JP2010275229A - Hydantoin derivative - Google Patents

Hydantoin derivative Download PDF

Info

Publication number
JP2010275229A
JP2010275229A JP2009128995A JP2009128995A JP2010275229A JP 2010275229 A JP2010275229 A JP 2010275229A JP 2009128995 A JP2009128995 A JP 2009128995A JP 2009128995 A JP2009128995 A JP 2009128995A JP 2010275229 A JP2010275229 A JP 2010275229A
Authority
JP
Japan
Prior art keywords
group
amino acid
hydrochloride
general formula
protecting group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009128995A
Other languages
Japanese (ja)
Inventor
Junichi Yamaguchi
淳一 山口
Yuka Sakaguchi
由佳 坂口
Chiaki Shibata
千秋 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikutoku Gakuen School Corp
Original Assignee
Ikutoku Gakuen School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikutoku Gakuen School Corp filed Critical Ikutoku Gakuen School Corp
Priority to JP2009128995A priority Critical patent/JP2010275229A/en
Publication of JP2010275229A publication Critical patent/JP2010275229A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel thalidomide analog expected to have pharmacological activity such as an antitumor effect. <P>SOLUTION: L-glutamic acid or L-aspartic acid is converted into a dimethyl ester, and then the amino group therein is protected. Next, the dimethyl ester in which the amino group is protected is converted into an imide, and then a protecting group is removed, thereby obtaining a hydrochloride of 3-aminoglutarimide or a hydrochloride of 3-aminosuccinimide. Next, the hydrochloride of the imide obtained by the procedures is condensed with a desired natural amino acid, the protecting group is removed from the resultant amino acid condensation compound, and then 4-nitrophenyl chloroformate is reacted therewith. A thalidomide analog having a hydantoin moiety is thus obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ヒダントイン誘導体に関し、より詳細には、ヒダントイン部を有する新規なサリドマイド類似体に関する。   The present invention relates to hydantoin derivatives, and more particularly to novel thalidomide analogs having a hydantoin moiety.

近年、サリドマイド( N -α -フタルイミドグルタルイミド)が血管新生抑制作用を有することが報告された。この報告に基づき、化学治療の効果が低い骨髄腫等の悪性腫瘍の治療に適用すべく、サリドマイドをリード化合物とする新規な化合物の合成が種々検討されている。特表2007−505922号公報(特許文献1)は、腫瘍壊死因子α(TNF-α)活性および血管新生を調節するサリドマイド類似体を開示する。   Recently, it has been reported that thalidomide (N-α-phthalimidoglutarimide) has an anti-angiogenic effect. Based on this report, various syntheses of novel compounds using thalidomide as a lead compound have been studied in order to be applied to the treatment of malignant tumors such as myeloma, which are less effective for chemotherapy. JP-T-2007-505922 (Patent Document 1) discloses a thalidomide analog that regulates tumor necrosis factor α (TNF-α) activity and angiogenesis.

特表2007−505922号公報Special Table 2007-505922

本発明は、上記従来技術に鑑みてなされたものであり、本発明は、抗腫瘍効果等の薬理活性が期待される新規なサリドマイド類似体を提供することを目的とする。   This invention is made | formed in view of the said prior art, and this invention aims at providing the novel thalidomide analog by which pharmacological activities, such as an antitumor effect, are anticipated.

本発明者らは、サリドマイドと類似の生理活性が期待できる新規な化合物の合成につき、ミメティクスの観点から鋭意検討した結果、L-グルタミン酸またはL-アスパラギン酸を出発物質として、ヒダントイン部を有する新規なサリドマイド類似体の合成に成功し、本発明に至ったのである。   As a result of diligent studies from the viewpoint of mimetics, the present inventors have sought to synthesize a novel compound that can be expected to have a physiological activity similar to that of thalidomide. The present inventors succeeded in synthesizing thalidomide analogs and arrived at the present invention.

すなわち、本発明によれば、下記一般式(1)〜(4)で表されるサリドマイド類似体としての新規なヒダントイン誘導体が提供される。但し、下記一般式(1)〜(4)中、Rは、天然アミノ酸の側鎖を表し、RおよびRは、それぞれ同一でも異なっていても良く、水素原子、炭素原子数1〜10個の分岐または直鎖のアルキル基、アルコキシ基、チオアルコキシ基、またはハロゲン原子からなる群から選択される置換基を示す。 That is, according to the present invention, novel hydantoin derivatives as thalidomide analogs represented by the following general formulas (1) to (4) are provided. However, in the following general formulas (1) to (4), R 1 represents a side chain of a natural amino acid, R 2 and R 3 may be the same or different, and each represents a hydrogen atom or a carbon atom number of 1 to A substituent selected from the group consisting of 10 branched or straight chain alkyl groups, alkoxy groups, thioalkoxy groups, or halogen atoms is shown.

Figure 2010275229
Figure 2010275229

Figure 2010275229
Figure 2010275229

Figure 2010275229
Figure 2010275229

Figure 2010275229
Figure 2010275229

さらに、本発明によれば、L-グルタミン酸をジメチルエステルに変換した後、アミノ基に保護基を導入する工程と、前記保護基が導入されたグルタミン酸ジメチルエステルをイミドへと変換する工程と、前記保護基を除去して3−アミノグルタルイミドの塩酸塩を得る工程と、前記3−アミノグルタルイミドの塩酸塩とアミノ基に保護基が導入された天然アミノ酸とを縮合させアミノ酸縮合化合物を得る工程と、前記アミノ酸縮合化合物から保護基を除去した後、クロロギ酸4-ニトロフェニルを作用させる工程とを含む、上記一般式(1)および(2)で表される新規なヒダントイン誘導体の製造方法が提供される。   Further, according to the present invention, after converting L-glutamic acid to dimethyl ester, a step of introducing a protective group into the amino group, a step of converting glutamic acid dimethyl ester having the protective group introduced into imide, A step of obtaining a hydrochloride of 3-aminoglutarimide by removing the protecting group, and a step of obtaining an amino acid condensed compound by condensing the hydrochloride of 3-aminoglutarimide and a natural amino acid having a protecting group introduced into the amino group And a method for producing a novel hydantoin derivative represented by the above general formulas (1) and (2), which comprises removing a protecting group from the amino acid condensation compound and then allowing 4-nitrophenyl chloroformate to act on the compound. Provided.

また、本発明によれば、L-アスパラギン酸をジメチルエステルに変換した後、アミノ基に保護基を導入する工程と、前記保護基が導入されたアスパラギン酸ジメチルエステルをイミドへと変換する工程と、前記保護基を除去して3−アミノスクシンイミドの塩酸塩を得る工程と、前記3−アミノスクシンイミドの塩酸塩とアミノ基に保護基が導入された天然アミノ酸とを縮合させアミノ酸縮合化合物を得る工程と、前記アミノ酸縮合化合物から保護基を除去した後、クロロギ酸4-ニトロフェニルを作用させる工程とを含む、上記一般式(3)および(4)で表される新規なヒダントイン誘導体の製造方法が提供される。   Further, according to the present invention, after converting L-aspartic acid to dimethyl ester, a step of introducing a protecting group into the amino group, and a step of converting dimethyl ester of aspartic acid having the protecting group introduced into imide, Removing the protecting group to obtain 3-aminosuccinimide hydrochloride; and condensing the 3-aminosuccinimide hydrochloride with a natural amino acid having a protecting group introduced into the amino group to obtain an amino acid condensed compound. And a method for producing a novel hydantoin derivative represented by the above general formulas (3) and (4), comprising removing a protecting group from the amino acid condensation compound and then allowing 4-nitrophenyl chloroformate to act on the compound. Provided.

上述したように、本発明によれば、抗腫瘍効果等の薬理活性が期待される新規なサリドマイド類似体が提供される。   As described above, according to the present invention, a novel thalidomide analog expected to have a pharmacological activity such as an antitumor effect is provided.

本発明のグルタルイミドイルヒダントイン誘導体およびグルタルスクシンイミドイルヒダントイン誘導体の合成工程を示す図。The figure which shows the synthetic | combination process of the glutarimide yl hydantoin derivative of this invention, and a glutarsuccinimidoyl hydantoin derivative. アミノ基がBoc基で保護されたフェニルアラニンとL,D−グルタミン酸から誘導した3-アミノグルタルイミドを縮合した化合物のNMRデータを示す図。The figure which shows the NMR data of the compound which condensed 3-aminoglutarimide derived from the phenylalanine which the amino group protected by the Boc group, and L, D-glutamic acid. 本実施例のグルタルイミドイルヒダントイン誘導体の構造式を示す図。The figure which shows the structural formula of the glutarimide yl hydantoin derivative of a present Example. 誘導体(1)のNMRデータを示す図。The figure which shows the NMR data of a derivative (1). 誘導体(2)のNMRデータを示す図。The figure which shows the NMR data of a derivative (2). 誘導体(3)のNMRデータを示す図。The figure which shows the NMR data of a derivative | guide_body (3). 誘導体(4)のNMRデータを示す図。The figure which shows the NMR data of a derivative (4). 誘導体(5)のNMRデータを示す図。The figure which shows the NMR data of a derivative (5). アミノ基がBoc基で保護されたフェニルアラニンとL,D−アスパラギン酸から誘導した3-アミノスクシンイミドを縮合した化合物のNMRデータを示す図。The figure which shows the NMR data of the compound which condensed 3-amino succinimide derived from the phenylalanine in which the amino group was protected by the Boc group, and L, D-aspartic acid. 本実施例のスクシンイミドイルヒダントイン誘導体の構造式を示す図。The figure which shows the structural formula of the succinimidyl hydantoin derivative of a present Example. 誘導体(6)のNMRデータを示す図。The figure which shows the NMR data of a derivative (6). 誘導体(7)のNMRデータを示す図。The figure which shows the NMR data of a derivative (7). 誘導体(8)のNMRデータを示す図。The figure which shows the NMR data of a derivative (8). 誘導体(9)のNMRデータを示す図。The figure which shows the NMR data of a derivative | guide_body (9).

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。   Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings.

図1は、本発明の新規サリドマイド類似体の合成工程を示す図である。以下、図1を参照しながら本発明のサリドマイド類似体の合成方法について説明する。   FIG. 1 is a diagram showing a synthesis process of a novel thalidomide analog of the present invention. Hereinafter, the method for synthesizing a thalidomide analog of the present invention will be described with reference to FIG.

本発明においては、まず、出発物質として市販のL-グルタミン酸あるいはL-アスパラギン酸を用意する。L-グルタミン酸を出発物質とした場合には(図1(1)においてn=2)、最終物質として本発明のグルタルイミドイルヒダントイン誘導体が合成され、L-アスパラギン酸を出発物質とした場合には(図1(1)においてn=1)、最終物質として本発明のスクシンイミドイルヒダントイン誘導体が合成される。すなわち、上記各誘導体の合成方法は、出発物質のみ異なり、その他の工程は全て共通する。以下、当該共通工程について説明する。   In the present invention, first, commercially available L-glutamic acid or L-aspartic acid is prepared as a starting material. When L-glutamic acid is used as the starting material (n = 2 in FIG. 1 (1)), the glutarimide ylhydantoin derivative of the present invention is synthesized as the final material, and when L-aspartic acid is used as the starting material. (N = 1 in FIG. 1 (1)), the succinimidoylhydantoin derivative of the present invention is synthesized as the final substance. That is, the method for synthesizing each derivative is different only in the starting material, and all other steps are common. Hereinafter, the common process will be described.

L-グルタミン酸あるいはL-アスパラギン酸(以下、出発アミノ酸として参照する)をジメチルエステルに変換した後(工程a)、アミノ基にtert-ブトキシカルボニル基(Boc基)を導入して保護する(工程b)。なお、保護基として、ベンジルオキシカルボニル基(Z基)を導入してもよい。   After converting L-glutamic acid or L-aspartic acid (hereinafter referred to as a starting amino acid) to a dimethyl ester (step a), the amino group is protected by introducing a tert-butoxycarbonyl group (Boc group) (step b). ). A benzyloxycarbonyl group (Z group) may be introduced as a protective group.

次に、アミノ基が保護された出発アミノ酸のジメチルエステル(2)をBirch還元条件下でイミドへと変換した後(工程c)、保護基を除去することによって、アミノグルタルイミドの塩酸塩あるいはアミノスクシンイミドの塩酸塩(3)を得る(工程d)。   Next, the amino acid-protected starting amino acid dimethyl ester (2) is converted to an imide under Birch reduction conditions (step c) and then the protecting group is removed to remove aminoglutarimide hydrochloride or amino The succinimide hydrochloride (3) is obtained (step d).

次に、上述した手順で得られたイミドの塩酸塩と所望のアミノ酸を縮合させる。具体的には、縮合させるアミノ酸のアミノ基をBoc基等で保護した後、適切な縮合剤を添加した溶液中で当該アミノ酸と上記イミドを縮合した後(工程e)、このアミノ酸縮合化合物から保護基を除去することによって、アミノ酸−イミドの縮合化合物(5)を得る。本発明においては、縮合させるアミノ酸を特に限定するものではなく、アラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、セリン、トレオニン、トリプトファン、チロシン、バリン、等の天然αアミノ酸を用いることができる。なお、アミノ酸−イミドの縮合化合物は、(5)に示すように、イミド部の立体配置が反転した立体異性体の混合物として得られる。   Next, the hydrochloride of the imide obtained by the above procedure is condensed with the desired amino acid. Specifically, after protecting the amino group of the amino acid to be condensed with a Boc group or the like, the amino acid and the imide are condensed in a solution to which an appropriate condensing agent is added (step e), and then protected from the amino acid condensed compound. By removing the group, an amino acid-imide condensation compound (5) is obtained. In the present invention, the amino acid to be condensed is not particularly limited, and alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, serine, threonine, tryptophan, tyrosine Natural α-amino acids such as valine and the like can be used. The amino acid-imide condensation compound is obtained as a mixture of stereoisomers in which the configuration of the imide portion is reversed, as shown in (5).

最後に、上記アミノ酸−イミドの縮合化合物(5)を乾燥アセトニトリル中、過剰の炭酸水素ナトリウム存在下、クロロギ酸4-ニトロフェニルを作用させることによって(工程g)、目的のヒダントイン誘導体(6)を得ることができる。なお、本発明のヒダントイン誘導体は、(6)に示すように、イミド部の立体配置が反転したジアステレオマーの混合物として得られる。   Finally, the desired hydantoin derivative (6) is obtained by allowing the amino acid-imide condensation compound (5) to react with 4-nitrophenyl chloroformate in dry acetonitrile in the presence of excess sodium bicarbonate (step g). Obtainable. The hydantoin derivative of the present invention is obtained as a mixture of diastereomers in which the configuration of the imide moiety is reversed as shown in (6).

以下、本発明の新規サリドマイド類似体について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。   Hereinafter, although the novel thalidomide analog of this invention is demonstrated more concretely using an Example, this invention is not limited to the Example mentioned later.

(グルタルイミドイルヒダントイン誘導体の合成)
L-グルタミン酸をメタノール中に溶解した溶液に、蒸留された塩化チオニルを、0℃で30分以上、滴下ろうとを用いて加えた後、反応混合物を室温で12時間、激しく攪拌した。その後、溶媒を減圧下で蒸発させ、炭酸水素ナトリウム水溶液で希釈し、ジクロロメタンで抽出した。有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させて、グルタミン酸ジメチルエステル(L-1,5-ジメチル-2-アミノペンタンジオアート)を得た。
(Synthesis of glutarimide ylhydantoin derivatives)
Distilled thionyl chloride was added to a solution in which L-glutamic acid was dissolved in methanol at 0 ° C. over 30 minutes using a dropping funnel, and then the reaction mixture was vigorously stirred at room temperature for 12 hours. The solvent was then evaporated under reduced pressure, diluted with aqueous sodium bicarbonate and extracted with dichloromethane. The organic layer was washed with saturated brine and dried over sodium sulfate to obtain glutamic acid dimethyl ester (L-1,5-dimethyl-2-aminopentanedioate).

上記手順で得られたグルタミン酸のジメチルエステルのクロロホルム溶液中にジ-tert-ブチル二炭酸を、トリエチルアミン存在下、室温で、連続して12時間攪拌した。10%−クエン酸水溶液で洗浄後、硫酸ナトリウムで乾燥させて、上記グルタミン酸ジメチルエステルのアミノ基に保護基としてtert-ブトキシカルボニル基(Boc基)を導入した。   Di-tert-butyl dicarbonate was stirred in the chloroform solution of glutamic acid dimethyl ester obtained by the above procedure in the presence of triethylamine at room temperature for 12 hours. After washing with 10% -citric acid aqueous solution and drying with sodium sulfate, a tert-butoxycarbonyl group (Boc group) was introduced as a protecting group into the amino group of the glutamic acid dimethyl ester.

ナトリウム・アミドの攪拌溶液に、アミノ基がBoc保護されたグルタミン酸ジメチルエステルの無水THF溶液を加え、2時間攪拌した後、塩化アンモニウムを加え、室温でアンモニアを蒸発させた。残留物に水を加えてクロロホルムで抽出した後、硫酸ナトリウムで乾燥させた。その後、Boc基の20〜30当量に相当する4M塩酸/ジオキサン溶液を加え、室温で0.5〜1時間撹拌し、そのまま減圧濃縮して、Boc基を除去し、3-アミノグルタルイミドの塩酸塩を得た。   To a stirred solution of sodium amide, an anhydrous THF solution of glutamic acid dimethyl ester in which the amino group was Boc protected was added and stirred for 2 hours. Then, ammonium chloride was added, and ammonia was evaporated at room temperature. Water was added to the residue and the mixture was extracted with chloroform and then dried over sodium sulfate. Thereafter, a 4M hydrochloric acid / dioxane solution corresponding to 20 to 30 equivalents of the Boc group was added, stirred at room temperature for 0.5 to 1 hour, concentrated under reduced pressure as it was to remove the Boc group, and the hydrochloride of 3-aminoglutarimide was obtained. Obtained.

次に、アミノ基がBoc基で保護された5種類の天然アミノ酸(バリン、ロイシン、イソロイシン、フェニルアラニン、トリプトファン)のDMF溶液を用意した。各DMF溶液に上述した手順で取得したアミノグルタルイミドの塩酸塩を加え、これに、ラセミ化防止剤として1-ヒドロキシベンゾトリアゾール(HOBt)一水和物を、縮合剤として1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(WSC・HCl)を添加し、室温で一晩撹拌した。減圧下でDMFを留去後、酢酸エチルで有機物を抽出し10%クエン酸溶液、続いて飽和食塩水で有機層を洗浄後、硫酸ナトリウムで乾燥し、有機層を減圧濃縮した。残渣をシリカゲルのカラムクロマトグラフィー(適当なクロロホルム、メタノール混合溶媒を溶出液とした)により精製した。   Next, a DMF solution of five kinds of natural amino acids (valine, leucine, isoleucine, phenylalanine, tryptophan) in which the amino group was protected with a Boc group was prepared. To each DMF solution is added the aminoglutarimide hydrochloride obtained by the procedure described above, and 1-hydroxybenzotriazole (HOBt) monohydrate as a racemization inhibitor and 1- (3-dimethyl) as a condensing agent. Aminopropyl) -3-ethylcarbodiimide hydrochloride (WSC · HCl) was added and stirred overnight at room temperature. After distilling off DMF under reduced pressure, the organic matter was extracted with ethyl acetate, the organic layer was washed with a 10% citric acid solution and then with saturated brine, dried over sodium sulfate, and the organic layer was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (with an appropriate chloroform / methanol mixed solvent as an eluent).

ここで、アミノ基がBoc基で保護されたフェニルアラニンとL−グルタミン酸から誘導した3-アミノグルタルイミドを縮合した化合物(L−G)のプロトンのNMRスペクトルを図2(a)に、アミノ基がBoc基で保護されたフェニルアラニンとD−グルタミン酸から誘導した3-アミノグルタルイミドを縮合した化合物(D−G)のプロトンのNMRスペクトルを図2(b)にそれぞれ示す。両者のスペクトルデータを比較した結果、1)3.0ppm付近に観測される二重線二重線のシグナル、2)4.6ppm付近に観測されるメチンプロトンのシグナル、3)6.9および8.3ppm付近に観測されるNHプロトンのシグナルが示すように、L−Gのスペクトルデータは、D−Gに観測されるシグナルを含んでいることが示された。上記観測結果から、L−グルタミン酸から誘導した化合物のスペクトルは、D−体から誘導した化合物を含み、グルタルイミド部のアミノ基がラセミ化していることが判明した。以下の化合物はジアステレオマー混合物として合成を進めた。   Here, the NMR spectrum of the proton of the compound (LG) obtained by condensing 3-aminoglutarimide derived from phenylalanine whose amino group is protected with a Boc group and L-glutamic acid is shown in FIG. FIG. 2 (b) shows the NMR spectra of protons of the compound (DG) obtained by condensing 3-aminoglutarimide derived from phenylalanine protected with a Boc group and D-glutamic acid. As a result of comparing the spectral data of both, 1) a signal of a double line and a double line observed around 3.0 ppm, 2) a signal of a methine proton observed around 4.6 ppm, 3) 6.9 and 8.3 ppm As shown by the NH proton signal observed in the vicinity, it was shown that the spectrum data of LG includes the signal observed in DG. From the above observation results, it was found that the spectrum of the compound derived from L-glutamic acid includes the compound derived from the D-form, and the amino group of the glutarimide part is racemized. The following compounds proceeded as diastereomeric mixtures.

上記精製物に対してBoc基の20〜30当量に相当する4M塩酸/ジオキサン溶液を加え、室温で0.5〜1時間撹拌してBoc基を除去し、5種類のアミノ酸−グルタルイミドの縮合化合物(あるいは、その塩酸塩)を得た。   A 4M hydrochloric acid / dioxane solution corresponding to 20 to 30 equivalents of the Boc group was added to the purified product, and the mixture was stirred at room temperature for 0.5 to 1 hour to remove the Boc group. Or its hydrochloride) was obtained.

上記各縮合化合物を乾燥アセトニトリルにけん濁後、3-5当量の炭酸水素ナトリウム存在下、等量のクロロギ酸4-ニトロフェニルを室温で3時間作用させた。原料の消失を確認後、適当量水を加え、さらに室温で3時間撹拌した。アセトニトリルを減圧留去し、沈殿を生じた場合は、これを吸引ろ過で沈殿を採取した。沈殿が生じない場合は、水溶液に食塩を飽和させた後、酢酸エチルで数回抽出した。上記採取物あるいは抽出物を硫酸ナトリウムで乾燥し、減圧濃縮して、グルタルイミドイルヒダントイン誘導体を得た。得られた5種類のグルタルイミドイルヒダントイン誘導体の構造式を、図3に示す。図3は、上から順番に、天然アミノ酸として、バリン(1)、ロイシン(2)、イソロイシン(3)、フェニルアラニン(4)、トリプトファン(5)を使用した場合に得られた誘導体を示す。また、誘導体(1)のNMRデータを図4に、誘導体(2)のNMRデータを図5に、誘導体(3)のNMRデータを図6に、誘導体(4)のNMRデータを図7に、誘導体(5)のNMRデータを図8に、それぞれ示す。   Each of the condensed compounds was suspended in dry acetonitrile, and then an equivalent amount of 4-nitrophenyl chloroformate was allowed to act at room temperature for 3 hours in the presence of 3-5 equivalents of sodium bicarbonate. After confirming disappearance of the raw materials, an appropriate amount of water was added, and the mixture was further stirred at room temperature for 3 hours. When acetonitrile was distilled off under reduced pressure and a precipitate was formed, the precipitate was collected by suction filtration. If no precipitation occurred, the aqueous solution was saturated with sodium chloride and extracted several times with ethyl acetate. The collected product or extract was dried over sodium sulfate and concentrated under reduced pressure to obtain a glutarimide ylhydantoin derivative. The structural formulas of the five types of glutarimide ylhydantoin derivatives obtained are shown in FIG. FIG. 3 shows, in order from the top, derivatives obtained when valine (1), leucine (2), isoleucine (3), phenylalanine (4), and tryptophan (5) are used as natural amino acids. Further, FIG. 4 shows NMR data of the derivative (1), FIG. 5 shows NMR data of the derivative (2), FIG. 6 shows NMR data of the derivative (3), FIG. 7 shows NMR data of the derivative (4), and FIG. The NMR data of the derivative (5) are shown in FIG.

(スクシンイミドイルヒダントイン誘導体の合成)
L-アスパラギン酸をメタノール中に溶解した溶液に、蒸留された塩化チオニルを、0℃で30分以上、滴下ろうとを用いて加えた後、反応混合物を室温で12時間、激しく攪拌した。その後、溶媒を減圧下で蒸発させ、炭酸水素ナトリウム水溶液で希釈し、ジクロロメタンで抽出した。有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させて、アスパラギン酸ジメチルエステル(L-1,5-ジメチル-2-アミノブタンジオアート)を得た。
(Synthesis of succinimidylhydantoin derivatives)
Distilled thionyl chloride was added to a solution of L-aspartic acid in methanol at 0 ° C. over 30 minutes using a dropping funnel, and the reaction mixture was stirred vigorously at room temperature for 12 hours. The solvent was then evaporated under reduced pressure, diluted with aqueous sodium bicarbonate and extracted with dichloromethane. The organic layer was washed with saturated brine and dried over sodium sulfate to obtain aspartic acid dimethyl ester (L-1,5-dimethyl-2-aminobutanedioate).

上記手順で得られたアスパラギン酸ジメチルエステルクロロホルム溶液中にジ-tert-ブチル二炭酸を、トリエチルアミン存在下、室温で、連続して12時間攪拌した。10%−クエン酸水溶液で洗浄後、硫酸ナトリウムで乾燥させて、上記アスパラギン酸ジメチルエステルのアミノ基に保護基としてtert-ブトキシカルボニル基(Boc基)を導入した。   Di-tert-butyl dicarbonate was stirred continuously in the presence of triethylamine at room temperature for 12 hours in the aspartic acid dimethyl ester chloroform solution obtained by the above procedure. After washing with a 10% aqueous citric acid solution and drying with sodium sulfate, a tert-butoxycarbonyl group (Boc group) was introduced as a protective group into the amino group of the aspartic acid dimethyl ester.

ナトリウム・アミドの攪拌溶液に、アミノ基がBoc保護されたアスパラギン酸ジメチルエステルの無水THF溶液を加え、2時間攪拌した後、塩化アンモニウムを加え、アンモニアを蒸発させた。残留物に水を加えてクロロホルムで抽出した後、硫酸ナトリウムで乾燥させた。その後、Boc基の20〜30当量に相当する4M塩酸/ジオキサン溶液を加え、室温で0.5〜1時間撹拌し、そのまま減圧濃縮して、Boc基を除去し、3-アミノスクシンイミドの塩酸塩を得た。   To a stirred solution of sodium amide, an anhydrous THF solution of aspartic acid dimethyl ester in which the amino group was Boc protected was added and stirred for 2 hours, and then ammonium chloride was added to evaporate the ammonia. Water was added to the residue and the mixture was extracted with chloroform and then dried over sodium sulfate. Then, 4M hydrochloric acid / dioxane solution corresponding to 20-30 equivalents of Boc group was added, stirred at room temperature for 0.5-1 hour, concentrated under reduced pressure as it was to remove Boc group, and hydrochloride of 3-aminosuccinimide was obtained. It was.

次に、アミノ基がBoc基で保護された4種類の天然アミノ酸(バリン、ロイシン、フェニルアラニン、トリプトファン)のDMF溶液を用意した。各DMF溶液に上述した手順で取得した3-アミノスクシンイミドの塩酸塩を加え、これに、ラセミ化防止剤として1-ヒドロキシベンゾトリアゾール(HOBt)一水和物を、縮合剤として1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(WSC・HCl)を添加し、室温で一晩撹拌した。減圧下でDMFを留去後、酢酸エチルで有機物を抽出し10%クエン酸溶液、続いて飽和食塩水で有機層を洗浄後、硫酸ナトリウムで乾燥し、有機層を減圧濃縮した。残渣をシリカゲルのカラムクロマトグラフィー(適当なクロロホルム、メタノール混合溶媒を溶出液とした)により精製した。   Next, a DMF solution of four kinds of natural amino acids (valine, leucine, phenylalanine, tryptophan) in which the amino group was protected with a Boc group was prepared. To each DMF solution was added 3-aminosuccinimide hydrochloride obtained by the procedure described above, and 1-hydroxybenzotriazole (HOBt) monohydrate as a racemization inhibitor and 1- (3- Dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride (WSC · HCl) was added and stirred overnight at room temperature. After distilling off DMF under reduced pressure, the organic matter was extracted with ethyl acetate, the organic layer was washed with a 10% citric acid solution and then with saturated brine, dried over sodium sulfate, and the organic layer was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (with an appropriate chloroform / methanol mixed solvent as an eluent).

ここで、アミノ基がBoc基で保護されたフェニルアラニンとL−アスパラギン酸から誘導した3-アミノスクシンイミドを縮合した化合物(L−S)のプロトンのNMRスペクトルを図9(a)に、アミノ基がBoc基で保護されたフェニルアラニンとD−アスパラギン酸から誘導した3-アミノスクシンイミドをそれぞれ縮合した化合物(D−S)のプロトンのNMRスペクトルを図9(b)にそれぞれ示す。両者のスペクトルデータを比較した結果、1)3.0ppm付近に観測される二重線二重線のシグナル、2)4.6ppm付近に観測されるメチンプロトンのシグナル、3)6.9および8.3ppm付近に観測されるNHプロトンのシグナルが示すように、L−アスパラギン酸から誘導した化合物のスペクトルは、D−Sに観測されるシグナルを含んでいることが示された。上記観測結果から、L−アスパラギン酸から誘導した化合物のスペクトルは、D−体から誘導した化合物を含み、スクシンイミド部のアミノ基がラセミ化していることが判明した。以下の化合物はジアステレオマーの混合物として合成を進めた。   Here, FIG. 9A shows the proton NMR spectrum of a compound (LS) obtained by condensing 3-aminosuccinimide derived from L-aspartic acid and phenylalanine whose amino group is protected with a Boc group. The NMR spectra of protons of the compound (DS) obtained by condensing 3-aminosuccinimide derived from phenylalanine protected with a Boc group and D-aspartic acid are shown in FIG. As a result of comparing the spectral data of both, 1) a signal of a double line and a double line observed around 3.0 ppm, 2) a signal of a methine proton observed around 4.6 ppm, 3) 6.9 and 8.3 ppm As shown by the NH proton signal observed in the vicinity, the spectrum of the compound derived from L-aspartic acid was shown to contain the signal observed in DS. From the above observation results, it was found that the spectrum of the compound derived from L-aspartic acid included the compound derived from the D-form, and the amino group of the succinimide part was racemized. The following compounds proceeded as a mixture of diastereomers.

上記精製物に対してBoc基の20〜30当量に相当する4M塩酸/ジオキサン溶液を加え、室温で0.5〜1時間撹拌してBoc基を除去し、4種類のアミノ酸−スクシンイミドの縮合化合物(あるいは、その塩酸塩)を得た。   A 4M hydrochloric acid / dioxane solution corresponding to 20 to 30 equivalents of the Boc group was added to the purified product, and the Boc group was removed by stirring at room temperature for 0.5 to 1 hour to remove four types of amino acid-succinimide condensation compounds (or Its hydrochloride).

上記各縮合化合物を乾燥アセトニトリルにけん濁後、3-5当量の炭酸水素ナトリウム存在下、等量のクロロギ酸4-ニトロフェニルを室温で3時間作用させた。原料の消失を確認後、適当量水を加え、さらに室温で3時間撹拌した。アセトニトリルを減圧留去し、沈殿を生じた場合は、これを吸引ろ過で沈殿を採取した。沈殿が生じない場合は、水溶液に食塩を飽和させた後、酢酸エチルで数回抽出した。上記採取物あるいは抽出物を硫酸ナトリウムで乾燥し、減圧濃縮して、スクシンイミドイルヒダントイン誘導体を得た。得られた4種類のスクシンイミドイルヒダントイン誘導体の構造式を、図10に示す。図10は、上から順番に、天然アミノ酸として、バリン(6)、ロイシン(7)、フェニルアラニン(8)、トリプトファン(9)を使用した場合に得られた誘導体を示す。また、誘導体(6)のNMRデータを図11に、誘導体(7)のNMRデータを図12に、誘導体(8)のNMRデータを図13に、誘導体(9)のNMRデータを図14に、それぞれ示す。   Each of the above condensed compounds was suspended in dry acetonitrile, and then an equivalent amount of 4-nitrophenyl chloroformate was allowed to act at room temperature for 3 hours in the presence of 3-5 equivalents of sodium bicarbonate. After confirming disappearance of the raw materials, an appropriate amount of water was added, and the mixture was further stirred at room temperature for 3 hours. When acetonitrile was distilled off under reduced pressure and a precipitate was formed, the precipitate was collected by suction filtration. If no precipitation occurred, the aqueous solution was saturated with sodium chloride and extracted several times with ethyl acetate. The collected product or extract was dried over sodium sulfate and concentrated under reduced pressure to obtain a succinimidylhydantoin derivative. The structural formulas of the obtained four types of succinimidoylhydantoin derivatives are shown in FIG. FIG. 10 shows the derivatives obtained when valine (6), leucine (7), phenylalanine (8), and tryptophan (9) are used as natural amino acids in order from the top. FIG. 11 shows NMR data of the derivative (6), FIG. 12 shows NMR data of the derivative (7), FIG. 13 shows NMR data of the derivative (8), and FIG. 14 shows NMR data of the derivative (9). Each is shown.

Claims (6)

一般式(1)
Figure 2010275229
(上記一般式(1)中、Rは、天然アミノ酸の側鎖を表し、RおよびRは、それぞれ同一でも異なっていても良く、水素原子、炭素原子数1〜10個の分岐または直鎖のアルキル基、アルコキシ基、チオアルコキシ基、またはハロゲン原子からなる群から選択される置換基を示す。)で表されるヒダントイン誘導体。
General formula (1)
Figure 2010275229
(In the general formula (1), R 1 represents a side chain of a natural amino acid, and R 2 and R 3 may be the same or different, and each represents a hydrogen atom, a branched chain having 1 to 10 carbon atoms, or And a substituent selected from the group consisting of a linear alkyl group, an alkoxy group, a thioalkoxy group, or a halogen atom.).
一般式(2)
Figure 2010275229
(上記一般式(2)中、Rは、天然アミノ酸の側鎖を表し、RおよびRは、それぞれ同一でも異なっていても良く、水素原子、炭素原子数1〜10個の分岐または直鎖のアルキル基、アルコキシ基、チオアルコキシ基、またはハロゲン原子からなる群から選択される置換基を示す。)で表されるヒダントイン誘導体。
General formula (2)
Figure 2010275229
(In the above general formula (2), R 1 represents a side chain of a natural amino acid, and R 2 and R 3 may be the same or different, and each represents a hydrogen atom, a C 1-10 branched or And a substituent selected from the group consisting of a linear alkyl group, an alkoxy group, a thioalkoxy group, or a halogen atom.).
一般式(3)
Figure 2010275229
(上記一般式(3)中、Rは、天然アミノ酸の側鎖を表し、RおよびRは、それぞれ同一でも異なっていても良く、水素原子、炭素原子数1〜10個の分岐または直鎖のアルキル基、アルコキシ基、チオアルコキシ基、またはハロゲン原子からなる群から選択される置換基を示す。)で表されるヒダントイン誘導体。
General formula (3)
Figure 2010275229
(In the above general formula (3), R 1 represents a side chain of a natural amino acid, and R 2 and R 3 may be the same or different, and each represents a hydrogen atom, a branch having 1 to 10 carbon atoms, or And a substituent selected from the group consisting of a linear alkyl group, an alkoxy group, a thioalkoxy group, or a halogen atom.).
一般式(4)
Figure 2010275229
(上記一般式(4)中、Rは、天然アミノ酸の側鎖を表し、RおよびRは、それぞれ同一でも異なっていても良く、水素原子、炭素原子数1〜10個の分岐または直鎖のアルキル基、アルコキシ基、チオアルコキシ基、またはハロゲン原子からなる群から選択される置換基を示す。)で表されるヒダントイン誘導体。
General formula (4)
Figure 2010275229
(In the general formula (4), R 1 represents a side chain of a natural amino acid, and R 2 and R 3 may be the same or different, and each represents a hydrogen atom, a branched chain having 1 to 10 carbon atoms, or And a substituent selected from the group consisting of a linear alkyl group, an alkoxy group, a thioalkoxy group, or a halogen atom.).
L-グルタミン酸をジメチルエステルに変換した後、アミノ基に保護基を導入する工程と、
前記保護基が導入されたグルタミン酸ジメチルエステルをイミドへと変換する工程と、
前記保護基を除去して3−アミノグルタルイミドの塩酸塩を得る工程と、
前記3−アミノグルタルイミドの塩酸塩とアミノ基に保護基が導入された天然アミノ酸とを縮合させアミノ酸縮合化合物を得る工程と、
前記アミノ酸縮合化合物から保護基を除去した後、クロロギ酸4-ニトロフェニルを作用させる工程と、
を含む、請求項1または2に記載のヒダントイン誘導体の製造方法。
Converting L-glutamic acid to dimethyl ester and then introducing a protecting group to the amino group;
Converting glutamic acid dimethyl ester introduced with the protecting group into imide;
Removing the protecting group to obtain hydrochloride of 3-aminoglutarimide;
A step of condensing the hydrochloride of 3-aminoglutarimide with a natural amino acid having a protective group introduced into an amino group to obtain an amino acid condensation compound;
Removing a protecting group from the amino acid condensation compound and then reacting 4-nitrophenyl chloroformate;
The manufacturing method of the hydantoin derivative of Claim 1 or 2 containing this.
L-アスパラギン酸をジメチルエステルに変換した後、アミノ基に保護基を導入する工程と、
前記保護基が導入されたアスパラギン酸ジメチルエステルをイミドへと変換する工程と、
前記保護基を除去して3−アミノスクシンイミドの塩酸塩を得る工程と、
前記3−アミノスクシンイミドの塩酸塩とアミノ基に保護基が導入された天然アミノ酸とを縮合させアミノ酸縮合化合物を得る工程と、
前記アミノ酸縮合化合物から保護基を除去した後、クロロギ酸4-ニトロフェニルを作用させる工程と、
を含む、請求項3または4に記載のヒダントイン誘導体の製造方法。
Converting L-aspartic acid to dimethyl ester and then introducing a protecting group to the amino group;
Converting aspartic acid dimethyl ester introduced with the protecting group into imide;
Removing the protecting group to obtain hydrochloride of 3-aminosuccinimide;
A step of condensing the hydrochloride of 3-aminosuccinimide with a natural amino acid having a protective group introduced into the amino group to obtain an amino acid condensation compound;
Removing a protecting group from the amino acid condensation compound and then reacting with 4-nitrophenyl chloroformate;
The manufacturing method of the hydantoin derivative of Claim 3 or 4 containing this.
JP2009128995A 2009-05-28 2009-05-28 Hydantoin derivative Pending JP2010275229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128995A JP2010275229A (en) 2009-05-28 2009-05-28 Hydantoin derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128995A JP2010275229A (en) 2009-05-28 2009-05-28 Hydantoin derivative

Publications (1)

Publication Number Publication Date
JP2010275229A true JP2010275229A (en) 2010-12-09

Family

ID=43422536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128995A Pending JP2010275229A (en) 2009-05-28 2009-05-28 Hydantoin derivative

Country Status (1)

Country Link
JP (1) JP2010275229A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105566141A (en) * 2015-12-17 2016-05-11 蚌埠丰原医药科技发展有限公司 Method for preparing aspartate condensation compound
US9499521B2 (en) 2014-12-11 2016-11-22 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
EP2968276A4 (en) * 2013-03-15 2017-02-15 President and Fellows of Harvard College Hybrid necroptosis inhibitors

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2968276A4 (en) * 2013-03-15 2017-02-15 President and Fellows of Harvard College Hybrid necroptosis inhibitors
US9725452B2 (en) 2013-03-15 2017-08-08 Presidents And Fellows Of Harvard College Substituted indoles and pyrroles as RIP kinase inhibitors
US9499521B2 (en) 2014-12-11 2016-11-22 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
US9944628B2 (en) 2014-12-11 2018-04-17 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
US10508102B2 (en) 2014-12-11 2019-12-17 President And Fellows Of Harvard College Inhibitors of cellular necrosis and related methods
CN105566141A (en) * 2015-12-17 2016-05-11 蚌埠丰原医药科技发展有限公司 Method for preparing aspartate condensation compound

Similar Documents

Publication Publication Date Title
JP6703669B2 (en) Method for producing leuprorelin
KR100607556B1 (en) NOVEL METHOD FOR SYNTHESIS OF 2S, 3aS, 7aS-1-[S-ALANYL]-OCTAHYDRO-1H-INDOLE-2-CARBOXYLIC ACID DERIVATIVES AND USE FOR SYNTHESIS OF PERINDOPRIL
JPH0357118B2 (en)
JP2010275229A (en) Hydantoin derivative
JP7238123B2 (en) Method for producing peptide compound, protecting group-forming reagent, and condensed polycyclic aromatic hydrocarbon compound
TWI383995B (en) Pseudo proline dipeptides
EA004265B1 (en) Method for synthesis of n-[(s)-1-carboxybutyl]-(s)-alanine esters and use in synthesis of perindopril
CS201033B2 (en) Method of producing derivatives of n-/3-amino-2-hydroxy-propionyl/-2-amino acetic acid
ZA200207150B (en) Novel method for synthesis of N-[(S)-1-carboxybutyl]-(S)-alanine esters and use in synthesis of perindopril.
EP3061753A1 (en) Enantio-selective synthesis of non-natural amino acids
US8853453B2 (en) Processes for reducing impurities in lacosamide
ES2249691T3 (en) PROCEDURE OF SYNTHESIS OF ACID DERIVATIVES (2S, 3AS, 7AS) -1- (S) -ALANIL) -OCTAHIDRO-1H-INDOL-2-CARBOXILICO AND ITS USE IN THE SYNTHESIS OF PERINDOPRIL.
EA008485B1 (en) Novel method for the synthesis of perindopril and pharmaceutically-acceptable salts thereof
JP4331206B2 (en) Novel synthesis method of perindopril and pharmaceutically acceptable salts thereof
AU684763B2 (en) Process for the preparation of an alpha-amino acid amide
Pinto et al. Straightforward, racemization-free synthesis of peptides with fairly to very bulky di-and trisubstituted glycines
KR100735198B1 (en) Novel method for synthesizing esters of n-[s-1-carboxybutyl]-s-alanine and use thereof for synthesizing perindopril
JP2000154198A (en) Solid phase synthesis of cyclic depsipeptide and its intermediate
JPH041162A (en) Optically active threo-3-amino-2-hydroxypentanoic acid and production thereof
ES2240926T3 (en) SYNTHESIS PROCEDURE OF N - ((S) -1- (ETOXICARBONIL) BUTIL) - (S) -ALANINE AND ITS USE IN THE SYNTHESIS OF PERINDOPRIL.
JPH08337558A (en) 2-hydrixymethylamino acid derivative
JP4378745B2 (en) Novel carbonic acid ester and amidation reaction using the same
WO2022196797A1 (en) Method for producing amino acid or peptide, reagent for forming protecting group, and compound
JP5982720B2 (en) Method for producing histidyl-prolinamide derivative using solid polymer support
DK149631B (en) METHOD FOR PREPARING H-SAR-LIGHT-SAR-GLN-NH2