JP2010271305A - Method for evaluation of surface distortion on metal sheet, apparatus for computing evaluation value of surface distortion of metal sheet, and program - Google Patents

Method for evaluation of surface distortion on metal sheet, apparatus for computing evaluation value of surface distortion of metal sheet, and program Download PDF

Info

Publication number
JP2010271305A
JP2010271305A JP2010097035A JP2010097035A JP2010271305A JP 2010271305 A JP2010271305 A JP 2010271305A JP 2010097035 A JP2010097035 A JP 2010097035A JP 2010097035 A JP2010097035 A JP 2010097035A JP 2010271305 A JP2010271305 A JP 2010271305A
Authority
JP
Japan
Prior art keywords
metal plate
value
evaluating
surface distortion
distortion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010097035A
Other languages
Japanese (ja)
Other versions
JP5387491B2 (en
Inventor
Junichi Nakagawa
淳一 中川
Tadayuki Ito
忠幸 伊藤
Satoshi Kosugi
聡史 小杉
Toru Yoshida
亨 吉田
Eiji Isogai
栄志 磯貝
Shohei Tateishi
正平 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010097035A priority Critical patent/JP5387491B2/en
Publication of JP2010271305A publication Critical patent/JP2010271305A/en
Application granted granted Critical
Publication of JP5387491B2 publication Critical patent/JP5387491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To directly and quantitatively evaluate surface distortions of a metal sheet to be evaluated. <P>SOLUTION: Measurement values of the surface dimensions of the metal sheet 1 acquired by a measuring device 200 are input. An interpolation unit 102 interpolates the measurement values by the measuring device 200 into an orthogonal grid shape. A Gaussian curve calculation unit 103 computes a Gaussian curve through the use of values on orthogonal grid points, that is, measurement values when the measurement values by the measuring device 200 are on the orthogonal grid points and interpolation computation values when the measurement values by the measuring device 200 are not on the orthogonal grid points. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、金属板の面歪みを評価する金属板の面歪みの評価方法、金属板の面歪みの評価値演算装置及びプログラムに関する。   The present invention relates to a method for evaluating surface distortion of a metal plate for evaluating surface distortion of the metal plate, an evaluation value calculation device for the surface distortion of the metal plate, and a program.

プレス成形・塗装後の自動車用外板や塗装された建築用壁面パネル等、その表面が鏡面又は半鏡面をなす工業製品は、表面に「面歪み」と呼ばれる波打ち状の歪みがあると、その歪み量が微小であっても、表面に写る背景像が大きくゆがんで見えることにより、外観を著しく損なって品質上大きなダメージとなる。   Industrial products whose surfaces are mirror or semi-mirror surfaces, such as automotive exterior panels and painted architectural wall panels after press molding / painting, have surface wavy distortion called “surface distortion”. Even if the amount of distortion is small, the background image appearing on the surface appears to be greatly distorted.

数100mm〜数mのサイズの対象表面上の10μm〜100μm程度の凹凸を、レーザー変位計に代表される距離計を用いて定量的に形状計測することは難しいとされていた。そこで、光学的な視点から、対象表面上に写る背景のストライプパターン等の鏡像が面歪みによって歪んで見える現象を利用して、その歪みの程度から面歪みを評価する手法が知られている。   It has been difficult to quantitatively measure the unevenness of about 10 μm to 100 μm on the target surface having a size of several hundred mm to several m using a distance meter represented by a laser displacement meter. Therefore, from an optical viewpoint, there is known a method for evaluating surface distortion from the degree of distortion using a phenomenon in which a mirror image such as a background stripe pattern appearing on a target surface appears distorted by surface distortion.

例えば特許文献1には、鏡面塗装パネルの表面に縞状画像を投影し、その縞状画像を直接目視によって評価する鏡面塗装パネルの歪み測定方法及びその測定装置が開示されている。   For example, Patent Document 1 discloses a method for measuring a distortion of a mirror-coated panel and a measuring apparatus for projecting a striped image on the surface of the mirror-coated panel and directly evaluating the striped image by visual observation.

また、例えば特許文献2には、鏡面乃至半鏡面の測定対象表面に写った明暗パタンが面歪によって歪む現象を利用し、測定対象表面上に写った複数の明暗パタンの鏡像を撮影手段を用いて撮影し、撮影した画像を利用して面歪量を演算する面歪の測定装置及び方法が開示されている。   Further, for example, Patent Document 2 uses a phenomenon in which a bright and dark pattern reflected on a mirror surface or half mirror surface of a measurement target surface is distorted by surface distortion, and uses a photographing unit to capture a mirror image of a plurality of light and dark patterns reflected on the measurement target surface. An apparatus and method for measuring surface distortion is disclosed that calculates the amount of surface distortion using the captured image.

特開平11−153420号公報Japanese Patent Laid-Open No. 11-153420 特開2008−224341号公報JP 2008-224341 A

しかしながら、特許文献1に開示されている手法は、定性的な面歪み観察手法であり、面歪みの定量化に至っていない。   However, the method disclosed in Patent Document 1 is a qualitative surface distortion observation method, and has not led to quantification of surface distortion.

また、特許文献2に記載されている手法は、光学的手段を用いて面歪量を定量的に評価しているが、光学装置の構成が複雑になり投資効率上の問題がある。それに加え、光学的な計測値から間接的に面歪を評価することになるので、面歪の評価精度が、光学計測から実際の歪量に変換する精度に依存するという問題があった。   In addition, the technique described in Patent Document 2 quantitatively evaluates the amount of surface distortion using optical means, but there is a problem in investment efficiency because the configuration of the optical device becomes complicated. In addition, since the surface distortion is indirectly evaluated from the optical measurement value, there is a problem that the evaluation accuracy of the surface distortion depends on the accuracy of conversion from the optical measurement to the actual distortion amount.

本発明は、上記のような点に鑑みてなされたものであり、評価対象の金属板の面歪みを直接的、定量的に評価できるようにすることを目的とする。   This invention is made | formed in view of the above points, and it aims at enabling it to evaluate the surface distortion of the metal plate of evaluation object directly and quantitatively.

本発明の金属板の面歪みの評価方法は、金属板の面歪みを評価する金属板の面歪みの評価方法であって、測定装置により評価対象の金属板の表面形状を測定し、前記測定装置による計測値に基づく直交格子点上の値を用いて、下式(1)によりガウス曲率を計算して或いは最大主曲率の方向を計算して、金属板の面歪みを評価することを特徴とする。

Figure 2010271305
ここで、最大主曲率とは、曲率の絶対値が最も大きくなる方向の、曲率の絶対値をいう。
また、本発明の金属板の面歪みの評価方法の他の特徴とするところは、前記測定装置は前記評価対象の金属板の表面を二次元に走査して計測値を取得する点にある。又は、計算対象として有限要素法に基づく成形解析及び除荷解析後の形状データの計算値を用いることもできる。
また、本発明の金属板の面歪みの評価方法の他の特徴とするところは、前記測定装置による計測値又は有限要素法に基づく計算値を直交格子状に補間する手順を有する点にある。
また、本発明の金属板の面歪みの評価方法の他の特徴とするところは、注目格子点上のガウス曲率の計算値をその周囲の格子点上のガウス曲率又は最大主曲率の方向の計算値を用いてフィルタリングする手順を更に有し、前記フィルタリングされたガウス曲率の計算値に基づいて、前記金属板の面歪みを評価する点にある。
本発明の金属板の面歪みの評価値演算装置は、金属板の面歪みを評価するための評価値を求める金属板の面歪みの評価値演算装置であって、測定装置により取得された評価対象の金属板の表面形状の計測値又は有限要素法に基づく成形解析及び除荷解析後の形状データの計算値を入力し、前記入力された値に基づく直交格子点上の値を用いて、下式(1)によりガウス曲率を計算する或いは最大主曲率の方向を計算する構成にしたことを特徴とする。
Figure 2010271305
本発明のプログラムは、金属板の面歪みを評価するための評価値を求めるためのプログラムであって、測定装置により取得された評価対象の金属板の表面形状の計測値又は有限要素法に基づく成形解析及び除荷解析後の形状データの計算値を入力し、前記入力された計測値に基づく直交格子点上の値を用いて、下式(1)によりガウス曲率を計算する或いは最大主曲率の方向を計算する処理をコンピュータに実行させる。
Figure 2010271305
The method for evaluating surface strain of a metal plate according to the present invention is a method for evaluating surface strain of a metal plate for evaluating the surface strain of the metal plate, the surface shape of the metal plate to be evaluated is measured by a measuring device, and the measurement is performed. Using the values on the orthogonal grid points based on the measured values by the device, the Gaussian curvature is calculated by the following formula (1) or the direction of the maximum principal curvature is calculated to evaluate the surface distortion of the metal plate. And
Figure 2010271305
Here, the maximum principal curvature means the absolute value of the curvature in the direction in which the absolute value of the curvature is the largest.
Another feature of the method for evaluating surface distortion of a metal plate according to the present invention is that the measuring device scans the surface of the metal plate to be evaluated two-dimensionally to obtain a measurement value. Or the calculation value of the shape data after the shaping | molding analysis and unloading analysis based on a finite element method can also be used as calculation object.
Another feature of the method for evaluating surface strain of a metal plate according to the present invention is that it has a procedure for interpolating measurement values obtained by the measuring device or calculation values based on a finite element method in an orthogonal lattice pattern.
Another feature of the method for evaluating the surface strain of the metal plate according to the present invention is that the calculated value of the Gaussian curvature on the target lattice point is calculated as the Gaussian curvature or the maximum principal curvature direction on the surrounding lattice points. The method further includes a step of filtering using a value, and evaluating the surface distortion of the metal plate based on the calculated value of the filtered Gaussian curvature.
An evaluation value calculation device for surface distortion of a metal plate according to the present invention is an evaluation value calculation device for surface distortion of a metal plate for obtaining an evaluation value for evaluating the surface distortion of the metal plate, and the evaluation obtained by the measurement device Enter the measured value of the surface shape of the target metal plate or the calculated value of the shape data after the forming analysis and unloading analysis based on the finite element method, and using the value on the orthogonal grid point based on the input value, It is characterized in that the Gaussian curvature is calculated by the following equation (1) or the direction of the maximum principal curvature is calculated.
Figure 2010271305
The program of the present invention is a program for obtaining an evaluation value for evaluating the surface distortion of a metal plate, and is based on a measurement value of a surface shape of a metal plate to be evaluated acquired by a measuring device or a finite element method. The calculation value of the shape data after the forming analysis and the unloading analysis is input, and the Gauss curvature is calculated by the following formula (1) using the value on the orthogonal lattice point based on the input measurement value, or the maximum principal curvature Causes the computer to execute the process of calculating the direction of the.
Figure 2010271305

本発明によれば、評価対象の金属板の表面形状を測定し、直交格子点上の値を用いてガウス曲率又は最大主曲率方向を計算することにより、金属板の面歪みを直接的、定量的に評価することができる。   According to the present invention, the surface shape of the metal plate to be evaluated is measured, and the surface distortion of the metal plate is directly quantified by calculating the Gaussian curvature or the maximum principal curvature direction using the values on the orthogonal lattice points. Can be evaluated.

第1の実施形態に係る金属板の面歪みの評価値演算装置の機能構成を示す図である。It is a figure which shows the function structure of the evaluation value calculating apparatus of the surface distortion of the metal plate which concerns on 1st Embodiment. ガウス曲率の符号により識別される形状差異を説明するための図である。It is a figure for demonstrating the shape difference identified by the code | symbol of Gaussian curvature. 評価対象の金属板及びその表面形状の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the metal plate of evaluation object, and its surface shape. 補間の概要を説明するための図である。It is a figure for demonstrating the outline | summary of interpolation. 補間の概要を説明するための図である。It is a figure for demonstrating the outline | summary of interpolation. フィルタリングの概要を説明するための図である。It is a figure for demonstrating the outline | summary of filtering. フィルタリングに用いられる重み係数の一例を示す図である。It is a figure which shows an example of the weighting coefficient used for filtering. 第1の実施形態の手法で計算したガウス曲率のコンター図である。It is a contour figure of the gauss curvature computed by the method of a 1st embodiment. 第1の実施形態の手法で計算したガウス曲率のコンター図である。It is a contour figure of the gauss curvature computed by the method of a 1st embodiment. 検査範囲を説明するための図である。It is a figure for demonstrating the inspection range. 第1の実施形態の手法で計算したガウス曲率の絶対値の総和と熟練工による面歪みの官能評価順位との関係を示す特性図である。It is a characteristic view which shows the relationship between the sum total of the absolute value of the Gauss curvature calculated by the method of 1st Embodiment, and the sensory evaluation rank of the surface distortion by a skilled worker. 第1の実施形態の手法で有限要素法に基づく成形解析及び除荷解析後の形状データを対象として計算したガウス曲率の絶対値の総和と熟練工による面歪みの官能評価順位との関係を示す特性図である。The characteristic which shows the relationship between the sum total of the absolute value of the Gaussian curvature calculated for the shape data after forming analysis and unloading analysis based on the finite element method by the technique of the first embodiment, and the sensory evaluation rank of the surface distortion by the skilled worker FIG. 第2の実施形態に係る金属板の面歪みの評価値演算装置の機能構成を示す図である。It is a figure which shows the function structure of the evaluation value calculating apparatus of the surface distortion of the metal plate which concerns on 2nd Embodiment. 第2の実施形態の手法で計算した最大主曲率方向の変化の絶対値と熟練工による面歪みの官能評価順位との関係を示す特性図である。It is a characteristic view which shows the relationship between the absolute value of the change of the largest principal curvature direction calculated with the method of 2nd Embodiment, and the sensory evaluation rank of the surface distortion by a skilled worker. 第2の実施形態の手法で有限要素法に基づく成形解析及び除荷解析後の形状データを対象として計算した最大主曲率方向の変化の絶対値と熟練工による面歪みの官能評価順位との関係を示す特性図である。The relationship between the absolute value of the change in the maximum principal curvature direction calculated for the shape data after the forming analysis and unloading analysis based on the finite element method by the method of the second embodiment and the sensory evaluation rank of the surface distortion by the skilled worker FIG.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。
(第1の実施形態)
本発明の第1の実施形態は、評価対象の金属板の表面形状を測定し、ガウス曲率を計算して、金属板の面歪みを評価しようとするものである。ガウス曲率Kは下式(1)で計算することができ、ガウス曲率Kの符号により、図2(a)、(b)、(c)に示すように、楕円型(K>0)、放物型(K=0)、双曲型(K<0)に分けられ、形状差異を識別することができる。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
(First embodiment)
The first embodiment of the present invention is intended to evaluate the surface distortion of a metal plate by measuring the surface shape of the metal plate to be evaluated and calculating the Gaussian curvature. The Gaussian curvature K can be calculated by the following equation (1). Depending on the sign of the Gaussian curvature K, as shown in FIGS. 2 (a), (b) and (c), an elliptical shape (K> 0), free It is divided into a physical type (K = 0) and a hyperbolic type (K <0), and a shape difference can be identified.

Figure 2010271305
Figure 2010271305

図1は、本発明を適用した第1の実施形態に係る金属板の面歪みの評価値演算装置の機能構成を示す図である。本実施形態では、図3に示すように、ドアハンドル用のエンボス部(凹部)1aが形成された自動車ドアパネル(鋼板)を評価対象の金属板1とする。このような金属板1では、特にエンボス部1aの周囲に面歪みが生じる傾向がある。   FIG. 1 is a diagram showing a functional configuration of an evaluation value calculation device for surface distortion of a metal plate according to a first embodiment to which the present invention is applied. In this embodiment, as shown in FIG. 3, an automobile door panel (steel plate) in which an embossed portion (concave portion) 1 a for a door handle is formed is a metal plate 1 to be evaluated. In such a metal plate 1, surface distortion tends to occur particularly around the embossed portion 1a.

101は入力部であり、測定装置200により取得された金属板1の表面形状の計測値を入力する。測定装置200は接触式三次元形状測定装置を想定しているが、レーザー光等による非接触式三次元形状測定装置を使用してもよい。測定装置200は、金属板1の表面を二次元に走査して計測値を取得する。具体的には、図3の矢印に示すように、一つのv方向位置においてu方向の一定のピッチごとに金属板1の表面形状を測定し、これをv方向位置をずらしながら繰り返す。   Reference numeral 101 denotes an input unit that inputs a measurement value of the surface shape of the metal plate 1 acquired by the measuring apparatus 200. Although the measuring device 200 is assumed to be a contact type three-dimensional shape measuring device, a non-contact type three-dimensional shape measuring device using laser light or the like may be used. The measuring device 200 scans the surface of the metal plate 1 two-dimensionally and acquires a measurement value. Specifically, as shown by the arrows in FIG. 3, the surface shape of the metal plate 1 is measured at a constant pitch in the u direction at one v direction position, and this is repeated while shifting the v direction position.

102は補間部であり、測定装置200による計測値を直交格子状に補間する。式(1)によりガウス曲率を計算するには、図4(d)に示すように、u−v軸の二次元表面上で形状データが直交格子点上に並んでいる必要がある。しかしながら、実際は測定装置200の位置精度上、直交格子点からのずれが生じる場合がある。例えば図4(b)には、u方向の計測位置が直交格子点からずれている様子を示す。そこで、図4(c)、図5に示すように、計測位置間を直線補間し、直交格子点上にすべての形状データが並ぶように補間する。図4(c)において、点線が直交格子点の位置、グレーの○が実際の計測値、●が補間計算値を示す。   An interpolation unit 102 interpolates the measurement values obtained by the measuring apparatus 200 in an orthogonal lattice shape. In order to calculate the Gaussian curvature by the equation (1), as shown in FIG. 4D, the shape data needs to be arranged on the orthogonal lattice points on the two-dimensional surface of the uv axis. However, in actuality, there may be a deviation from the orthogonal lattice points due to the positional accuracy of the measuring apparatus 200. For example, FIG. 4B shows a state where the measurement position in the u direction is shifted from the orthogonal lattice point. Therefore, as shown in FIGS. 4C and 5, linear interpolation is performed between the measurement positions, and interpolation is performed so that all shape data are arranged on the orthogonal lattice points. In FIG. 4C, the dotted line indicates the position of the orthogonal lattice point, the gray circle indicates the actual measurement value, and the ● indicates the interpolation calculation value.

103はガウス曲率計算部であり、直交格子点上の値、すなわち測定装置200による計測値が直交格子点上にあればその計測値、測定装置200による計測値が直交格子点上になければ補間計算値を用いて、式(1)によりガウス曲率を計算する。式(1)´は、座標点(ui,uj)にあるガウス曲率K(i,j)〜(例えばK〜の表記は、Kの上に〜が付されているものとする)を計算する式であり、f〜は直交格子点上の値(測定装置200による計測値が直交格子点上にあればその計測値、測定装置200による計測値が直交格子点上になければ補間計算値)である。 Reference numeral 103 denotes a Gaussian curvature calculation unit, which interpolates if the value on the orthogonal grid point, that is, the measurement value by the measurement device 200 is on the orthogonal grid point, and the measurement value by the measurement device 200 is not on the orthogonal grid point. Using the calculated value, the Gaussian curvature is calculated by Equation (1). The expression (1) ′ represents Gaussian curvatures K (i, j) ˜ (for example, the notation of K˜ is given by “˜” on K) at the coordinate point (u i , u j ). F˜ is a value on an orthogonal grid point (interpolation calculation if the measured value by the measuring device 200 is on the orthogonal grid point, and if the measured value by the measuring device 200 is not on the orthogonal grid point) Value).

Figure 2010271305
Figure 2010271305

104はフィルタ部であり、図6に示すように、注目格子点(i,j)上のガウス曲率の計算値K(i,j)〜をその周囲の格子点上のガウス曲率の計算値を用いてフィルタリングする。図6に示すように、破線で囲った9点の計算格子に着目し、その中央点(注目格子点)に対し、図7に示すような重み設定を用いて、下式(2)により、中央点のガウス曲率の計算値を補正する。この補正をフィルタリングと呼び、ノイズの影響を低減させることができる。   Reference numeral 104 denotes a filter unit. As shown in FIG. 6, the calculated value K (i, j) of the Gaussian curvature on the target lattice point (i, j) is used as the calculated value of the Gaussian curvature on the surrounding lattice points. Use to filter. As shown in FIG. 6, paying attention to the calculation grid of nine points surrounded by a broken line, using the weight setting as shown in FIG. Correct the calculated value of the Gaussian curvature at the center point. This correction is called filtering, and the influence of noise can be reduced.

Figure 2010271305
Figure 2010271305

105は出力部であり、フィルタ部104によりフィルタリングされたガウス曲率の計算値を、金属板の面歪みを評価するための評価値として出力する。例えば、後述するように、金属板1の各部でのガウス曲率の計算値をコンター図で表わして不図示のディスプレイに画像出力する。   Reference numeral 105 denotes an output unit that outputs a calculated value of the Gaussian curvature filtered by the filter unit 104 as an evaluation value for evaluating the surface distortion of the metal plate. For example, as will be described later, the calculated value of the Gaussian curvature at each part of the metal plate 1 is represented by a contour diagram and output to a display (not shown).

図2(a)、(c)に示したように、ガウス曲率が0より大きいか、0より小さいとき、金属板1の表面に凹凸が形成されていると考えられる。したがって、例えば金属板1の表面の一部を検査領域とし、その検査領域においてガウス曲率の絶対値の総和が大きければ、面歪みが発生していると評価することができる。本実施形態では、出力部105により出力される結果に基づいて人が面歪みを評価することを想定しているが、例えば所定の閾値を予め用意しておき、検査領域においてガウス曲率の絶対値の総和が閾値を超えている場合、その検査領域において面歪みが発生していると自動的に評価するような機能を持たせるようにしてもよい。   As shown in FIGS. 2A and 2C, when the Gaussian curvature is larger than 0 or smaller than 0, it is considered that irregularities are formed on the surface of the metal plate 1. Therefore, for example, if a part of the surface of the metal plate 1 is used as an inspection region and the total sum of absolute values of Gaussian curvature is large in the inspection region, it can be evaluated that surface distortion has occurred. In the present embodiment, it is assumed that a person evaluates surface distortion based on the result output from the output unit 105. However, for example, a predetermined threshold value is prepared in advance, and the absolute value of the Gaussian curvature in the inspection region. If the total sum exceeds the threshold value, a function of automatically evaluating that surface distortion has occurred in the inspection region may be provided.

図8(a)、(b)に、本実施形態の手法で計算したガウス曲率のコンター図を示す。図8(a)は熟練工による官能検査で合格した鋼板のコンター図を、図8(b)は不合格となった鋼板のコンター図を示す。図8は、本来はガウス曲率が負に大きくなると赤色(図中の−8.6×10-7方向)、正に大きくなると黄色(図中の1.0×10-6方向)で表されており、その中間(橙色)であれば面歪みがない結果となる。なお、エンボス部は解析対象外としている。 FIGS. 8A and 8B show contour diagrams of the Gaussian curvature calculated by the method of the present embodiment. Fig.8 (a) shows the contour figure of the steel plate which passed the sensory test by a skilled worker, and FIG.8 (b) shows the contour figure of the steel plate which failed. FIG. 8 is originally expressed in red (−8.6 × 10 −7 direction in the figure) when the Gaussian curvature is negatively increased and yellow (1.0 × 10 −6 direction in the figure) when positively increased. In the middle (orange), there is no surface distortion. The embossed part is not subject to analysis.

図8(a)、(b)を比較すると、不合格の鋼板では、エンボス部の周囲のガウス曲率の絶対値が大きくなっていることが判る。また、官能検査で熟練工が指摘した面歪み発生箇所とも一致する。これらの結果より、本発明を適用して計算したガウス曲率が、面歪みの評価の有効な技術指標になっていることを示している。   Comparing FIGS. 8A and 8B, it can be seen that the absolute value of the Gaussian curvature around the embossed portion is increased in the rejected steel sheet. It also matches the surface distortion occurrence pointed out by skilled workers in sensory inspection. From these results, it is shown that the Gaussian curvature calculated by applying the present invention is an effective technical index for the evaluation of surface distortion.

図9(a)〜(f)は、本実施形態の手法で計算した6種類の鋼板のガウス曲率のコンター図を示す。鋼板(1)のみが熟練工による官能検査で合格した鋼板であり、鋼板(2)〜鋼板(6)は不合格となった鋼板である。なお、鋼板(1)が図8(a)に示した鋼板、鋼板(6)が図8(b)に示した鋼板である。エンボス部の周囲のガウス曲率の大きさを、合格品の鋼板(1)と不合格品の鋼板(2)〜鋼板(6)とで比較すると、鋼板(1)のガウス曲率が鋼板(2)〜鋼板(6)のガウス曲率と比較して明らかに小さな値を示すことが判る。   FIGS. 9A to 9F show contour diagrams of Gaussian curvatures of six types of steel plates calculated by the method of the present embodiment. Only the steel plate (1) was a steel plate that passed the sensory inspection by a skilled worker, and the steel plates (2) to (6) were steel plates that were rejected. The steel plate (1) is the steel plate shown in FIG. 8 (a), and the steel plate (6) is the steel plate shown in FIG. 8 (b). When the magnitude of the Gaussian curvature around the embossed part is compared between the accepted steel plate (1) and the rejected steel plates (2) to (6), the Gaussian curvature of the steel plate (1) is the steel plate (2). -It turns out that a small value is clearly shown compared with the Gaussian curvature of a steel plate (6).

図11には、図10に示すエンボス部の上側及び下側の検査領域でのガウス曲率の絶対値の総和を計算し、熟練工による面歪みの官能評価順位との対応関係を調査した結果を示す。図11(a)がエンボス部の上側の検査領域での結果を、図11(b)がエンボス部の下側の検査領域での結果を示す。図11(a)、(b)の横軸がガウス曲率の絶対値の総和を、縦軸が官能評価順位(1〜8の数値で表し、1が合格、2以上が不合格)である。ガウス曲率の絶対値の総和が大きくなると、官能評価順位も悪くなる傾向が見られ、両者の間に良好な対応関係があることが判る。
また、本実施形態と同じ形状で有限要素法解析モデルを作成し、実施形態で用いた6種の鋼板から得た応力−ひずみ関係を入力し、実施形態と同一条件での成形解析及びスプリングバック解析(除荷解析)を行った。有限要素法の解析は市販の動的陽解法ソフトウェアPAMSTAMPを用いて実施した。図12には、スプリングバック計算結果について図10に示すエンボス部の上側及び下側の検査領域でのガウス曲率の絶対値の総和を計算し、熟練工による面歪みの官能評価順位との対応関係を調査した結果を示す。図12(a)がエンボス部の上側の検査領域での結果を、図12(b)がエンボス部の下側の検査領域での結果を示す。図12(a)、(b)の横軸がガウス曲率の絶対値の総和を、縦軸が官能評価順位(1〜8の数値で表し、1が合格、2以上が不合格)である。図11の横軸に比べガウス曲率の絶対値は少し異なるが、ガウス曲率の絶対値の総和が大きくなると、官能評価順位も悪くなる傾向が見られ、両者の間に良好な対応関係があることが判る。
FIG. 11 shows the results of calculating the sum of absolute values of Gaussian curvatures in the upper and lower inspection areas of the embossed portion shown in FIG. 10 and investigating the correspondence relationship with the sensory evaluation rank of surface distortion by a skilled worker. . FIG. 11A shows the result in the inspection region above the embossed portion, and FIG. 11B shows the result in the inspection region below the embossed portion. 11A and 11B, the horizontal axis represents the sum of the absolute values of the Gaussian curvature, and the vertical axis represents the sensory evaluation rank (expressed as a numerical value of 1 to 8, where 1 is acceptable and 2 or more is unacceptable). It can be seen that when the sum of absolute values of Gaussian curvature increases, the sensory evaluation ranking tends to deteriorate, and there is a good correspondence between the two.
Also, a finite element method analysis model is created in the same shape as this embodiment, stress-strain relationships obtained from the six types of steel plates used in the embodiment are input, and forming analysis and springback are performed under the same conditions as in the embodiment. Analysis (unloading analysis) was performed. The analysis of the finite element method was carried out using the commercially available dynamic explicit software PAMSTAMP. In FIG. 12, the sum of absolute values of the Gaussian curvatures in the upper and lower inspection areas of the embossed portion shown in FIG. 10 is calculated for the springback calculation result, and the correspondence relationship with the sensory evaluation rank of surface distortion by a skilled worker is shown. The survey results are shown. FIG. 12A shows the result in the inspection region above the embossed portion, and FIG. 12B shows the result in the inspection region below the embossed portion. 12A and 12B, the horizontal axis represents the sum of the absolute values of the Gaussian curvature, and the vertical axis represents the sensory evaluation rank (expressed as a numerical value of 1 to 8, where 1 is acceptable and 2 or more is unacceptable). Although the absolute value of the Gaussian curvature is slightly different from the horizontal axis in FIG. 11, when the sum of the absolute values of the Gaussian curvature increases, the sensory evaluation rank tends to deteriorate, and there is a good correspondence between the two. I understand.

(第2の実施形態)
以下、本発明の第2の実施形態について説明する。ここでも図3に示したドアハンドル用のエンボス部(凹部)1aが形成された自動車ドアパネル(鋼板)を評価対象の金属板1とする。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described. Here, the automobile door panel (steel plate) in which the embossed portion (concave portion) 1a for the door handle shown in FIG.

図13は、本発明を適用した第2の実施形態に係る金属板の面歪みの評価値演算装置の機能構成を示す図である。101は入力部であり、測定装置200により取得された金属板1の表面形状の計測値を入力する。測定装置200は接触式三次元形状測定装置を想定しているが、レーザー光等による非接触式三次元形状測定装置を使用してもよい。測定装置200は、金属板1の表面を二次元に走査して計測値を取得する。具体的には、図3の矢印に示すように、一つのv方向位置においてu方向の一定のピッチごとに金属板1の表面形状を測定し、これをv方向位置をずらしながら繰り返す。   FIG. 13 is a diagram showing a functional configuration of an evaluation value calculation device for surface distortion of a metal plate according to a second embodiment to which the present invention is applied. Reference numeral 101 denotes an input unit that inputs a measurement value of the surface shape of the metal plate 1 acquired by the measuring apparatus 200. Although the measuring device 200 is assumed to be a contact type three-dimensional shape measuring device, a non-contact type three-dimensional shape measuring device using a laser beam or the like may be used. The measuring device 200 scans the surface of the metal plate 1 two-dimensionally and acquires a measurement value. Specifically, as shown by the arrows in FIG. 3, the surface shape of the metal plate 1 is measured at a constant pitch in the u direction at one v direction position, and this is repeated while shifting the v direction position.

102は補間部であり、測定装置200による計測値を直交格子状に補間する。各評価点で正確に最大主曲率の方向を計算するには、図4(d)に示すように、u−v軸の二次元表面上で形状データが直交格子点上に並んでいる必要がある。しかしながら、実際は測定装置200の位置精度上、直交格子点からのずれが生じる場合がある。例えば図4(b)には、u方向の計測位置が直交格子点からずれている様子を示す。そこで、図4(c)、図5に示すように、計測位置間を直線補間し、直交格子点上にすべての形状データが並ぶように補間する。図4(c)において、点線が直交格子点の位置、グレーの○が実際の計測値、●が補間計算値を示す。   An interpolation unit 102 interpolates the measurement values obtained by the measuring apparatus 200 in an orthogonal lattice shape. In order to accurately calculate the direction of the maximum principal curvature at each evaluation point, as shown in FIG. 4D, it is necessary that the shape data be arranged on the orthogonal lattice points on the two-dimensional surface of the uv axis. is there. However, in actuality, there may be a deviation from the orthogonal lattice points due to the positional accuracy of the measuring apparatus 200. For example, FIG. 4B shows a state where the measurement position in the u direction is shifted from the orthogonal lattice point. Therefore, as shown in FIGS. 4C and 5, linear interpolation is performed between the measurement positions, and interpolation is performed so that all shape data are arranged on the orthogonal lattice points. In FIG. 4C, the dotted line indicates the position of the orthogonal lattice point, the gray circle indicates the actual measurement value, and the ● indicates the interpolation calculation value.

106は最大主曲率方向計算部であり、直交格子点上の値、すなわち測定装置200による計測値が直交格子点上にあればその計測値、測定装置200による計測値が直交格子点上になければ補間計算値を用いて、最大主曲率の方向θを計算する。最大主曲率の方向は図3に示したu−v平面において基準u軸からの角度θで数値化する。   Reference numeral 106 denotes a maximum principal curvature direction calculation unit. If the value on the orthogonal lattice point, that is, the measurement value by the measuring device 200 is on the orthogonal lattice point, the measured value and the measurement value by the measuring device 200 must be on the orthogonal lattice point. For example, the direction θ of the maximum principal curvature is calculated using the interpolation calculation value. The direction of the maximum principal curvature is quantified by an angle θ from the reference u axis in the uv plane shown in FIG.

104はフィルタ部であり、図6に示すように、注目格子点(i,j)上の最大主曲率方向の計算値θをその周囲の格子点上の最大主曲率方向の計算値を用いてフィルタリングする。図6に示すように、破線で囲った9点の計算格子に着目し、その中央点(注目格子点)に対し、図7に示すような重み設定を用いて、上式(2)により、中央点の最大主曲率方向の計算値を補正する。この補正をフィルタリングと呼び、ノイズの影響を低減させることができる。   Reference numeral 104 denotes a filter unit. As shown in FIG. 6, the calculated value θ in the maximum principal curvature direction on the target lattice point (i, j) is used as the calculated value θ in the maximum principal curvature direction on the surrounding lattice points. Filter. As shown in FIG. 6, paying attention to the calculation grid of 9 points surrounded by a broken line, using the weight setting as shown in FIG. Correct the calculated value of the maximum principal curvature direction at the center point. This correction is called filtering, and the influence of noise can be reduced.

105は出力部であり、フィルタ部104によりフィルタリングされた最大主曲率方向の計算値を、金属板の面歪みを評価するための評価値として出力する。例えば、金属板1の各部での最大主曲率の計算値をコンター図で表わしてディスプレイに画像出力する。   Reference numeral 105 denotes an output unit that outputs the calculated value in the maximum principal curvature direction filtered by the filter unit 104 as an evaluation value for evaluating the surface distortion of the metal plate. For example, the calculated value of the maximum principal curvature at each part of the metal plate 1 is represented by a contour diagram and output to the display.

本来自動車のドアパネル等の外表面は平面ではなく、もともと意図された設計上の曲率を有する。しかしながら、その曲率は曲率半径で数千から数万mm程度の緩やかな曲率であり、曲率方向の変化はほとんどないか、あっても非常に小さい。したがって、最大主曲率方向を評価し、その変化が大きい場合は表面に凹凸が形成されていると考えられる。例えば金属板1の表面の一部断面を検査断面とし、その検査断面において最大主曲率方向の変化の絶対値が大きければ、面歪みが発生していると評価することができる。本実施形態では、出力部105により出力される結果に基づいて人が面歪みを評価することを想定しているが、例えば所定の閾値を予め用意しておき、検査断面において最大主曲率方向の変化の絶対値が閾値を超えている場合、その検査断面において面歪みが発生していると自動的に評価するような機能を持たせるようにしてもよい。   Originally, the outer surface of an automobile door panel or the like is not a flat surface but has a designed design curvature. However, the curvature is a gentle curvature with a radius of curvature of about several thousand to several tens of thousands mm, and there is little or no change in the direction of curvature. Therefore, when the maximum principal curvature direction is evaluated and the change is large, it is considered that irregularities are formed on the surface. For example, if a partial cross section of the surface of the metal plate 1 is an inspection cross section and the absolute value of the change in the maximum principal curvature direction is large in the inspection cross section, it can be evaluated that surface distortion has occurred. In this embodiment, it is assumed that a person evaluates surface distortion based on the result output from the output unit 105. However, for example, a predetermined threshold is prepared in advance, and the maximum principal curvature direction in the inspection cross section is prepared. When the absolute value of the change exceeds a threshold value, a function may be provided that automatically evaluates that surface distortion has occurred in the inspection cross section.

図14には、図10に示すエンボス部のv=35の断面(上側)及びv=−35の断面(下側)の検査領域での最大主曲率方向の変化の絶対値を計算し、熟練工による面歪みの官能評価順位との対応関係を調査した結果を示す。図14(a)がエンボス部の上側の検査領域での結果を、図14(b)がエンボス部の下側の検査領域での結果を示す。図14(a)、(b)の横軸が最大主曲率方向の変化の絶対値を、縦軸が官能評価順位(1〜8の数値で表し、1が合格、2以上が不合格)である。最大主曲率方向の変化の絶対値が大きくなると、官能評価順位も悪くなる傾向が見られ、両者の間に良好な対応関係があることが判る。   In FIG. 14, the absolute value of the change in the maximum principal curvature direction in the inspection region of the v = 35 cross section (upper side) and v = −35 cross section (lower side) of the embossed portion shown in FIG. The result of investigating the correspondence with the sensory evaluation ranking of the surface distortion due to. FIG. 14A shows the result in the inspection region above the embossed portion, and FIG. 14B shows the result in the inspection region below the embossed portion. 14 (a) and 14 (b), the horizontal axis represents the absolute value of the change in the maximum principal curvature direction, and the vertical axis represents the sensory evaluation rank (expressed as a numerical value of 1 to 8, 1 is pass, 2 or more is reject). is there. As the absolute value of the change in the maximum principal curvature direction increases, the sensory evaluation ranking tends to deteriorate, and it can be seen that there is a good correspondence between the two.

また、本実施形態と同じ形状で有限要素法解析モデルを作成し、実施形態で用いた6種の鋼板から得た応力−ひずみ関係を入力し、実施形態と同一条件での成形解析及びスプリングバック解析(除荷解析)を行った。有限要素法の解析は市販の動的陽解法ソフトウェアPAMSTAMPを用いて実施した。図15には、スプリングバック計算結果について図10に示すエンボス部のv=35の断面(上側)及びv=−35の断面(下側)の検査領域での最大主曲率方向の変化の絶対値を計算し、熟練工による面歪みの官能評価順位との対応関係を調査した結果を示す。図15(a)がエンボス部の上側の検査領域での結果を、図12(b)がエンボス部の下側の検査領域での結果を示す。図15(a)、(b)の横軸が最大主曲率方向の変化の絶対値を、縦軸が官能評価順位(1〜8の数値で表し、1が合格、2以上が不合格)である。図14の横軸に比べ最大主曲率方向の変化の絶対値は少し異なるが、最大主曲率方向の変化の絶対値が大きくなると、官能評価順位も悪くなる傾向が見られ、両者の間に良好な対応関係があることが判る。   Also, a finite element method analysis model is created in the same shape as this embodiment, stress-strain relationships obtained from the six types of steel plates used in the embodiment are input, and forming analysis and springback are performed under the same conditions as in the embodiment. Analysis (unloading analysis) was performed. The analysis of the finite element method was carried out using the commercially available dynamic explicit software PAMSTAMP. FIG. 15 shows the absolute value of the change in the maximum principal curvature direction in the inspection region of the v = 35 cross section (upper side) and v = −35 cross section (lower side) of the embossed portion shown in FIG. The result of investigating the correspondence with the sensory evaluation rank of the surface distortion by skilled workers is shown. FIG. 15A shows the result in the inspection region above the embossed portion, and FIG. 12B shows the result in the inspection region below the embossed portion. In FIGS. 15A and 15B, the horizontal axis indicates the absolute value of the change in the maximum principal curvature direction, and the vertical axis indicates the sensory evaluation rank (expressed as a numerical value of 1 to 8, where 1 is acceptable and 2 or more is unacceptable). is there. Although the absolute value of the change in the maximum principal curvature direction is slightly different compared to the horizontal axis in FIG. 14, when the absolute value of the change in the maximum principal curvature direction is increased, the sensory evaluation ranking tends to be deteriorated and good between the two. It can be seen that there is a corresponding relationship.

以上述べたように、本発明を適用した手法により、100mm〜数mのサイズの対象表面上の10μm〜100μm程度の凹凸の発生位置及び程度を定量的に評価することができる。これにより、プレス加工に供する素材金属板の加工性の評価、プレス成形用金型の劣化状況の評価、製品金属板の検査等を精度良く行うことができ、製品金属板の歩留まり向上、品質の向上に寄与する。   As described above, by using the method to which the present invention is applied, it is possible to quantitatively evaluate the occurrence position and the degree of unevenness of about 10 μm to 100 μm on the target surface having a size of 100 mm to several m. This makes it possible to accurately evaluate the workability of the metal sheet for press work, evaluate the deterioration of the press mold, and inspect the product metal sheet, improve the yield of the product metal sheet, and improve the quality. Contributes to improvement.

なお、本発明の金属板の面歪みの評価値演算装置は、複数の機器から構成されるシステムに適用しても、一つの機器からなる装置に適用してもよい。   In addition, the evaluation value calculation apparatus of the surface distortion of the metal plate of this invention may be applied to the system comprised from a some apparatus, or may be applied to the apparatus comprised from one apparatus.

また、本発明の目的は、上述した機能を実現するコンピュータプログラムをシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(CPU若しくはMPU)が実行することによっても達成され、この場合、コンピュータプログラム自体が本発明を構成することになる。以上、本発明を種々の実施形態と共に説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。   The object of the present invention can also be achieved by supplying a computer program for realizing the above-described functions to a system or apparatus and executing the computer (CPU or MPU) of the system or apparatus. In this case, the computer program itself Constitutes the present invention. As mentioned above, although this invention was demonstrated with various embodiment, this invention is not limited only to these embodiment, A change etc. are possible within the scope of the present invention.

101 入力部
102 補間部
103 ガウス曲率計算部
104 フィルタ部
105 出力部
106 最大主曲率方向計算部
200 測定装置
DESCRIPTION OF SYMBOLS 101 Input part 102 Interpolation part 103 Gaussian curvature calculation part 104 Filter part 105 Output part 106 Maximum principal curvature direction calculation part 200 Measuring apparatus

Claims (10)

金属板の面歪みを評価する金属板の面歪みの評価方法であって、
測定装置により評価対象の金属板の表面形状を測定し、前記測定装置による計測値に基づく直交格子点上の値を用いて、下式(1)によりガウス曲率を計算して、金属板の面歪みを評価することを特徴とする金属板の面歪みの評価方法。
Figure 2010271305
A method for evaluating surface strain of a metal plate for evaluating surface strain of the metal plate,
The surface shape of the metal plate to be evaluated is measured by the measuring device, and the Gauss curvature is calculated by the following equation (1) using the values on the orthogonal lattice points based on the measurement values obtained by the measuring device. A method for evaluating surface distortion of a metal plate, characterized by evaluating distortion.
Figure 2010271305
金属板の面歪みを評価する金属板の面歪みの評価方法であって、
測定装置により評価対象の金属板の表面形状を測定し、前記測定装置による計測値に基づく直交格子点上の値を用いて、最大主曲率の方向を計算して、金属板の面歪みを評価することを特徴とする金属板の面歪みの評価方法。
A method for evaluating surface strain of a metal plate for evaluating surface strain of the metal plate,
The surface shape of the metal plate to be evaluated is measured by the measuring device, and the direction of the maximum principal curvature is calculated using the value on the orthogonal lattice point based on the measurement value by the measuring device, thereby evaluating the surface distortion of the metal plate. A method for evaluating the surface distortion of a metal plate.
前記測定装置は前記評価対象の金属板の表面を二次元に走査して計測値を取得することを特徴とする請求項1又は2に記載の金属板の面歪みの評価方法。   3. The method for evaluating surface distortion of a metal plate according to claim 1, wherein the measuring device scans the surface of the metal plate to be evaluated two-dimensionally to obtain a measurement value. 4. 前記直交格子点上の値が有限要素法に基づく成形解析及び除荷解析後の形状データの計算値を用いることを特徴とする請求項1乃至3のいずれか1項に記載の金属板の面歪みの評価方法。   The surface of the metal plate according to any one of claims 1 to 3, wherein a value on the orthogonal lattice point uses a calculated value of shape data after forming analysis and unloading analysis based on a finite element method. Distortion evaluation method. 前記測定装置による計測値を直交格子状に補間する手順を有することを特徴とする請求項3又は4に記載の金属板の面歪みの評価方法。   5. The method for evaluating surface distortion of a metal plate according to claim 3, further comprising a step of interpolating the measurement values obtained by the measuring device in an orthogonal lattice shape. 注目格子点上のガウス曲率の計算値をその周囲の格子点上のガウス曲率の計算値を用いてフィルタリングする手順を更に有し、
前記フィルタリングされたガウス曲率の計算値に基づいて、前記金属板の面歪みを評価することを特徴とする請求項1乃至5のいずれか1項に記載の金属板の面歪みの評価方法。
Filtering the calculated value of the Gaussian curvature on the grid point of interest using the calculated value of the Gaussian curvature on the surrounding grid points;
6. The method for evaluating the surface distortion of a metal plate according to claim 1, wherein the surface distortion of the metal plate is evaluated based on the calculated value of the filtered Gaussian curvature.
金属板の面歪みを評価するための評価値を求める金属板の面歪みの評価値演算装置であって、
測定装置により取得された評価対象の金属板の表面形状の計測値又は有限要素法に基づく成形解析及び除荷解析後の形状データの計算値を入力し、前記入力された値に基づく直交格子点上の値を用いて、下式(1)によりガウス曲率を計算する構成にしたことを特徴とする金属板の面歪みの評価値演算装置。
Figure 2010271305
An evaluation value calculation device for surface distortion of a metal plate for obtaining an evaluation value for evaluating surface distortion of the metal plate,
Input the measured value of the surface shape of the metal plate to be evaluated acquired by the measuring device or the calculated value of the shape data after forming analysis and unloading analysis based on the finite element method, and the orthogonal lattice point based on the input value An apparatus for calculating an evaluation value of surface distortion of a metal plate, characterized in that a Gaussian curvature is calculated by the following equation (1) using the above value.
Figure 2010271305
金属板の面歪みを評価するための評価値を求める金属板の面歪みの評価値演算装置であって、
測定装置により取得された評価対象の金属板の表面形状の計測値又は有限要素法に基づく成形解析及び除荷解析後の形状データの計算値を入力し、前記入力された値に基づく直交格子点上の値を用いて、最大主曲率の方向を計算する構成にしたことを特徴とする金属板の面歪みの評価値演算装置。
An evaluation value calculation device for surface distortion of a metal plate for obtaining an evaluation value for evaluating surface distortion of the metal plate,
Input the measured value of the surface shape of the metal plate to be evaluated acquired by the measuring device or the calculated value of the shape data after forming analysis and unloading analysis based on the finite element method, and the orthogonal lattice point based on the input value An apparatus for calculating an evaluation value of surface distortion of a metal plate, wherein the above value is used to calculate the direction of the maximum principal curvature.
金属板の面歪みを評価するための評価値を求めるためのプログラムであって、
測定装置により取得された評価対象の金属板の表面形状の計測値又は有限要素法に基づく成形解析及び除荷解析後の形状データの計算値を入力し、前記入力された計測値に基づく直交格子点上の値を用いて、下式(1)によりガウス曲率を計算する処理をコンピュータに実行させるためのプログラム。
Figure 2010271305
A program for obtaining an evaluation value for evaluating the surface distortion of a metal plate,
Input the measured value of the surface shape of the metal plate to be evaluated acquired by the measuring device or the calculated value of the shape data after forming analysis and unloading analysis based on the finite element method, and the orthogonal lattice based on the input measured value A program for causing a computer to execute a process for calculating a Gaussian curvature according to the following equation (1) using a value on a point.
Figure 2010271305
金属板の面歪みを評価するための評価値を求めるためのプログラムであって、
測定装置により取得された評価対象の金属板の表面形状の計測値又は有限要素法に基づく成形解析及び除荷解析後の形状データの計算値を入力し、前記入力された計測値に基づく直交格子点上の値を用いて、最大主曲率の方向を計算する処理をコンピュータに実行させるためのプログラム。
A program for obtaining an evaluation value for evaluating the surface distortion of a metal plate,
Input the measured value of the surface shape of the metal plate to be evaluated acquired by the measuring device or the calculated value of the shape data after forming analysis and unloading analysis based on the finite element method, and the orthogonal lattice based on the input measured value A program for causing a computer to execute a process of calculating the direction of the maximum principal curvature using a value on a point.
JP2010097035A 2009-04-21 2010-04-20 Method of evaluating surface strain of metal plate, evaluation value calculating device and program for surface strain of metal plate Active JP5387491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097035A JP5387491B2 (en) 2009-04-21 2010-04-20 Method of evaluating surface strain of metal plate, evaluation value calculating device and program for surface strain of metal plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009103277 2009-04-21
JP2009103277 2009-04-21
JP2010097035A JP5387491B2 (en) 2009-04-21 2010-04-20 Method of evaluating surface strain of metal plate, evaluation value calculating device and program for surface strain of metal plate

Publications (2)

Publication Number Publication Date
JP2010271305A true JP2010271305A (en) 2010-12-02
JP5387491B2 JP5387491B2 (en) 2014-01-15

Family

ID=43419424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097035A Active JP5387491B2 (en) 2009-04-21 2010-04-20 Method of evaluating surface strain of metal plate, evaluation value calculating device and program for surface strain of metal plate

Country Status (1)

Country Link
JP (1) JP5387491B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111125619A (en) * 2018-10-31 2020-05-08 中石化石油工程技术服务有限公司 Method for determining curve surface strain along curve
JP2021081384A (en) * 2019-11-22 2021-05-27 日本製鉄株式会社 Surface distortion evaluation device, surface distortion evaluation method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX364096B (en) 2014-08-08 2019-04-12 Nippon Steel & Sumitomo Metal Corp Line displacement evaluation method, line displacement evaluation device, program, and recording medium.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694428A (en) * 1992-07-29 1994-04-05 Matsushita Electric Ind Co Ltd Three-dimensional shape input device
JPH1038558A (en) * 1996-07-19 1998-02-13 Canon Inc Simulation analyzer for optical element
JP2007064728A (en) * 2005-08-30 2007-03-15 Daihatsu Motor Co Ltd Strain evaluation device and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694428A (en) * 1992-07-29 1994-04-05 Matsushita Electric Ind Co Ltd Three-dimensional shape input device
JPH1038558A (en) * 1996-07-19 1998-02-13 Canon Inc Simulation analyzer for optical element
JP2007064728A (en) * 2005-08-30 2007-03-15 Daihatsu Motor Co Ltd Strain evaluation device and method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111125619A (en) * 2018-10-31 2020-05-08 中石化石油工程技术服务有限公司 Method for determining curve surface strain along curve
CN111125619B (en) * 2018-10-31 2024-04-02 中石化石油工程技术服务有限公司 Method for determining strain along curved surface of curve
JP2021081384A (en) * 2019-11-22 2021-05-27 日本製鉄株式会社 Surface distortion evaluation device, surface distortion evaluation method and program
JP7356019B2 (en) 2019-11-22 2023-10-04 日本製鉄株式会社 Surface strain evaluation device, surface strain evaluation method, and program

Also Published As

Publication number Publication date
JP5387491B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP4282643B2 (en) Strain evaluation apparatus and strain evaluation method
JP4741344B2 (en) Shape recognition apparatus and distortion evaluation apparatus
Garcia et al. A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming
KR102256181B1 (en) Method of inspecting and evaluating coating state of steel structure and system for the same
CN111054782B (en) Wide and thick plate shape detection device and method
CN103459978B (en) For measuring the apparatus and method on surface
Ding et al. A laser-based machine vision measurement system for laser forming
JPWO2016152076A1 (en) Structure state determination apparatus, state determination system, and state determination method
US20100114350A1 (en) Method of determining mesh data and method of correcting model data
CN104019745A (en) Method for measuring size of free plane based on monocular vision indirect calibration method
JP5387491B2 (en) Method of evaluating surface strain of metal plate, evaluation value calculating device and program for surface strain of metal plate
JP7228951B2 (en) Loss price evaluation system
Mazzoleni Uncertainty estimation and reduction in digital image correlation measurements
TWI480508B (en) Method and device of measuring position information of spatial image
CN110064680B (en) Method for rapidly measuring large bending deformation of bar
Molleda et al. A profile measurement system for rail manufacturing using multiple laser range finders
JP6044606B2 (en) Expected mold shape creation method and apparatus
JP2005173706A (en) Method and apparatus for shape estimation, and method and apparatus for analytic element generation
JP6951469B2 (en) How to calibrate an optical measuring device
CN112414316B (en) Strain gauge sensitive grid size parameter measuring method
US20210407064A1 (en) Method and device for geometric analysis of a part surface
Yao et al. Robust locally weighted regression for profile measurement of magnesium alloy tube in hot bending process
CN114862816A (en) Glitch detection method, system, and computer-readable storage medium
CN110285772B (en) Evaluation method, system and medium for calculating detection precision of holographic element
Boesemann et al. Photogrammetric measurement techniques for quality control in sheet metal forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R151 Written notification of patent or utility model registration

Ref document number: 5387491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350