JP2010271243A - N,n,n',n'-tetraalkyl-3,6-dioxaoctane-1,8-diamide and extractant for solvent-extracting actinide element and lanthanide element from high level radioactive waste liquid including n,n,n',n'-tetraalkyl-3,6-dioxaoctane-1,8-diamide - Google Patents

N,n,n',n'-tetraalkyl-3,6-dioxaoctane-1,8-diamide and extractant for solvent-extracting actinide element and lanthanide element from high level radioactive waste liquid including n,n,n',n'-tetraalkyl-3,6-dioxaoctane-1,8-diamide Download PDF

Info

Publication number
JP2010271243A
JP2010271243A JP2009124516A JP2009124516A JP2010271243A JP 2010271243 A JP2010271243 A JP 2010271243A JP 2009124516 A JP2009124516 A JP 2009124516A JP 2009124516 A JP2009124516 A JP 2009124516A JP 2010271243 A JP2010271243 A JP 2010271243A
Authority
JP
Japan
Prior art keywords
dioxaoctane
tetraalkyl
diamide
dooda
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009124516A
Other languages
Japanese (ja)
Other versions
JP5354586B2 (en
Inventor
Yuji Sasaki
祐二 佐々木
Taiji Morita
泰治 森田
Akihiro Kitatsuji
章浩 北▲辻▼
Takami Kimura
貴海 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2009124516A priority Critical patent/JP5354586B2/en
Publication of JP2010271243A publication Critical patent/JP2010271243A/en
Application granted granted Critical
Publication of JP5354586B2 publication Critical patent/JP5354586B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extractant for extracting an actinide element and a lanthanide element from a high-level radioactive waste liquid stable in dodecane, with distribution ratio to the actinide element and the lanthanide element slightly high, and with distribution ratio to an element coexisting with the actinide element and the lanthanide element low. <P>SOLUTION: There are provided an N,N,N',N'-tetraalkyl-3,6-dioxaoctane-1,8-diamide shown by a general formula: (CH<SB>2</SB>OCH<SB>2</SB>CON(R)<SB>2</SB>)<SB>2</SB>(R is an alkyl group); and the extractant for solvent-extracting an actinide element and a lanthanide from a high-level radioactive waste liquid including the N,N,N',N'-tetraalkyl-3,6-dioxaoctane-1,8-diamide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規化合物であるN,N,N’,N’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミド及びN,N,N’,N’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミドを用いる高レベル放射性廃液からアクチニド元素及びランタニド元素を溶媒抽出する抽出剤に関する。   The present invention relates to novel compounds N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide and N, N, N ′, N′-tetraalkyl-3, The present invention relates to an extractant for solvent extraction of an actinide element and a lanthanide element from a high-level radioactive liquid waste using 6-dioxaoctane-1,8-diamide.

原子力分野では、使用済み燃料溶解液中のU、Puを分離した後に発生する高レベル放射性廃液中のAm、Cmなどの長半減期核種を分離して核変換する研究が進められている。このような研究は、地層処分時の環境中の長期的危険性の排除、ガラス固化体の減容化にとって重要である。この長半減期核種分離法の開発は、現在UREX(Uranium Extraction:ウラン抽出)やDIAMEX(Diamide Extraction:ジアミド抽出)プロセスなどで世界的に進められている。UREXプロセスでは抽出剤としてCMPO(carbamoylmethyl phosphine oxide)の利用、DIAMEXプロセスでは抽出剤としてマロンアミドの利用が検討されている(非特許文献1及び2)。また、日本で研究開発が進められている先進湿式分離プロセスではテトラオクチルジグリコールアミド(以下「TODGA」と略す)の利用が検討されている(非特許文献3)。TODGAは、高レベル放射性廃液から微量のアクチニド(Am(III)及びCm(III))及びTc(VII)を回収するために有用である。TODGAは容易に合成することができ、高い抽出性を示し、燃焼後に灰化するために、高レベル放射性廃液から放射性金属イオンを分離するために有用である。   In the nuclear power field, researches are being conducted to separate and transmutate long half-life nuclides such as Am and Cm in high-level radioactive liquid waste generated after separating U and Pu in spent fuel solution. Such research is important for eliminating long-term dangers in the environment during geological disposal and reducing the volume of vitrified bodies. The development of this long half-life nuclide separation method is currently underway worldwide, such as in the UREX (Uranium Extraction) and DIAMEX (Diamide Extraction) processes. The use of CMPO (carbamoylmethyl phosphine oxide) as an extractant in the UREX process and the use of malonamide as an extractant in the DIAMEX process are being studied (Non-Patent Documents 1 and 2). In addition, the use of tetraoctyl diglycolamide (hereinafter abbreviated as “TODGA”) is being studied in an advanced wet separation process that is being researched and developed in Japan (Non-patent Document 3). TODGA is useful for recovering trace amounts of actinides (Am (III) and Cm (III)) and Tc (VII) from high-level radioactive liquid waste. TODGA can be easily synthesized, is highly extractable, and is useful for separating radioactive metal ions from high-level radioactive liquid waste for ashing after combustion.

しかしながら、CMPOは、希釈剤のドデカン中でやや不安定であり、トリブチルフォスフェート(Tributyl Phosphate)(以下「TBP」と称す)を併用しなければならない。マロンアミドは、Am、Cmの分配比が低い。TODGAは、反応性が高いため、Pd(II)及びZr(IV)などの共存金属イオンまでも抽出してしまい、これらの金属キレートは第三相を形成し、目的とする元素の分離が困難である。よって、これらの金属は、ヒドロキシエチルエチレンジアミン三酢酸(以下「HEDTA」と称す)及びシュウ酸などのマスキング剤を用いて水相中に安定化させなければならない。   However, CMPO is somewhat unstable in the diluent dodecane and must be used in combination with tributyl phosphate (hereinafter referred to as “TBP”). Malonamide has a low distribution ratio of Am and Cm. Since TODGA is highly reactive, even coexisting metal ions such as Pd (II) and Zr (IV) are extracted, and these metal chelates form a third phase, making it difficult to separate the target elements. It is. Thus, these metals must be stabilized in the aqueous phase using a masking agent such as hydroxyethylethylenediaminetriacetic acid (hereinafter referred to as “HEDTA”) and oxalic acid.

さらに、高レベル放射性廃液は硝酸水溶液であり、溶媒抽出に用いる有機溶剤として毒性が低く安定なドデカンが好適であるが、これまで提案されている抽出剤はドデカン中での安定性に劣り、使用することができなかった。   Furthermore, the high-level radioactive liquid waste is an aqueous nitric acid solution, and stable dodecane is preferred as an organic solvent used for solvent extraction. However, the extractant proposed so far has poor stability in dodecane and is used. I couldn't.

したがって、ドデカン中で安定であり、アクチニド元素に対する分配比がやや高く、さらにアクチニド元素と分離する共存元素の分配比が低い抽出剤が必要とされている。   Therefore, there is a need for an extractant that is stable in dodecane, has a slightly higher distribution ratio to the actinide element, and a lower distribution ratio of the coexisting elements that separate from the actinide element.

G.F. Vandegrift, M.C. Regalbuto, S.B. Aase, H.A. Arafat et. al. Lab-scale demonstration of the UREX+ process, 2004, http://www.cmt.anl.gov/Science_and_Technology/Process_Chemistry/Publications/WasteManagement04.pdfG.F.Vandegrift, M.C.Regalbuto, S.B.Aase, H.A.Arafat et.al.Lab-scale demonstration of the UREX + process, 2004, http://www.cmt.anl.gov/Science_and_Technology/Process_Chemistry/Publications/WasteManagement04.pdf D.S. Purroy, P. Baron, B. Christiansen, J.P. Glatz, C. Madic, R. Malmbeck, G. Modolo, First demonstration of a centrifugal solvent extraction process for minor actinides from a concentrated spent fuel solution, 2005, http://www-ist.cea.fr/publicea/exl-doc/200500005464.pdfDS Purroy, P. Baron, B. Christiansen, JP Glatz, C. Madic, R. Malmbeck, G. Modolo, First demonstration of a centrifugal solvent extraction process for minor actinides from a concentrated spent fuel solution, 2005, http: // www-ist.cea.fr/publicea/exl-doc/200500005464.pdf 小山智造、青瀬晋一、小泉務、再処理システムに関する要素技術開発−先進湿式再処理技術−、2004, http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/gihou/pdf2/n24b-09.pdfKozo Tomozo, Aose Shinichi, Koizumi Tsutomu, Development of Elemental Technology for Reprocessing System-Advanced Wet Reprocessing Technology-, 2004, http://jolisfukyu.tokai-sc.jaea.go.jp/fukyu/gihou/pdf2/n24b -09.pdf

本発明の目的は、ドデカン中で安定であり、アクチニド元素及びランタニド元素に対する分配比がやや高く、さらにアクチニド元素及びランタニド元素と共存する元素の分配比が低い、高レベル放射性廃液からアクチニド元素及びランタニド元素を抽出する抽出剤を提供することにある。   The object of the present invention is to provide actinide elements and lanthanides from high-level radioactive liquid waste that are stable in dodecane, have a slightly higher distribution ratio to actinide elements and lanthanide elements, and a lower distribution ratio of elements coexisting with actinide elements and lanthanide elements. The object is to provide an extractant for extracting elements.

本発明者らは鋭意検討の結果、新規なジオキサオクタンジアミド化合物が、上記課題を解決し得ることを知見し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that a novel dioxaoctanediamide compound can solve the above problems, and have completed the present invention.

具体的には、一般式:(CHOCHCON(R)(Rはアルキル基)で示される新規化合物:N,N,N’,N’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミド(以下「DOODA化合物」と略す)が、高レベル放射性廃液からのアクチニド(以下「An」と略す)(III)、(IV)、(VI)などの金属イオン及び核分裂生成物(以下「FP」と略す)の溶媒抽出に適することを知見し、本発明を完成させたものである。 Specifically, a novel compound represented by the general formula: (CH 2 OCH 2 CON (R) 2 ) 2 (R is an alkyl group): N, N, N ′, N′-tetraalkyl-3,6-di Oxaoctane-1,8-diamide (hereinafter abbreviated as “DOODA compound”) is a metal ion such as actinide (hereinafter abbreviated as “An”) (III), (IV), (VI) from high-level radioactive liquid waste and The present invention has been completed by finding out that it is suitable for solvent extraction of fission products (hereinafter abbreviated as “FP”).

すなわち、本発明によれば、一般式:(CHOCHCON(R)(Rはアルキル基)で示される長いアルキル鎖を有する新規化合物:N,N,N’,N’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミド及び当該DOODA化合物からなる高レベル放射性廃液からアクチニド元素及びランタニド元素を溶媒抽出する抽出剤が提供される。 That is, according to the present invention, a novel compound having a long alkyl chain represented by the general formula: (CH 2 OCH 2 CON (R) 2 ) 2 (R is an alkyl group): N, N, N ′, N′— There is provided an extractant for solvent extraction of an actinide element and a lanthanide element from a high-level radioactive liquid waste comprising tetraalkyl-3,6-dioxaoctane-1,8-diamide and the DOODA compound.

上記一般式中Rで示されるアルキル基としては、オクチル基、デシル基、ドデシル基とエチルヘシキル基を好ましく挙げることができる。よって、本発明のDOODA化合物としてはN,N,N’,N’−テトラオクチル−3,6−ジオキサオクタン−1,8−ジアミド(以下「DOODA−オクチル」と略す)、N,N,N’,N’−テトラデシル−3,6−ジオキサオクタン−1,8−ジアミド(以下「DOODA−デシル」と略す)、N,N,N’,N’−テトラドデシル−3,6−ジオキサオクタン−1,8−ジアミド(以下「DOODA−ドデシル」と略す)、N,N,N’,N’−テトラエチルヘキシル−3,6−ジオキサオクタン−1,8−ジアミド(以下「DOODA−エチルヘキシル」と略す)を好ましく挙げることができる。本発明のDOODA化合物のうち、代表的なDOODA−オクチルは以下の構造式を有する。   Preferred examples of the alkyl group represented by R in the above general formula include an octyl group, a decyl group, a dodecyl group, and an ethylhexyl group. Therefore, as the DOODA compound of the present invention, N, N, N ′, N′-tetraoctyl-3,6-dioxaoctane-1,8-diamide (hereinafter abbreviated as “DOODA-octyl”), N, N, N ′, N′-tetradecyl-3,6-dioxaoctane-1,8-diamide (hereinafter abbreviated as “DOODA-decyl”), N, N, N ′, N′-tetradodecyl-3,6-diamide Oxaoctane-1,8-diamide (hereinafter abbreviated as “DOODA-dodecyl”), N, N, N ′, N′-tetraethylhexyl-3,6-dioxaoctane-1,8-diamide (hereinafter “DOODA-”) Preferably, it is abbreviated as “ethylhexyl”. Among the DOODA compounds of the present invention, typical DOODA-octyl has the following structural formula.

Figure 2010271243
Figure 2010271243

本発明のDOODA化合物は、長いアルキル鎖を有し、疎水性が高いためドデカンによく溶解し、空気中で安定に存在する。さらにAn(III)、(IV)、(VI)と強く錯形成する4座配位能力を有する中性配位子である。また、本発明のDOODA化合物は、炭素、水素、酸素、窒素からなる化合物であり、二次廃棄物の発生量を低減することができる。   The DOODA compound of the present invention has a long alkyl chain and is highly hydrophobic, so it dissolves well in dodecane and exists stably in air. Furthermore, it is a neutral ligand having a tetradentate coordination ability that strongly forms a complex with An (III), (IV), and (VI). The DOODA compound of the present invention is a compound composed of carbon, hydrogen, oxygen, and nitrogen, and can reduce the amount of secondary waste generated.

本発明のDOODA化合物は、3,6−ジオキサオクタン二酢酸を塩化チオニルを代表とする塩素化物を利用し、塩素化反応させて酸塩化物などの中間生成物を生成させ、その後、トリエチルアミンを代表とする塩素回収剤などの存在下でジ−n−オクチルアミンなどの二級アミン化合物を氷点下で冷却しながら添加して緩やかに反応させ、得られた生成物を水、水酸化ナトリウム及び塩酸溶液で洗浄し、シリカゲルカラムに繰り返し通して単離精製することによって製造することができる。DOODA化合物のアルキル基は、二級アミン化合物により変えることができる。例えば、DOODA−オクチルはジ−n−オクチルアミンを用いるが、DOODA−デシルはジデシルアミンを用い、DOODA−ドデシルはジドデシルアミンを用い、DOODA−エチルヘキシルはジエチルヘキシルアミンを用いて、製造することができる。   The DOODA compound of the present invention uses 3,6-dioxaoctanediacetic acid as a chlorinated product typified by thionyl chloride, and chlorinates to produce an intermediate product such as an acid chloride. A secondary amine compound such as di-n-octylamine is added while cooling under freezing in the presence of a representative chlorine recovery agent, etc., and allowed to react gently, and the resulting product is mixed with water, sodium hydroxide and hydrochloric acid. It can be produced by washing with a solution and isolating and purifying it repeatedly through a silica gel column. The alkyl group of the DOODA compound can be changed by a secondary amine compound. For example, DOODA-octyl can be prepared using di-n-octylamine, DOODA-decyl using didecylamine, DOODA-dodecyl using didodecylamine, and DOODA-ethylhexyl using diethylhexylamine. .

塩素化反応は、アルゴン雰囲気で、塩化チオニルなどの試薬を攪拌しながら2〜3時間かけてゆっくり加え、酢酸エチルなどの溶媒中で行うことができる。なお、余分な塩化チオニル(沸点79℃)は緩やかに加温することで蒸発させることが好ましい。   The chlorination reaction can be performed in a solvent such as ethyl acetate by slowly adding a reagent such as thionyl chloride over 2 to 3 hours with stirring in an argon atmosphere. Excess thionyl chloride (boiling point 79 ° C.) is preferably evaporated by warming gently.

二級アミン化合物の使用量は、塩素化により得られた化合物100質量部に対して、120質量部とすることが好ましい。上記使用量を超えると、反応液内に未反応残分が多く生じるようになり、精製が困難になり、経済性の点からも不都合である。   The amount of secondary amine compound used is preferably 120 parts by mass with respect to 100 parts by mass of the compound obtained by chlorination. If the amount exceeds the above amount, a large amount of unreacted residue is generated in the reaction solution, which makes purification difficult and disadvantageous in terms of economy.

なお、3,6−ジオキサオクタン二酢酸は、トリエチレングリコール(CHOCOH))100質量部に対して、約5倍当量の濃硝酸(市販品の1/2濃度)を用いて温度70〜90℃で2時間程度加熱還流を行い、再結晶化させて精製することにより得ることができる。 In addition, 3,6-dioxaoctanediacetic acid is about 5 times equivalent of concentrated nitric acid (1/2 concentration of commercially available product) with respect to 100 parts by mass of triethylene glycol (CH 2 OC 2 H 4 OH) 2. Can be obtained by heating to reflux at a temperature of 70 to 90 ° C. for about 2 hours, recrystallization and purification.

本発明のDOODA化合物は、使用済みウラン燃料再処理後の高レベル放射性廃液など各種廃水から、ウラン、プルトニウム、ネプツニウム(3,4,6価)、アメリシウム等のアクチニド元素及びランタニド元素を溶媒抽出分離する抽出剤として用いることができ、特に、An(III)、(IV)、(VI)の抽出に好適である。中でも、DOODA−オクチル、DOODA−デシル及びDOODA−ドデシルは、それぞれオクチル基、デシル基及びドデシル基を有するため、高レベル放射性廃液からの放射性元素抽出に用いられる希釈剤であるn−ドデカンに良く溶ける。また、本発明のDOODA化合物は、使用済みウラン燃料の溶解に用いられる硝酸溶液中のU、Pu、Am、Tcなどのアクチニド元素及びランタニド元素をn−ドデカンに抽出する際に比較的高い分配比を持ち、その他の元素、特にPd、Zr、Cs、Srに対して高い分配比を持たないため、目的とする放射性元素の抽出分離に適する。よって、抽出後にこれら不要な元素と目的とする放射性元素とを分離するために追加の薬剤を使用する必要がない。また、追加の薬剤を使用する必要がないので、抽出後にDOODA化合物を容易に再利用することができる。さらに、本発明のDOODA化合物を構成する元素は、炭素、水素、酸素及び窒素だけであるため、毒性がなく、焼却処分が可能である。   The DOODA compound of the present invention is a solvent extraction separation of actinide elements such as uranium, plutonium, neptunium (3,4, hexavalent), americium and lanthanide elements from various wastewaters such as high-level radioactive waste after reprocessing spent uranium fuel. And is particularly suitable for extraction of An (III), (IV), and (VI). Among them, DOODA-octyl, DOODA-decyl, and DOODA-dodecyl have octyl group, decyl group, and dodecyl group, respectively, and thus are well soluble in n-dodecane, which is a diluent used for radioactive element extraction from high-level radioactive liquid waste. . The DOODA compound of the present invention has a relatively high distribution ratio when extracting actinide elements such as U, Pu, Am, and Tc and lanthanide elements in a nitric acid solution used for dissolving spent uranium fuel into n-dodecane. And does not have a high distribution ratio with respect to other elements, particularly Pd, Zr, Cs, and Sr, it is suitable for extraction and separation of a target radioactive element. Therefore, it is not necessary to use an additional agent to separate these unnecessary elements and the intended radioactive element after extraction. In addition, since it is not necessary to use an additional drug, the DOODA compound can be easily reused after extraction. Furthermore, since the elements constituting the DOODA compound of the present invention are only carbon, hydrogen, oxygen and nitrogen, they are not toxic and can be incinerated.

本発明のDOODA化合物からなる抽出剤を用いる高レベル放射性廃液からのアクチニド元素及びランタニド元素の溶媒抽出方法は、以下の通りである。   The solvent extraction method of the actinide element and the lanthanide element from the high-level radioactive liquid waste using the extractant comprising the DOODA compound of the present invention is as follows.

DOODA化合物をn−ドデカン(溶剤)に溶解し、得られた溶液を高レベル放射性廃液(1〜6M硝酸溶液)と混合し、室温ないし25℃で10〜20分間振とうさせる(液−液混合法)。DOODA化合物の使用量は、例えばAnを回収する場合にはモル濃度で0.1〜0.2Mの範囲が好ましいが、放射性廃液中の高濃度のAnの定量的な回収についてはより高濃度とする。DOODA化合物と処理対象である高レベル放射性廃液との混合比は処理対象である金属の含有量によっても異なるが、1:2の化学反応を起こす事が把握されていることもあり、一般的には容積比で0.01:1〜1:0.01(=水相:有機相容積)の範囲内とすることが好ましい。   DOODA compound is dissolved in n-dodecane (solvent) and the resulting solution is mixed with high-level radioactive liquid waste (1-6M nitric acid solution) and shaken at room temperature to 25 ° C. for 10-20 minutes (liquid-liquid mixing) Law). For example, when recovering An, the amount of DOODA compound used is preferably in the range of 0.1 to 0.2 M in terms of molar concentration. However, for quantitative recovery of high concentration An in radioactive liquid waste, the concentration is higher. To do. The mixing ratio between the DOODA compound and the high-level radioactive liquid waste to be treated varies depending on the content of the metal to be treated, but it is generally known that a 1: 2 chemical reaction occurs. Is preferably in the range of 0.01: 1 to 1: 0.01 (= water phase: organic phase volume) by volume ratio.

本発明のDOODA化合物からなる抽出剤は、以下の特徴を有する。
(1)安価に入手可能な物質から簡単な合成方法で得ることができる新規化合物からなる。
(2)U、Pu、Am、Tcなどのアクチニド元素及びランタニド元素と強い親和性を有し、酸性溶液中のアクチニドイオン及びランタニドイオンをドデカンに抽出する際に比較的高い分配比を有するが、その他の元素、例えばPd、Zrなど第三相を生成しやすい元素や発熱性のCs、Srに対して高い分配比を有していない。よって、抽出後にこれら不要な元素と目的とする放射性元素とを分離するために追加の薬剤を使用する必要がない。また、追加の薬剤を使用する必要がないので、抽出後にアクチニド元素及びランタニド元素と分離してDOODA化合物を容易に回収し再利用することができる。
(3)高レベル放射性廃液として多用されている硝酸水溶液及び従来の溶媒抽出分離法に用いられている溶媒であるn−ドデカンとの親和性に優れる。
(4)有機リンやアミン系と異なり毒性が低く、また、焼却処分可能である。
The extractant comprising the DOODA compound of the present invention has the following characteristics.
(1) It consists of a novel compound that can be obtained by a simple synthesis method from an inexpensively available substance.
(2) It has a strong affinity with actinide elements and lanthanide elements such as U, Pu, Am, and Tc, and has a relatively high partition ratio when extracting actinide ions and lanthanide ions in an acidic solution into dodecane. It does not have a high distribution ratio with respect to other elements such as elements that easily generate a third phase such as Pd and Zr, and exothermic Cs and Sr. Therefore, it is not necessary to use an additional agent to separate these unnecessary elements and the intended radioactive element after extraction. Moreover, since it is not necessary to use an additional chemical | medical agent, it can isolate | separate from an actinide element and a lanthanide element after extraction, and a DOODA compound can be collect | recovered easily and can be reused.
(3) Excellent compatibility with aqueous nitric acid solution frequently used as high-level radioactive liquid waste and n-dodecane, which is a solvent used in conventional solvent extraction and separation methods.
(4) Unlike organic phosphorus and amines, it has low toxicity and can be incinerated.

本発明の新規DOODA化合物は、n−ドデカン中で安定であり、アクチニド元素及びランタニド元素に対する分配比がやや高く、さらにアクチニド元素及びランタニド元素と共存する元素の分配比が低い、高レベル放射性廃液からアクチニド元素及びランタニド元素を溶媒抽出する際に用いられる抽出剤を提供することができる。   The novel DOODA compound of the present invention is stable in n-dodecane, has a slightly high distribution ratio to actinide and lanthanide elements, and a low distribution ratio of elements coexisting with actinide and lanthanide elements. An extractant used for solvent extraction of the actinide element and the lanthanide element can be provided.

図1は、実施例2により得られた硝酸濃度に対するアクチニド元素の分配比D(An)の依存性を示すグラフである。FIG. 1 is a graph showing the dependence of the distribution ratio D (An) of the actinide element on the nitric acid concentration obtained in Example 2. 図2は、実施例2により得られたDOODA−オクチル濃度に対するアクチニド元素の分配比D(An)の依存性を示すグラフである。FIG. 2 is a graph showing the dependency of the actinide element distribution ratio D (An) on the DOODA-octyl concentration obtained in Example 2. 図3は、実施例4により得られた初期水相のNd濃度と抽出後有機相のNd濃度との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the Nd concentration in the initial aqueous phase obtained in Example 4 and the Nd concentration in the organic phase after extraction.

[実施例1]
以下、実施例及び比較例を用いて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
3,6−ジオキサオクタン二酢酸(アルドリッチ社製)10gと塩化チオニル(和光純薬社製)20gとを用いて塩素化を行った。溶媒としては酢酸エチルを100g用い、反応条件は、50〜60℃、2〜3時間とした。
[Example 1]
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
Example 1
Chlorination was performed using 10 g of 3,6-dioxaoctanediacetic acid (manufactured by Aldrich) and 20 g of thionyl chloride (manufactured by Wako Pure Chemical Industries, Ltd.). As a solvent, 100 g of ethyl acetate was used, and the reaction conditions were 50 to 60 ° C. and 2-3 hours.

その後、この反応溶液中にジオクチルアミン(和光純薬社製)20gを5℃以下に冷却しながら2〜3時間かけて添加し、添加終了後、一昼夜反応させた。反応終了後、シリカゲルカラムを用いて単離精製を行い、DOODA−オクチルを得た。得られたDOODA−オクチルは、窒素分析により98%を超える純度を有することが確認できた。また、DOODAのプロトンNMR測定において、0.8〜1.7ppmに幾つかのピーク(オクチル基に帰属)、3.1〜3.4ppmにトリプレット(オクチル基の窒素最近傍のプロトンに帰属)、3.8〜4.2ppmにシングレット(エーテル酸素に結合するメチレン基のプロトンに帰属)が観測された。   Thereafter, 20 g of dioctylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added to the reaction solution over 2 to 3 hours while cooling to 5 ° C. or less, and the reaction was carried out all day and night. After completion of the reaction, isolation and purification were performed using a silica gel column to obtain DOODA-octyl. It was confirmed that the obtained DOODA-octyl had a purity exceeding 98% by nitrogen analysis. In addition, in proton NMR measurement of DOODA, several peaks at 0.8 to 1.7 ppm (attributed to octyl group), triplets at 3.1 to 3.4 ppm (attributed to protons closest to nitrogen of octyl group), Singlets (assigned to protons of methylene groups bonded to ether oxygen) were observed at 3.8 to 4.2 ppm.

DOODA−オクチルは無極性溶媒のn−ドデカンに高い溶解性(1.1M以上の濃度の溶液を調製可能)を示した。   DOODA-octyl showed high solubility in n-dodecane, a nonpolar solvent (a solution having a concentration of 1.1 M or more can be prepared).

ジオクチルアミンに代えて、ジドデシルアミンを用いた以外は上記と同様にして、DOODA−ドデシルを合成した。   DOODA-dodecyl was synthesized in the same manner as above except that didodecylamine was used instead of dioctylamine.

[実施例2]
0.1M DOODA−オクチルのn−ドデカン溶液を有機相に、水相には0.1〜6Mの硝酸水溶液を用いて、Am、U、Puの溶媒抽出実験を行った。
[Example 2]
A 0.1M DOODA-octyl n-dodecane solution was used as the organic phase, and a 0.1-6M aqueous nitric acid solution was used as the aqueous phase, and Am, U, and Pu solvent extraction experiments were performed.

同濃度の硝酸で予め平衡させた0.1M DOODA−オクチルのn−ドデカン溶液からなる有機相2cmと、放射性同位体元素(U−233、Pu−238及びAm−241)及び非放射性元素を含む硝酸溶液である水相2cmと、を混合した。有機相と水相との混合物を25℃±0.1℃で2時間、機械的に振とうした後、遠心分離によって相分離させた。水相及び有機相の両者から0.50cmのサンプル溶液を取り出して、水相及び有機相のβ線及びα線を液体シンチレーションカウンター(Tri−Carb 1600 TR、Packard Instrument Company製)で測定し、各金属の分配比を測定した。抽出サンプルから調製したサンプル溶液中の非放射性金属イオンをICP−AES(SPS 3100、Seiko Instruments Inc製)又はICP−MS(SPQ 9000、Seiko−EG&G製)により計測した。 Organic phase 2 cm 3 consisting of n-dodecane solution of 0.1M DOODA-octyl previously equilibrated with nitric acid of the same concentration, radioisotope elements (U-233, Pu-238 and Am-241) and non-radioactive elements A nitric acid solution containing 2 cm 3 of an aqueous phase was mixed. The mixture of the organic phase and the aqueous phase was mechanically shaken at 25 ° C. ± 0.1 ° C. for 2 hours, and then phase-separated by centrifugation. A sample solution of 0.50 cm 3 was taken out from both the aqueous phase and the organic phase, and β-rays and α-rays of the aqueous phase and the organic phase were measured with a liquid scintillation counter (Tri-Carb 1600 TR, manufactured by Packard Instrument Company). The distribution ratio of each metal was measured. Non-radioactive metal ions in the sample solution prepared from the extracted sample were measured by ICP-AES (SPS 3100, manufactured by Seiko Instruments Inc) or ICP-MS (SPQ 9000, manufactured by Seiko-EG & G).

DOODA−オクチルによるAnの抽出挙動を調べた結果を図1及び図2に示し、実測の分配比を表1に示す。図1は硝酸濃度に対するD(An)の依存性を示し、図2はDOODA−オクチル濃度に対するアクチニド元素の分配比D(An)の依存性を示す。図1及び図2における濃度Mはmol/dmを意味し、分配比Dは水相中金属濃度に対する有機相中金属濃度の比率([metal]org/[metal]aq)を意味する。 The results of examining the extraction behavior of An by DOODA-octyl are shown in FIGS. 1 and 2, and the actual distribution ratio is shown in Table 1. FIG. 1 shows the dependence of D (An) on the nitric acid concentration, and FIG. 2 shows the dependence of the actinide element distribution ratio D (An) on the DOODA-octyl concentration. The concentration M in FIGS. 1 and 2 means mol / dm 3 , and the distribution ratio D means the ratio of the metal concentration in the organic phase to the metal concentration in the aqueous phase ([metal] org / [metal] aq ).

Figure 2010271243
Figure 2010271243

図1より、U、Pu及びAmの分配比は硝酸濃度増加とともに増加することがわかる。硝酸の高濃度範囲における漸増は金属、抽出剤及びNO 分子の凝集によるものと考えられる。3M HNOでの0.1M DOODA/n−ドデカンによる分配比Dは、U(VI)に対して5.2、Pu(IV)に対して27、Am(III)に対して7.8であった。これらの分配比は、多段抽出(バッチ試験と異なり、溶媒抽出を繰り返す方法、対象の実験条件で分配比5であったとしても、これを3回繰り返すことにより分配比は5×5×5=125が得られる)によりAn(III)、(IV)及び(VI)を定量的に抽出するために十分高い値である。 FIG. 1 shows that the distribution ratio of U, Pu and Am increases with increasing nitric acid concentration. Increasing in the high concentration range of nitric acid metal extractant and NO 3 - it is believed to be due to aggregation of molecules. The partition ratio D with 0.1M DOODA / n-dodecane over 3M HNO 3 is 5.2 for U (VI), 27 for Pu (IV), 7.8 for Am (III). there were. These distribution ratios are obtained by multistage extraction (unlike batch test, solvent extraction is repeated, even if the distribution ratio is 5 under the target experimental conditions, by repeating this 3 times, the distribution ratio becomes 5 × 5 × 5 = 125) is sufficiently high to extract An (III), (IV) and (VI) quantitatively.

異なる酸化状態に対する抽出性の順番は、An(IV)>An(III)≧An(VI)>An(V)であり、この傾向はTODGAを抽出剤とする場合と同様である。配位座を赤道面上に持つアクチノイドイオン(An(V)及び(VI))は、骨格中央に配位原子を持ち、3座以上の多座配位性の抽出剤により比較的低い分配比Dを示す。   The order of extractability for different oxidation states is An (IV)> An (III) ≧ An (VI)> An (V), and this tendency is the same as when TODGA is used as the extractant. Actinide ions (An (V) and (VI)) having a coordination site on the equator plane have a coordination atom in the center of the skeleton and a relatively low distribution ratio due to a tridentate or more multidentate extractant. D is shown.

図2の直線の傾きは、抽出反応におけるDOODAの数を示す。分配比DとDOODA濃度との対数関係(log D−log[DOODA])は、DOODAの1分子又は2分子が抽出反応に寄与する一次依存性及び二次依存性を示す。図2におけるこれらのイオンに対する傾き(U(VI)に対して1.5±0.1)は、Pu(IV)及びAm(III)に対する傾き(Pu(IV)に対して1.7±0.1、Am(III)に対して2.0±0.1)よりも幾分低く、DOODA及びHNOに伴う多核錯体の存在を示唆する。濃縮された金属イオン抽出への適用を考慮すれば、分配比D及び負荷容量を高めるために、高濃度抽出剤が望ましい。TODGAは1000を超える高いアメリシウム分配比D(Am)を有するので、微量アクチニド元素抽出に高濃度TODGAを用いれば、有機相からの微量アクチニド元素の回収のための逆抽出及び抽出溶剤の再利用は困難となる。一方、DOODAは比較的低いが高濃度HNOでの定量的抽出には十分なアクチニド分配比D(An)を有し、0.1M HNOでのアクチニド分配比D(An)は約10−2である。したがって、DOODAを用いれば、抽出後に微量アクチニド元素を除去し、効果的にDOODAを回収することができる。 The slope of the straight line in FIG. 2 indicates the number of DOODA in the extraction reaction. The logarithmic relationship (log D-log [DOODA]) between the distribution ratio D and the DOODA concentration indicates primary dependency and secondary dependency in which one molecule or two molecules of DOODA contribute to the extraction reaction. The slope for these ions in FIG. 2 (1.5 ± 0.1 for U (VI)) is 1.7 ± 0 for Pu (IV) and Am (III) (Pu (IV)). 0.1, somewhat lower than 2.0 ± 0.1 relative to Am (III), suggesting the presence of polynuclear complexes associated with DOODA and HNO 3 . Considering application to concentrated metal ion extraction, a high concentration extractant is desirable to increase the distribution ratio D and load capacity. Since TODGA has a high americium distribution ratio D (Am) exceeding 1000, if high concentration TODGA is used for trace actinide element extraction, back-extraction for recovery of trace actinide elements from organic phase and reuse of extraction solvent It becomes difficult. On the other hand, although DOODA is relatively low, it has an actinide distribution ratio D (An) sufficient for quantitative extraction with high concentration of HNO 3 , and the actinide distribution ratio D (An) with 0.1M HNO 3 is about 10 −. 2 . Therefore, if DOODA is used, a trace amount of actinide elements can be removed after extraction, and DOODA can be effectively recovered.

[実施例3]
0.1M DOODA−オクチルのn−ドデカン溶液を有機相に、水相には0.1M及び3Mの硝酸水溶液を用いて、高レベル放射性廃液に共存する元素及び核分裂生成物の溶媒抽出実験を行った。その結果を表2に示す。
[Example 3]
Using 0.1M DOODA-octyl n-dodecane solution as organic phase and 0.1M and 3M nitric acid aqueous solution as water phase, solvent extraction experiment of elements and fission products coexisting in high-level radioactive liquid waste It was. The results are shown in Table 2.

Figure 2010271243
Figure 2010271243

表2に示すように、3M HNO中のアクチニド元素(U、Pu、Am、Nd)及びランタニド元素及び0.1M HNO中Tc(VII)を抽出することができたが、他の金属は低い分配比Dを示した。特に、Zr(IV)及びPd(II)は、TODGAでは比較的高い分配比D(Zrは上記の条件で1000を超え、Pdはおよそ3)を示すが、DOODAでは低くなった。ミキサーセトラー装置の運転中に第三相の形成が抑制されることを考慮すれば、これらの金属イオンは、TODGAによる抽出では適切なマスキング剤を用いて水相中で安定化しなければならないことが明かである。しかし、DOODAによる抽出では、核分裂生成物の共抽出のために追加のマスキング剤を必要としない。 As shown in Table 2, actinide elements (U, Pu, Am, Nd) and lanthanide elements in 3M HNO 3 and Tc (VII) in 0.1M HNO 3 could be extracted. A low partition ratio D was shown. In particular, Zr (IV) and Pd (II) show a relatively high distribution ratio D in TODGA (Zr exceeds 1000 under the above conditions and Pd is approximately 3), but is low in DOODA. Considering that the formation of the third phase is suppressed during the operation of the mixer-settler device, these metal ions may have to be stabilized in the aqueous phase using an appropriate masking agent for TODGA extraction. It is clear. However, extraction with DOODA does not require an additional masking agent for co-extraction of fission products.

実施例2で説明したように、分配比5以上を示す元素は、多段抽出を行うことによって定量的に抽出可能である。表2より、U(VI)、Pu(IV)、Am(III)、La(III)、Nd(III)が本発明のDOODA化合物によって高レベル放射性廃液から抽出可能であるといえる。一方、その他の元素の分配比は低く、高レベル放射性廃液からアクチニド元素及びランタニド元素を効率よく抽出分離できることがわかる。
[実施例4]
DOODAの抽出容量の測定を行った。使用した抽出剤はDOODA−オクチルとDOODA−ドデシルである。
As described in Example 2, an element having a distribution ratio of 5 or more can be quantitatively extracted by performing multistage extraction. From Table 2, it can be said that U (VI), Pu (IV), Am (III), La (III), and Nd (III) can be extracted from the high-level radioactive liquid waste by the DOODA compound of the present invention. On the other hand, the distribution ratio of other elements is low, and it can be seen that the actinide element and the lanthanide element can be efficiently extracted and separated from the high-level radioactive liquid waste.
[Example 4]
The extraction volume of DOODA was measured. The extractants used are DOODA-octyl and DOODA-dodecyl.

図3に、Ndを含有する硝酸溶液からなる水相とDOODA−オクチル又はDOODA−ドデシルのドデカン溶媒からなる有機相との間で溶媒抽出を行い、初期水相のNd濃度と抽出後有機相のNd濃度との関係を示した。図3の横軸は抽出前の水相のNd濃度を示し、縦軸は抽出後の有機相のNd濃度を示す。縦軸に対し最も高い値をその条件での抽出最大値とみなし、これにより抽出容量を求めることができる。   In FIG. 3, solvent extraction is performed between an aqueous phase composed of a nitric acid solution containing Nd and an organic phase composed of DOODA-octyl or DOODA-dodecyl dodecane solvent, and the Nd concentration of the initial aqueous phase and the organic phase after extraction The relationship with Nd concentration was shown. The horizontal axis of FIG. 3 shows the Nd concentration of the aqueous phase before extraction, and the vertical axis shows the Nd concentration of the organic phase after extraction. The highest value with respect to the vertical axis is regarded as the maximum extraction value under the condition, and the extraction capacity can be obtained.

図3より、水相のNd濃度増加とともに有機相中に抽出されるNd濃度も増加することがわかる。DOODA−オクチルでは、急激な減少が見られるがこれは第三相を生成するときに観測されるものである。DOODA−オクチルでの抽出容量は18.4mMと推測される。一方、DOODA−ドデシルはオクチルより長いアルキル鎖を導入しており、ドデカン中でより安定である。このため、第三相生成は認められない。抽出容量は25mM程度である。   FIG. 3 shows that the Nd concentration extracted in the organic phase increases as the Nd concentration in the aqueous phase increases. In DOODA-octyl, a sharp decrease is observed, which is observed when the third phase is formed. The extraction volume with DOODA-octyl is estimated to be 18.4 mM. On the other hand, DOODA-dodecyl introduces an alkyl chain longer than octyl and is more stable in dodecane. For this reason, the generation of the third phase is not recognized. The extraction volume is about 25 mM.

以上のことから、DOODA−ドデシルは第三相を生成せず、抽出容量は25mMであること、一方DOODA−オクチルは高い金属濃度条件で第三相を生成するため抽出容量はやや低く18.4mMであることが確認できた。   From the above, DOODA-dodecyl does not produce a third phase and the extraction capacity is 25 mM, while DOODA-octyl produces a third phase under high metal concentration conditions, so the extraction capacity is slightly lower, 18.4 mM. It was confirmed that.

本発明のDOODA化合物は、高レベル放射性廃液からアクチニド元素及びランタニド元素を効率的に分離回収できる抽出剤として有用である。   The DOODA compound of the present invention is useful as an extractant that can efficiently separate and recover an actinide element and a lanthanide element from a high-level radioactive liquid waste.

本発明のDOODA化合物からなる抽出剤は、従来の抽出剤では分離回収が困難であったAm、Cmなどのアクチニド元素を高レベル放射性廃液から分離抽出できる。本発明のDOODA化合物からなる抽出剤を用いて分離抽出したアクチニド元素及びランタニド元素を核変換技術に供して長期的な毒性を排除し、ガラス固化体の減容を実現できる。   The extractant comprising the DOODA compound of the present invention can separate and extract actinide elements such as Am and Cm, which have been difficult to separate and recover from conventional extractants, from high-level radioactive liquid waste. The actinide element and lanthanide element separated and extracted using the extractant comprising the DOODA compound of the present invention can be subjected to a transmutation technique to eliminate long-term toxicity and to reduce the volume of vitrified material.

Claims (9)

一般式:(CHOCHCON(R)(Rはアルキル基)で示されるN,N,N’,N’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミド。 N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide represented by the general formula: (CH 2 OCH 2 CON (R) 2 ) 2 (R is an alkyl group) . 前記Rは、オクチル基、デシル基、ドデシル基及びエチルヘキシル基から選択される、請求項1に記載のN,N,N’,N’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミド。   2. The N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8 according to claim 1, wherein R is selected from an octyl group, a decyl group, a dodecyl group and an ethylhexyl group. -Diamide. 3,6−ジオキサオクタン二酢酸を塩素化物を利用し、塩素化反応させて酸塩化物を生成させ、その後、塩素回収剤の存在下で二級アミン化合物を氷点下で冷却しながら添加して緩やかに反応させ、得られた生成物を水、水酸化ナトリウム及び塩酸溶液で洗浄し、シリカゲルカラムに繰り返し通して単離精製することによって製造することができる一般式:(CHOCHCON(R)(Rはアルキル基)で示されるN,N,N’,N’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミドの製造方法。 3,6-Dioxaoctanediacetic acid is chlorinated using a chlorinated product to produce an acid chloride, and then a secondary amine compound is added with cooling under a freezing point in the presence of a chlorine recovery agent. was slowly reacted, resulting product was washed with water, sodium hydroxide and hydrochloric acid solution, and repeatedly passed through a silica gel column can be produced by isolating and purifying the general formula: (CH 2 OCH 2 CON ( A process for producing N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide represented by R) 2 ) 2 (R is an alkyl group). 前記二級アミン化合物は、ジ−n−オクチルアミン、ジデシルアミン、ジドデシルアミン及びエチルヘキシルアミンからなる群より選択される、請求項3に記載の方法。   4. The method of claim 3, wherein the secondary amine compound is selected from the group consisting of di-n-octylamine, didecylamine, didodecylamine and ethylhexylamine. 前記塩素化物は塩化チオニルであり、前記塩素回収剤はトリエチルアミンである、請求項3又は4に記載の方法。   The method according to claim 3 or 4, wherein the chlorinated product is thionyl chloride and the chlorine recovery agent is triethylamine. 一般式:(CHOCHCON(R)(Rはアルキル基)で示されるN,N,N’,N’−テトラアルキル−3,6−ジオキサオクタン−1,8−ジアミドからなる、高レベル放射性廃液からアクチニド元素及びランタニド元素を溶媒抽出するための抽出剤。 N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide represented by the general formula: (CH 2 OCH 2 CON (R) 2 ) 2 (R is an alkyl group) An extractant for solvent extraction of actinide and lanthanide elements from high-level radioactive liquid waste. 前記Rは、オクチル基、デシル基、ドデシル基及びエチルヘキシル基から選択される、請求項6に記載の抽出剤。   The extractant according to claim 6, wherein R is selected from an octyl group, a decyl group, a dodecyl group, and an ethylhexyl group. 高レベル放射性廃液中の三価、四価及び六価のアクチニドを溶媒抽出する、請求項6又は7に記載の抽出剤。   The extractant according to claim 6 or 7, wherein trivalent, tetravalent and hexavalent actinides in the high-level radioactive liquid waste are extracted with a solvent. U、Pu、Am、La、Ndを溶媒抽出する、請求項6又は7に記載の抽出剤。   The extractant according to claim 6 or 7, wherein U, Pu, Am, La, and Nd are extracted with a solvent.
JP2009124516A 2009-05-22 2009-05-22 N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide and N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1, Extractant for solvent extraction of actinide and lanthanide elements from high-level radioactive liquid waste consisting of 8-diamide Expired - Fee Related JP5354586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009124516A JP5354586B2 (en) 2009-05-22 2009-05-22 N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide and N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1, Extractant for solvent extraction of actinide and lanthanide elements from high-level radioactive liquid waste consisting of 8-diamide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009124516A JP5354586B2 (en) 2009-05-22 2009-05-22 N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide and N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1, Extractant for solvent extraction of actinide and lanthanide elements from high-level radioactive liquid waste consisting of 8-diamide

Publications (2)

Publication Number Publication Date
JP2010271243A true JP2010271243A (en) 2010-12-02
JP5354586B2 JP5354586B2 (en) 2013-11-27

Family

ID=43419371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009124516A Expired - Fee Related JP5354586B2 (en) 2009-05-22 2009-05-22 N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide and N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1, Extractant for solvent extraction of actinide and lanthanide elements from high-level radioactive liquid waste consisting of 8-diamide

Country Status (1)

Country Link
JP (1) JP5354586B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169888A (en) * 2010-01-20 2011-09-01 Japan Atomic Energy Agency METHOD OF MUTUAL SEPARATION BETWEEN Am, Cm AND Sm, Eu, Gd WITH CONCOMITANT USE OF N, N, N', N'-TETRAALKYL-3,6-DIOXAOCTANE-1,8-DIAMIDE (DOODA) AND TADGA (N,N,N',N'-TETRAALKYL-DIGLYCOL AMIDE)
JP2020125989A (en) * 2019-02-05 2020-08-20 三菱重工業株式会社 Method for reducing disposition load of high-level radioactive waste
CN114471474A (en) * 2022-02-13 2022-05-13 兰州大学 Resin material capable of selectively adsorbing am (III) in high-acid environment and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013037377; 木村貴海: '「核燃料サイクルのためのアクチノイドの分離研究」' 平成17年度「アクチニド元素の化学と工学」 , 20060119, 第129-146頁, 京都大学原子炉実験所 *
JPN6013037378; 佐々木祐二 外3名: '「新規ジアミド系抽出剤、DOODAによるアクチノイドの抽出」' 日本原子力学会2009年秋の大会予稿集 , 20090828, K39(第546頁), 日本原子力学会 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169888A (en) * 2010-01-20 2011-09-01 Japan Atomic Energy Agency METHOD OF MUTUAL SEPARATION BETWEEN Am, Cm AND Sm, Eu, Gd WITH CONCOMITANT USE OF N, N, N', N'-TETRAALKYL-3,6-DIOXAOCTANE-1,8-DIAMIDE (DOODA) AND TADGA (N,N,N',N'-TETRAALKYL-DIGLYCOL AMIDE)
JP2020125989A (en) * 2019-02-05 2020-08-20 三菱重工業株式会社 Method for reducing disposition load of high-level radioactive waste
JP7155031B2 (en) 2019-02-05 2022-10-18 三菱重工業株式会社 Method for reducing disposal load of high-level radioactive waste
CN114471474A (en) * 2022-02-13 2022-05-13 兰州大学 Resin material capable of selectively adsorbing am (III) in high-acid environment and preparation method thereof
CN114471474B (en) * 2022-02-13 2023-09-08 兰州大学 Resin material capable of selectively adsorbing Am (III) in high acid environment and preparation method thereof

Also Published As

Publication number Publication date
JP5354586B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
Manchanda et al. Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview
Moyer Ion Exchange and Solvent Extraction: A Series of Advances, Volume 19
Horwitz et al. SREX: a newprocess for the extraction and recovery of strontium from acidic nuclear waste streams
Atanassova et al. Synergism as a phenomenon in solvent extraction of 4f-elements with calixarenes
Huang et al. Extraction of trivalent americium and europium from nitric acid solution with a calixarene-based diglycolamide
JP4524394B2 (en) Extraction method of americium and neodymium present in acidic solution
JP2018532691A (en) Novel asymmetric N, N-dialkylamides, their synthesis and use
Khan et al. The recovery of strontium from acidic medium using novel strontium selective extractant: An experimental and DFT study
Berger et al. Extraction of uranium (VI) and plutonium (IV) with tetra-alkylcarbamides
JP5526434B2 (en) N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide (DOODA) and TADGA (N, N, N ′, N′-tetraalkyl-diglycolamide) Mutual separation of Am, Cm and Sm, Eu, Gd used together
JP5354586B2 (en) N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1,8-diamide and N, N, N ′, N′-tetraalkyl-3,6-dioxaoctane-1, Extractant for solvent extraction of actinide and lanthanide elements from high-level radioactive liquid waste consisting of 8-diamide
Wang et al. Demonstration of a continuous counter-current extraction process based on a non-heterocyclic N-donor ligand NTAamide (n-Oct) for trivalent actinides/lanthanides separation
Yang et al. Extraction and complexation mechanism of uranium (VI) and thorium (IV) by tetradentate phenanthroline phosphonate (POPhen) ligands
Sharma et al. Synthesis and extraction studies with a rationally designed diamide ligand selective to actinide (IV) pertinent to the plutonium uranium redox extraction process
JP4452837B2 (en) Extraction separation method
Rout et al. Cyphos nitrate: A potential ionic liquid for the extraction and selective separation of plutonium (IV) from other metal ions present in nitric acid
JP2009133707A (en) Method for selectively separating cesium from high-level radioactive liquid waste
Liu et al. Recent progress on the structure-performance relationship between diglycolamide extractants and f-elements
Nomizu et al. Complex formation of light and heavy lanthanides with DGA and DOODA, and its application to mutual separation in DGA–DOODA extraction system
Suzuki et al. Efficient separation of americium by a mixed solvent of two extractants, a diamideamine and a nitrilotriacetamide
Saleh Solvent extraction of Zr (IV) and Hf (IV) with N, N, N′, N′-tetraoctyldiglycolamide
Kong et al. Extraction and thermodynamic behavior of U (VI) and Th (IV) from nitric acid solution with tri-isoamyl phosphate
Sinharoy et al. Separation of Sr (II) from Eu (III) across a supported liquid membrane using TEHDGA and 18-crown-6
Boyarintsev et al. Liquid–liquid extraction of trivalent americium from carbonate and carbonate–peroxide aqueous solutions by methyltrioctylammonium carbonate in toluene
Metwally et al. Extraction of europium (III) and cobalt (II) by N, N, N’, N’-tetraoctyldiglycolamide and N, N, N’, N’-tetrahexyldiglycolamide from aqueous acid solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Ref document number: 5354586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees