JP2010274716A - Hollow stabilizer - Google Patents

Hollow stabilizer Download PDF

Info

Publication number
JP2010274716A
JP2010274716A JP2009127477A JP2009127477A JP2010274716A JP 2010274716 A JP2010274716 A JP 2010274716A JP 2009127477 A JP2009127477 A JP 2009127477A JP 2009127477 A JP2009127477 A JP 2009127477A JP 2010274716 A JP2010274716 A JP 2010274716A
Authority
JP
Japan
Prior art keywords
thickness
bending
pipe
curved portion
hollow stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009127477A
Other languages
Japanese (ja)
Other versions
JP5303362B2 (en
Inventor
Toshiaki Sato
俊明 佐藤
Yuko Nanbae
祐子 難波江
Kenji Kayama
賢治 香山
Hisashi Sato
尚志 佐藤
Kenji Yamamotoya
健二 山本屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2009127477A priority Critical patent/JP5303362B2/en
Publication of JP2010274716A publication Critical patent/JP2010274716A/en
Application granted granted Critical
Publication of JP5303362B2 publication Critical patent/JP5303362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow stabilizer suppressing thickness reduction and flatness due to bending of a pipe-like material, and preventing the deterioration of durability even when saving weight by reducing the thickness of the material. <P>SOLUTION: The hollow stabilizer includes a torsion part extended in the width direction of a vehicle, arm parts positioned on both end parts of the torsion part, and a bent part connecting the torsion part to the arm part. When expressions are as follows by using thickness t<SB>1</SB>outside the bent part 30, thickness t<SB>2</SB>inside the bent part 30, and thickness t<SB>0</SB>of the pipe-like material (material before bending) shown in Fig.11: thickness reduction rate &delta;<SB>1</SB>outside the bent part 30=(t<SB>0</SB>-t<SB>1</SB>)/t<SB>0</SB>&times;100(%); thickness increase rate &delta;<SB>2</SB>inside the bent part 30=(t<SB>2</SB>-t<SB>0</SB>)/t<SB>0</SB>&times;100(%), the ratio of the thickness reduction rate &delta;<SB>1</SB>outside the bent part 30 to the thickness increase rate &delta;<SB>2</SB>inside the bent part 30 (=bent part inner and outer thickness variation ratio &delta;<SB>2</SB>/&delta;<SB>1</SB>) satisfies &delta;<SB>2</SB>/&delta;<SB>1</SB>&ge;1.75. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、車両に発生するロールを抑制する中空スタビライザに係り、特に中空スタビライザの肉厚の設定に関する。   The present invention relates to a hollow stabilizer that suppresses a roll generated in a vehicle, and more particularly, to setting a thickness of the hollow stabilizer.

スタビライザ1は、図7に示すように、車両の幅方向に延在するトーション部11、トーション部11の両端部に位置するアーム部12、および、トーション部11とアーム部12とを接続する湾曲部13(肩部)を備えている。スタビライザ1では、アーム部12が、左右で逆位相となる上下方向の入力をねじりモーメントに変え、トーション部11が、そのねじりモーメントを受けている。なお、符号14は、ブッシュを示している。   As shown in FIG. 7, the stabilizer 1 includes a torsion part 11 extending in the vehicle width direction, arm parts 12 positioned at both ends of the torsion part 11, and a curve connecting the torsion part 11 and the arm part 12. A portion 13 (shoulder) is provided. In the stabilizer 1, the arm part 12 changes the input of the up-down direction which becomes a right-and-left reverse phase into a torsion moment, and the torsion part 11 receives the torsion moment. Reference numeral 14 denotes a bush.

スタビライザ1では、トーション部11がブッシュ14およびブラケット等の支持部材18を介して車体側に支持され、アーム部12がスタビライザリンク(図示略)を介してサスペンションアーム等のアクスル側の部材に接続される。スタビライザ1では、車両の旋回走行時にアーム部12に互いに逆向きの上下方向の荷重が入力すると、アーム部12が互いに逆方向に撓むとともに、トーション部12が捻られる。このようにスタビライザ1の各部位に生じるばね作用により、車体に発生するロールが抑制される。   In the stabilizer 1, the torsion part 11 is supported on the vehicle body side via a support member 18 such as a bush 14 and a bracket, and the arm part 12 is connected to an axle side member such as a suspension arm via a stabilizer link (not shown). The In the stabilizer 1, when vertical loads in opposite directions are input to the arm portion 12 during turning of the vehicle, the arm portion 12 is bent in the opposite direction and the torsion portion 12 is twisted. Thus, the roll which generate | occur | produces in a vehicle body is suppressed by the spring effect | action which arises in each site | part of the stabilizer 1. FIG.

スタビライザの素材としては中実材や中空材が使用されている(たとえば特許文献1〜3)。二酸化炭素排出量削減が世界の重要課題である状況下、自動車部品の軽量化要求が強いことから、中空材の利用が図られており、中空材は、応力が比較的低いものに適用される。中空材としては、電縫管や電縫管を所定の寸法に引抜加工したパイプ素材が使われる。   Solid materials and hollow materials are used as stabilizer materials (for example, Patent Documents 1 to 3). Under the circumstance that reducing carbon dioxide emissions is an important issue in the world, the demand for weight reduction of automobile parts is strong, so the use of hollow materials is being attempted, and hollow materials are applied to materials with relatively low stress. . As the hollow material, an electric sewing tube or a pipe material obtained by drawing an electric sewing tube into a predetermined size is used.

中空スタビライザは、図8に示すパイプベンダ20を用い、中空材であるパイプPを所定形状に曲げ加工することにより製造される。図8は、パイプベンダ20全体の概略構成を表し、パイプPへの曲げ加工中の状態を表す斜視図である。パイプベンダ20は、回転曲げ型21、締付型22、および、圧力型23を備えている。回転曲げ型21は、円弧状の成形面を有し、回転駆動機構(図示略)により回転させられる。締付型22は、パイプPを固定する。圧力型23は、回転曲げ型21の中心方向に押し付けられ、回転曲げ型21とでパイプPを狭持する。   The hollow stabilizer is manufactured by using a pipe bender 20 shown in FIG. 8 and bending a pipe P, which is a hollow material, into a predetermined shape. FIG. 8 is a perspective view showing a schematic configuration of the entire pipe bender 20 and showing a state in which the pipe P is being bent. The pipe bender 20 includes a rotary bending die 21, a clamping die 22, and a pressure die 23. The rotary bending die 21 has an arc-shaped molding surface and is rotated by a rotation drive mechanism (not shown). The clamping die 22 fixes the pipe P. The pressure die 23 is pressed toward the center of the rotary bending die 21 and pinches the pipe P with the rotary bending die 21.

パイプベンダ20では、図9に示すようにパイプPが締付型22に固定され、図10(A),(B)に示すように、パイプPが固定された締付型22が回転曲げ型21とともに回転する。これにより、パイプPは、回転曲げ型21に巻き付けられるように曲げられる。この場合、パイプPは、締付型22の方向に引き込まれ、圧カ型23は、回転曲げ型21中心への押付力を維持しながら、パイプPとともに移動する。   In the pipe vendor 20, the pipe P is fixed to the clamping die 22 as shown in FIG. 9, and the clamping die 22 to which the pipe P is fixed is a rotary bending die as shown in FIGS. 10 (A) and 10 (B). Rotate with 21. Thereby, the pipe P is bent so as to be wound around the rotary bending die 21. In this case, the pipe P is drawn in the direction of the clamping die 22, and the pressure die 23 moves together with the pipe P while maintaining the pressing force toward the center of the rotary bending die 21.

特開平8−142632号公報JP-A-8-142632 特許第3886106号Japanese Patent No. 3886106 特許第4087765号Patent No. 4087765

以上のような曲げ加工により得られたパイプPには、図11(A)に示す湾曲部30が形成される。符号Cは、曲げ中心を示している。湾曲部30には曲げ応力(湾曲部外側には引張応力、湾曲部内側には圧縮応力)が付与され、湾曲部30の肉厚は、曲げ内側で厚く、曲げ外側で薄くなる。なお、湾曲部内側は曲げ中心C側であり、湾曲部外側は曲げ中心C側とは反対側である。ここで、湾曲部30外側の肉厚をt、曲げ内側の肉厚をt、パイプ素材(曲げ加工前のパイプ)の肉厚をtとした場合、図11(B)に示すように湾曲部30の曲げ外側の肉厚減少率δおよび曲げ内側の肉厚増加率δを次のように表すと、通常の中空スタビライザでは、湾曲部内外肉厚変化率比δ/δは0.45〜1.5程度となる。
δ=(t−t)/t×100(%)
δ=(t−t)/t×100(%)
A curved portion 30 shown in FIG. 11A is formed on the pipe P obtained by the bending process as described above. Symbol C indicates the bending center. Bending stress is applied to the bending portion 30 (tensile stress on the outside of the bending portion and compressive stress on the inside of the bending portion), and the thickness of the bending portion 30 is thick on the inside of the bending and thin on the outside of the bending. The inside of the bending portion is the bending center C side, and the outside of the bending portion is the opposite side to the bending center C side. Here, when the thickness on the outer side of the bending portion 30 is t 1 , the thickness on the inner side of the bending is t 2 , and the thickness of the pipe material (pipe before bending) is t 0 , as shown in FIG. When the thickness reduction rate δ 1 on the outer side of the bending portion 30 and the thickness increase rate δ 2 on the inner side of the bending portion are expressed as follows, in the normal hollow stabilizer, the ratio of change rate δ 2 / δ 1 is about 0.45 to 1.5.
δ 1 = (t 0 −t 1 ) / t 0 × 100 (%)
δ 2 = (t 2 −t 0 ) / t 0 × 100 (%)

また、湾曲部30では、図11(B)に示すように、パイプ断面の曲げ半径方向で短径となり、かつ、それと垂直な方向で長径となる偏平が生じる。長径をD、短径をD、素材径をDとした場合、曲げ半径方向と直角方向(すなわち、短径方向)の外径増加率γおよび曲げ半径方向の外径減少率γは、次のように表され、γは、曲げ型で拘束されるため(図10(B)参照)、4%以下であるが、γは2〜15%程度である。
γ=(D−D)/D×100(%)
γ=(D−D)/D×l00(%)
Moreover, in the bending part 30, as shown to FIG. 11 (B), the flatness which becomes a short diameter in the bending radial direction of a pipe cross section and becomes a long diameter in the perpendicular | vertical direction arises. When the major axis is D 1 , the minor axis is D 2 , and the material diameter is D 0 , the outer diameter increase rate γ 1 in the direction perpendicular to the bending radius direction (that is, the minor axis direction) and the outer diameter decrease rate γ in the bending radius direction 2 is expressed as follows, and γ 1 is 4% or less because γ 1 is constrained by a bending die (see FIG. 10B), but γ 2 is about 2 to 15%.
γ 1 = (D 1 −D 0 ) / D 0 × 100 (%)
γ 2 = (D 0 −D 2 ) / D 0 × 100 (%)

しかしながら、一般的に中空スタビライザでは湾曲部が最大応力となる。湾曲部外側の肉厚が薄くなると、湾曲部の断面係数が減少するため、湾曲部の応カ増大と、ばね定数低下が起こる。その結果、耐久性が低下するため、湾曲部の減肉を考慮してパイプ素材の肉厚を厚くして設計する必要がある。また、曲げ加工で偏平が生じてγが大きくなると、減肉と同様、湾曲部の断面係数が減少するため、湾曲部の応力増大とばね定数低下が起こる。その結果、耐久性が低下する。 However, in general, a curved portion has a maximum stress in a hollow stabilizer. When the thickness on the outside of the bending portion is reduced, the section modulus of the bending portion is decreased, so that the response of the bending portion is increased and the spring constant is decreased. As a result, since durability is lowered, it is necessary to increase the thickness of the pipe material in consideration of thinning of the curved portion. Also, bending the flat is gamma 2 increases occurred in processing, similar to the thinning, since the section modulus of the bending portion is reduced, the stress increases with the spring constant reduction of bend occurs. As a result, durability is reduced.

したがって、本発明は、パイプ素材の曲げ加工による肉厚減少および偏平を抑制することができるとともに、耐久性を損なわずにパイプ素材の肉厚を低減して軽量化が可能な中空スタビライザを提供することを目的としている。   Therefore, the present invention provides a hollow stabilizer that can suppress a reduction in thickness and flatness due to bending of a pipe material, and can reduce the thickness of the pipe material and reduce the weight without impairing durability. The purpose is that.

本発明の中空スタビライザは、車両の幅方向に延在するトーション部と、トーション部の両端部に位置するアーム部と、トーション部とアーム部とを接続する湾曲部とを備えた中空スタビライザであって、湾曲部外側の肉厚t、湾曲部内側の肉厚t、パイプ状の素材の肉厚tを用い、湾曲部外側の肉厚減少率δ=(t−t)/t×100(%)、湾曲部内側の肉厚増加率δ=(t−t)/t×100(%)と表した場合、湾曲部外側の肉厚減少率δと湾曲部内側の肉厚増加率δとの比δ/δは、δ/δ≧1.75を満たすことを特徴としている。 A hollow stabilizer according to the present invention is a hollow stabilizer including a torsion portion extending in the width direction of a vehicle, arm portions located at both ends of the torsion portion, and a curved portion connecting the torsion portion and the arm portion. The thickness reduction rate δ 1 = (t 0 −t 1 ) on the outside of the curved portion is calculated using the thickness t 1 on the outside of the curved portion, the thickness t 2 on the inside of the curved portion, and the thickness t 0 of the pipe-shaped material. / T 0 × 100 (%), the thickness increase rate δ 2 inside the curved portion δ 2 = (t 2 −t 0 ) / t 0 × 100 (%), the thickness decrease rate δ 1 outside the curved portion The ratio δ 2 / δ 1 between the thickness increase rate δ 2 on the inner side of the curved portion satisfies δ 2 / δ 1 ≧ 1.75.

本発明の中空スタビライザでは、湾曲部外側の肉厚減少率δと湾曲部内側の肉厚増加率δとの比がδ/δ≧1.75を満たしているので、パイプ素材の曲げ加工による肉厚減少および偏平を抑制することができるとともに、耐久性を損なわずにパイプ素材の肉厚を低減して軽量化を図ることができる。 In the hollow stabilizer of the present invention, the ratio of the thickness reduction rate δ 1 outside the curved portion and the thickness increase rate δ 2 inside the curved portion satisfies δ 2 / δ 1 ≧ 1.75. The thickness reduction and flatness due to bending can be suppressed, and the thickness of the pipe material can be reduced and the weight can be reduced without impairing the durability.

本発明の中空スタビライザは、様々な構成を用いることができる。たとえば湾曲部における素材の径方向の断面は、素材の曲げ方向が短径となり、かつ曲げ方向に略直交する方向が長径となる扁平形状をなし、短径をD、素材外径Dを用い、短径方向の外径減少率γ=(D−D)/D×l00(%)と表した場合、外径減少率γは、γ≦5(%)を満たすことができる。 Various configurations can be used for the hollow stabilizer of the present invention. For example, the radial cross section of the material in the bending portion has a flat shape in which the bending direction of the material is the short diameter and the direction substantially orthogonal to the bending direction is the long diameter, and the short diameter is D 2 and the material outer diameter D 0 is set. used, when expressed as the outside diameter reduction rate in the short radial γ 2 = (D 0 -D 2 ) / D 0 × l00 (%), the outer diameter reduction rate gamma 2 satisfies gamma 2 ≦ 5 (percent) be able to.

本発明の中空スタビライザによれば、パイプ素材の曲げ加工による肉厚減少および偏平を抑制することができるとともに、耐久性を損なわずにパイプ素材の肉厚を低減して軽量化を図ることができる。   According to the hollow stabilizer of the present invention, thickness reduction and flatness due to bending of a pipe material can be suppressed, and the thickness of the pipe material can be reduced and reduced in weight without impairing durability. .

本発明の一実施形態に係る中空スタビライザの曲げ加工に使用されるMOS曲げ装置の概略構成を表す側断面図である。It is a sectional side view showing the schematic structure of the MOS bending apparatus used for the bending process of the hollow stabilizer which concerns on one Embodiment of this invention. 素材の肉厚tと素材径Dとの比(=t/D)と、矢印C方向(図1)の移動距離Lと矢印B方向(図1)の回転角度αとの比(=L/α)との関係を表すグラフである。The ratio (= t / D) between the thickness t of the material and the material diameter D (= t / D) and the movement distance L in the direction of arrow C (FIG. 1) and the rotation angle α in the direction of arrow B (FIG. 1) (= L / It is a graph showing the relationship with (α). 湾曲部外側の肉厚減少率δ(%)と前記湾曲部内側の肉厚増加率δ(%)との比(=湾曲部内外肉厚変化率比δ/δ)と曲げ半径、および、外径減少率γ(%)と曲げ半径の関係を表すグラフである。The ratio of the thickness reduction rate δ 1 (%) on the outside of the curved portion and the thickness increase rate δ 2 (%) on the inside of the curved portion (= ratio of change in thickness between the inside and outside of the curved portion δ 2 / δ 1 ) and the bending radius And a graph showing the relationship between the outer diameter reduction rate γ 2 (%) and the bending radius. 本発明の一実施形態に係る中空スタビライザの曲げ加工に使用されるパイプベンダの概略構成を表す斜視図である。It is a perspective view showing the schematic structure of the pipe bender used for the bending process of the hollow stabilizer which concerns on one Embodiment of this invention. 実施例で製造した中空スタビライザの構成を表す斜視図である。It is a perspective view showing the structure of the hollow stabilizer manufactured in the Example. MOS曲げ装置で座屈が発生した状態を表す側断面図である。It is a sectional side view showing the state where buckling occurred in a MOS bending apparatus. 中空スタビライザの構成を表す斜視図であるIt is a perspective view showing the structure of a hollow stabilizer. 中空スタビライザの曲げ加工に使用される従来のパイプベンダの概略構成を表す斜視図である。It is a perspective view showing schematic structure of the conventional pipe bender used for the bending process of a hollow stabilizer. 従来のパイプベンダにより曲げ加工を行う工程を表す側面図である。It is a side view showing the process of bending by the conventional pipe bender. 従来のパイプベンダにより曲げ加工を行う工程を表し、(A)は図9の工程に続く工程を表す側面図、(B)は(A)の工程で素材が回転曲げ型に拘束されている状態を表す径方向断面図である。9A shows a process of bending by a conventional pipe bender, FIG. 9A is a side view showing a process following the process of FIG. 9, and FIG. 9B shows a state in which the material is constrained by a rotary bending die in the process of FIG. It is radial direction sectional drawing showing. 中空スタビライザの湾曲部の構成を表し、(A)は中空スタビライザの湾曲部を表す側面図、(B)は 湾曲部の径方向断面での各パラメータを説明するための断面図である。The structure of the curved part of a hollow stabilizer is represented, (A) is a side view showing the curved part of a hollow stabilizer, (B) is sectional drawing for demonstrating each parameter in the radial direction cross section of a curved part.

以下、本発明の実施形態について図面を参照して説明する。本実施形態の中空スタビライザは、たとえば図7に示す従来の中空スタビライザと同様な部位から構成されているが、耐久性の向上を図るために、湾曲部の外径や肉厚に関する各種値を所定の範囲内に設定している点が、従来の中空スタビライザと異なる。   Embodiments of the present invention will be described below with reference to the drawings. The hollow stabilizer of this embodiment is configured from the same portion as the conventional hollow stabilizer shown in FIG. 7, for example, but in order to improve durability, various values relating to the outer diameter and thickness of the curved portion are predetermined. This is different from the conventional hollow stabilizer in that it is set within the range.

すなわち、本実施形態の中空スタビライザは、図11に示すように、湾曲部30外側の肉厚t、湾曲部30内側の肉厚t、パイプ素材(曲げ加工前の素材)の肉厚tを用い、湾曲部30外側の肉厚減少率δ=(t−t)/t×100(%)、湾曲部30内側の肉厚増加率δ=(t−t)/t×100(%)と表した場合、湾曲部30外側の肉厚減少率δと湾曲部30内側の肉厚増加率δとの比(=湾曲部内外肉厚変化率比δ/δ)は、δ/δ≧1.75を満たしている。この場合、湾曲部における素材の径方向の断面は、素材の曲げ方向が短径となり、かつ曲げ方向に略直交する方向が長径となる扁平形状をなし、湾曲部の短径D、素材外径Dを用い、湾曲部の短径方向の外径減少率γ=(D−D)/D×l00(%)と表した場合、外径減少率γは、γ≦5(%)を満たすことができる。 That is, as shown in FIG. 11, the hollow stabilizer of the present embodiment has a wall thickness t 1 on the outside of the bending portion 30, a wall thickness t 2 on the inside of the bending portion 30, and a wall thickness t of the pipe material (material before bending). 0 , the thickness decrease rate δ 1 = (t 0 −t 1 ) / t 0 × 100 (%) outside the curved portion 30, and the thickness increase rate δ 2 = (t 2 −t 0 inside the curved portion 30. ) / T 0 × 100 (%), the ratio of the thickness reduction rate δ 1 outside the bending portion 30 to the thickness increase rate δ 2 inside the bending portion 30 (= the ratio of the thickness change rate inside and outside the bending portion 30) δ 2 / δ 1 ) satisfies δ 2 / δ 1 ≧ 1.75. In this case, the radial cross section of the material in the bending portion has a flat shape in which the bending direction of the material has a short diameter and the direction substantially orthogonal to the bending direction has a long diameter, the short diameter D 2 of the bending portion, When the diameter D 0 is used and the outer diameter reduction rate γ 2 = (D 0 −D 2 ) / D 0 × 100 (%) in the minor axis direction of the curved portion, the outer diameter reduction rate γ 2 is γ 2 ≦ 5 (%) can be satisfied.

本実施形態の中空スタビライザの製造方法について図面を参照して説明する。図1は、本実施形態の中空スタビライザの製造方法を行うMOS曲げ装置100の概略構成を表す側断面図である。MOS曲げ装置100は、第1支持部101、第2支持部102(油圧シリンダーロッド)、および、油圧シリンダ103、第1ヒンジ機構104、第2ヒンジ機構105、可動治具111、および、固定治具112を備えている。   The manufacturing method of the hollow stabilizer of this embodiment is demonstrated with reference to drawings. FIG. 1 is a side cross-sectional view illustrating a schematic configuration of a MOS bending apparatus 100 that performs the method for manufacturing the hollow stabilizer of the present embodiment. The MOS bending apparatus 100 includes a first support portion 101, a second support portion 102 (hydraulic cylinder rod), a hydraulic cylinder 103, a first hinge mechanism 104, a second hinge mechanism 105, a movable jig 111, and a fixed jig. A tool 112 is provided.

第1支持部101の上端部は、装置部材201の下面に固定された第1ヒンジ機構104に回動自在に設けられている。第1支持部101の下端部は、第2ヒンジ機構105を介して第2支持部102の左端部に回動自在に設けられている。第2支持部102の右端部は、装置部材202に固定された油圧シリンダ103に移動自在に設けられている。第1支持部101には、可動治具111(たとえばダイス)が締結治具(図示略)によって固定されている。   The upper end portion of the first support portion 101 is rotatably provided on the first hinge mechanism 104 fixed to the lower surface of the device member 201. The lower end portion of the first support portion 101 is rotatably provided at the left end portion of the second support portion 102 via the second hinge mechanism 105. The right end portion of the second support portion 102 is movably provided in a hydraulic cylinder 103 fixed to the device member 202. A movable jig 111 (for example, a die) is fixed to the first support portion 101 by a fastening jig (not shown).

可動治具111は、矢印B方向および矢印C方向に移動可能となっている。矢印C方向について、固定治具112と可動治具111の軸方向中心が一致する位置を基準とすると、矢印B方向が+の時は矢印C方向も+の方向に移動し、矢印B方向が−の時は矢印C方向も−の方向に移動する。この時装置部材201と202は連動して動く。   The movable jig 111 is movable in the arrow B direction and the arrow C direction. With respect to the direction of the arrow C, when the axial center of the fixed jig 112 and the movable jig 111 coincides with each other as a reference, when the arrow B direction is +, the arrow C direction also moves in the + direction. At-, the direction of arrow C also moves in the-direction. At this time, the device members 201 and 202 move in conjunction with each other.

MOS曲げ装置100では、パイプP(パイプ素材)が可動治具111に向けて固定治具112の開口部を通り案内され、可動治具111の開口部を通過する。この場合、パイプPの後端(図の右端)から所定の押し力Fを付与しながら、パイプPを前方(図の左側)に送る。このとき、パイプPのA方向の回転をその長手方向の所定位置で行うとともに、可動治具111の角度および上下位置を変更する。これにより、所定の曲げ半径および曲げ角度を有する中空スタビライザが得られる。B方向が+の場合(C方向も+)パイプは図1の上側に曲り(図1に示す状態)B方向が−の場合(C方向も−)は図1の下側に曲げられる。   In the MOS bending apparatus 100, the pipe P (pipe material) is guided through the opening of the fixed jig 112 toward the movable jig 111 and passes through the opening of the movable jig 111. In this case, the pipe P is sent forward (left side in the figure) while applying a predetermined pushing force F from the rear end (right end in the figure) of the pipe P. At this time, the pipe P is rotated in the A direction at a predetermined position in the longitudinal direction, and the angle and the vertical position of the movable jig 111 are changed. Thereby, a hollow stabilizer having a predetermined bending radius and bending angle is obtained. When the B direction is + (C direction is also +), the pipe is bent upward in FIG. 1 (the state shown in FIG. 1). When the B direction is − (C direction is also −), the pipe is bent downward in FIG.

たとえば、パイプPの後端から押し力Fを付加しながら前方(図1の左側)に送り、先端から200mmの位置において、曲げ半径を100mm、曲げ角度を60°に設定して曲げ加工を行う。次いで、さらにパイプPが50mm前方へ移動した後、図1の矢印A方向にパイプPを30°回転させた後に、曲げ半径を50mm、曲げ角度を20°に設定して曲げ加工を行う。このようにパイプPを図1の左側方向に送りながら所定の位置で各種パラメータを適宜設定した曲げ加工を引き続き行うことにより、中空スタビライザが得られる。   For example, the pipe P is fed forward (left side in FIG. 1) while applying a pressing force F, and bending is performed at a position of 200 mm from the tip with a bending radius of 100 mm and a bending angle of 60 °. . Next, after the pipe P further moves forward by 50 mm, the pipe P is rotated by 30 ° in the direction of arrow A in FIG. 1, and then bending is performed by setting the bending radius to 50 mm and the bending angle to 20 °. In this way, a hollow stabilizer can be obtained by continuing the bending process in which various parameters are appropriately set at predetermined positions while feeding the pipe P to the left in FIG.

図2は、パイプPの素材厚tと素材径Dとの比(=t/Dという)と、矢印C方向の移動距離Lと矢印B方向の回転角度αの比(=L/α)との関係を表すグラフである。L/αが大きくなるに従い、可動治具111と固定治具112との軸方向の芯がずれるため、可動治具111における曲げ加工の抵抗が増える(すなわち、パイプPへの押し力が増加する)。L/αを適当な範囲に設定して曲げ加工を行うと、パイプPに働く圧縮応力を増加させることができるため、湾曲部30の圧縮応力を高めることができる。その結果、湾曲部外側の肉厚減少率を低減することができる。   FIG. 2 shows the ratio between the material thickness t and the material diameter D of the pipe P (= t / D) and the ratio of the movement distance L in the direction of arrow C to the rotation angle α in the direction of arrow B (= L / α). It is a graph showing the relationship. As L / α increases, the axial centers of the movable jig 111 and the fixed jig 112 are shifted, so that the bending resistance of the movable jig 111 increases (that is, the pushing force to the pipe P increases). ). When bending is performed with L / α set to an appropriate range, the compressive stress acting on the pipe P can be increased, so that the compressive stress of the curved portion 30 can be increased. As a result, the thickness reduction rate outside the curved portion can be reduced.

図2に示す曲げ加工領域(網目領域)で成形することにより、δ/δが1.75以上となることを確認した。また、この場合、パイプの偏平γも同様に低減することができることを確認した。一方、図2の曲げ加工領域よりもL/αが大きい領域(線Xから上側の領域)では、図6に示すように固定治具112と可動治具111の間において、パイプPの折れ曲がり座屈Gが発生して曲げ加工が出来なくなることを確認した。 It was confirmed that δ 2 / δ 1 was 1.75 or more by molding in the bending region (mesh region) shown in FIG. Further, in this case, it was confirmed that the flatness γ 2 of the pipe can be similarly reduced. On the other hand, in the region where L / α is larger than the bending region in FIG. 2 (the region above line X), the pipe P is bent between the fixed jig 112 and the movable jig 111 as shown in FIG. It was confirmed that bending G occurred and bending could not be performed.

図3は、MOS曲げ装置100により曲げ加工を行った中空スタビライザの曲げ半径とδ/δとの関係を示す。図3から判るように、従来の曲げ加工では得られないδ/δ≧1.75が得られた。 FIG. 3 shows the relationship between the bending radius of a hollow stabilizer bent by the MOS bending apparatus 100 and δ 2 / δ 1 . As can be seen from FIG. 3, δ 2 / δ 1 ≧ 1.75 was obtained, which was not obtained by conventional bending.

以上のように本実施形態では、湾曲部外側の肉厚減少率δと湾曲部内側の肉厚増加率δとの比は、δ2/δ1≧1.75を満たしているので、パイプPの曲げ加工による肉厚減少および偏平を抑制し、耐久性の向上を図ることができる。その結果、パイプPの肉厚を減らした場合でも、従来と同等の耐久性を得ることができる。 As described above, in the present embodiment, the ratio of the thickness reduction rate δ 1 outside the curved portion and the thickness increase rate δ 2 inside the curved portion satisfies δ2 / δ1 ≧ 1.75. It is possible to suppress the thickness reduction and flattening due to the bending process, and to improve the durability. As a result, even when the thickness of the pipe P is reduced, the same durability as the conventional one can be obtained.

上記本実施形態では、中空スタビライザの製造にMOS曲げ装置100を用いたが、中空スタビライザの製造に使用する装置は、これに限定されるものではなく、様々な変形が可能である。たとえば図8に示す従来のパイプベンダ20による曲げ加工おいて、パイプPの後端部や、パイプPの曲げ近傍部をチャックし(図示略)、パイプPに押し力Fを与えることにより、本発明の中空スタビライザを得ることができる。この場合、圧力型23のクリアランスを適宜設定にすることにより、必要な押し力Fを与えても、座屈が発生しないから、湾曲部の曲げ外側の肉厚減少を抑制することができる。   In the present embodiment, the MOS bending apparatus 100 is used for manufacturing the hollow stabilizer, but the apparatus used for manufacturing the hollow stabilizer is not limited to this, and various modifications are possible. For example, in bending by the conventional pipe bender 20 shown in FIG. 8, the rear end portion of the pipe P and the vicinity of the bending portion of the pipe P are chucked (not shown), and a pressing force F is applied to the pipe P, thereby The hollow stabilizer of the invention can be obtained. In this case, by setting the clearance of the pressure die 23 as appropriate, buckling does not occur even when the necessary pressing force F is applied, so that it is possible to suppress a decrease in thickness outside the bending portion of the bending portion.

以下、具体的な実施例を参照して本発明をさらに詳細に説明する。     Hereinafter, the present invention will be described in more detail with reference to specific examples.

実施例では、素材としてパイプを用い、表1に示すように、曲げ半径、素材径D、素材厚tを素材毎に変更して、試料11〜16をMOS曲げで、比較試料11〜16を従来のパイプベンダで製造した。中空スタビライザの形状は、図5に示すように略台形状に設定した。図5に示す中空スタビライザ300は、車両の幅方向に延在するトーション部301と、トーション部301の両端部に位置するアーム部302と、トーション部301とアーム部302とを接続する湾曲部303とを備えたものとした。トーション部301の長さは786mm、アーム部302の長さは410mmとした。各試料の中空スタビライザの湾曲部外側の肉厚減少率δおよび湾曲部内側の肉厚増加率δの比(=湾曲部内外肉厚変化率比δ/δ)および外径減少率γの実測値を、表1に示す。なお、湾曲部内外肉厚変化率比δ/δおよび外径減少率γの定義は実施形態と同様なものとした。 In the examples, pipes are used as materials, and as shown in Table 1, the bending radius, material diameter D 0 , and material thickness t 0 are changed for each material, and samples 11 to 16 are subjected to MOS bending, and comparative samples 11 to 11 are used. 16 was manufactured with a conventional pipe vendor. The shape of the hollow stabilizer was set to a substantially trapezoidal shape as shown in FIG. A hollow stabilizer 300 shown in FIG. 5 includes a torsion portion 301 extending in the vehicle width direction, arm portions 302 located at both ends of the torsion portion 301, and a bending portion 303 that connects the torsion portion 301 and the arm portion 302. And provided. The length of the torsion part 301 was 786 mm, and the length of the arm part 302 was 410 mm. The ratio of the thickness reduction rate δ 1 outside the curved portion of the hollow stabilizer and the thickness increase rate δ 2 inside the curved portion of each sample (= the ratio of the thickness change rate inside and outside the curved portion δ 2 / δ 1 ) and the outside diameter reduction rate The measured values of γ 2 are shown in Table 1. In addition, the definitions of the inner / outer wall thickness change rate ratio δ 2 / δ 1 and the outer diameter reduction rate γ 2 are the same as those in the embodiment.

Figure 2010274716
Figure 2010274716

試料11〜16および比較試料11〜16の中空スタビライザの耐久試験を行った。耐久試験では、中空スタビライザの両側に一定の荷重を付与して行った。パイプ素材径φ24.2mm,厚み5mmを用い、試料11〜13は本願の曲げ方法で比較試料11〜13は従来の曲げ方法で図5に示す中空スタビライザを製造し、スタビライザの両側に1800Nを付加して耐久試験を行った。同様にパイプ素材径φ26.5mm,厚み3.5mmを用い、試料14〜16は本願の曲げ方法で、比較試料14〜16は従来の曲げ方法で図5に示す中空スタビライザを製造し、スタビライザの両側に2700Nを付加して耐久試験を行った。耐久試験の結果を表1に示す。 Durability tests of the hollow stabilizers of Samples 11 to 16 and Comparative Samples 11 to 16 were performed. In the durability test, a constant load was applied to both sides of the hollow stabilizer. Using a pipe material diameter of φ24.2 mm and a thickness of 5 mm, the samples 11 to 13 are the bending method of the present application, and the comparative samples 11 to 13 are the conventional bending methods to manufacture the hollow stabilizer shown in FIG. 5, and 1800 N is provided on both sides of the stabilizer. In addition, a durability test was conducted. Similarly, a pipe material diameter of φ 26.5 mm and a thickness of 3.5 mm was used, samples 14 to 16 were manufactured by the bending method of the present application, and comparative samples 14 to 16 were manufactured by the conventional bending method to produce the hollow stabilizer shown in FIG. An endurance test was conducted with 2700 N added on both sides. The results of the durability test are shown in Table 1.

表1から判るように、試料11〜16および比較試料11〜16の中空スタビライザについて、曲げ半径、素材径D、素材厚tが同等であるもの同士を比較した結果(すなわち、試料11と比較試料11を比較、試料12と比較試料12を比較、試料13と比較試料13を比較し、試料14と比較試料14を比較し、試料15と比較試料15を比較し、試料16と比較試料16を比較した結果)、湾曲部内外肉厚変化率比δ/δが大きく、かつ1.75以上に設定した試料11〜16の各中空スタビライザは、比較試料11〜16の各中空スタビライザよりも耐久性が良好であることが判った。このように中空スタビライザの湾曲部内外肉厚変化率比δ/δが本発明の範囲内にあるとき、耐久性が向上することを確認した。 As can be seen from Table 1, with respect to the hollow stabilizers of Samples 11 to 16 and Comparative Samples 11 to 16, the results of comparing those having the same bending radius, material diameter D 0 , and material thickness t 0 (that is, Sample 11 and Comparison sample 11 comparison, sample 12 and comparison sample 12 comparison, sample 13 and comparison sample 13 comparison, sample 14 and comparison sample 14 comparison, sample 15 and comparison sample 15 comparison, sample 16 and comparison sample 16), the hollow stabilizers of Samples 11 to 16 in which the ratio of change in wall thickness δ 2 / δ 1 in the curved portion is large and set to 1.75 or more are the hollow stabilizers of Comparative Samples 11 to 16. It was found that the durability was better than that. As described above, it was confirmed that the durability was improved when the ratio of thickness change rate δ 2 / δ 1 in the curved portion of the hollow stabilizer was within the range of the present invention.

外径24.2mm×肉厚5mのパイプを用いて従来の曲げ方法で製造したスタビライザ、および、外径24.2mm×肉厚3.5mmのパイプを用いて本願の曲げ方法で製造した中空スタビライザについて、同一荷重をスタビライザの両側に付加して耐久試験を行ったところ両者はほぼ同等の耐久性が得られることがわかった。すなわち本発明範囲で製造した中空スタビライザは、中空スタビライザの重量を7.6%低減できることがわかった。   Stabilizer manufactured by a conventional bending method using a pipe having an outer diameter of 24.2 mm × wall thickness of 5 m, and a hollow stabilizer manufactured by the bending method of the present application using a pipe having an outer diameter of 24.2 mm × wall thickness of 3.5 mm When the same load was applied to both sides of the stabilizer and the durability test was conducted, it was found that both of them had almost the same durability. That is, it was found that the hollow stabilizer manufactured within the scope of the present invention can reduce the weight of the hollow stabilizer by 7.6%.

1,300…中空スタビライザ、11,301…トーション部、12,302…アーム部、13,303…湾曲部、P…パイプ(パイプ素材)   DESCRIPTION OF SYMBOLS 1,300 ... Hollow stabilizer, 11, 301 ... Torsion part, 12, 302 ... Arm part, 13, 303 ... Curved part, P ... Pipe (pipe material)

Claims (2)

車両の幅方向に延在するトーション部と、前記トーション部の両端部に位置するアーム部と、前記トーション部と前記アーム部とを接続する湾曲部とを備えた中空スタビライザにおいて、
前記湾曲部外側の肉厚t、前記湾曲部内側の肉厚t、および、パイプ状の素材の肉厚tを用い、
前記湾曲部外側の肉厚減少率δ=(t−t)/t×100(%)、
前記湾曲部内側の肉厚増加率δ=(t−t)/t×100(%)と表した場合、
前記湾曲部外側の肉厚減少率δと前記湾曲部内側の肉厚増加率δとの比δ/δは、
δ/δ≧1.75を満たすことを特徴とする中空スタビライザ。
In a hollow stabilizer comprising a torsion part extending in the width direction of the vehicle, arm parts located at both ends of the torsion part, and a curved part connecting the torsion part and the arm part,
Using the outer wall thickness t 1 of the curved portion, the inner thickness t 2 of the curved portion, and the thickness t 0 of the pipe-shaped material,
Thickness reduction rate δ 1 = (t 0 −t 1 ) / t 0 × 100 (%) outside the curved portion,
When the thickness increase rate inside the curved portion δ 2 = (t 2 −t 0 ) / t 0 × 100 (%),
The ratio δ 2 / δ 1 between the thickness reduction rate δ 1 outside the curved portion and the thickness increase rate δ 2 inside the curved portion is:
Hollow stabilizer characterized by satisfying δ 2 / δ 1 ≧ 1.75.
前記湾曲部における前記素材の径方向の断面は、前記素材の曲げ方向が短径となり、かつ前記曲げ方向に略直交する方向が長径となる扁平形状をなし、
前記湾曲部の短径Dおよび素材外径Dを用い、
前記湾曲部の短径方向の外径減少率γ=(D−D)/D×l00(%)と表した場合、
前記外径減少率γは、γ≦5(%)を満たすことを特徴とする請求項1に記載の中空スタビライザ。
The cross section of the material in the radial direction in the curved portion has a flat shape in which the bending direction of the material has a short diameter, and the direction substantially perpendicular to the bending direction has a long diameter,
Using short diameter D 2 and the material outer diameter D 0 of the curved portion,
When the outer diameter reduction rate γ 2 = (D 0 −D 2 ) / D 0 × 100 (%) in the minor axis direction of the curved portion is expressed,
The hollow stabilizer according to claim 1, wherein the outer diameter reduction rate γ 2 satisfies γ 2 ≦ 5 (%).
JP2009127477A 2009-05-27 2009-05-27 Hollow stabilizer Active JP5303362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127477A JP5303362B2 (en) 2009-05-27 2009-05-27 Hollow stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127477A JP5303362B2 (en) 2009-05-27 2009-05-27 Hollow stabilizer

Publications (2)

Publication Number Publication Date
JP2010274716A true JP2010274716A (en) 2010-12-09
JP5303362B2 JP5303362B2 (en) 2013-10-02

Family

ID=43422103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127477A Active JP5303362B2 (en) 2009-05-27 2009-05-27 Hollow stabilizer

Country Status (1)

Country Link
JP (1) JP5303362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003720A1 (en) * 2018-06-27 2020-01-02 Jfeスチール株式会社 Electric-resistance-welded steel pipe for producing hollow stabilizer, hollow stabilizer, and method for producing same
CN114653798A (en) * 2022-04-01 2022-06-24 青岛主原旭泰信电器有限公司 Control method and control system for heating bent pipe

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293394A (en) * 1987-05-26 1988-11-30 新日本製鐵株式会社 High-frequency bend having small sectional flatness of bend section
JPH08142632A (en) * 1994-11-16 1996-06-04 Nhk Spring Co Ltd Hollow stabilizer
JP2003290839A (en) * 2002-04-03 2003-10-14 Jfe Steel Kk Method for drawing-bending tubing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293394A (en) * 1987-05-26 1988-11-30 新日本製鐵株式会社 High-frequency bend having small sectional flatness of bend section
JPH08142632A (en) * 1994-11-16 1996-06-04 Nhk Spring Co Ltd Hollow stabilizer
JP2003290839A (en) * 2002-04-03 2003-10-14 Jfe Steel Kk Method for drawing-bending tubing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020003720A1 (en) * 2018-06-27 2020-01-02 Jfeスチール株式会社 Electric-resistance-welded steel pipe for producing hollow stabilizer, hollow stabilizer, and method for producing same
JPWO2020003720A1 (en) * 2018-06-27 2020-07-02 Jfeスチール株式会社 ERW steel pipe for manufacturing hollow stabilizers, hollow stabilizers, and manufacturing methods thereof
CN114653798A (en) * 2022-04-01 2022-06-24 青岛主原旭泰信电器有限公司 Control method and control system for heating bent pipe

Also Published As

Publication number Publication date
JP5303362B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
US9463676B2 (en) Suspension and compression coil spring for suspension
US10358008B2 (en) Suspension coil spring
JP5303362B2 (en) Hollow stabilizer
JP2007268602A (en) Apparatus and method for forming axial enlargement
JPWO2018142833A1 (en) Coil spring for vehicle suspension
US9713946B2 (en) Strut-type suspension and compression coil spring for suspension
WO2019188224A1 (en) Electric-welded steel tube for producing hollow stabiliser, hollow stabiliser, and production methods for same
JP6570989B2 (en) Suspension control arm
US9994083B2 (en) Pipe-shaped member and method of closing end portions of same
JP5383245B2 (en) Pipe bending machine
WO2015163275A1 (en) Hollow stabilizer
US11167615B2 (en) Hollow stabilizer, stabilizer manufacturing device, and method for manufacturing hollow stabilizer
JP5851305B2 (en) Hollow stabilizer
JP5304395B2 (en) Manufacturing method of torsion beam
JP2010051971A (en) Method of bending steel pipe
JP2012131316A (en) Manufacturing method for torsion beam
JP4544468B2 (en) Spinning method
EP3127727A1 (en) Suspension coil spring
JPH08142632A (en) Hollow stabilizer
JP6197643B2 (en) Bending device and bending method
JP5631438B2 (en) Pipe bending apparatus and method
JP4087765B2 (en) High stress stabilizer for vehicles
JP2007076410A (en) Automotive closed section member having excellent twist fatigue characteristics
JP4772389B2 (en) Method for producing curved long material using stretch bender machine and stretch bender machine
JPH0824938A (en) Production of high strength extra fine steel wire excellent in twisting characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5303362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250