-12-09
JP5350076B2 JP5350076B2 (en) 2013-11-27

Family

ID=43423335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125954A Active JP5350076B2 (en) 2009-05-26 2009-05-26 Power plant condensate system controller

Country Status (1)

Country Link
JP (1) JP5350076B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090589A (en) * 2014-06-12 2014-10-08 国家电网公司 Deoxygenator water level whole-course control system and method with tracking under condensate pump frequency conversion condition
KR101752084B1 (en) 2016-01-04 2017-07-11 두산중공업 주식회사 Method for driving a feed water system of a boiler of a plant by controlling discharging speed of pumps when parallelizing, and Apparatus threrefor
CN107024914A (en) * 2017-06-16 2017-08-08 国网河南省电力公司电力科学研究院 Fired power generating unit condensate throttling participates in primary frequency modulation control system and operation method
CN115324675A (en) * 2022-07-25 2022-11-11 广西电网有限责任公司电力科学研究院 Control method for adjusting power grid frequency of thermal power generating unit based on variable-frequency condensate pump
CN115324674A (en) * 2022-07-25 2022-11-11 广西电网有限责任公司电力科学研究院 System for frequency conversion condensate pump of thermal power generating unit participates in power grid frequency adjustment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108758608B (en) * 2018-06-14 2019-08-27 鞍钢股份有限公司 A kind of method of the determining best main-piping pressure of boiler feedwater Variable-frequency Regulating System

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204118U (en) * 1985-06-05 1986-12-23
JPS6239109U (en) * 1985-08-29 1987-03-09
JPH08240301A (en) * 1995-03-03 1996-09-17 Toshiba Corp Feedwater controller for drum type boiler
JPH11178243A (en) * 1997-12-16 1999-07-02 Mitsubishi Electric Corp Uninterruptible power supply unit
JP2003021407A (en) * 2001-07-04 2003-01-24 Mitsubishi Electric Corp Refrigeration unit
JP2004076651A (en) * 2002-08-19 2004-03-11 Mitsubishi Heavy Ind Ltd Steam turbine plant
JP2005003369A (en) * 2003-06-09 2005-01-06 Toshiba Corp Reactor water supply system
JP2008160960A (en) * 2006-12-22 2008-07-10 Toshiba Mitsubishi-Electric Industrial System Corp Parallel operation controller for ac power output converter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61204118U (en) * 1985-06-05 1986-12-23
JPS6239109U (en) * 1985-08-29 1987-03-09
JPH08240301A (en) * 1995-03-03 1996-09-17 Toshiba Corp Feedwater controller for drum type boiler
JPH11178243A (en) * 1997-12-16 1999-07-02 Mitsubishi Electric Corp Uninterruptible power supply unit
JP2003021407A (en) * 2001-07-04 2003-01-24 Mitsubishi Electric Corp Refrigeration unit
JP2004076651A (en) * 2002-08-19 2004-03-11 Mitsubishi Heavy Ind Ltd Steam turbine plant
JP2005003369A (en) * 2003-06-09 2005-01-06 Toshiba Corp Reactor water supply system
JP2008160960A (en) * 2006-12-22 2008-07-10 Toshiba Mitsubishi-Electric Industrial System Corp Parallel operation controller for ac power output converter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090589A (en) * 2014-06-12 2014-10-08 国家电网公司 Deoxygenator water level whole-course control system and method with tracking under condensate pump frequency conversion condition
KR101752084B1 (en) 2016-01-04 2017-07-11 두산중공업 주식회사 Method for driving a feed water system of a boiler of a plant by controlling discharging speed of pumps when parallelizing, and Apparatus threrefor
CN107024914A (en) * 2017-06-16 2017-08-08 国网河南省电力公司电力科学研究院 Fired power generating unit condensate throttling participates in primary frequency modulation control system and operation method
CN107024914B (en) * 2017-06-16 2019-05-21 国网河南省电力公司电力科学研究院 Fired power generating unit condensate throttling participates in primary frequency modulation control system and operation method
CN115324675A (en) * 2022-07-25 2022-11-11 广西电网有限责任公司电力科学研究院 Control method for adjusting power grid frequency of thermal power generating unit based on variable-frequency condensate pump
CN115324674A (en) * 2022-07-25 2022-11-11 广西电网有限责任公司电力科学研究院 System for frequency conversion condensate pump of thermal power generating unit participates in power grid frequency adjustment

Also Published As

Publication number Publication date
JP5350076B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5350076B2 (en) Power plant condensate system controller
EP3596334B1 (en) Method for operating a hydraulic machine and corresponding installation for converting hydraulic energy into electrical energy
US7422414B2 (en) Inlet guide vane control device of gas turbine
JP5409848B2 (en) Power generation method using exhaust heat recovery system for ships and its exhaust heat recovery system
CN104329281B (en) A kind of adjusting rotor blade formula air-introduced machine frequency conversion energy-saving system
JPS6124601B2 (en)
CN111412023A (en) Coordination control method for realizing stable operation of steam-electricity dual-drive system
JP2009204255A (en) Water supply device for steam generator
US20070076838A1 (en) Nuclear reactor feed-water system
JPH01110075A (en) Pumping operation stop control method for ac excited synchronous machine
JP6916293B2 (en) Hydropower grid interconnection system
JP2009097867A (en) Closed cycle plant
JP5562806B2 (en) Reactor water level control system
Kolev et al. Application of variabe frequency drives (VFD) with large 6 kV asynchronous motors
JP3772295B2 (en) Load control method at the time of water pump backup start-up
JP2811254B2 (en) Water supply control device
CN112727789B (en) Control method of energy recovery system of speed-regulating double-four-quadrant frequency converter
JPH09242508A (en) Method and device for stopping combined cycle plant
JP5330089B2 (en) Fuel cell power generation system and control method thereof
JP2001025298A (en) Device and method for corresponding control of water condition
JP3781929B2 (en) Turbine controller
JP6841739B2 (en) Hydropower system
JP6392131B2 (en) VPC power generation control device
JP4417868B2 (en) Water supply system, water supply control method and apparatus
JPH08110392A (en) Reactor water supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R151 Written notification of patent or utility model registration

Ref document number: 5350076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250