JP2010274300A - Method for treating slab in cooling of slab whose ductile-brittle transition temperature reaches >=160°c - Google Patents

Method for treating slab in cooling of slab whose ductile-brittle transition temperature reaches >=160°c Download PDF

Info

Publication number
JP2010274300A
JP2010274300A JP2009128552A JP2009128552A JP2010274300A JP 2010274300 A JP2010274300 A JP 2010274300A JP 2009128552 A JP2009128552 A JP 2009128552A JP 2009128552 A JP2009128552 A JP 2009128552A JP 2010274300 A JP2010274300 A JP 2010274300A
Authority
JP
Japan
Prior art keywords
slab
steel
ductile
transition temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009128552A
Other languages
Japanese (ja)
Other versions
JP5254130B2 (en
Inventor
Masahiko Terauchi
雅彦 寺内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009128552A priority Critical patent/JP5254130B2/en
Publication of JP2010274300A publication Critical patent/JP2010274300A/en
Application granted granted Critical
Publication of JP5254130B2 publication Critical patent/JP5254130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for preventing the cracks of a slab with a stage where a slab whose ductile-brittle transition temperature reaches ≥160°C is cooled to ordinary temperature included as an assumption. <P>SOLUTION: When the slab whose ductile-brittle transition temperature reaches ≥160°C and cast by continuous casting is cooled to ordinary temperature, before the surface temperature of the slab lowers the ductile-brittle transition temperature, the slab is subjected to rolling reduction at a draft R≥0.1 in such a manner that the thickness D2 [mm] of the slab after the rolling reduction is not lower than 140, and the cooling velocity Vco [°C/hr] of the slab after the rolling reduction is controlled to ≤70. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スラブ鋳片の冷却時における鋳片取扱方法に関する。   The present invention relates to a slab handling method during cooling of a slab slab.

この種の技術として特許文献1は、高張力鋼の連鋳片の割れ防止方法を開示している。この文献1によれば、冷却に際して150℃を下回った途端に延性から脆性に移行するような高張力鋼であっても、適切な温度管理下におけば、常温に至るまで冷却しても、割れを防止することができるとされる。   As this type of technology, Patent Document 1 discloses a method for preventing cracking of a continuous cast piece of high-tensile steel. According to this document 1, even if it is a high-strength steel that transitions from ductility to brittleness as soon as it falls below 150 ° C. during cooling, it can be cooled to room temperature under appropriate temperature control. It is said that cracking can be prevented.

特開2007−83274号公報JP 2007-83274 A

確かに、上記文献1のように延性−脆性遷移温度が150℃前後である場合は上記の適切な温度管理だけで割れを回避することができたが、例えばCuやCr、Tiなどといった成分を添加した結果、延性−脆性遷移温度が160℃以上となった場合は上記の温度管理だけではどうやっても割れを回避することができなかった。これは延性から脆性に切り替わった時点から常温に至るまでに新たに発生した熱応力が前者に比べて大きくなるからと考えられる。   Certainly, when the ductile-brittle transition temperature was around 150 ° C. as in the above-mentioned document 1, cracks could be avoided only by the appropriate temperature control described above, but for example, components such as Cu, Cr, Ti, etc. As a result of addition, when the ductile-brittle transition temperature was 160 ° C. or higher, cracking could not be avoided by the above temperature control alone. This is presumably because the newly generated thermal stress from the time when the ductile state is changed to the brittle state until it reaches room temperature becomes larger than the former.

本発明は斯かる諸点に鑑みてなされたものであり、その主な目的は、延性−脆性遷移温度が160℃以上であるスラブ鋳片を常温に至るまで冷却する工程を含むことを前提として、スラブ鋳片の割れを防止する技術を提供することにある。   The present invention has been made in view of these points, and its main purpose is to include a step of cooling a slab slab having a ductile-brittle transition temperature of 160 ° C. or higher to room temperature, It is providing the technique which prevents the crack of a slab slab.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.

本願発明の観点によれば、炭素含有量C[wt%]を0.07〜0.60とし、ケイ素含有量Si[wt%]を0.1〜3.0とし、マンガン含有量Mn[wt%]を0.5〜6.0とし、燐含有量P[wt%]を0.15以下(ただし、0を含まない。)とし、硫黄含有量S[wt%]を0.02以下(ただし、0を含まない。)とし、溶融アルミニウムsol−Al[wt%]を0.01〜3とし、銅含有量Cu[wt%]を0.5以下(ただし、0を含む。)とし、ニッケル含有量Ni[wt%]を0.5以下(ただし、0を含む。)とし、クロム含有量Cr[wt%]を1.0以下(ただし、0を含む。)とし、モリブデンMo[wt%]を1.0以下(ただし、0を含む。)とし、ニオブNb[wt%]を0.1以下(ただし、0を含む。)とし、チタンTi[wt%]を0.1以下(ただし、0を含まない。)とし、残部が鉄Fe及び不可避不純物から成り、延性−脆性遷移温度が160℃以上となる、連続鋳造によって鋳造されたスラブ鋳片を常温に至るまで冷却するに際し、上記スラブ鋳片の表面温度が前記の延性−脆性遷移温度を下回る前に、上記スラブ鋳片に対し、圧下後のスラブ鋼片の厚みD2[mm]が140を下回らないように圧下率R=0.1以上で圧下を加え、圧下後のスラブ鋼片の冷却速度Vco[℃/hr]を70以下とすることとする。以上の方法によれば、スラブ鋳片の割れを防止することができる。   According to the aspect of the present invention, the carbon content C [wt%] is set to 0.07 to 0.60, the silicon content Si [wt%] is set to 0.1 to 3.0, and the manganese content Mn [wt %] Is 0.5 to 6.0, the phosphorus content P [wt%] is 0.15 or less (however, 0 is not included), and the sulfur content S [wt%] is 0.02 or less ( However, 0 is not included.) The molten aluminum sol-Al [wt%] is 0.01 to 3, the copper content Cu [wt%] is 0.5 or less (however, 0 is included), The nickel content Ni [wt%] is 0.5 or less (provided that 0 is included), the chromium content Cr [wt%] is 1.0 or less (provided that 0 is included), and molybdenum Mo [wt %] Is 1.0 or less (including 0), and niobium Nb [wt%] is 0.1 or less (however, 0 And titanium Ti [wt%] is 0.1 or less (excluding 0), the balance is made of iron Fe and inevitable impurities, and the ductile-brittle transition temperature is 160 ° C. or higher. When the slab slab cast by casting is cooled to room temperature, before the surface temperature of the slab slab falls below the ductile-brittle transition temperature, the slab steel slab after being reduced with respect to the slab slab In order to prevent the thickness D2 [mm] of the steel sheet from falling below 140, the reduction is applied at a reduction ratio R = 0.1 or more, and the cooling rate Vco [° C./hr] of the slab steel slab after the reduction is 70 or less. According to the above method, cracking of the slab cast can be prevented.

スラブ鋳片の割れの一例を示す写真Photograph showing an example of cracking in a slab slab 図1に示すスラブ鋳片の破面を示す写真Photograph showing the fracture surface of the slab slab shown in FIG. 延性−脆性遷移温度を説明するためのグラフGraph to explain the ductile-brittle transition temperature スラブ鋼片(又はスラブ鋳片)の表面温度の測定方法の説明図Explanatory drawing of measuring method of surface temperature of slab steel slab (or slab slab) スラブ鋼片(又はスラブ鋳片)の表面温度の測定方法の説明図Explanatory drawing of measuring method of surface temperature of slab steel slab (or slab slab) スラブ鋳片(又はスラブ鋳片)の折損の写真Photograph of broken slab slab (or slab slab) スラブ鋳片(又はスラブ鋳片)の開口割れの写真Photograph of opening crack of slab slab (or slab slab) スラブ鋳片(又はスラブ鋳片)の微細な表面疵の写真Photograph of fine surface defects of slab slab (or slab slab) スラブ鋳片(又はスラブ鋳片)の四周部の割れの写真Photograph of cracks on the four circumferences of a slab slab (or slab slab) 薄板圧延時における穴あきの写真Photograph of perforation during sheet rolling 溶接割れ感受性指数Pcmと、シャルピー試験による延性−脆性遷移温度と、の関係を示すグラフThe graph which shows the relationship between the weld crack sensitivity index Pcm and the ductile-brittle transition temperature by a Charpy test. 再熱割れ感受性指数Psrと、シャルピー試験による延性−脆性遷移温度と、の関係を示すグラフThe graph which shows the relationship between reheat cracking sensitivity index Psr and the ductile-brittle transition temperature by a Charpy test HAZ粗粒域延性指標CEと、シャルピー試験による延性−脆性遷移温度と、の関係を示すグラフThe graph which shows the relationship between HAZ coarse grain area | region ductility index | index CE and the ductility-brittle transition temperature by a Charpy test. 延性−脆性遷移温度(推定値)と、シャルピー試験による延性−脆性遷移温度(実測値)と、の関係を示すグラフGraph showing the relationship between the ductility-brittle transition temperature (estimated value) and the ductility-brittle transition temperature (measured value) by Charpy test

(本願が対象としている鋼種)
一般に、連続鋳造設備によって連続鋳造されたスラブ鋳片を常温に至るまで冷却すると、スラブ鋳片は熱応力によって例えば図1に示すように破断してしまう場合がある。図2は、上記破断によって現れた破面を示している。図2に示すように、この破面には、脆性破面と延性破面が混在することがあり、この混在の割合は図3に示すように温度に応じて遷移することが知られている。図3のグラフはJIS Z 2422で規格化されたシャルピー試験の試験結果を示すものであり、横軸はシャルピー試験時における試験片の表面温度を示し、縦軸はシャルピー試験によって得られた破面における延性破面の面積割合を示す。図中の黒塗り丸プロットも白抜き三角プロットも何れも合金鋼であって所謂高張力鋼と称されるものを試験片とした。そして、図3に示すように鋼種によって延性破面率が遷移する温度が異なるので、この特性を指標化すべく一般に延性−脆性遷移温度なるものが利用されている。この延性−脆性遷移温度とは、JIS Z 2422で規格化された上記のシャルピー試験において、延性破面率が50%となるときの試験片の表面温度を意味する。従って、図3の黒塗り丸プロットで示す鋼種の延性−脆性遷移温度は160℃であり、白塗り三角プロットで示す鋼種の延性−脆性遷移温度は325℃である。本願が対象としている鋼種は、この延性−脆性遷移温度が160℃以上となるものに限られる。というのは、延性−脆性遷移温度が160℃を下回るような鋼種については、特開2007−83274号公報に記載の公知の技術で割れ対策を達成できるからである。なお、上述した延性−脆性遷移温度は、例えば600〜800℃付近にも存在するが、本願が対象としている延性−脆性遷移温度は、一般に、0〜400℃の間に存在するものである。
(Steel grades covered by this application)
In general, when a slab slab continuously cast by a continuous casting facility is cooled to room temperature, the slab slab may be broken due to thermal stress, for example, as shown in FIG. FIG. 2 shows a fracture surface that appears as a result of the fracture. As shown in FIG. 2, there are cases where a brittle fracture surface and a ductile fracture surface are mixed in this fracture surface, and the ratio of this mixture is known to transition according to the temperature as shown in FIG. . The graph of FIG. 3 shows the test result of the Charpy test standardized by JIS Z 2422, the horizontal axis shows the surface temperature of the test piece during the Charpy test, and the vertical axis shows the fracture surface obtained by the Charpy test. The area ratio of the ductile fracture surface is shown. Both black circle plots and white triangle plots in the figure are alloy steels, and so-called high-tensile steels were used as test pieces. As shown in FIG. 3, since the temperature at which the ductile fracture surface transition varies depending on the steel type, a ductile-brittle transition temperature is generally used to index this characteristic. This ductile-brittle transition temperature means the surface temperature of the test piece when the ductile fracture surface ratio becomes 50% in the Charpy test standardized by JIS Z 2422. Accordingly, the ductility-brittle transition temperature of the steel type shown by the black circle plot in FIG. 3 is 160 ° C., and the ductility-brittle transition temperature of the steel type shown by the white triangle plot is 325 ° C. The steel types targeted by the present application are limited to those having a ductile-brittle transition temperature of 160 ° C. or higher. This is because, for steel types whose ductile-brittle transition temperature is lower than 160 ° C., a countermeasure against cracking can be achieved by a known technique described in Japanese Patent Application Laid-Open No. 2007-83274. In addition, although the ductile-brittle transition temperature mentioned above exists also in 600-800 degreeC vicinity, for example, generally the ductile-brittle transition temperature which this application is for exists between 0-400 degreeC.

(本願が対象としている操業)
周知の通り、連続鋳造設備の鋳造経路に着目すると、湾曲型連続鋳造設備と垂直曲げ型連続鋳造設備なるものがある。前者は、鋳型から鋳造経路に沿って、円弧経路部と矯正経路部、水平経路部を有するものであり、後者は、上記円弧経路部の上流に垂直経路部を設け、溶鋼中の介在物浮上を図ったものである。また、連続鋳造設備の鋳造する鋳片の断面形状に着目すると、断面形状のアスペクト比が2以上であるスラブと2以下のブルーム、更に、断面形状が正方形であるビレットなるものがある。本願が対象としている操業は、鋳造経路に関して言えば湾曲型連続鋳造設備と垂直曲げ型連続鋳造設備の両方であり、鋳片の断面形状に関して言えばスラブに限られる。
(Operations covered by this application)
As is well known, when paying attention to the casting path of the continuous casting equipment, there are a curved continuous casting equipment and a vertical bending continuous casting equipment. The former has an arc path section, a correction path section, and a horizontal path section along the casting path from the mold, and the latter has a vertical path section upstream of the arc path section, and floats inclusions in the molten steel. Is intended. Focusing on the cross-sectional shape of the slab cast by the continuous casting equipment, there are slabs having a cross-sectional aspect ratio of 2 or more, blooms of 2 or less, and billets having a square cross-sectional shape. The operations targeted by the present application are both curved continuous casting equipment and vertical bending continuous casting equipment in terms of the casting path, and are limited to slabs in terms of the cross-sectional shape of the slab.

なお、本願は、一旦常温に至るまで冷却する必要があるスラブ鋳片を対象とするものなので、鋳造後、熱間のまま最終的な圧延まで実施する造塊(インゴット)は本願の対象外である。同様に、一旦常温に至るまで冷却することのない所謂HDR(Hot Direct Roll)やHCR(Hot Charge Roll)も本願の対象外である。   In addition, since this application is intended for slab slabs that need to be cooled to room temperature, ingots that are carried out until final rolling after casting are excluded from the scope of this application. is there. Similarly, so-called HDR (Hot Direct Roll) and HCR (Hot Charge Roll), which are not cooled to room temperature once, are out of the scope of the present application.

以下、本願発明の実施形態を説明する。
(1)スラブ鋳片の連続鋳造工程
上記の湾曲型連続鋳造設備或いは垂直曲げ型連続鋳造設備を用いて、下記の鋼種成分に関する条件(a)〜(m)を満足すると共に延性−脆性遷移温度が160℃以上となる鋼種を連続鋳造し、連続的に鋳造されたスラブ鋳片は所定の長さ(例えば、12.5メートル前後)に切り分けておく。上記の条件を満足する鋼種としては、例えば、高張力鋼などの合金鋼が挙げられる。
(a)炭素含有量C[wt%]:0.07〜0.60
(b)ケイ素含有量Si[wt%]:0.1〜3.0
(c)マンガン含有量Mn[wt%]:0.5〜6.0
(d)燐含有量P[wt%]:0.15以下(ただし、0を含まない。)
(e)硫黄含有量S[wt%]:0.02以下(ただし、0を含まない。)
(f)溶融アルミニウムsol−Al[wt%]:0.01〜3
(g)銅含有量Cu[wt%]:0.5以下(ただし、0を含む。)
(h)ニッケル含有量Ni[wt%]:0.5以下(ただし、0を含む。)
(i)クロム含有量Cr[wt%]:1.0以下(ただし、0を含む。)
(j)モリブデンMo[wt%]:1.0以下(ただし、0を含む。)
(k)ニオブNb[wt%]:0.1以下(ただし、0を含む。)
(l)チタンTi[wt%]:0.1以下(ただし、0を含まない。)
(m)残部が鉄Fe及び不可避不純物
上記各鋼種成分(a)〜(m)の技術的意義ないし詳しい説明は、本願明細書の末尾に添付するので、必要であれば適宜参照されたい。
Hereinafter, embodiments of the present invention will be described.
(1) Continuous casting process of slab slab Using the curved continuous casting equipment or the vertical bending continuous casting equipment, the following conditions (a) to (m) relating to the steel type components are satisfied and the ductile-brittle transition temperature is satisfied. A steel type having a temperature of 160 ° C. or higher is continuously cast, and the continuously cast slab slab is cut into a predetermined length (for example, around 12.5 meters). Examples of the steel types that satisfy the above conditions include alloy steels such as high-tensile steels.
(A) Carbon content C [wt%]: 0.07 to 0.60
(B) Silicon content Si [wt%]: 0.1 to 3.0
(C) Manganese content Mn [wt%]: 0.5 to 6.0
(D) Phosphorus content P [wt%]: 0.15 or less (excluding 0)
(E) Sulfur content S [wt%]: 0.02 or less (however, 0 is not included)
(F) Molten aluminum sol-Al [wt%]: 0.01 to 3
(G) Copper content Cu [wt%]: 0.5 or less (including 0)
(H) Nickel content Ni [wt%]: 0.5 or less (including 0)
(I) Chromium content Cr [wt%]: 1.0 or less (including 0)
(J) Molybdenum Mo [wt%]: 1.0 or less (including 0)
(K) Niobium Nb [wt%]: 0.1 or less (including 0)
(L) Titanium Ti [wt%]: 0.1 or less (excluding 0)
(M) The balance is iron Fe and inevitable impurities The technical significance or detailed description of each of the above steel type components (a) to (m) is attached to the end of the present specification, so please refer to them as necessary.

(2)スラブ鋳片の圧下工程
次に、連続鋳造によって鋳造されたスラブ鋳片を常温に至るまで冷却する。このとき、スラブ鋳片の表面温度が延性−脆性遷移温度を下回るとスラブ鋳片の表層に脆化組織が生成され、冷却時に発生する熱応力によって脆化組織の結晶粒界に沿った割れが発生する。そこで、本実施形態では、上記スラブ鋳片の表面温度が前記の延性−脆性遷移温度を下回る前に、上記スラブ鋳片に対し分塊圧延設備を用いて、圧下後のスラブ鋼片の厚みD2[mm]が140を下回らないように留意しつつ、圧下率R=0.1以上の圧下を加えることとする。ここで、圧下率Rは、圧下前のスラブ鋳片の厚みをD1[mm]とし、圧下後のスラブ鋼片の厚みをD2[mm]とすると、下記式(1)により求められる。このように上記スラブ鋳片の表面温度が前記の延性−脆性遷移温度を下回る前に上記スラブ鋳片に対して適切な圧下を加えておくことで、スラブ鋳片の表層の組織が微細化され、もって、熱応力によって割れが新たに発生しても、この割れの伝播が強力に抑制され、微細な表面疵程度に抑え込むことができる。なお、微細な表面疵であれば、後述する熱延加熱炉内におけるスラブ鋼片の加熱時に発生する厚みが概ね2mm程度の酸化層からスラブ鋼片の軸芯に向かってはみ出ることがなく、また、この酸化層は何れにせよ必ず切削除去するようにしているので、結果、熱応力によって新たに発生した割れを無害化することができる。
(2) Slab slab reduction process Next, the slab slab cast by continuous casting is cooled to room temperature. At this time, when the surface temperature of the slab slab falls below the ductile-brittle transition temperature, an embrittled structure is generated on the surface layer of the slab slab, and cracks along the grain boundaries of the embrittled structure are caused by the thermal stress generated during cooling. appear. Therefore, in the present embodiment, before the surface temperature of the slab slab falls below the ductile-brittle transition temperature, the slab steel slab thickness D2 after being reduced by using a lump rolling facility for the slab slab. While taking care that [mm] does not fall below 140, the rolling reduction R = 0.1 or more is applied. Here, the reduction ratio R is obtained by the following formula (1), where D1 [mm] is the thickness of the slab cast before reduction and D2 [mm] is the thickness of the slab steel piece after reduction. Thus, by applying appropriate reduction to the slab cast before the surface temperature of the slab cast falls below the ductile-brittle transition temperature, the surface layer structure of the slab cast is refined. Therefore, even if a new crack is generated due to thermal stress, the propagation of this crack is strongly suppressed, and it can be suppressed to a level of fine surface defects. In addition, if it is a fine surface flaw, it does not protrude toward the axial center of the slab steel piece from the oxide layer having a thickness of about 2 mm generated when the slab steel piece is heated in a hot-rolling heating furnace described later. This oxide layer is always cut and removed anyway, and as a result, cracks newly generated by thermal stress can be made harmless.

なお、スラブ鋳片の表層の組織微細化の観点から上記の圧下率Rの下限を定めたが、一方で圧下の上限は加熱炉内におけるスラブ鋼片の下反り防止の観点から設けた。というのは、加熱炉内では装入されたスラブ鋼片を複数のスキッドと称する支持台で支持しているので、スキッド間ではスラブ鋼片は自重によって下反りすることとなり、この撓みが原因となって加熱後のスラブ鋼片を加熱炉から取り出せなくなる虞があり、そのような事態にならないよう、圧下後のスラブ鋼片の断面二次モーメントをある程度確保しておくのが好ましいからである。また、圧下率が大きくなると、スラブ鋼片の厚みが薄くなり、加熱炉での表面酸化による歩留りロスが大きくなる。この表面酸化による歩留りロスの抑制の観点からも、上記圧下率Rに上限を設けることには意義がある。   In addition, although the minimum of said reduction ratio R was defined from the viewpoint of refinement | miniaturization of the surface layer of a slab cast piece, on the other hand, the upper limit of reduction was provided from a viewpoint of the downward curvature prevention of the slab steel piece in a heating furnace. This is because the slab steel pieces inserted in the heating furnace are supported by a plurality of support bases called skids, and the slab steel pieces are warped by their own weight between the skids. This is because there is a possibility that the heated slab steel slab cannot be taken out from the heating furnace, and it is preferable to secure a certain amount of secondary moment of section of the slab steel slab after the reduction so as not to cause such a situation. Further, when the rolling reduction increases, the thickness of the slab steel piece decreases, and the yield loss due to surface oxidation in the heating furnace increases. From the viewpoint of suppressing the yield loss due to the surface oxidation, it is meaningful to provide an upper limit for the rolling reduction R.

(3)圧下後のスラブ鋼片の冷却工程
また、スラブ鋼片を常温に至るまで冷却するに際し、上記の圧下完了時点から、圧下後のスラブ鋼片の表面温度が延性−脆性遷移温度に到達する時点までの間において、圧下後のスラブ鋼片の冷却速度Vco[℃/hr]は70以下とする。ここで、「圧下後のスラブ鋼片の冷却速度Vco[℃/hr]」とは、上記の圧下完了時点から、圧下後のスラブ鋼片の表面温度が延性−脆性遷移温度に到達する時点までの間における、圧下後のスラブ鋼片の表面温度の温度低下量を経過した時間で割って得られる、圧下後のスラブ鋼片の表面温度の冷却の速度を意味する。また、「圧下後のスラブ鋼片の表面温度」は、図4に示すように、圧下後のスラブ鋼片をスラブ鋼片の載置場に載置した際に上面となる面の縦横中央における温度を市販の熱電対プローブなどを利用して測定するものとする。このように、圧下後のスラブ鋼片の冷却速度Vco[℃/hr]を所定値以下に抑えることで、冷却時におけるスラブ鋼片の表層と内部の温度差による熱歪みが緩和され、もって、スラブ鋼片の割れの防止に寄与する。
(3) Cooling process of slab steel slab after reduction Moreover, when the slab steel slab is cooled to room temperature, the surface temperature of the slab steel slab after reduction reaches the ductile-brittle transition temperature from the above completion of the reduction. The cooling rate Vco [° C./hr] of the slab steel slab after the reduction is set to 70 or less until the point of time. Here, “the cooling rate Vco [° C./hr] of the slab steel slab after the reduction” is from the time when the above-described reduction is completed to the time when the surface temperature of the slab steel slab after the reduction reaches the ductile-brittle transition temperature. Means the cooling rate of the surface temperature of the slab steel slab after the reduction, which is obtained by dividing the amount of temperature decrease in the surface temperature of the slab steel slab after the reduction by the elapsed time. In addition, as shown in FIG. 4, the “surface temperature of the slab steel slab after the reduction” is the temperature at the center of the vertical and horizontal surfaces of the upper surface when the slab steel slab after the reduction is placed on the slab steel slab placement site. Is measured using a commercially available thermocouple probe or the like. Thus, by suppressing the cooling rate Vco [° C./hr] of the slab steel slab after the reduction to a predetermined value or less, the thermal strain due to the temperature difference between the surface layer and the inside of the slab steel slab during cooling is alleviated, Contributes to prevention of cracking of slab steel pieces.

上記のように圧下後のスラブ鋼片の冷却速度Vco[℃/hr]を70以下とするには、例えば、圧下後のスラブ鋼片を複数、積み重ねる方法が挙げられる。この方法による場合であっても、図5に示すように、「圧下後のスラブ鋼片の表面温度」は、圧下後のスラブ鋼片をスラブ鋼片の載置場に載置した際に上面となる面の縦横中央における温度を市販の熱電対プローブなどを利用して測定するものとする。なお、この場合、熱電対プローブは、積み重ねられるスラブ鋼片の間に挟まれることとなるので、スラブ鋼片の間に過大な隙間が空かないように極力、薄型のものを用いるとよい。また、本実施形態において、上記の冷却速度Vco[℃/hr]を70以下とする方法については、特に限定せず、他には、圧下後のスラブ鋼片を保熱容器に格納しておく方法や、保熱用カバーを被せておく方法などが挙げられる。なお、仮に、圧下後のスラブ鋼片を1枚だけで載置しておく所謂放冷をすると、上記の冷却速度Vco[℃/hr]は概ね90程度になるとされる。   In order to set the cooling rate Vco [° C./hr] of the slab steel pieces after reduction to 70 or less as described above, for example, a method of stacking a plurality of slab steel pieces after reduction is mentioned. Even in the case of this method, as shown in FIG. 5, the “surface temperature of the slab steel slab after the reduction” is the same as the upper surface when the slab steel slab after the reduction is placed on the slab steel slab placement site. The temperature at the vertical and horizontal center of the surface to be measured is measured using a commercially available thermocouple probe or the like. In this case, since the thermocouple probe is sandwiched between stacked slab steel pieces, it is preferable to use a thin probe as much as possible so that an excessive gap is not formed between the slab steel pieces. Further, in the present embodiment, the method for setting the cooling rate Vco [° C./hr] to 70 or less is not particularly limited. In addition, the slab steel piece after the reduction is stored in a heat retaining container. And a method of covering with a heat retaining cover. If the so-called cooling is performed by placing only one slab steel piece after the reduction, the cooling rate Vco [° C./hr] is about 90.

(4)圧下後のスラブ鋼片の手入れ工程
圧下後のスラブ鋼片を常温に至るまで冷却したら、次に、スラブ鋼片の表面疵(小さな割れや不純物析出物など)の有無を目視で確認し、必要に応じて、発見した表面疵の部分的な切削除去作業を行う。なお、スラブ鋼片の表面疵は、スラブ鋼片を常温(概ね100℃)に至るまで冷却して初めて目視確認できるものである。
(4) Care process for slab steel slab after rolling After cooling the slab steel slab after rolling down to room temperature, the slab steel slab is then visually checked for surface defects (small cracks, impurity precipitates, etc.). Then, if necessary, perform partial cutting and removal work on the found surface flaws. In addition, the surface flaw of a slab steel piece can be visually confirmed only after cooling a slab steel piece to normal temperature (approximately 100 degreeC).

(5)手入れ後のスラブ鋼片の加熱・圧延工程
次に、上記の手入れ後のスラブ鋼片を熱延加熱炉(加熱炉と圧延機から成る。)に入れてスラブ鋼片が1200〜1250℃に至るまで加熱する。そして、この加熱の際に発生したスラブ鋼片の表層の酸化層をデスケーラー等、適宜の手段で除去した上でスラブ鋼片を熱間圧延する。
(5) Heating and rolling process of slab steel slab after maintenance Next, the slab steel slab after the above maintenance is put into a hot-rolling heating furnace (consisting of a heating furnace and a rolling mill), and slab steel slabs are 1200 to 1250. Heat to ° C. And after removing the oxide layer of the surface layer of the slab steel piece which generate | occur | produced in this heating with suitable means, such as a descaler, a slab steel piece is hot-rolled.

<試験>
以下、本実施形態に係るスラブ鋳片の冷却時における鋳片取扱方法の技術的効果を確認するための試験に関して説明する。上述した各数値範囲などは、下記の確認試験により合理的に裏付けられている。
<Test>
Hereinafter, a test for confirming the technical effect of the slab handling method during cooling of the slab slab according to the present embodiment will be described. Each numerical range described above is reasonably supported by the following confirmation test.

<試験:指標>
先ず、各確認試験の評価に供される指標に関して説明する。以下、スラブ鋳片(又はスラブ鋼片、以下同様。)の冷却時又は加熱炉内でのスラブ鋼片の折損や表面欠陥に分類される不具合A〜Dを説明し、続いて、その他の操業上の不具合E〜Gを説明する。なお、本試験では、スラブ鋳片の冷却後の手入れ作業は実施しないものとする。従って、スラブ鋳片の部分手入れをすれば解消される問題も以下に取り上げていることに留意されたい。
・不具合A:折損:図6参照
図6に示すようなスラブ鋳片の折損は、主として、スラブ鋳片の冷却時又は加熱炉内における加熱時に発生する。スラブ鋳片の表面温度が上述の圧下前に延性−脆性遷移温度を下回ってしまうと、スラブ鋳片が図6に示すように折損する可能性がある。この折損は、歩留りの低下を招くのみならず、スラブ鋳片を吊り卸しする際やクレーンで搬送する際に発生する場合、スラブ鋳片の欠片が落下し非常に危険である。
・不具合B:開口割れ:図7参照
図7に示すように目視でも確認できるような開口割れがあるスラブ鋳片を加熱炉で加熱すると、その加熱中に折損してしまう可能性が高い。また、加熱炉内で折損すると、一旦加熱炉を冷却して折損したスラブ鋳片を取り出す作業が必要となり、甚大な生産阻害となる。
・不具合C:微細な表面疵:図8参照
図8に示すように目視でも確認できるような表面疵や、MT試験(磁粉探傷試験:JIS Z 2319.1991)又はPT試験(浸透探傷試験(カラーチェック):JIS Z 2343)によって検出できる疵は、加熱炉内における加熱中に割れが開口し、圧延時の母材に穴あきが発生する虞がある。また、圧延時に板破断を誘発する虞があり、設備の長時間に及ぶ休止を余儀なくされる虞がある。
・不具合D:四周部の割れ:図9参照
図9に示すように目視でも確認できるようなスラブ鋳片の四周部の割れである。四周部は、スラブ鋳片の軸芯よりも冷却が早まるため特に割れが発生し易い。この四周部の割れをそのままにして圧延すると、疵が製品に残存するので、手入れにより除去する必要がある。また、手入れ処置の如何によっては、この割れが拡大してしまう虞もある。
・不具合E:加熱炉での変形
加熱炉への装入時にスラブ鋳片の厚みが過小であると、加熱炉内で自重により下反りしてしまい、加熱後のスラブ鋳片を加熱炉から取り出す際に障害が出る可能性がある。
・不具合F:圧延時の穴あき:図10参照
圧延機に入る前のスラブ鋳片に開口状の欠陥があると、図10に示すように圧延途中で板に穴が開くことがある。場合によっては、板破断に至ることもあり、長時間の設備休止を余儀なくされる。
・不具合G:圧延時の板破断
圧延機に入る前のスラブ鋼片に開口状の欠陥がある場合、圧延条件や温度によっては圧延途中で板が破断することがある。板破断が発生すると、圧延材が圧延機内に滞留するため、長時間の設備休止を余儀なくされる。
<Test: Indicator>
First, an index used for evaluation of each confirmation test will be described. In the following, faults A to D classified as slab steel slab breakage or surface defects during cooling of a slab cast (or slab steel slab, the same shall apply hereinafter) or in a heating furnace will be described, followed by other operations. The above defects E to G will be described. In this test, the maintenance work after cooling the slab slab is not performed. Therefore, it should be noted that the problems that can be solved by partially cleaning the slab cast are also taken up below.
Failure A: Breakage: See FIG. 6 The breakage of the slab cast as shown in FIG. 6 mainly occurs when the slab cast is cooled or heated in the heating furnace. If the surface temperature of the slab slab falls below the ductile-brittle transition temperature before the above-described reduction, the slab slab may break as shown in FIG. This breakage not only causes a decrease in yield, but also when the slab slab is lifted or transported by a crane, the slab slab piece drops and is very dangerous.
-Problem B: Opening crack: Refer to FIG. 7 When a slab slab having an open crack that can be visually confirmed as shown in FIG. 7 is heated in a heating furnace, there is a high possibility of breakage during the heating. Moreover, when it breaks in a heating furnace, the operation | work which takes out the broken slab cast piece after cooling a heating furnace is needed, and becomes a huge production obstruction.
・ Problem C: Fine surface defect: see FIG. 8 As shown in FIG. 8, surface defect that can be visually confirmed, MT test (magnetic particle test: JIS Z 2319.1991) or PT test (penetration test (color) Check): The soot that can be detected by JIS Z 2343) has a possibility that cracks open during heating in the heating furnace, and perforation occurs in the base material during rolling. Moreover, there is a risk of inducing plate breakage during rolling, and there is a risk that the facility will be forced to stop for a long time.
Failure D: Cracks at the four circumferences: see FIG. 9 As shown in FIG. 9, the cracks are at the four circumferences of the slab slab that can be visually confirmed. The four circumferential portions are particularly susceptible to cracking because cooling is faster than the axis of the slab cast. If rolling is performed while leaving the cracks in the four circumferences as they are, the wrinkles remain in the product and must be removed by care. Further, this crack may be enlarged depending on the care procedure.
・ Problem E: Deformation in the heating furnace If the thickness of the slab slab is too small during charging into the heating furnace, the slab slab after the heating will be taken out of the heating furnace. Can cause problems.
・ Failure F: Perforation during rolling: see FIG. 10 If the slab slab before entering the rolling mill has an opening-like defect, a hole may be formed in the plate during rolling as shown in FIG. Depending on the case, the plate may be broken, and the equipment must be stopped for a long time.
-Failure G: Sheet breakage during rolling When the slab steel piece before entering the rolling mill has an open defect, the sheet may break during rolling depending on the rolling conditions and temperature. When the plate breakage occurs, the rolling material stays in the rolling mill, so that it is necessary to suspend the equipment for a long time.

<試験:共通試験方法・共通試験条件>
原則として、上記実施形態の通りの手順を実行するものとする。ただし、前述したように、手入れ作業は実施しないものとする。
<Test: Common test method / Common test conditions>
In principle, the procedure as in the above embodiment is executed. However, as described above, the maintenance work is not performed.

<試験:個別試験条件及びその試験結果>
次に、各確認試験の個別の試験条件とその試験結果を下記表1に示す。下記表1において、「C wt%」から「Ti wt%」までは各試験における溶鋼の成分を示す。特に、「s−Al wt%」は本願明細書末尾に詳説のsol−Alに相当する。「実測遷移温度 ℃」は前述したシャルピー試験によって実際に測定した延性−脆性遷移温度を意味する。「推定遷移温度 ℃」は溶鋼の成分に基づいて推定した延性−脆性遷移温度を意味する。溶鋼の成分に基づいて延性−脆性遷移温度を推定する方法の説明は、本願明細書の末尾に添付する。「圧延時鋳片温度 ℃」は、連続鋳造されたスラブ鋳片を分塊圧延設備に装入する直前におけるスラブ鋳片の表面温度を意味する。「冷却手段」の欄で、「段積み徐冷」とあるのは圧下後のスラブ鋼片を載置して冷却するに際し他の二枚のスラブ鋼片で挟み込んだことを意味し、「単品で放冷」とあるのは圧下後のスラブ鋼片を載置して冷却するに際しそのスラブ鋼片を単独で放置したことを意味し、「水冷」とあるのは圧下後のスラブ鋼片に水を噴霧して強力に冷却したことを意味し、「段積み後保温カバー設置」とあるのは上記の段積み徐冷に加えて、段積みされた複数のスラブ鋼片に保温カバーを被せたことを意味する。「鋳片割れ」の欄には、スラブ鋳片に発生した割れの具体的な状況を記載した。「操業異常」の欄には、その他の正常な操業にとっての不具合を具体的に記載した。そして、「総合評価」では、スラブ鋳片に割れが発生せず、且つ、正常な操業が実現できた場合を○とし、その他の場合を×とした。
<Test: Individual test conditions and test results>
Next, individual test conditions and test results of each confirmation test are shown in Table 1 below. In Table 1 below, “C wt%” to “Ti wt%” indicate the components of the molten steel in each test. In particular, “s-Al wt%” corresponds to sol-Al detailed at the end of the present specification. “Measured transition temperature ° C.” means the ductile-brittle transition temperature actually measured by the Charpy test described above. “Estimated transition temperature ° C.” means the ductile-brittle transition temperature estimated based on the composition of the molten steel. A description of the method for estimating the ductile-brittle transition temperature based on the composition of the molten steel is attached at the end of this specification. The “slab slab temperature during rolling ° C.” means the surface temperature of the slab slab immediately before the continuously cast slab slab is charged into the block rolling facility. In the column of “Cooling means”, “stacked slow cooling” means that the slab steel pieces after the reduction were placed and cooled, and sandwiched between the other two slab steel pieces. The term `` cooling at chilling '' means that the slab steel slab after the reduction was placed and cooled, and the slab steel slab was left alone, and the term `` water cooling '' was applied to the slab steel slab after the reduction. It means that it was cooled strongly by spraying water, and `` Installation of heat insulation cover after stacking '' means that a plurality of stacked slab steel pieces are covered with a heat insulation cover in addition to the above-mentioned stacking slow cooling. Means that. In the column of “slab slab cracking”, the specific situation of cracks occurring in the slab slab is described. In the column of “Operation Abnormality”, other troubles for normal operation are specifically described. In the “comprehensive evaluation”, a case where no crack was generated in the slab slab and a normal operation could be realized was indicated as “◯”, and the other cases were indicated as “X”.

以下、各試験の補足説明を行う。
・試験No.1
表1に記載の成分(延性−脆性遷移温度は既知。)で連続鋳造を実施した。そして、この連続鋳造で鋳造されたスラブ鋳片を分塊圧延設備に搬送した。スラブ鋳片を分塊圧延設備に装入する直前におけるスラブ鋳片の表面温度は15℃であった。圧延前のスラブ鋳片の厚みD1[mm]は280であり、本試験では圧延を実施しなかった。そして、分塊圧延設備から搬出されたスラブ鋳片は、それ以上の冷却をすることなく、熱延加熱炉に装入しようとした。しかし、本試験では、スラブ鋳片を熱延加熱炉に装入する前に折損してしまった(不具合A)。なお、表1では「昇温炉」と記載しているが、これは「分塊圧延設備の加熱炉」を意味している。
・試験No.3
表1に記載の成分(延性−脆性遷移温度は既知。)で連続鋳造を実施した。そして、この連続鋳造で鋳造されたスラブ鋳片を分塊圧延設備に搬送した。スラブ鋳片を分塊圧延設備に装入する直前におけるスラブ鋳片の表面温度は延性−脆性遷移温度を下回る250℃であった。圧延前のスラブ鋳片の厚みD1[mm]は280であり、圧延後のスラブ鋼片の厚みD2[mm]は225である。従って、圧下率Rは0.20である。そして、分塊圧延設備から搬出されたスラブ鋼片には、段積み徐冷を適用し、スラブ鋼片を常温に至るまで冷却し、冷却後のスラブ鋼片を熱延加熱炉に装入しようとした。本試験では、熱延加熱炉に装入する前に図7に示す開口割れが発生してしまった(不具合B)。
・試験No.4
本試験は、上記の試験No.3と比較して、スラブ鋳片を分塊圧延設備に装入する直前におけるスラブ鋳片の表面温度と、圧下率Rと、で異なる。即ち、スラブ鋳片を分塊圧延設備に装入する直前におけるスラブ鋳片の表面温度は、延性−脆性遷移温度を下回らない温度であった。圧下率Rは上記試験No.3と比較して低くなっている。本試験では、冷却後にスラブ鋼片の四周部に図9に示す割れが発生してしまった。本試験では、上記の熱間圧延時に板破断が発生する異常操業となってしまった(不具合D、G)。
・試験No.5
本試験は、上記の試験No.4と比較して、圧下率Rが大きく設定されている。本試験では、スラブ鋳片に割れが発生することなく、また、正常な操業が実施できた。
・試験No.6
本試験では、上記試験No.5と比較して、冷却方法の相違により、冷却速度Vco[℃/hr]が大きくなっている。本試験では、冷却後のスラブ鋼片に、図8に示すような微細な表面疵が発生してしまった(不具合C)。また、本試験では、熱間圧延時に図10に示すような穴あきが発生してしまった(不具合F)。
・試験No.7
本試験では、試験No.6と比較して、冷却方法の相違により、冷却速度Vco[℃/hr]が一層大きくなっている。本試験では、冷却後のスラブ鋼片に、図6に示すような折損が発生してしまった(不具合A)。
・試験No.11
本試験では、試験No.5と比較して、圧下後のスラブ鋼片の厚みD2[mm]を小さく設定した。本試験では、熱延加熱炉内で下反りしてしまった(不具合E)。
The following is a supplementary explanation for each test.
・ Test No. 1
Continuous casting was performed with the components shown in Table 1 (the ductile-brittle transition temperature is known). And the slab slab cast by this continuous casting was conveyed to the lump rolling equipment. The surface temperature of the slab slab immediately before charging the slab slab into the block rolling facility was 15 ° C. The thickness D1 [mm] of the slab cast before rolling was 280, and rolling was not performed in this test. And the slab slab carried out from the lump rolling equipment tried to insert into a hot-rolling heating furnace, without further cooling. However, in this test, the slab slab was broken before being inserted into the hot-rolling furnace (defect A). In Table 1, it is described as “heating furnace”, which means “heating furnace of the lump rolling equipment”.
・ Test No. 3
Continuous casting was performed with the components shown in Table 1 (the ductile-brittle transition temperature is known). And the slab slab cast by this continuous casting was conveyed to the lump rolling equipment. The surface temperature of the slab slab immediately before charging the slab slab into the block rolling facility was 250 ° C. below the ductile-brittle transition temperature. The thickness D1 [mm] of the slab slab before rolling is 280, and the thickness D2 [mm] of the slab steel slab after rolling is 225. Therefore, the rolling reduction R is 0.20. And apply slab steel slabs to the slab steel slabs carried out from the batch rolling equipment, cool the slab steel slabs to room temperature, and insert the cooled slab steel slabs into the hot rolling furnace. It was. In this test, the opening crack shown in FIG. 7 occurred before charging into the hot rolling furnace (defect B).
・ Test No. 4
This test is the same as the test No. described above. 3, the surface temperature of the slab slab immediately before charging the slab slab into the ingot rolling facility and the reduction ratio R are different. That is, the surface temperature of the slab slab immediately before the slab slab was charged into the block rolling equipment was a temperature that did not fall below the ductile-brittle transition temperature. The rolling reduction R is the above test No. Compared to 3, it is lower. In this test, cracks shown in FIG. 9 occurred in the four peripheral portions of the slab steel piece after cooling. In this test, it was an abnormal operation in which a plate breakage occurred during the above hot rolling (defects D and G).
・ Test No. 5
This test is the same as the test No. described above. Compared to 4, the rolling reduction R is set larger. In this test, the slab slab was not cracked and was able to operate normally.
・ Test No. 6
In this test, the above test no. Compared to 5, the cooling rate Vco [° C./hr] is increased due to the difference in the cooling method. In this test, a fine surface flaw as shown in FIG. 8 occurred in the slab steel piece after cooling (defect C). Moreover, in this test, perforation as shown in FIG. 10 occurred during hot rolling (defect F).
・ Test No. 7
In this test, test no. Compared to 6, the cooling rate Vco [° C./hr] is further increased due to the difference in the cooling method. In this test, breakage as shown in FIG. 6 occurred in the slab steel piece after cooling (defect A).
・ Test No. 11
In this test, test no. Compared with 5, the thickness D2 [mm] of the slab steel piece after the reduction was set small. In this test, it has warped in the hot-rolling furnace (defect E).

(まとめ)
以上説明したように上記実施形態において、連続鋳造によって鋳造されたスラブ鋳片を常温に至るまで冷却するに際し、上記スラブ鋳片の表面温度が前記の延性−脆性遷移温度を下回る前に、上記スラブ鋳片に対し、圧下後のスラブ鋼片の厚みD2[mm]が140を下回らないように圧下率R=0.1以上で圧下を加え、圧下後のスラブ鋼片の冷却速度Vco[℃/hr]を70以下とすることとしている。この方法によれば、上記表1で総合評価が○となったように、スラブ鋳片の割れを防止することができる。また、正常な操業を行える。
(Summary)
As described above, in the embodiment, when the slab slab cast by continuous casting is cooled to room temperature, the slab slab is cooled before the surface temperature of the slab slab falls below the ductile-brittle transition temperature. The slab is pressed at a reduction ratio R = 0.1 or more so that the thickness D2 [mm] of the slab steel slab after the reduction does not fall below 140, and the cooling rate Vco [° C./° C. of the slab steel slab after the reduction. hr] is 70 or less. According to this method, it is possible to prevent cracking of the slab slab as the overall evaluation is “good” in Table 1 above. Moreover, normal operation can be performed.

以下、参考資料である。   The following are reference materials.

(各鋼種成分(a)〜(m)の意義ないし詳しい説明)
・炭素は鋼の強度確保に必要な元素であり0.06wt%以上含有させることが好ましい。一方で、溶鋼中に炭素が過剰に存在すると溶接性が低下するため0.6wt%以下に抑えることが好ましい。必要であれば、特許第3889768号公報を参照されたい。
・ケイ素はオーステナイトへのC濃縮を促進させ、室温でオーステナイトを残留させて優れた強度−延性バランスを確保するのに有効な元素である。一方で、ケイ素が過剰に存在するとオーステナイト残留の効果が飽和してくると共に、熱間圧延でのスケール形成が顕著になり、また疵の除去にコストがかかり経済的に好ましくなくなため、3.0wt%以下に抑えることが好ましい。必要であれば、特許第3889768号公報や特開2006−207019号公報を参照されたい。
・マンガンはオーステナイトを安定化し、所定の残留γ量を確保する為に必要な元素である。一方で、マンガンが過剰に存在すると延性と溶接性が共に劣化するため、6wt%以下とすることが好ましい。必要であれば、特許第3889768号公報や特開2005−336526号公報を参照されたい。
・燐は残留γを確保する為に必要な元素である。一方で、0.15wt%を越えて添加すると2次加工性が劣化する。必要であれば、特開2005−336526号公報を参照されたい。
・硫黄はMnS等の硫化物系酸化物を形成し、割れの起点となって加工性を劣化させる元素であり、極力低減するのが好ましく、即ち0.02%以下とする。必要であれば、特開2005−336526号公報を参照されたい。
・溶融アルミニウムは脱酸作用を有する元素であり、余剰の酸素が酸化物を形成し局所的な加工性の低下を引き起こすのを防止するのに有効であるし、オーステナイトへのC濃縮を促進させ、室温でオーステナイトを残留させて優れた強度−延性バランスを確保するのに有効な元素である。一方で、溶融アルミニウムが過剰となると残留オーステナイト確保の効果が飽和するだけでなく、鋼の脆化やコストアップを招くので3%以下に抑えることが望ましい。必要であれば、特許第3889768号公報を参照されたい。なお、「溶融アルミニウムsol−Al」とは、酸化物などとしてではなく溶鋼中に単体で溶融しているアルミニウムを意味する。
・銅は鋼の強度を確保確保する為、および残留γを安定化して所定の量を確保する為に有用な元素である。一方で、銅を0.5%を越えて添加しても上記効果が飽和してしまい、経済的に無駄である。必要であれば、特開2005−336526号公報を参照されたい。
・ニッケルは鋼の強度を確保確保する為、および残留γを安定化して所定の量を確保する為に有用な元素である。一方で、ニッケルを0.5%を越えて添加しても上記効果が飽和してしまい、経済的に無駄である。必要であれば、特開2005−336526号公報を参照されたい。
・クロムは鋼の強度を確保確保する為に有用な元素である。一方で、クロムが過剰に存在すると延性と溶接性が共に劣化するため、1.0%以下に抑えることが望ましい。必要であれば、特許第3889768号公報を参照されたい。
・モリブデンは鋼の強度を確保確保する為に有用な元素である。一方で、モリブデンが過剰に存在すると延性が劣化するため、1.0%以下に抑えることが望ましい。必要であれば、特許第3889768号公報を参照されたい。
・ニオブは鋼の強度を確保確保する為に有用な元素である。一方で、ニオブが過剰に存在すると延性が劣化するため、0.1%以下に抑えることが望ましい。必要であれば、特許第3889768号公報を参照されたい。
・チタンは鋼の強度を確保確保する為に有用な元素である。一方で、チタンが過剰に存在すると延性が劣化するため、0.1%以下に抑えることが望ましい。必要であれば、特許第3889768号公報を参照されたい。
・不可避不純物としては、窒素などが挙げられる。
(Significance or detailed explanation of each steel type component (a) to (m))
-Carbon is an element necessary for ensuring the strength of steel, and is preferably contained in an amount of 0.06 wt% or more. On the other hand, if carbon is present in the molten steel in excess, the weldability is deteriorated, so that it is preferable to suppress it to 0.6 wt% or less. Refer to Japanese Patent No. 3889768 if necessary.
-Silicon is an element effective for promoting the C concentration to austenite and leaving austenite at room temperature to ensure an excellent strength-ductility balance. On the other hand, if silicon is present in excess, the effect of residual austenite becomes saturated, scale formation by hot rolling becomes remarkable, and the cost for removing wrinkles becomes expensive and economically undesirable. It is preferable to suppress it to 0 wt% or less. If necessary, refer to Japanese Patent No. 3889768 and Japanese Patent Application Laid-Open No. 2006-207019.
Manganese is an element necessary for stabilizing austenite and securing a predetermined amount of residual γ. On the other hand, if manganese is present in excess, both ductility and weldability deteriorate, so 6 wt% or less is preferable. If necessary, refer to Japanese Patent No. 3889768 and Japanese Patent Laid-Open No. 2005-336526.
・ Phosphorus is an element necessary for securing residual γ. On the other hand, when it exceeds 0.15 wt%, secondary workability will deteriorate. If necessary, refer to Japanese Patent Application Laid-Open No. 2005-336526.
Sulfur is an element that forms sulfide-based oxides such as MnS and causes cracking to deteriorate workability, and is preferably reduced as much as possible, that is, 0.02% or less. If necessary, refer to Japanese Patent Application Laid-Open No. 2005-336526.
-Molten aluminum is an element having a deoxidizing action, and is effective in preventing excessive oxygen from forming an oxide and causing local deterioration of workability, and promotes C concentration to austenite. It is an element effective for ensuring a superior strength-ductility balance by allowing austenite to remain at room temperature. On the other hand, if the amount of molten aluminum is excessive, not only the effect of securing retained austenite is saturated, but also steel embrittlement and cost increase are caused. Refer to Japanese Patent No. 3889768 if necessary. Note that “molten aluminum sol-Al” means aluminum that is melted alone in molten steel, not as an oxide or the like.
Copper is a useful element for ensuring the strength of steel and for stabilizing the residual γ and ensuring a predetermined amount. On the other hand, even if copper is added over 0.5%, the above effect is saturated, which is economically useless. If necessary, refer to Japanese Patent Application Laid-Open No. 2005-336526.
-Nickel is an element useful for ensuring the strength of the steel and for stabilizing the residual γ to ensure a predetermined amount. On the other hand, even if nickel is added in excess of 0.5%, the above effect is saturated, which is economically useless. If necessary, refer to Japanese Patent Application Laid-Open No. 2005-336526.
・ Chromium is an element useful for securing and securing the strength of steel. On the other hand, if there is an excess of chromium, both ductility and weldability deteriorate, so it is desirable to keep it to 1.0% or less. Refer to Japanese Patent No. 3889768 if necessary.
・ Molybdenum is a useful element to ensure and secure the strength of steel. On the other hand, since ductility deteriorates when molybdenum is present in excess, it is desirable to keep it at 1.0% or less. Refer to Japanese Patent No. 3889768 if necessary.
・ Niobium is a useful element for securing and securing the strength of steel. On the other hand, if niobium is present excessively, ductility deteriorates, so it is desirable to keep it at 0.1% or less. Refer to Japanese Patent No. 3889768 if necessary.
・ Titanium is a useful element for securing and securing the strength of steel. On the other hand, since ductility deteriorates when titanium is present in excess, it is desirable to keep it at 0.1% or less. Refer to Japanese Patent No. 3889768 if necessary.
-Nitrogen etc. are mentioned as an inevitable impurity.

(延性−脆性遷移温度の推定方法)
スラブ鋳片又はスラブ鋼片の折損のし易さを評価するものとして、溶接部の割れを評価する指標として一般に使用されている溶接割れ感受性指数(以下、Pcm)、再熱割れ感受性指数(以下、Psr)、HAZ粗粒域延性指標(以下、CE)なども有効であると考えられる。PcmやPsr、CEの求め方は、下記式(2)〜(4)の通りである。ただし、下記式(2)〜(4)において各元素記号はその元素の重量パーセントを意味する。
(Method for estimating ductile-brittle transition temperature)
Welding susceptibility index (hereinafter referred to as Pcm) and reheat cracking susceptibility index (hereinafter referred to as Pcm), which are generally used as indices for evaluating cracks in welded parts, for evaluating the ease of breakage of slab slabs or slab steel slabs , Psr), HAZ coarse grain region ductility index (hereinafter, CE) and the like are also considered effective. The method of obtaining Pcm, Psr, and CE is as shown in the following formulas (2) to (4). However, in the following formulas (2) to (4), each element symbol means a weight percentage of the element.

次に、これらの指数ないし指標と、延性−脆性遷移温度と、の関係を示す図11〜図13を参照されたい。図11は、横軸が溶接割れ感受性指数Pcmであり、縦軸が延性−脆性遷移温度である。図12は、横軸が再熱割れ感受性指数Psrであり、縦軸が延性−脆性遷移温度である。図13は、横軸がHAZ粗粒域延性指標CEであり、縦軸が延性−脆性遷移温度である。各図において破線で囲ったデータは一般的な炭素鋼でのデータであり、実線で囲ったデータは合金鋼でのデータである。また、各図における黒塗り丸印はスラブ鋳片又はスラブ鋼片の冷却時に割れが発生しなかったことを意味し、×印はこの折損割れが発生したことを意味する。各プロットに対応する試験において、冷却はすべて段積み徐冷を採用し、割れ対策としての圧下は実施していない。各図によれば、スラブ鋳片又はスラブ鋼片の冷却時における割れは、延性−脆性遷移温度を用いて層別できることが判る。これを踏まえた上で、一般的な炭素鋼では上記の指数ないし指標だけで割れ易さを把握できるものの、炭素鋼のみならず合金鋼の割れ易さを評価するには上記の指数ないし指標では足らず、延性−脆性遷移温度を唯一の指標としなければならない。そこで、図11〜13に示される各試験データからの回帰により、SiやTi、Pなどの溶融元素も包括的に考慮した延性−脆性遷移温度の新たな推定式を下記式(5)のように提案する。ただし、下記式(5)において各元素記号はその元素の重量パーセントを意味し、左辺の延性−脆性遷移温度の単位は℃である。   Next, refer to FIG. 11 to FIG. 13 showing the relationship between these indexes or indices and the ductile-brittle transition temperature. In FIG. 11, the horizontal axis represents the weld cracking sensitivity index Pcm, and the vertical axis represents the ductile-brittle transition temperature. In FIG. 12, the horizontal axis represents the reheat cracking sensitivity index Psr, and the vertical axis represents the ductile-brittle transition temperature. In FIG. 13, the horizontal axis represents the HAZ coarse grain region ductility index CE, and the vertical axis represents the ductile-brittle transition temperature. In each figure, data surrounded by a broken line is data for general carbon steel, and data surrounded by a solid line is data for alloy steel. In addition, black circles in each figure mean that no cracks occurred during cooling of the slab slab or slab steel slab, and x means that this breakage occurred. In the test corresponding to each plot, all the cooling uses stacked slow cooling, and no reduction as a countermeasure against cracking is performed. According to each figure, it turns out that the crack at the time of cooling of a slab cast piece or a slab steel piece can be divided into layers using a ductile-brittle transition temperature. With this in mind, in general carbon steel, the ease of cracking can be grasped only with the above index or index, but in order to evaluate the crackability of not only carbon steel but also alloy steel, In short, the ductile-brittle transition temperature should be the only indicator. Therefore, by regression from the test data shown in FIGS. 11 to 13, a new estimation formula for the ductile-brittle transition temperature that comprehensively considers molten elements such as Si, Ti, and P is as shown in the following formula (5). Propose to. However, in the following formula (5), each element symbol means the weight percent of the element, and the unit of the ductile-brittle transition temperature on the left side is ° C.

図14は、横軸が上記式(5)に基づく延性−脆性遷移温度の推定値であり、縦軸が実際にシャルピー試験を通じて測定した延性−脆性遷移温度である。本図によれば、上記式(5)によると延性−脆性遷移温度が未知である鋼種であっても、延性−脆性遷移温度を溶鋼成分から精度よく推定できることが判る。上記表1における試験No.27〜35では、試験時、延性−脆性遷移温度が未知であったため、上記式(5)によって延性−脆性遷移温度を推定することとした。なお、本願が対象としている鋼種は、延性−脆性遷移温度が160℃以上のものであるから、この限定事項を図14に太線矢印でイメージしておいた。   In FIG. 14, the horizontal axis is an estimated value of the ductile-brittle transition temperature based on the above formula (5), and the vertical axis is the ductile-brittle transition temperature actually measured through the Charpy test. According to the figure, it can be seen that the ductility-brittle transition temperature can be accurately estimated from the molten steel components even if the steel type has an unknown ductility-brittle transition temperature according to the above equation (5). Test No. in Table 1 above. In Nos. 27 to 35, since the ductile-brittle transition temperature was unknown at the time of the test, the ductile-brittle transition temperature was estimated by the above formula (5). In addition, since the steel type which this application makes object has a ductile-brittle transition temperature of 160 degreeC or more, this limitation matter was imaged by the thick line arrow in FIG.

Claims (1)

炭素含有量C[wt%]を0.07〜0.60とし、
ケイ素含有量Si[wt%]を0.1〜3.0とし、
マンガン含有量Mn[wt%]を0.5〜6.0とし、
燐含有量P[wt%]を0.15以下(ただし、0を含まない。)とし、
硫黄含有量S[wt%]を0.02以下(ただし、0を含まない。)とし、
溶融アルミニウムsol−Al[wt%]を0.01〜3とし、
銅含有量Cu[wt%]を0.5以下(ただし、0を含む。)とし、
ニッケル含有量Ni[wt%]を0.5以下(ただし、0を含む。)とし、
クロム含有量Cr[wt%]を1.0以下(ただし、0を含む。)とし、
モリブデンMo[wt%]を1.0以下(ただし、0を含む。)とし、
ニオブNb[wt%]を0.1以下(ただし、0を含む。)とし、
チタンTi[wt%]を0.1以下(ただし、0を含まない。)とし、
残部が鉄Fe及び不可避不純物から成り、
延性−脆性遷移温度が160℃以上となる、
連続鋳造によって鋳造されたスラブ鋳片を常温に至るまで冷却するに際し、
上記スラブ鋳片の表面温度が前記の延性−脆性遷移温度を下回る前に、上記スラブ鋳片に対し、圧下後のスラブ鋼片の厚みD2[mm]が140を下回らないように圧下率R=0.1以上で圧下を加え、
圧下後のスラブ鋼片の冷却速度Vco[℃/hr]を70以下とする、
ことを特徴とする、スラブ鋳片の冷却時における鋳片取扱方法。
The carbon content C [wt%] is 0.07 to 0.60,
The silicon content Si [wt%] is 0.1 to 3.0,
Manganese content Mn [wt%] 0.5-6.0,
The phosphorus content P [wt%] is 0.15 or less (however, 0 is not included),
Sulfur content S [wt%] is 0.02 or less (however, 0 is not included),
Molten aluminum sol-Al [wt%] is set to 0.01 to 3,
The copper content Cu [wt%] is 0.5 or less (including 0),
The nickel content Ni [wt%] is 0.5 or less (including 0),
Chromium content Cr [wt%] is 1.0 or less (however, including 0),
Molybdenum Mo [wt%] is 1.0 or less (including 0),
Niobium Nb [wt%] is 0.1 or less (including 0),
Titanium Ti [wt%] is 0.1 or less (however, 0 is not included),
The balance consists of iron Fe and inevitable impurities,
The ductile-brittle transition temperature is 160 ° C. or higher.
When cooling the slab slab cast by continuous casting to room temperature,
Before the surface temperature of the slab slab falls below the ductile-brittle transition temperature, the reduction ratio R = so that the thickness D2 [mm] of the slab steel slab after the reduction does not fall below 140 with respect to the slab slab. Apply a reduction above 0.1,
The cooling rate Vco [° C./hr] of the slab steel slab after the reduction is 70 or less,
The slab handling method at the time of cooling of the slab slab characterized by the above-mentioned.
JP2009128552A 2009-05-28 2009-05-28 Slab handling method during cooling of slab slab with ductile brittle transition temperature of 160 ° C or higher Expired - Fee Related JP5254130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128552A JP5254130B2 (en) 2009-05-28 2009-05-28 Slab handling method during cooling of slab slab with ductile brittle transition temperature of 160 ° C or higher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128552A JP5254130B2 (en) 2009-05-28 2009-05-28 Slab handling method during cooling of slab slab with ductile brittle transition temperature of 160 ° C or higher

Publications (2)

Publication Number Publication Date
JP2010274300A true JP2010274300A (en) 2010-12-09
JP5254130B2 JP5254130B2 (en) 2013-08-07

Family

ID=43421739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128552A Expired - Fee Related JP5254130B2 (en) 2009-05-28 2009-05-28 Slab handling method during cooling of slab slab with ductile brittle transition temperature of 160 ° C or higher

Country Status (1)

Country Link
JP (1) JP5254130B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011104320T5 (en) 2010-12-09 2013-10-02 Panasonic Corporation Assembly system for electrical components and assembly methods for electronic components
CN107723614A (en) * 2016-08-12 2018-02-23 通用汽车环球科技运作有限责任公司 Steel alloy with customization quenching degree
KR20190078022A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Continuous casting method for high alloy steel
KR102043002B1 (en) * 2018-05-14 2019-11-11 주식회사 포스코 Continuous casting method with improved surface defect of strand

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839732A (en) * 1981-08-31 1983-03-08 Sumitomo Metal Ind Ltd Manufacture of ferrite stainless steel plate with superior rust resistance and oxidation resistance
JPS602628A (en) * 1983-06-18 1985-01-08 Nippon Steel Corp Method for cooling continuously cast billet of ferritic stainless steel containing niobium
JPH09164464A (en) * 1995-12-15 1997-06-24 Nkk Corp Method for preventing season cracking of continuously cast slab of ball bearing steel
JPH09170024A (en) * 1995-12-15 1997-06-30 Nkk Corp Method for preventing season cracking in continuously cast slab of bearing steel
JP2007083274A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd Method for preventing delayed failure in continuous cast slab of high tension steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839732A (en) * 1981-08-31 1983-03-08 Sumitomo Metal Ind Ltd Manufacture of ferrite stainless steel plate with superior rust resistance and oxidation resistance
JPS602628A (en) * 1983-06-18 1985-01-08 Nippon Steel Corp Method for cooling continuously cast billet of ferritic stainless steel containing niobium
JPH09164464A (en) * 1995-12-15 1997-06-24 Nkk Corp Method for preventing season cracking of continuously cast slab of ball bearing steel
JPH09170024A (en) * 1995-12-15 1997-06-30 Nkk Corp Method for preventing season cracking in continuously cast slab of bearing steel
JP2007083274A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd Method for preventing delayed failure in continuous cast slab of high tension steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011104320T5 (en) 2010-12-09 2013-10-02 Panasonic Corporation Assembly system for electrical components and assembly methods for electronic components
CN107723614A (en) * 2016-08-12 2018-02-23 通用汽车环球科技运作有限责任公司 Steel alloy with customization quenching degree
CN107723614B (en) * 2016-08-12 2019-11-08 通用汽车环球科技运作有限责任公司 Steel alloy with customization harden ability
KR20190078022A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Continuous casting method for high alloy steel
KR102043003B1 (en) * 2017-12-26 2019-11-11 주식회사 포스코 Continuous casting method for high alloy steel
KR102043002B1 (en) * 2018-05-14 2019-11-11 주식회사 포스코 Continuous casting method with improved surface defect of strand

Also Published As

Publication number Publication date
JP5254130B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
US20230203632A1 (en) Austenitic stainless steel weld joint
JP5984213B2 (en) Austenitic Fe-Ni-Cr alloy for cladding tubes with excellent weldability
TWI460291B (en) Ferritic stainless steel
US20100054983A1 (en) Austenitic stainless steel
JP5590271B1 (en) Steel sheet having a yield strength of 670-870 N / mm 2 and a tensile strength of 780-940 N / mm 2
TWI460292B (en) Ferritic stainless steel
JP6920420B2 (en) Austenitic stainless steel sheet and its manufacturing method
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JPWO2009044796A1 (en) Austenitic stainless steel
JP2012087339A (en) Steel sheet excellent in laser cuttability, and method for production thereof
JP2009074123A (en) METHOD FOR MANUFACTURING Ni-CONTAINING STEEL HAVING EXCELLENT SURFACE QUALITY
RU2544326C1 (en) Manufacturing method of low alloyed steel plates with increased corrosion resistance
JP5254130B2 (en) Slab handling method during cooling of slab slab with ductile brittle transition temperature of 160 ° C or higher
JP2007204781A (en) Method for producing steel material excellent in fatigue crack propagating characteristic
JP2007302908A (en) High tensile strength steel plate and its manufacturing method
JP6790641B2 (en) Rolled H-section steel and its manufacturing method
JP4538095B2 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP6516093B2 (en) Composite roll for continuous cast overlay casting rolling
JP5961296B2 (en) Method of overlaying stainless steel for welding
KR20140037969A (en) Method for producing austenitic stainless steel
JP6926247B2 (en) Cold-rolled steel sheet for flux-cored wire and its manufacturing method
JP6402581B2 (en) Welded joint and method for producing welded joint
JP5093463B2 (en) Continuous casting method and continuous casting machine
RU2577643C1 (en) High-temperature alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R150 Certificate of patent or registration of utility model

Ref document number: 5254130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees