JP2010272991A - Electrode structure of capacitance sensor and vehicle proximity sensor using the structure - Google Patents

Electrode structure of capacitance sensor and vehicle proximity sensor using the structure Download PDF

Info

Publication number
JP2010272991A
JP2010272991A JP2009121378A JP2009121378A JP2010272991A JP 2010272991 A JP2010272991 A JP 2010272991A JP 2009121378 A JP2009121378 A JP 2009121378A JP 2009121378 A JP2009121378 A JP 2009121378A JP 2010272991 A JP2010272991 A JP 2010272991A
Authority
JP
Japan
Prior art keywords
electrode
capacitance
detection electrode
inversion
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009121378A
Other languages
Japanese (ja)
Other versions
JP5369888B2 (en
Inventor
Keiji Osugi
啓治 大杉
Toshiki Mori
敏樹 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2009121378A priority Critical patent/JP5369888B2/en
Publication of JP2010272991A publication Critical patent/JP2010272991A/en
Application granted granted Critical
Publication of JP5369888B2 publication Critical patent/JP5369888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Electronic Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode structure of a capacitance sensor, which can reduce a high-frequency noise emitted to a surrounding area from an electrode portion which a human body approaches or contacts, and to provide a vehicle proximity sensor using the structure. <P>SOLUTION: An electrode structure of a capacitance sensor is a conductive body which a human body approaches or contacts, and has a detection electrode 3 to which a charging signal charging an unknown capacitance Cx is repeatedly supplied, an inversion electrode 4 which is a conductive body arranged adjacent to the detection electrode 3, and a phase inversion circuit 6 supplying to the inversion electrode 4 an inversion signal whose voltage changes in a direction opposite to the change of the voltage of the charging signal. The electrode structure reduces a high-frequency noise (N) emitted from the detection electrode by the inversion electrode. The detection electrode 3 of a long rail plate or stick and the inversion electrode 4 which is approximately the same length as that of the detection electrode can be arranged in parallel, and the phase inversion circuit 6 can be composed by an inverter circuit. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、人体の近接又は接触を検出する静電容量センサの電極構造、及びそれを用いた車両用近接センサに関する。   The present invention relates to an electrode structure of a capacitance sensor that detects proximity or contact of a human body, and a vehicle proximity sensor using the same.

従来、人体が近接又は接触する検出電極を備え、人体による浮遊容量又は接地(大地)との間の静電容量の変化を計測することにより人体の近接又は接触を検知する静電容量センサが用いられている。このような静電容量センサにおいては、検出電極に生じる静電容量を充放電させて電圧や電荷量を計測したり、検出回路のインピーダンスの変化等を利用することによって静電容量の変化が検出されている。しかし、人体の近接又は接触によって生じる静電容量の変化は微小な値であり、一度の充電又は放電によって精度よく静電容量を計測することは困難であるため、充放電を繰返すことによって計測精度を向上させるのが一般的である。
例えば、スイッチドキャパシタ方式により検出電極に所定周波数の所定電圧を所定の周期で印加して、微小な静電容量によって生じる電圧値を積分して測定する微小静電容量の測定方法が開示されている(特許文献1を参照)。また、既知のコンデンサとスイッチ手段を備え、人体等によって生じる未知のコンデンサを繰返し充放電させ、電荷を既知のコンデンサに集積させることによって精度よく計測する電荷移動式キャパシタンス測定回路が知られている(特許文献2を参照)。
Conventionally, a capacitance sensor that detects a proximity or contact of a human body by measuring a change in capacitance between the human body and a stray capacitance or ground (ground) is provided. It has been. In such a capacitance sensor, the change in capacitance is detected by charging or discharging the capacitance generated in the detection electrode to measure the voltage or charge amount, or by using the change in impedance of the detection circuit. Has been. However, the change in capacitance caused by the proximity or contact of the human body is a minute value, and it is difficult to accurately measure the capacitance with a single charge or discharge. It is common to improve.
For example, a method for measuring a minute capacitance is disclosed in which a predetermined voltage of a predetermined frequency is applied to a detection electrode in a predetermined cycle by a switched capacitor method, and a voltage value generated by a minute capacitance is integrated and measured. (See Patent Document 1). There is also known a charge transfer capacitance measuring circuit that includes a known capacitor and switch means, and repeatedly charges and discharges an unknown capacitor caused by a human body or the like, and accumulates charges in the known capacitor to accurately measure ( (See Patent Document 2).

前記電荷移動式キャパシタンス測定回路は、図12に示すように構成される。この回路部82は既知の静電容量C81、スイッチ手段SW81、SW82等を備え、検出電極83に生じる未知の静電容量C8xが計測される。通常、静電容量C8xは静電容量C81に較べて大幅に容量が小さい。
最初に、静電容量C8x及び静電容量C81が放電(図示省略)される。そしてSW81を閉(オン)、SW82を開(オフ)にすると、静電容量が充電され、静電容量C8x及びC81には各容量値に反比例して充電電圧V8x及びV81が生じる(ステップ1)。次に、SW81をオフ、SW82をオンにすると、静電容量C81の電荷は保持される(ステップ2)。その後、再び前記ステップ1の状態とすると、静電容量が充電されるとともに静電容量C8xと静電容量C81との間で電荷が移動し、静電容量C81の充電電圧V81が増加する。次いで前記ステップ2の状態にすると、静電容量C81の電荷は保持される。さらにステップ1とステップ2を繰返して実行すれば、静電容量C81に電荷が蓄積されることにより、繰返しとともに充電電圧V81は漸増する。図13(a)及び(b)は、図12における検出電極83及び8A点の電位の変化を示すものである。前記ステップ2の状態の8A点の電位が一定の値に達するまでに要する繰返し回数は静電容量C8xの大きさによるため、その繰返し回数により未知の静電容量C8xを求めることができる。
The charge transfer capacitance measuring circuit is configured as shown in FIG. The circuit unit 82 includes a known capacitance C81, switch means SW81, SW82, and the like, and an unknown capacitance C8x generated at the detection electrode 83 is measured. Usually, the capacitance C8x is significantly smaller than the capacitance C81.
First, the capacitance C8x and the capacitance C81 are discharged (not shown). When SW81 is closed (ON) and SW82 is opened (OFF), the electrostatic capacity is charged, and charging voltages V8x and V81 are generated in electrostatic capacity C8x and C81 in inverse proportion to the respective capacitance values (step 1). . Next, when SW81 is turned off and SW82 is turned on, the charge of the capacitance C81 is held (step 2). Thereafter, when the state of step 1 is set again, the electrostatic capacity is charged, the electric charge moves between the electrostatic capacity C8x and the electrostatic capacity C81, and the charging voltage V81 of the electrostatic capacity C81 increases. Next, in the state of step 2, the charge of the capacitance C81 is held. Further, if Step 1 and Step 2 are repeated, the charge voltage V81 gradually increases as the charge is accumulated in the capacitance C81. FIGS. 13A and 13B show changes in the potentials of the detection electrodes 83 and 8A in FIG. Since the number of repetitions required until the potential at the point 8A in the state of Step 2 reaches a certain value depends on the magnitude of the capacitance C8x, the unknown capacitance C8x can be obtained from the number of repetitions.

また、静電容量の検出精度を向上させるため、センサの電極の構成を工夫したものが知られている。例えば、1対の差動電極に位相の反転した充放電を繰返し行い、差動電極の見かけの浮遊容量の和を求めることによってノイズの影響を除去する近接検出装置が開示されている(特許文献3を参照)。   Further, in order to improve the detection accuracy of the capacitance, a device in which the configuration of the electrode of the sensor is devised is known. For example, there is disclosed a proximity detection device that eliminates the influence of noise by repeatedly charging and discharging a pair of differential electrodes with reversed phases and obtaining the sum of the apparent stray capacitances of the differential electrodes (Patent Document). 3).

特開平8−194025号公報JP-A-8-194025 特表2002−530680号公報Japanese translation of PCT publication No. 2002-530680 特開2008−292446号公報JP 2008-292446 A

しかし、前記のスイッチドキャパシタ方式等の静電容量センサでは、人体等が近接又は接触する検出電極に繰返し充放電を行い、その充放電特性を累積して静電容量を計測するため、検出電極から周囲環境に充放電による高周波ノイズが放射される。例えば、検出電極の充放電の繰返し時間が約7μsであれば、ほぼ140kHzを中心とする周波数領域だけでなく広い周波数範囲で高周波ノイズが放射される。このため、静電容量センサが周囲の電子機器の動作に影響を及ぼす電磁妨害(EMI、Electro Magnetic Interference)が問題であった。一般には、装置から外部に放出される高周波ノイズを低減するために、当該装置を金属等のケースによって密閉するような方法がある。しかし、静電容量センサの場合、人体が近接又は接近する検出電極は外部に開放される必要があるため、電極部を電磁的にシールドする対策は不可能である。   However, in the capacitance sensor such as the switched capacitor method, the detection electrode is repeatedly charged / discharged to the detection electrode that is close to or in contact with the human body, and the capacitance is measured by accumulating the charge / discharge characteristics. High-frequency noise due to charging / discharging is emitted from the surrounding environment. For example, when the repetition time for charging and discharging the detection electrode is about 7 μs, high-frequency noise is radiated not only in the frequency region centered at about 140 kHz but also in a wide frequency range. For this reason, electromagnetic interference (EMI, Electro Magnetic Interference) that the capacitance sensor affects the operation of surrounding electronic devices has been a problem. In general, in order to reduce high-frequency noise emitted from the device to the outside, there is a method in which the device is sealed with a case of metal or the like. However, in the case of a capacitance sensor, since the detection electrode that a human body approaches or approaches needs to be opened to the outside, it is impossible to take a countermeasure for electromagnetically shielding the electrode portion.

また、静電容量センサにおいては、外部からのノイズの影響によって検出精度が低下する問題があるため、電極の構造や構成法が種々工夫されている。例えば、前記の差動電極を備えた近接検出装置では、差動電極に位相の反転した充放電を繰返し行い、差動電極の浮遊容量の合成値を求めることにより、ノイズの影響を除去して高精度の検出が可能とされている。しかしながら、従来例では、静電容量センサの電極部から放射される高周波ノイズにより周囲の電子装置の動作が阻害されるEMIについては考慮されてこなかった。
とくに、自動車で用いられる静電容量センサの場合、EMIの対策は重要な課題となっている。静電容量センサの電極部から広い周波数範囲でノイズが放射されると、例えばスマートエントリーシステム等車載装置の動作やラジオ放送の受信を阻害する等の問題がある。
In addition, in the capacitance sensor, there is a problem that the detection accuracy is lowered due to the influence of external noise, and thus various electrode structures and configuration methods have been devised. For example, in the proximity detection device having the differential electrode described above, the influence of noise is removed by repeatedly charging and discharging the phase of the differential electrode to obtain a composite value of the floating capacitance of the differential electrode. High-precision detection is possible. However, in the conventional example, no consideration has been given to EMI in which the operation of the surrounding electronic device is hindered by high-frequency noise radiated from the electrode portion of the capacitance sensor.
In particular, in the case of a capacitance sensor used in an automobile, measures against EMI have become an important issue. When noise is radiated in a wide frequency range from the electrode portion of the capacitance sensor, there is a problem that, for example, the operation of an in-vehicle device such as a smart entry system or reception of radio broadcasts is hindered.

本発明は、前記現状に鑑みてなされたものであり、人体が近接又は接触する電極部から周囲へ放射される高周波ノイズを低減させることができる静電容量センサの電極構造、及びそれを用いた車両用近接センサを提供することを目的とする。   The present invention has been made in view of the above-described situation, and an electrode structure of a capacitance sensor that can reduce high-frequency noise radiated from an electrode portion that is close to or in contact with a human body to the surroundings, and the same. An object of the present invention is to provide a vehicle proximity sensor.

本発明は、以下の通りである。
1.人体の近接又は接触を静電容量の変化により検出する静電容量センサの電極構造であって、人体が近接又は接触する導電体であり、前記静電容量を充電する充電信号が繰返し供給される検出電極と、前記検出電極に近接して配設される導電体である反転電極と、前記充電信号の電圧の変化と逆向きに電圧が変化する反転信号を前記反転電極に供給する位相反転回路と、を備え、前記検出電極から放射される高周波ノイズを前記反転電極によって低減することを特徴とする静電容量センサの電極構造。
2.前記充電信号はパルス信号であり、前記位相反転回路は、前記パルス信号の立上り時に立下り且つ前記パルス信号の立下り時に立上がる前記反転信号を生成する前記1.記載の静電容量センサの電極構造。
3.前記位相反転回路は前記充電信号が入力されるインバータ回路である前記2.記載の静電容量センサの電極構造。
4.前記検出電極は長尺状の板状又は棒状の導電体であり、前記検出電極と略同一の長さの前記反転電極が該検出電極と略同一平面に平行に配設される前記1.乃至3.のいずれかに記載の静電容量センサの電極構造。
5.前記検出電極は略長方形の平板の導電体であり、前記反転電極は、前記検出電極と略同一平面に該検出電極の外周を所定の間隙を空けて囲んで配設される前記1.乃至3.のいずれかに記載の静電容量センサの電極構造。
6.車両に搭載される近接センサであって、前記1.乃至5.のいずれかに記載の静電容量センサの電極構造を備えることを特徴とする車両用近接センサ。
The present invention is as follows.
1. An electrode structure of a capacitance sensor that detects proximity or contact of a human body by a change in capacitance, and is a conductor that is close to or in contact with a human body, and is repeatedly supplied with a charge signal for charging the capacitance. A detection electrode, an inversion electrode that is a conductor disposed in the vicinity of the detection electrode, and a phase inversion circuit that supplies an inversion signal whose voltage changes in the opposite direction to the change in the voltage of the charging signal to the inversion electrode And a high frequency noise radiated from the detection electrode is reduced by the inversion electrode.
2. The charging signal is a pulse signal, and the phase inversion circuit generates the inverted signal that falls when the pulse signal rises and rises when the pulse signal falls. The electrode structure of the described electrostatic capacitance sensor.
3. The phase inverting circuit is an inverter circuit to which the charging signal is input. The electrode structure of the described electrostatic capacitance sensor.
4). The detection electrode is a long plate-like or rod-shaped conductor, and the inversion electrode having a length substantially the same as the detection electrode is disposed in parallel with the detection electrode in the same plane. To 3. The electrode structure of the capacitance sensor according to any one of the above.
5). The detection electrode is a substantially rectangular flat conductor, and the inversion electrode is disposed substantially on the same plane as the detection electrode, surrounding the outer periphery of the detection electrode with a predetermined gap. To 3. The electrode structure of the capacitance sensor according to any one of the above.
6). A proximity sensor mounted on a vehicle, comprising: To 5. A proximity sensor for a vehicle, comprising the capacitance sensor electrode structure according to any one of the above.

本発明の静電容量センサの電極構造によれば、人体が近接又は接触する導電体であり、静電容量を充電する充電信号が繰返し供給される検出電極と、前記検出電極に近接して配設される導電体である反転電極と、前記充電信号の電圧の変化と逆向きに電圧が変化する反転信号を前記反転電極に供給する位相反転回路と、を備えるため、検出電極と反転電極とで構成される電極部から放射される高周波ノイズを低減することができ、周辺の電子装置に与える電磁妨害(EMI)を防止することができる。また、電極の構造及び構成が簡単であり、検出電極に繰返し充放電を行うことにより静電容量を計測する静電容量センサに広く適用することができる。
また、前記充電信号はパルス信号であり、前記位相反転回路は、前記パルス信号の立上り時に立下り且つ前記パルス信号の立下り時に立上がる前記反転信号を生成する場合は、充電信号の立上り時及び立下り時に放射される高周波ノイズを効果的に低減することができる。
さらに、前記位相反転回路は前記充電信号が入力されるインバータ回路である場合は、少ない部品と簡単な回路により、一定のレベルを超える充電信号の立上り時及び立下り時に放射される高周波ノイズを効果的に低減することができる。
According to the electrode structure of the capacitance sensor of the present invention, the human body is a conductor that comes close to or contacts, and a detection electrode to which a charging signal for charging the capacitance is repeatedly supplied, and the detection electrode are arranged close to the detection electrode. An inversion electrode that is a conductor provided, and a phase inversion circuit that supplies an inversion signal whose voltage changes in a direction opposite to a change in the voltage of the charging signal to the inversion electrode. The high frequency noise radiated | emitted from the electrode part comprised by can be reduced, and the electromagnetic interference (EMI) given to a surrounding electronic device can be prevented. In addition, the structure and configuration of the electrode is simple, and the present invention can be widely applied to capacitance sensors that measure capacitance by repeatedly charging and discharging the detection electrode.
The charging signal is a pulse signal, and the phase inversion circuit generates the inverted signal that falls at the rising edge of the pulse signal and rises at the falling edge of the pulse signal. High frequency noise radiated at the time of falling can be effectively reduced.
Further, when the phase inverting circuit is an inverter circuit to which the charging signal is input, the high frequency noise radiated at the time of rising and falling of the charging signal exceeding a certain level can be effectively achieved by a small number of components and a simple circuit. Can be reduced.

前記検出電極は長尺状の板状又は棒状の導電体であり、前記検出電極と略同一の長さの前記反転電極が該検出電極と略同一平面に平行に配設される場合には、検出電極の長さに対応した領域で人体の近接又は接触を検出することができるとともに、長尺状の電極がアンテナとなって放射される高周波ノイズを低減することができる。
また、前記検出電極は略長方形の平板の導電体であり、前記反転電極は、前記検出電極と略同一平面に該検出電極の外周を所定の間隙を空けて囲んで配設される場合は、広い検出電極の面積に対応した領域で人体の近接又は接触を検出することができるとともに、その検出電極がアンテナとなって放射される高周波ノイズを低減することができる。
When the detection electrode is a long plate-like or rod-like conductor, and the inversion electrode having the same length as the detection electrode is arranged in parallel to the detection electrode, The proximity or contact of the human body can be detected in a region corresponding to the length of the detection electrode, and high-frequency noise radiated from the long electrode as an antenna can be reduced.
In addition, the detection electrode is a substantially rectangular flat conductor, and the inversion electrode is disposed on the same plane as the detection electrode with a predetermined gap around the outer periphery of the detection electrode. The proximity or contact of the human body can be detected in a region corresponding to a wide area of the detection electrode, and high-frequency noise radiated from the detection electrode as an antenna can be reduced.

前記のいずれかに記載の静電容量センサの電極構造を備える車両用近接センサによれば、その電極部から放射される高周波ノイズのレベルが低い近接センサを各種車載装置のスイッチ等として用いることができ、周囲の車載電子装置に対する電磁妨害を大幅に低減することが可能になる。   According to the proximity sensor for a vehicle including the electrode structure of the capacitance sensor according to any one of the above, a proximity sensor having a low level of high-frequency noise radiated from the electrode portion may be used as a switch of various in-vehicle devices. It is possible to greatly reduce electromagnetic interference with respect to surrounding on-vehicle electronic devices.

本発明について、本発明による典型的な実施形態の非限定的な例を挙げ、言及された複数の図面を参照しつつ以下の詳細な記述にて更に説明するが、同様の参照符号は図面のいくつかの図を通して同様の部品を示す。
本発明の静電容量センサの電極構造の構成を示すブロック図である。 本静電容量センサの検出電極及び反転電極の接続例を説明する図である。 長尺状の検出電極及び反転電極の形状及び配置を説明する模式図である。 長方形の平板状の検出電極と、その外周を囲む反転電極の形状及び配置を説明する模式図である。 本静電容量センサの電極構造に適用する充放電手段及び位相反転回路の構成例を示す回路図である。 本静電容量センサの電極構造に適用する充放電手段及び位相反転回路の別の構成例を示す回路図である。 図5に示す回路によって検出電極及び反転電極に供給される信号例を説明するためのタイムチャートである。 図5に示す回路によって検出電極及び反転電極に供給される別の信号例を説明するためのタイムチャートである。 図6に示す回路によって検出電極及び反転電極に供給される信号例を説明するためのタイムチャートである。 本発明の静電容量センサの電極構造から放射される高周波ノイズのレベルを、従来例と比較して実測した結果を示すグラフである。 本発明の静電容量センサの電極構造を用いた車両用近接センサの構成例を示す図である。 従来例の静電容量センサの構成を説明するための回路図である。 図12の静電容量センサにおいて検出電極に供給される充電信号の例を説明するための図である。
The present invention will be further described in the following detailed description with reference to the drawings referred to, with reference to non-limiting examples of exemplary embodiments according to the present invention. Similar parts are shown throughout the several figures.
It is a block diagram which shows the structure of the electrode structure of the electrostatic capacitance sensor of this invention. It is a figure explaining the example of a connection of the detection electrode and reversal electrode of this electrostatic capacitance sensor. It is a schematic diagram explaining the shape and arrangement | positioning of a elongate detection electrode and an inversion electrode. It is a schematic diagram explaining the shape and arrangement | positioning of a rectangular flat detection electrode and the inversion electrode surrounding the outer periphery. It is a circuit diagram which shows the structural example of the charging / discharging means applied to the electrode structure of this electrostatic capacitance sensor, and a phase inversion circuit. It is a circuit diagram which shows another structural example of the charging / discharging means applied to the electrode structure of this electrostatic capacitance sensor, and a phase inversion circuit. 6 is a time chart for explaining an example of signals supplied to the detection electrode and the inversion electrode by the circuit shown in FIG. 5. 6 is a time chart for explaining another example of signals supplied to the detection electrode and the inversion electrode by the circuit shown in FIG. 5. It is a time chart for demonstrating the example of a signal supplied to a detection electrode and an inversion electrode by the circuit shown in FIG. It is a graph which shows the result of having measured the level of the high frequency noise radiated | emitted from the electrode structure of the electrostatic capacitance sensor of this invention compared with the prior art example. It is a figure which shows the structural example of the proximity sensor for vehicles using the electrode structure of the electrostatic capacitance sensor of this invention. It is a circuit diagram for demonstrating the structure of the electrostatic capacitance sensor of a prior art example. It is a figure for demonstrating the example of the charge signal supplied to a detection electrode in the electrostatic capacitance sensor of FIG.

ここで示される事項は例示的なもの及び本発明の実施形態を例示的に説明するためのものであり、本発明の原理と概念的な特徴とを最も有効に且つ難なく理解できる説明であると思われるものを提供する目的で述べたものである。この点で、本発明の根本的な理解のために必要である程度以上に本発明の構造的な詳細を示すことを意図してはおらず、図面と合わせた説明によって本発明の幾つかの形態が実際にどのように具現化されるかを当業者に明らかにするものである。   The items shown here are exemplary and illustrative of the embodiments of the present invention, and are the most effective and easy-to-understand explanations of the principles and conceptual features of the present invention. It is stated for the purpose of providing what seems to be. In this respect, it is not intended to illustrate the structural details of the present invention beyond what is necessary for a fundamental understanding of the present invention. It will be clear to those skilled in the art how it is actually implemented.

1.静電容量センサの電極構造
静電容量センサは、一般に、人体等によって生じる静電容量の変化を検出するための検出電極と、その静電容量の変化を計測する近接検出部から構成される。近接検出部は、充放電手段、容量検出手段及び近接判定手段等を備える。
本発明は、図1に示すように、人体の近接又は接触を静電容量Cxの変化により検出する静電容量センサの電極構造であって、前記静電容量を充電する充電信号が繰返し供給される検出電極3と、その検出電極3に近接して配設される導電体である反転電極4と、前記充電信号の電圧の変化と逆向きに電圧が変化する反転信号を反転電極に供給する位相反転回路6と、を備えることを特徴とする。近接検出部2を構成する充放電手段5、容量検出手段22及び近接判定手段24は、公知の技術を用いて構成することができる。
1. Electrode Structure of Capacitance Sensor Generally, a capacitance sensor includes a detection electrode for detecting a change in capacitance caused by a human body or the like, and a proximity detection unit that measures the change in capacitance. The proximity detection unit includes charge / discharge means, capacity detection means, proximity determination means, and the like.
As shown in FIG. 1, the present invention is an electrode structure of a capacitance sensor that detects proximity or contact of a human body by a change in capacitance Cx, and a charging signal for charging the capacitance is repeatedly supplied. Detection electrode 3, an inversion electrode 4 that is a conductor disposed in the vicinity of the detection electrode 3, and an inversion signal whose voltage changes in the opposite direction to the change in the voltage of the charging signal is supplied to the inversion electrode. And a phase inversion circuit 6. The charging / discharging unit 5, the capacity detecting unit 22, and the proximity determining unit 24 constituting the proximity detecting unit 2 can be configured using a known technique.

前記検出電極3は、その表面に人体が近接又は接触するように配設される導電体であり、その形状、大きさ、構造等は特に問わない。また、導電体の材質もとくに限定されず、金属の他、導電布等が使用されてもよい。検出電極3への人体の「近接」とは、掌や手指を検出電極の表面に近付ける形態の他、検出電極の表面を覆う絶縁物を介して人体が接触する形態も含むものとする。また「接触」は、検出電極の表面に直接人体が接触する形態をいうものとする。   The detection electrode 3 is a conductor disposed so that a human body is close to or in contact with the surface thereof, and its shape, size, structure, etc. are not particularly limited. The material of the conductor is not particularly limited, and a conductive cloth or the like may be used in addition to the metal. The “proximity” of the human body to the detection electrode 3 includes not only a form in which a palm or a finger is brought close to the surface of the detection electrode but also a form in which the human body is in contact via an insulator covering the surface of the detection electrode. “Contact” refers to a form in which the human body directly contacts the surface of the detection electrode.

前記反転電極4は、検出電極3によって生じる高周波電界を打ち消すように作用し、検出電極3及び反転電極4を備えた電極部32から周囲へ放射される高周波ノイズを低減させる目的で設けられる。反転電極4は、前記検出電極3の近傍に配設される導電体であり、その形状、大きさ、構造及び材質は、検出電極3の形状、大きさ、構造及び材質に対応し又は近似していることが好ましい。
また、検出電極3が複数備えられる場合には、反転電極4はそれぞれの検出電極3に対応して複数設けられてもよい。
The inversion electrode 4 acts to cancel the high-frequency electric field generated by the detection electrode 3 and is provided for the purpose of reducing high-frequency noise radiated from the electrode portion 32 having the detection electrode 3 and the inversion electrode 4 to the surroundings. The inversion electrode 4 is a conductor disposed in the vicinity of the detection electrode 3, and its shape, size, structure and material correspond to or approximate the shape, size, structure and material of the detection electrode 3. It is preferable.
When a plurality of detection electrodes 3 are provided, a plurality of inversion electrodes 4 may be provided corresponding to each detection electrode 3.

前記充放電手段5は、検出電極3と電気的に接続され、静電容量Cxを繰返し充放電させるための充電電圧(充電信号)を検出電極3に印加するように構成される。充放電手段5の構成は特に限定されず、公知の技術を用いることができる。また、充電信号の振幅、周波数も特に限定されない。例えば、基準電位(0V)と電源電圧(Vcc)との範囲内で変化し、周波数が数kHz〜数百kHzのパルス状の信号が挙げられる。   The charging / discharging unit 5 is electrically connected to the detection electrode 3 and configured to apply a charging voltage (charging signal) for repeatedly charging / discharging the electrostatic capacitance Cx to the detection electrode 3. The structure of the charging / discharging means 5 is not specifically limited, A well-known technique can be used. Further, the amplitude and frequency of the charging signal are not particularly limited. For example, a pulse-like signal that changes within the range of the reference potential (0 V) and the power supply voltage (Vcc) and has a frequency of several kHz to several hundred kHz can be mentioned.

位相反転回路6は、反転電極4と電気的に接続され、充放電手段5によって検出電極3に印加される前記充電信号とは逆位相の反転信号を反転電極4に印加するように構成される。ここで、逆位相とは、充電信号の電圧の変化とは逆向きに電圧が変化することをいうものとする。すなわち、反転信号は、充電信号の電圧値が上昇(+ΔV)するときに電圧値が下降(−ΔV’)する信号とすることができる。例えば、充電信号が0Vから+ΔVに変化するとき、反転信号は+ΔV’から0Vに変化する信号であってもよいし、5Vから5V−ΔV’に変化する信号であってもよく、また、0Vから−ΔV’に変化する信号であってもよい。このときの反転信号の電圧の変化幅ΔV’は、充電信号の電圧の変化幅ΔVと同一である必要はなく、電極部32から放射される高周波ノイズ(イ)の低減効果により適宜に設計することができる。
前記充電信号がパルス信号である場合には、位相反転回路6は、そのパルス信号の立上り時に立下り、且つそのパルス信号の立下り時に立上がる反転信号を生成するように構成することができる。
The phase inversion circuit 6 is electrically connected to the inversion electrode 4 and is configured to apply an inversion signal having a phase opposite to that of the charge signal applied to the detection electrode 3 by the charge / discharge means 5 to the inversion electrode 4. . Here, the reverse phase means that the voltage changes in the opposite direction to the change in the voltage of the charging signal. That is, the inverted signal can be a signal whose voltage value decreases (−ΔV ′) when the voltage value of the charging signal increases (+ ΔV). For example, when the charge signal changes from 0V to + ΔV, the inverted signal may be a signal that changes from + ΔV ′ to 0V, may be a signal that changes from 5V to 5V−ΔV ′, or may be 0V. The signal may change from −ΔV ′. At this time, the change width ΔV ′ of the voltage of the inverted signal does not need to be the same as the change width ΔV of the voltage of the charging signal, and is appropriately designed according to the effect of reducing the high frequency noise (A) radiated from the electrode portion 32. be able to.
When the charging signal is a pulse signal, the phase inverting circuit 6 can be configured to generate an inverted signal that falls at the rising edge of the pulse signal and rises at the falling edge of the pulse signal.

近接検出部2は、この他、容量検出手段22及び近接判定手段24を備えて構成することができる。容量検出手段22の構成はとくに限定されず、例えば、静電容量の端子間電圧の計測回路や、静電容量の変化を周波数変化に変換する回路等を用いて、検出電極3の静電容量の変化を検出することができる。また、近接判定手段24の構成もとくに限定されず、容量検出手段22によって得られた計測値を基に演算、比較等の処理を行って、人体の近接又は接触を判定するように構成することができる。   In addition, the proximity detection unit 2 can be configured to include a capacitance detection unit 22 and a proximity determination unit 24. The configuration of the capacitance detection means 22 is not particularly limited. For example, the capacitance of the detection electrode 3 is measured using a capacitance measuring circuit for measuring the voltage between terminals, a circuit for converting a change in capacitance into a frequency change, or the like. Changes can be detected. The configuration of the proximity determination unit 24 is not particularly limited, and may be configured to determine the proximity or contact of the human body by performing processing such as calculation and comparison based on the measurement value obtained by the capacitance detection unit 22. Can do.

近接検出部2を構成する各部及び全体の制御処理は、ハードウェア、ソフトウェアのいずれによって実現されてもよく、好適には、図示しないCPU、メモリ(ROM、RAM等)、入出力回路等を備えるマイクロコントローラ(マイクロコンピュータ)を中心に、周辺回路を備えることにより構成することができる。デジタル信号プロセッサ、プログラム可能な論理回路、ゲートアレーその他の論理回路が用いられて構成されてもよい。
また、近接検出部2は、各種機器・装置(例えば、発光器、表示パネル、空調等)と接続し、人体の近接又は接触状態と判定した場合には、その判定又は判定による動作をさせるための近接検出信号を出力するように構成することができる。
Each unit constituting the proximity detection unit 2 and overall control processing may be realized by either hardware or software, and preferably includes a CPU, a memory (ROM, RAM, etc.), an input / output circuit, etc. (not shown). It can be configured by providing peripheral circuits around a microcontroller (microcomputer). A digital signal processor, a programmable logic circuit, a gate array, or other logic circuits may be used.
In addition, the proximity detector 2 is connected to various devices / devices (for example, a light emitter, a display panel, an air conditioner, etc.), and when it is determined that the human body is close or in contact, the determination or the operation based on the determination is performed. The proximity detection signal can be output.

図2に、検出電極3、反転電極4、位相反転回路6、及び充放電手段を構成する充放電回路51の接続例を示す。位相反転回路6は、充放電回路51内の信号又は検出電極3に印加される充電信号を基に逆位相の反転信号を生成し、反転電極4に供給する。なお、図示するように、検出電極3及び反転電極4の他に、ノイズ等による影響を低減するために接地電位とされた接地電極31が配設されてもよい。   FIG. 2 shows a connection example of the detection electrode 3, the inversion electrode 4, the phase inversion circuit 6, and the charge / discharge circuit 51 constituting the charge / discharge means. The phase inversion circuit 6 generates an inversion signal having an opposite phase based on a signal in the charge / discharge circuit 51 or a charge signal applied to the detection electrode 3 and supplies the inverted signal to the inversion electrode 4. As illustrated, in addition to the detection electrode 3 and the inversion electrode 4, a ground electrode 31 having a ground potential may be provided in order to reduce the influence of noise or the like.

本静電容量センサの電極構造1は、検出電極3が長尺状の導電体である場合に好適に用いることができる。例えば、図3に示すように、長尺平板状の検出電極3aと、ほぼ同寸法で同材質の反転電極4aを備える電極構造とすることができる。反転電極4aの長さL4a及び幅W4aは、検出電極3aの長さL3a及び幅W3aと略同一であり、両電極は略同一平面に間隙gを空けて平行に配置される。各電極の大きさは用途によって定められればよいが、例えば、各電極の長さ(L4a、L3a)は20〜500mm、幅(W4a、W3a)は2〜50mm程度とすることができ、両電極の間隙(g)は10〜100mm程度とすることが好ましい。
この反転電極4aを配することにより、図示するZ方向を中心として、電極部から放射される高周波ノイズを低減することが可能となる。
The electrode structure 1 of the present capacitive sensor can be suitably used when the detection electrode 3 is a long conductor. For example, as shown in FIG. 3, an electrode structure including a long flat plate-like detection electrode 3a and an inversion electrode 4a of substantially the same size and the same material can be used. The length L 4a and the width W 4a of the inversion electrode 4a are substantially the same as the length L 3a and the width W 3a of the detection electrode 3a, and both electrodes are arranged in parallel with a gap ga in substantially the same plane. . The size of each electrode may be determined depending on the application. For example, the length (L 4a , L 3a ) of each electrode is about 20 to 500 mm, and the width (W 4a , W 3a ) is about 2 to 50 mm. The gap (g a ) between both electrodes is preferably about 10 to 100 mm.
By disposing the inversion electrode 4a, it is possible to reduce high-frequency noise radiated from the electrode section with the Z direction shown in the figure as the center.

また、検出電極3の面積が広い場合には、検出電極3と略同一平面であって検出電極3の外周を所定の間隙を空けて囲むように反転電極4を配設することができる。例えば、図4に示すように、長方形で平板状の検出電極3bの外周を、検出電極3bと同材質の反転電極4bによって囲むように配置した電極構造とすることができる。反転電極4bは、検出電極3bの外周に間隙gを空けて配置される。各電極の大きさは用途及び効果によって定められればよいが、例えば、検出電極3bの長さと幅(L3b、W3b)はそれぞれ20〜500mm程度、反転電極4bの幅(W4b)は5〜50mm程度とすることができ、両電極の間隙(g)は5〜20mm程度とすることが好ましい。 When the area of the detection electrode 3 is large, the inversion electrode 4 can be disposed so as to be substantially flush with the detection electrode 3 and surround the outer periphery of the detection electrode 3 with a predetermined gap. For example, as shown in FIG. 4, an electrode structure in which the outer periphery of a rectangular and flat detection electrode 3b is disposed so as to be surrounded by an inversion electrode 4b made of the same material as that of the detection electrode 3b. Inversion electrode 4b is disposed at a gap g b on the outer periphery of the detection electrode 3b. The size of each electrode may be determined depending on the use and effect. For example, the length and width (L 3b , W 3b ) of the detection electrode 3b are about 20 to 500 mm, and the width (W 4b ) of the inversion electrode 4b is 5 The gap (g b ) between both electrodes is preferably about 5 to 20 mm.

次に、本静電容量センサの電極構造1の具体的な回路構成例を参照しつつ、その動作について説明する。
図5は、充放電手段5及び位相反転回路6の構成例を示す。本発明は、検出電極3と反転電極4及び位相反転回路6を備える点を特徴とするものであるため、充放電手段や容量検出手段等の構成は任意である。本図の充放電手段5aは、一般的なスイッチドキャパシタ方式の構成を例示するにすぎない。
充放電手段5aに検出電極3が接続され、位相反転回路6aの出力に反転電極4が接続される。図5において、充放電手段5aと検出電極3の接続点の信号が位相反転回路6aに入力されているが、位相反転回路6aへ入力する信号は、前記反転信号を生成することが可能な限り、充放電手段5a内の適宜の信号とすることができる(例えば、充放電手段に備えられるスイッチ手段の制御信号など)。
Next, the operation will be described with reference to a specific circuit configuration example of the electrode structure 1 of the capacitance sensor.
FIG. 5 shows a configuration example of the charging / discharging means 5 and the phase inversion circuit 6. Since the present invention is characterized in that it includes the detection electrode 3, the inverting electrode 4, and the phase inverting circuit 6, the configuration of charging / discharging means, capacity detecting means, etc. is arbitrary. The charging / discharging means 5a in this figure merely exemplifies a general switched capacitor type configuration.
The detection electrode 3 is connected to the charging / discharging means 5a, and the inversion electrode 4 is connected to the output of the phase inversion circuit 6a. In FIG. 5, the signal at the connection point between the charging / discharging means 5a and the detection electrode 3 is input to the phase inversion circuit 6a, but the signal input to the phase inversion circuit 6a is as long as the inversion signal can be generated. An appropriate signal in the charging / discharging unit 5a can be used (for example, a control signal for a switch unit provided in the charging / discharging unit).

充放電手段5aは、既知の静電容量C1a、スイッチ手段SW1a及びSW2aを備え、検出電極3を介して未知の静電容量Cxを繰返し充放電させる。スイッチSW1a及びSW2aは、同時にオンとされることはない。最初に、静電容量Cx及び静電容量C1aが放電される(図示省略)。そしてSW1aをオン(閉)、SW2aをオフ(開)にすると、電源Vccによって静電容量Cxが充電される(ステップ1a)。次に、SW1aをオフ、SW2aをオンにすると、静電容量の値に応じて静電容量Cxの電荷の一部が静電容量C1aに移動する(ステップ2a)。再びステップ1aの状態とすると、静電容量Cxが電源Vccによって充電されるとともに、静電容量C1aの電荷は保持される。すなわち、ステップ1aとステップ2aを繰返して実行すれば、静電容量Cxの充放電が繰り返され、静電容量C1aに電荷が蓄積されることとなる。このステップ1aとステップ2aの繰返しによって、検出電極3に印加される充電信号は、図7(a)、図8(a)に示すように変化する。   The charging / discharging unit 5a includes a known capacitance C1a and switch units SW1a and SW2a, and repeatedly charges and discharges the unknown capacitance Cx via the detection electrode 3. The switches SW1a and SW2a are not turned on at the same time. First, the electrostatic capacitance Cx and the electrostatic capacitance C1a are discharged (not shown). When SW1a is turned on (closed) and SW2a is turned off (open), the capacitance Cx is charged by the power supply Vcc (step 1a). Next, when SW1a is turned off and SW2a is turned on, a part of the charge of the capacitance Cx moves to the capacitance C1a according to the value of the capacitance (step 2a). In the state of step 1a again, the electrostatic capacitance Cx is charged by the power source Vcc and the electric charge of the electrostatic capacitance C1a is held. That is, if Step 1a and Step 2a are repeatedly executed, charging / discharging of the capacitance Cx is repeated, and charges are accumulated in the capacitance C1a. By repeating Step 1a and Step 2a, the charging signal applied to the detection electrode 3 changes as shown in FIGS. 7 (a) and 8 (a).

図5の位相反転回路6aは、オペアンプ62を用いた一般的な反転増幅回路であって、オペアンプ62の反転入力端子に前記充電信号が抵抗を介して接続され、非反転入力端子には基準電圧Vrefが接続されている。オペアンプ62の出力は、反転電極4に接続されている。
ここで、基準電圧Vrefを前記Vccと同一電圧となるように与えた場合には、オペアンプ62の出力は、Vcc−(充電信号の電圧値)となり、図7(b)に示すような、充電信号とは逆位相の信号となる。すなわち、例えば充電信号が0Vのとき反転信号はVcc、充電信号がVccのとき反転信号は0Vとなる。そして、検出電極3に加わる充電信号の変化時に、逆向きに変化する反転信号が反転電極4に供給される。これによって検出電極3及び反転電極4により発生する高周波電界が打ち消しあい、電極部から放射される高周波ノイズを低減することができる。
The phase inverting circuit 6a in FIG. 5 is a general inverting amplifier circuit using an operational amplifier 62, and the charging signal is connected to the inverting input terminal of the operational amplifier 62 through a resistor, and the reference voltage is applied to the non-inverting input terminal. Vref is connected. The output of the operational amplifier 62 is connected to the inverting electrode 4.
Here, when the reference voltage Vref is applied so as to be the same voltage as the Vcc, the output of the operational amplifier 62 becomes Vcc− (the voltage value of the charging signal), and charging as shown in FIG. The signal is in the opposite phase to the signal. That is, for example, when the charge signal is 0V, the inverted signal is Vcc, and when the charge signal is Vcc, the inverted signal is 0V. Then, when the charge signal applied to the detection electrode 3 changes, an inverted signal that changes in the opposite direction is supplied to the inverted electrode 4. As a result, the high-frequency electric field generated by the detection electrode 3 and the inversion electrode 4 cancels out, and high-frequency noise radiated from the electrode portion can be reduced.

また、位相反転回路6aにおいて、オペアンプ62に与える基準電圧Vrefを0Vとした場合には、オペアンプ62の出力は、0V−(充電信号の電圧値)となり、図8(b)に示すような、充電信号とは逆位相の反転信号が印加される。すなわち、例えば充電信号が0Vのとき反転信号は0V、充電信号がVccのとき反転信号は−Vccとなる。そして、検出電極3に加わる充電信号の変化時に、逆向きに変化する反転信号が反転電極4に供給される。これによって検出電極3及び反転電極4により発生する高周波電界が打ち消しあい、電極部から放射される高周波ノイズを低減することができる。   Further, in the phase inverting circuit 6a, when the reference voltage Vref applied to the operational amplifier 62 is set to 0V, the output of the operational amplifier 62 becomes 0V− (voltage value of the charging signal), as shown in FIG. An inverted signal having a phase opposite to that of the charging signal is applied. That is, for example, when the charge signal is 0V, the inverted signal is 0V, and when the charge signal is Vcc, the inverted signal is −Vcc. Then, when the charge signal applied to the detection electrode 3 changes, an inverted signal that changes in the opposite direction is supplied to the inverted electrode 4. As a result, the high-frequency electric field generated by the detection electrode 3 and the inversion electrode 4 cancels out, and high-frequency noise radiated from the electrode portion can be reduced.

検出電極3に印加される充電信号がパルス信号である場合、位相反転回路6はインバータ回路を用いて構成されてもよい。例えば、図6に示すように、インバータ素子64を用いて位相反転回路6bを構成することができる。なお、図6では、前記充放電手段5aとは異なる回路構成の充放電手段5bを例示しているが、前記のとおり、充放電手段の構成はこれに限定されるものではない。   When the charge signal applied to the detection electrode 3 is a pulse signal, the phase inversion circuit 6 may be configured using an inverter circuit. For example, as shown in FIG. 6, the phase inversion circuit 6 b can be configured using the inverter element 64. 6 illustrates the charge / discharge means 5b having a circuit configuration different from that of the charge / discharge means 5a, the configuration of the charge / discharge means is not limited to this as described above.

図6の充放電手段5bは、既知の静電容量C1b、スイッチ手段SW1b及びSW2bを備え、検出電極3を介して未知の静電容量Cxを繰返し充放電させる。スイッチSW1b及びSW2bは、同時にオンとされることはない。最初に、静電容量Cx及び静電容量C1bが放電(図示省略)される。そしてSW1bをオン(閉)、SW2bをオフ(開)にすると、電源Vccによって静電容量が充電され、静電容量Cx及び静電容量C1bのそれぞれの端子間には容量に反比例した電圧Vxb及びV1bが生じる(ステップ1b)。次に、SW1bをオフ、SW2bをオンにすると、静電容量C1bの端子間電圧V1bは保持される(ステップ2b)。再びステップ1bの状態とすると、静電容量が電源Vccによって充電されるとともに、静電容量Cxと静電容量C1bとの間で電荷が移動し、静電容量C1bの端子間電圧V1bが増加する。すなわち、ステップ1bとステップ2bを繰返して実行すれば、静電容量Cxの充放電が繰り返され、静電容量C1bの電圧V1bが漸増することとなる。このステップ1bとステップ2bの繰返しによって、検出電極3に印加される充電信号は、図9(a)のように変化する。   The charging / discharging unit 5b of FIG. 6 includes a known capacitance C1b and switch units SW1b and SW2b, and repeatedly charges and discharges an unknown capacitance Cx via the detection electrode 3. The switches SW1b and SW2b are not turned on at the same time. First, the electrostatic capacitance Cx and the electrostatic capacitance C1b are discharged (not shown). When SW1b is turned on (closed) and SW2b is turned off (opened), the capacitance is charged by the power source Vcc, and the voltage Vxb and the capacitance Vxb, which are inversely proportional to the capacitance, are respectively connected between the capacitance Cx and the capacitance C1b. V1b is generated (step 1b). Next, when SW1b is turned off and SW2b is turned on, the inter-terminal voltage V1b of the capacitance C1b is held (step 2b). In the state of step 1b again, the electrostatic capacity is charged by the power source Vcc, the electric charge moves between the electrostatic capacity Cx and the electrostatic capacity C1b, and the inter-terminal voltage V1b of the electrostatic capacity C1b increases. . That is, if Step 1b and Step 2b are repeatedly executed, charging / discharging of the capacitance Cx is repeated, and the voltage V1b of the capacitance C1b gradually increases. By repeating Step 1b and Step 2b, the charge signal applied to the detection electrode 3 changes as shown in FIG.

使用される充放電手段の構成に関わらず、充電信号がパルス状の信号である場合、充電信号をインバータ素子によって反転させた信号を反転電極4に与えることができる。図6において、充放電手段5bと検出電極3の接続点(B点)の信号が論理インバータ素子64に入力されているが、インバータ素子64へ入力する信号は、前記反転信号を生成することが可能な限り適宜の信号とすることができる(例えば、充放電手段に備えられるスイッチ手段の制御信号など)。
インバータ素子64としてCMOSインバータ素子を使用した場合、図9(a)に示されるように検出電極3に加わる充電信号が最大電圧Vccのパルス信号であれば、同図(b)に示すような反転信号を反転電極4に与えることができる。CMOSインバータ素子の場合には、充電信号が(1/2)Vccより小さいときは電圧Vccとなり、充電信号が(1/2)Vccを超えるときは0Vとなる反転信号が生成される。そして、検出電極3に加わる充電信号が大きく急峻に変化する時に、逆向きに変化する反転信号が反転電極4に供給される。これによって検出電極3及び反転電極4により発生する高周波電界が打ち消しあい、電極部から放射される高周波ノイズを低減することができる。
Regardless of the configuration of the charging / discharging means used, when the charging signal is a pulse signal, a signal obtained by inverting the charging signal by the inverter element can be applied to the inverting electrode 4. In FIG. 6, the signal at the connection point (point B) between the charging / discharging means 5b and the detection electrode 3 is input to the logic inverter element 64, but the signal input to the inverter element 64 may generate the inverted signal. An appropriate signal can be used as much as possible (for example, a control signal for a switch unit provided in the charge / discharge unit).
When a CMOS inverter element is used as the inverter element 64, if the charge signal applied to the detection electrode 3 is a pulse signal of the maximum voltage Vcc as shown in FIG. 9A, the inversion as shown in FIG. A signal can be applied to the inverting electrode 4. In the case of a CMOS inverter element, when the charge signal is smaller than (1/2) Vcc, an inverted signal is generated that becomes voltage Vcc, and when the charge signal exceeds (1/2) Vcc, it becomes 0V. Then, when the charge signal applied to the detection electrode 3 changes greatly and steeply, an inversion signal that changes in the opposite direction is supplied to the inversion electrode 4. As a result, the high-frequency electric field generated by the detection electrode 3 and the inversion electrode 4 cancels out, and high-frequency noise radiated from the electrode portion can be reduced.

次に、本発明の静電容量センサの電極構造の効果を確認するため、同一の充放電手段を備える静電容量センサを使用して、位相反転回路及び反転電極を備える場合(本構成)と、位相反転回路及び反転電極を備えない場合(従来構成)との輻射ノイズについての比較試験を行った結果について述べる。
測定に用いた検出電極3及び反転電極4は、図3に示した形状の金属であり、長さ(L3a、L4a)は約300mm、幅(W3a、W4a)は約7mm、両電極間の間隙(g)は約10mmである。また、充放電手段及び位相反転回路は図6に示した構成であり、検出電極3の充電パルス信号の周期は約7μs(周波数:約140kHz)である。
上記構成により、電極面から垂直方向(同3のZ方向)に1m離れた点における高周波信号のレベル、すなわち電極部から放射される輻射ノイズの受信レベルを測定した。
Next, in order to confirm the effect of the electrode structure of the capacitance sensor of the present invention, the capacitance sensor having the same charging / discharging means is used and the phase inverting circuit and the inverting electrode are provided (this configuration). The results of a comparative test on radiation noise with and without the phase inversion circuit and inversion electrode (conventional configuration) will be described.
The detection electrode 3 and the reversal electrode 4 used for the measurement are metal having the shape shown in FIG. 3, the length (L 3a , L 4a ) is about 300 mm, the width (W 3a , W 4a ) is about 7 mm, both The gap (g a ) between the electrodes is about 10 mm. Further, the charging / discharging means and the phase inversion circuit have the configuration shown in FIG. 6, and the cycle of the charging pulse signal of the detection electrode 3 is about 7 μs (frequency: about 140 kHz).
With the above configuration, the level of the high-frequency signal at a point 1 m away from the electrode surface in the vertical direction (Z direction in the same), that is, the reception level of radiation noise radiated from the electrode portion was measured.

測定された輻射ノイズの受信レベル(ピーク値)を図10に示す。横軸は周波数、縦軸は信号レベルを示している。測定は、周波数100〜160kHz及び500kHz〜1.7MHzの範囲で行った。100〜160kHzの帯域は、自動車の場合、スマートエントリーシステム等に使用されている。また、500kHz〜1.7MHzの帯域は、中波放送の周波数に対応する。
図10において、本構成による測定値は実線で、従来構成による測定値は破線で示されている。同図から、従来構成と比べて本構成による輻射ノイズは、周波数100〜160kHzにおいて約10dB低く抑えられ、500kHz〜1.7MHzにおいて15dB程度低く抑えられていることが分かる。これによって、本発明の静電容量センサの電極構造によって、電極部からの高周波ノイズの放射の低減に効果があることは明らかである。
FIG. 10 shows the measured reception level (peak value) of radiation noise. The horizontal axis indicates the frequency, and the vertical axis indicates the signal level. The measurement was performed in the frequency ranges of 100 to 160 kHz and 500 kHz to 1.7 MHz. The band of 100 to 160 kHz is used for smart entry systems and the like in the case of automobiles. The band of 500 kHz to 1.7 MHz corresponds to the frequency of medium wave broadcasting.
In FIG. 10, the measurement value according to the present configuration is indicated by a solid line, and the measurement value according to the conventional configuration is indicated by a broken line. From the figure, it can be seen that the radiation noise according to the present configuration is suppressed by about 10 dB lower in the frequency range of 100 to 160 kHz and lower by about 15 dB in the frequency range of 500 kHz to 1.7 MHz than the conventional configuration. Thus, it is clear that the electrode structure of the capacitance sensor of the present invention is effective in reducing radiation of high frequency noise from the electrode portion.

なお、本発明においては、前記実施例に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。例えば、前記実施例では、矩形波状の充電信号を例示したが、波形はこれに限定されるものではない。また、前記実施例では、0Vから所定の電圧値の範囲で変化するパルス信号を例示したが、これに限らず、充電信号は交流信号等であってもよい。   In the present invention, the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention depending on the purpose and application. For example, in the above embodiment, a rectangular wave-shaped charging signal is illustrated, but the waveform is not limited to this. Moreover, in the said Example, although the pulse signal which changes in the range of 0V to predetermined voltage value was illustrated, not only this but a charge signal may be an alternating current signal etc.

2.車両用近接センサ
本車両用近接センサは、車両に搭載され、人体の近接又は接触を検知する近接センサであって、前記静電容量センサの電極構造を備えることにより、電極部から周囲に放射される高周波ノイズを低減することができる近接センサである。
図11に示すように、本車両用近接センサ7は、検出電極3及び反転電極4を備える電極部32、並びに近接検出部2を備える。各電極の構造や材質等はとくに限定されない。また、電極部32の形状、寸法等も用途によって適宜とされればよく、長尺状の電極に限らず、例えば、前記のように検出電極3を略長方形の形状とし、その検出電極3の外周を取り巻くように反転電極4を配設する(図4参照)等、様々な変形が可能である。
近接検出部2は、充放電手段5、位相反転回路6、容量検出手段22及び近接判定手段24を備える。それぞれの構成及び作用については前述のとおりである。
2. Proximity sensor for vehicle This proximity sensor for vehicle is a proximity sensor that is mounted on a vehicle and detects the proximity or contact of a human body, and is radiated from the electrode portion to the surroundings by including the electrode structure of the capacitance sensor. This is a proximity sensor that can reduce high-frequency noise.
As shown in FIG. 11, the vehicle proximity sensor 7 includes an electrode unit 32 including the detection electrode 3 and the reverse electrode 4, and the proximity detection unit 2. The structure and material of each electrode are not particularly limited. Further, the shape, dimensions, etc. of the electrode part 32 may be appropriately determined depending on the application, and are not limited to the elongated electrodes. For example, the detection electrode 3 has a substantially rectangular shape as described above. Various modifications, such as disposing the inversion electrode 4 so as to surround the outer periphery (see FIG. 4), are possible.
The proximity detection unit 2 includes a charging / discharging unit 5, a phase inversion circuit 6, a capacitance detection unit 22, and a proximity determination unit 24. Each configuration and operation are as described above.

本車両用近接センサ7は、外部機器・装置71と接続し、それらに人体の近接又は接触を示す近接検出信号を出力するように構成することができる。これにより人体の近接又は接触の状態と判定した場合には、その判定又はその判定による動作を使用者に知らせたり、対応する機器・装置71を制御することができる。
機器・装置71としては、自動車内の照明、加飾パネル、表示パネル、空調装置、着座判定装置など、各種車載電子機器・装置が挙げられる。例えば、長尺の検出電極3をコンソールボックスやグローブボックス内に配設することにより、乗員の掌や手指が検出電極3に近接したときにボックス内を照らすことができる。また、例えば、広い面積の検出電極3を天井部に配設することにより、検出電極3に掌や手指が近接したときにルームランプを点けることができる。
本車両用近接センサ7によれば、長尺又は大面積の検出電極3を用いた場合にも、反転電極4及び位相反転回路6を備える電極構造により放射される高周波ノイズ(イ)が低減され、自動車内の電子回路の動作に影響を及ぼす電磁妨害を防止することが可能となる。
The vehicle proximity sensor 7 can be configured to be connected to an external device / device 71 and to output a proximity detection signal indicating proximity or contact of a human body to them. Accordingly, when it is determined that the human body is in the proximity or contact state, the user can be notified of the determination or the operation based on the determination, or the corresponding device / device 71 can be controlled.
Examples of the device / device 71 include various in-vehicle electronic devices / devices such as lighting in a car, a decorative panel, a display panel, an air conditioner, and a seating determination device. For example, by arranging the long detection electrode 3 in a console box or glove box, the inside of the box can be illuminated when the palm or finger of the occupant approaches the detection electrode 3. In addition, for example, by arranging the detection electrode 3 having a large area on the ceiling, the room lamp can be turned on when a palm or a finger approaches the detection electrode 3.
According to the vehicle proximity sensor 7, high-frequency noise (A) radiated by the electrode structure including the inversion electrode 4 and the phase inversion circuit 6 is reduced even when the detection electrode 3 having a long or large area is used. It is possible to prevent electromagnetic interference that affects the operation of electronic circuits in the automobile.

なお、前記実施例に限られず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。
例えば、前記実施例では、一つの検出用電極3を備える車両用近接センサ7を示したが、これに限定されず、複数の検出用電極及び反転電極を備える車両用近接センサを構成してもよい。
また、本車両用近接センサは、車両に搭載される近接センサであるが、用途はこれに限定されず、例えば、産業用機械や家庭用電気製品等に用いられる近接センサに適用されてもよい。
In addition, it is not restricted to the said Example, It can be set as the Example variously changed within the range of this invention according to the objective and the use.
For example, in the above-described embodiment, the vehicle proximity sensor 7 including one detection electrode 3 is shown. However, the present invention is not limited to this, and a vehicle proximity sensor including a plurality of detection electrodes and inversion electrodes may be configured. Good.
In addition, the proximity sensor for a vehicle is a proximity sensor mounted on a vehicle, but the application is not limited to this, and the proximity sensor may be applied to, for example, a proximity sensor used for industrial machines, household electrical appliances, and the like. .

1;静電容量センサの電極構造、2;近接検出部、22容量検出手段、24;近接判定手段、3、3a、3b、83;検出電極、32;電極部、4、4a、4b;反転電極、5、5a、5b;充放電手段、6、6a、6b;位相反転回路、7;車両用近接センサ、C1a、C1b、C81;既知の静電容量、Cx;未知の静電容量、イ;高周波ノイズ。   DESCRIPTION OF SYMBOLS 1; Electrode structure of an electrostatic capacitance sensor, 2; Proximity detection part, 22 capacity | capacitance detection means, 24; Proximity determination means 3, 3a, 3b, 83; Detection electrode, 32; Electrode part 4, 4a, 4b; Electrodes 5, 5a, 5b; charge / discharge means, 6, 6a, 6b; phase inversion circuit, 7: vehicle proximity sensor, C1a, C1b, C81; known capacitance, Cx; unknown capacitance, a High frequency noise.

Claims (6)

人体の近接又は接触を静電容量の変化により検出する静電容量センサの電極構造であって、
人体が近接又は接触する導電体であり、前記静電容量を充電する充電信号が繰返し供給される検出電極と、
前記検出電極に近接して配設される導電体である反転電極と、
前記充電信号の電圧の変化と逆向きに電圧が変化する反転信号を前記反転電極に供給する位相反転回路と、
を備え、
前記検出電極から放射される高周波ノイズを前記反転電極によって低減することを特徴とする静電容量センサの電極構造。
An electrode structure of a capacitance sensor that detects proximity or contact of a human body by a change in capacitance,
A detection electrode to which a human body is a conductor that is in close proximity or in contact, and is repeatedly supplied with a charging signal for charging the capacitance;
An inversion electrode that is a conductor disposed in proximity to the detection electrode;
A phase inverting circuit for supplying an inverting signal whose voltage changes in the opposite direction to the voltage change of the charging signal to the inverting electrode;
With
An electrode structure of a capacitance sensor, wherein high frequency noise radiated from the detection electrode is reduced by the inversion electrode.
前記充電信号はパルス信号であり、
前記位相反転回路は、前記パルス信号の立上り時に立下り且つ前記パルス信号の立下り時に立上がる前記反転信号を生成する請求項1記載の静電容量センサの電極構造。
The charging signal is a pulse signal;
The capacitive sensor electrode structure according to claim 1, wherein the phase inversion circuit generates the inverted signal that falls when the pulse signal rises and rises when the pulse signal falls.
前記位相反転回路は前記充電信号が入力されるインバータ回路である請求項2記載の静電容量センサの電極構造。   3. The capacitance sensor electrode structure according to claim 2, wherein the phase inversion circuit is an inverter circuit to which the charging signal is input. 前記検出電極は長尺状の板状又は棒状の導電体であり、
前記検出電極と略同一の長さの前記反転電極が該検出電極と略同一平面に平行に配設される請求項1乃至3のいずれかに記載の静電容量センサの電極構造。
The detection electrode is a long plate-like or rod-like conductor,
The capacitive sensor electrode structure according to claim 1, wherein the inversion electrode having substantially the same length as the detection electrode is disposed in parallel with the detection electrode in substantially the same plane.
前記検出電極は略長方形の平板の導電体であり、
前記反転電極は、前記検出電極と略同一平面に該検出電極の外周を所定の間隙を空けて囲んで配設される請求項1乃至3のいずれかに記載の静電容量センサの電極構造。
The detection electrode is a substantially rectangular flat conductor,
4. The capacitance sensor electrode structure according to claim 1, wherein the inversion electrode is disposed in substantially the same plane as the detection electrode so as to surround an outer periphery of the detection electrode with a predetermined gap. 5.
車両に搭載される近接センサであって、請求項1乃至5のいずれかに記載の静電容量センサの電極構造を備えることを特徴とする車両用近接センサ。   A proximity sensor mounted on a vehicle, comprising the electrode structure of the capacitance sensor according to any one of claims 1 to 5.
JP2009121378A 2009-05-19 2009-05-19 Electrode structure of capacitance sensor and vehicle proximity sensor using the same Expired - Fee Related JP5369888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121378A JP5369888B2 (en) 2009-05-19 2009-05-19 Electrode structure of capacitance sensor and vehicle proximity sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121378A JP5369888B2 (en) 2009-05-19 2009-05-19 Electrode structure of capacitance sensor and vehicle proximity sensor using the same

Publications (2)

Publication Number Publication Date
JP2010272991A true JP2010272991A (en) 2010-12-02
JP5369888B2 JP5369888B2 (en) 2013-12-18

Family

ID=43420691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121378A Expired - Fee Related JP5369888B2 (en) 2009-05-19 2009-05-19 Electrode structure of capacitance sensor and vehicle proximity sensor using the same

Country Status (1)

Country Link
JP (1) JP5369888B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098637A (en) * 2011-10-28 2013-05-20 Hosiden Corp Proximity sensor
JP2013099396A (en) * 2011-11-08 2013-05-23 Mitsubishi Electric Corp Hand dryer
JP2014534683A (en) * 2011-10-07 2014-12-18 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Microcontroller with optimized ADC controller
US9031510B2 (en) 2011-12-19 2015-05-12 Denso Corporation Control apparatus of capacitive touch sensor
EP2891575A1 (en) * 2014-01-02 2015-07-08 Brusa Elektronik AG Transfer element for a system for inductive energy transfer
US9467141B2 (en) 2011-10-07 2016-10-11 Microchip Technology Incorporated Measuring capacitance of a capacitive sensor with a microcontroller having an analog output for driving a guard ring
JP2017195527A (en) * 2016-04-21 2017-10-26 株式会社アルファ Human body detector
US9805572B2 (en) 2011-10-06 2017-10-31 Microchip Technology Incorporated Differential current measurements to determine ion current in the presence of leakage current
US9823280B2 (en) 2011-12-21 2017-11-21 Microchip Technology Incorporated Current sensing with internal ADC capacitor
JP2018502464A (en) * 2014-10-24 2018-01-25 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Analog exclusion of ungrounded conductive objects in capacitive sensing
JP2018137189A (en) * 2017-02-24 2018-08-30 株式会社シンテックホズミ Proximity sensor
JP2019018519A (en) * 2017-07-21 2019-02-07 株式会社ピーエムティー Ink jet printer and ink jet discharge control method
CN109731230A (en) * 2019-01-03 2019-05-10 重庆悠悦智能科技有限公司 A kind of circuit being exclusively used in quantum wave analgesia instrument
WO2023139871A1 (en) * 2022-01-21 2023-07-27 日置電機株式会社 Impedance measurement system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202312A (en) * 2001-12-28 2003-07-18 Matsushita Electric Works Ltd Moisture content sensor
JP2008008831A (en) * 2006-06-30 2008-01-17 Toto Ltd Capacitance type proximity sensor and hot water washing toilet seat device and bathtub device equipped therewith
JP2008292446A (en) * 2007-04-24 2008-12-04 Seiko Instruments Inc Device and method for detecting proximity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202312A (en) * 2001-12-28 2003-07-18 Matsushita Electric Works Ltd Moisture content sensor
JP2008008831A (en) * 2006-06-30 2008-01-17 Toto Ltd Capacitance type proximity sensor and hot water washing toilet seat device and bathtub device equipped therewith
JP2008292446A (en) * 2007-04-24 2008-12-04 Seiko Instruments Inc Device and method for detecting proximity

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9805572B2 (en) 2011-10-06 2017-10-31 Microchip Technology Incorporated Differential current measurements to determine ion current in the presence of leakage current
JP2014534683A (en) * 2011-10-07 2014-12-18 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Microcontroller with optimized ADC controller
US9467141B2 (en) 2011-10-07 2016-10-11 Microchip Technology Incorporated Measuring capacitance of a capacitive sensor with a microcontroller having an analog output for driving a guard ring
JP2013098637A (en) * 2011-10-28 2013-05-20 Hosiden Corp Proximity sensor
JP2013099396A (en) * 2011-11-08 2013-05-23 Mitsubishi Electric Corp Hand dryer
US9031510B2 (en) 2011-12-19 2015-05-12 Denso Corporation Control apparatus of capacitive touch sensor
US9823280B2 (en) 2011-12-21 2017-11-21 Microchip Technology Incorporated Current sensing with internal ADC capacitor
EP2891575A1 (en) * 2014-01-02 2015-07-08 Brusa Elektronik AG Transfer element for a system for inductive energy transfer
JP2018502464A (en) * 2014-10-24 2018-01-25 マイクロチップ テクノロジー インコーポレイテッドMicrochip Technology Incorporated Analog exclusion of ungrounded conductive objects in capacitive sensing
JP2017195527A (en) * 2016-04-21 2017-10-26 株式会社アルファ Human body detector
JP2018137189A (en) * 2017-02-24 2018-08-30 株式会社シンテックホズミ Proximity sensor
JP2019018519A (en) * 2017-07-21 2019-02-07 株式会社ピーエムティー Ink jet printer and ink jet discharge control method
CN109731230A (en) * 2019-01-03 2019-05-10 重庆悠悦智能科技有限公司 A kind of circuit being exclusively used in quantum wave analgesia instrument
WO2023139871A1 (en) * 2022-01-21 2023-07-27 日置電機株式会社 Impedance measurement system and method

Also Published As

Publication number Publication date
JP5369888B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5369888B2 (en) Electrode structure of capacitance sensor and vehicle proximity sensor using the same
JP4897886B2 (en) Capacitive proximity sensor and proximity detection method
US10003334B2 (en) Capacitative sensor system
CN107533091B (en) Non-contact voltage measuring device
US8547116B2 (en) Position detector
AU729354B2 (en) Impedance-to-voltage converter
JP4971504B2 (en) Sensor device for capacitively detecting intervals
CN110015333A (en) Steering device for motor vehicle
JP2015122141A (en) Electrostatic capacitance sensor electrode
US7545154B2 (en) Sensor using the capacitive measuring principle
JP5517251B2 (en) Touch sensor and touch detection method
US20130207674A1 (en) Detecting a Dielectric Article
WO2002063323A3 (en) Method and apparatus for contactless capacitive testing of integrated circuits
US20210206334A1 (en) Device for detecting the presence of an occupant inside the passenger compartment of a vehicle
CN102968224A (en) Control circuit and control method of touch panel
JP5315529B2 (en) Capacitive proximity sensor, proximity detection method, and electrode structure of capacitive proximity sensor
JP5346383B2 (en) Sensor device for detecting an object in a detection area
KR20080010382A (en) Ion control sensor
JP2006177838A (en) Capacitance type proximity sensor and its output calibration method
JP6172264B2 (en) Voltage measuring device
JP5561513B2 (en) Capacitance sensor and vehicle proximity sensor using the same
JP7038326B2 (en) Electrostatic sensor device
JP6194860B2 (en) Touch sensor
JP6096421B2 (en) Touch switch input device
JP6688257B2 (en) Charged plate monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees