JP2010271130A - Soil sample holder - Google Patents

Soil sample holder Download PDF

Info

Publication number
JP2010271130A
JP2010271130A JP2009122160A JP2009122160A JP2010271130A JP 2010271130 A JP2010271130 A JP 2010271130A JP 2009122160 A JP2009122160 A JP 2009122160A JP 2009122160 A JP2009122160 A JP 2009122160A JP 2010271130 A JP2010271130 A JP 2010271130A
Authority
JP
Japan
Prior art keywords
soil sample
vibrator
container
receiving
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009122160A
Other languages
Japanese (ja)
Other versions
JP5279081B2 (en
Inventor
Kenji Kubota
健二 窪田
Koichi Suzuki
浩一 鈴木
Shuji Kaieda
秀志 海江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2009122160A priority Critical patent/JP5279081B2/en
Publication of JP2010271130A publication Critical patent/JP2010271130A/en
Application granted granted Critical
Publication of JP5279081B2 publication Critical patent/JP5279081B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil sample holder enabling the measurement of the specific resistance, thermal conductivity and elastic wave velocity of a soil sample and suitable for the measurement of the soil sample. <P>SOLUTION: The soil sample holder includes a non-conductive container 1, the thermal conductivity measuring probe 3 inserted in the soil sample, the vibrator 6 on an oscillation side coming into contact with the soil sample, the vibrator 7 on an oscillation receiving side attached toward the soil sample, a pair of current electrodes 8 and a pair of potential electrodes 9. The container 1 has an internal space 19 allowing at least the soil sample having a thickness necessary for measuring the thermal conductivity of the soil sample to be present around the thermal conductivity measuring probe 3 and also has a shape that the elastic wave propagated through the soil sample from the vibrator 6 on the oscillation side to arrive at the vibrator 7 on the oscillation receiving side arrives at the vibrator 7 on the oscillation receiving side prior to the elastic wave propagated through the wall plate of the container 1 at least in a part of a route to arrive at the vibrator 7 on the oscillation receiving side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、土壌サンプルホルダに関する。更に詳しくは、本発明は、土壌の比抵抗、熱伝導率、弾性波速度を計測可能な土壌サンプルホルダに関するものである。   The present invention relates to a soil sample holder. More specifically, the present invention relates to a soil sample holder capable of measuring soil resistivity, thermal conductivity, and elastic wave velocity.

岩石試料の比抵抗を計測するために使用するサンプルホルダとして、例えば図7に示すように、岩石試料101の両端を電流電極102及び電位電極103を介してキャップ104で支持するものがある(非特許文献1)。電流電極102及び電位電極103として銅製ネットを使用すると共に、導電性確保のために電解質溶液を含ませた濾紙105を岩石試料101と電流電極102との間、電流電極102と電位電極103との間、電位電極103とキャップ104との間に挟み込んでいる。   As a sample holder used for measuring the specific resistance of a rock sample, for example, as shown in FIG. 7, there is a sample holder in which both ends of a rock sample 101 are supported by a cap 104 via a current electrode 102 and a potential electrode 103 (not shown). Patent Document 1). A copper net is used as the current electrode 102 and the potential electrode 103, and a filter paper 105 containing an electrolyte solution for ensuring conductivity is placed between the rock sample 101 and the current electrode 102, and between the current electrode 102 and the potential electrode 103. In the meantime, it is sandwiched between the potential electrode 103 and the cap 104.

千葉昭彦・熊田政弘,「花崗岩及び凝灰岩試料の比抵抗測定−間隙水の比抵抗が岩石比抵抗に及ぼす影響について−」,物理探査,第47巻,第3号,p.161−172Akihiko Chiba and Masahiro Kumada, “Resistivity Measurement of Granite and Tuff Samples: Influence of Resistivity of Pore Water on Rock Resistivity”, Geophysical Exploration, Vol. 47, No. 3, p. 161-172

しかしながら、上記のサンプルホルダでは、岩石試料の両端をキャップ104によって挟持して支持する構成であるため、土壌試料については使用することができない。また、物性値として比抵抗しか測定することができない。   However, in the above sample holder, since both ends of the rock sample are sandwiched and supported by the cap 104, the soil sample cannot be used. Moreover, only specific resistance can be measured as a physical property value.

本発明は、土壌試料についての計測に適した土壌サンプルホルダを提供することを目的とする。また、本発明は、土壌の比抵抗の他に、熱伝導率、弾性波速度の測定も可能な土壌サンプルホルダを提供することを目的とする。   An object of this invention is to provide the soil sample holder suitable for the measurement about a soil sample. Another object of the present invention is to provide a soil sample holder capable of measuring thermal conductivity and elastic wave velocity in addition to the specific resistance of soil.

かかる目的を達成するために、請求項1記載の土壌サンプルホルダは、土壌サンプルを収容する非導電性の容器と、容器の壁板に設けられた挿入口と、挿入口から土壌サンプルに差し込まれた熱伝導率計測用プローブと、容器の対向する一対の壁板に設けられた第1及び第2の振動子取付部と、第1の振動子取付部に取り付けられて土壌サンプルに接触する発振側振動子と、第2の振動子取付部に土壌サンプルに向けて取り付けられた受振側振動子と、容器の対向する一対の壁板に取り付けられ、土壌サンプルに比抵抗計測用電流を流す一対の電流電極と、比抵抗計測用電流が流れている状態の土壌サンプルの2箇所の電位差を計測する一対の電位電極を備え、容器は熱伝導率計測用プローブの周囲に少なくとも土壌サンプルの熱伝導率の計測に必要な厚さの土壌サンプルを存在させる内部空間を有しており、且つ、容器は、発振側振動子から土壌サンプル中を伝播して受振側振動子に到達する弾性波の方が、少なくとも経路の一部において容器の壁板を伝播して受振側振動子に到達する弾性波よりも先に受振側振動子に到達する形状を有するものである。   In order to achieve this object, a soil sample holder according to claim 1 is a non-conductive container for storing a soil sample, an insertion opening provided in a wall plate of the container, and a soil sample inserted from the insertion opening. The thermal conductivity measuring probe, the first and second vibrator mounting portions provided on the pair of opposing wall plates of the container, and the oscillation attached to the first vibrator mounting portion and in contact with the soil sample A pair of side vibrators, a vibration-receiving-side vibrator attached to the second vibrator attachment portion toward the soil sample, and a pair of wall plates that are attached to a pair of opposing wall plates of the container and allow a specific resistance measurement current to flow through the soil sample. And a pair of potential electrodes for measuring a potential difference between two locations of a soil sample in a state where a specific resistance measurement current is flowing, and the container has at least heat conductivity of the soil sample around the thermal conductivity measurement probe. Rate total The container has an internal space in which a soil sample having a thickness necessary for the presence of the elastic wave, and the container has at least an elastic wave that propagates through the soil sample from the oscillation-side vibrator and reaches the receiving-side vibrator. A part of the path has a shape that reaches the receiving-side vibrator earlier than the elastic wave that propagates through the wall plate of the container and reaches the receiving-side vibrator.

したがって、土壌サンプルを容器内に充填して計測が行なわれる。土壌サンプルの充填によって、電流電極と電位電極は土壌サンプルに接触する。土壌の比抵抗の計測は、一対の電流電極を使用して土壌サンプルに比抵抗計測用電流を流し、一対の電位電極間の電位差を計測することで行なわれる。また、土壌の熱伝導率の計測は、挿入口から土壌サンプルに差し込まれている熱伝導率計測用プローブを使用することで行なわれる。土壌サンプルの充填によって、熱伝導率計測用プローブの周囲には熱伝導率の計測に十分な厚さの土壌サンプルが存在する。したがって、周囲の空気の影響を排除して熱伝導率を計測することができる。さらに、土壌の弾性波速度の計測は、発振側振動子から発振された弾性波が受振側振動子に最初に到達するまでの時間を計測することで行なわれる。発振側振動子から発振された弾性波は、容器形状により、土壌サンプルのみを伝播したものが最初に受振側振動子に到達するので、受振側振動子に最初に到達した弾性波の到達までの時間を計測することで、土壌の弾性波速度を計測することができる。   Therefore, the soil sample is filled in the container and measurement is performed. By filling the soil sample, the current and potential electrodes are in contact with the soil sample. The measurement of the specific resistance of soil is performed by flowing a specific resistance measurement current through a soil sample using a pair of current electrodes and measuring a potential difference between the pair of potential electrodes. Moreover, the measurement of the thermal conductivity of soil is performed by using the probe for thermal conductivity measurement inserted into the soil sample from the insertion port. By filling the soil sample, there is a soil sample having a sufficient thickness for measuring the thermal conductivity around the thermal conductivity measuring probe. Therefore, it is possible to measure the thermal conductivity without the influence of the surrounding air. Furthermore, the elastic wave velocity of the soil is measured by measuring the time until the elastic wave oscillated from the oscillation-side oscillator first reaches the receiving-side oscillator. The elastic wave oscillated from the oscillator on the oscillation side is the one that propagates only the soil sample due to the shape of the container, so it reaches the receiving oscillator first. By measuring the time, the elastic wave velocity of the soil can be measured.

また、請求項2記載の土壌サンプルホルダは、発振側振動子と受振側振動子を、超磁歪振動子としたものである。したがって、強い弾性波を発生させることができ、土壌サンプルを伝播しながら減衰される弾性波を受振側振動子に良好に到達させ易くなる。   In the soil sample holder according to claim 2, the oscillation-side vibrator and the receiving-side vibrator are super magnetostrictive vibrators. Therefore, a strong elastic wave can be generated, and the elastic wave that is attenuated while propagating through the soil sample can easily reach the receiving-side vibrator.

さらに、請求項3記載の土壌サンプルホルダは、受振側振動子の受振部を土壌サンプルに接触させている。したがって、土壌サンプル中を伝播してきた弾性波を直接受振することができる。   Furthermore, in the soil sample holder according to claim 3, the vibration receiving portion of the vibration receiving side vibrator is brought into contact with the soil sample. Therefore, the elastic wave that has propagated through the soil sample can be directly received.

本発明の土壌サンプルホルダでは、容器内に土壌サンプルを充填して計測を行なうので、崩れやすい土壌についての計測が容易である。また、土壌が水分を含むものであっても水分を含んだ状態で計測することができると共に、水分の蒸発を防ぎながらの計測も可能である。さらに、1つの土壌サンプルホルダを使用して、土壌サンプルの比抵抗と熱伝導率と弾性波速度をそれぞれ計測することができる。そのため、計測を効率的に行うことができると共に、同一条件下における3種類の物性値を測定することができる。また、それぞれの測定の為に専用のサンプルホルダを別々に準備する必要がなく、便利である。   In the soil sample holder of the present invention, since the soil sample is filled in the container and the measurement is performed, it is easy to measure the soil that tends to collapse. Moreover, even if soil contains water, it can be measured in a state containing water, and measurement can be performed while preventing evaporation of water. Furthermore, using one soil sample holder, the specific resistance, thermal conductivity and elastic wave velocity of the soil sample can be measured respectively. Therefore, measurement can be performed efficiently and three physical property values under the same conditions can be measured. Moreover, it is not necessary to prepare a dedicated sample holder separately for each measurement, which is convenient.

本発明の土壌サンプルホルダの第1の実施形態を示す縦断面図である。It is a longitudinal section showing a 1st embodiment of a soil sample holder of the present invention. 図1のII−II線の沿う土壌サンプルホルダの断面図である。It is sectional drawing of the soil sample holder which follows the II-II line of FIG. 同土壌サンプルホルダの平面図である。It is a top view of the soil sample holder. 本発明の土壌サンプルホルダの第2の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 2nd Embodiment of the soil sample holder of this invention. 本発明の土壌サンプルホルダの第3の実施形態を示す縦断面図である。It is a longitudinal cross-sectional view which shows 3rd Embodiment of the soil sample holder of this invention. 条件3についての検討を行なうための土壌サンプルホルダの概念図である。It is a conceptual diagram of the soil sample holder for examining condition 3. 従来のサンプルホルダの概略構成図である。It is a schematic block diagram of the conventional sample holder.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1〜図3に、本発明の土壌サンプルホルダの実施形態の一例を示す。なお、図1,図2は土壌サンプルを入れる前の状態を示している(図4,5も同様である。)。土壌サンプルホルダは、土壌サンプルを収容する非導電性の容器1と、容器1の壁板に設けられた挿入口2と、挿入口2から土壌サンプルに差し込まれた熱伝導率計測用プローブ3と、容器1の対向する一対の壁板に設けられた第1及び第2の振動子取付部4,5と、第1の振動子取付部4に取り付けられて土壌サンプルに接触する発振側振動子6と、第2の振動子取付部5に土壌サンプルに向けて取り付けられた受振側振動子7と、容器1の対向する一対の壁板に取り付けられ、土壌サンプルに比抵抗計測用電流を流す一対の電流電極8と、比抵抗計測用電流が流れている状態の土壌サンプルの2箇所の電位差を計測する一対の電位電極9を備えている。   1 to 3 show an example of an embodiment of a soil sample holder of the present invention. 1 and 2 show the state before putting the soil sample (the same applies to FIGS. 4 and 5). The soil sample holder includes a non-conductive container 1 for storing the soil sample, an insertion port 2 provided on the wall plate of the container 1, and a thermal conductivity measurement probe 3 inserted into the soil sample from the insertion port 2. The first and second vibrator mounting portions 4 and 5 provided on a pair of opposing wall plates of the container 1 and the oscillation-side vibrator that is attached to the first vibrator mounting portion 4 and contacts the soil sample 6, a vibration-receiving-side vibrator 7 attached to the second vibrator attachment portion 5 toward the soil sample, and a pair of opposing wall plates of the container 1, and a specific resistance measurement current is passed through the soil sample. A pair of current electrodes 8 and a pair of potential electrodes 9 for measuring a potential difference between two locations of the soil sample in a state where a specific resistance measurement current flows are provided.

容器1の形状は、例えば直方体であり、底板10aと4枚の側板10b,10c,10d,10eより成る容器本体10に蓋板11を被せる構造となっている。蓋板11は例えばねじ20等の固定手段を使用して容器本体10に固定される。ただし、容器1の形状は直方体に限るものではない。本実施形態では、アクリル板によって形成することで容器1を非導電性としている。ただし、アクリル板以外の非導電性の板材、例えばポリプロピレン板、ポリエチレン板等を使用して容器1を形成しても良い。また、容器1をアクリル板によって形成することで容器1を透明にすることができ、充填した土壌サンプルを視覚によって外から確認することができる。容器本体10には例えば4本の脚12が取り付けられており、受振側振動子7を配置する空間を確保している。   The shape of the container 1 is, for example, a rectangular parallelepiped, and has a structure in which a cover plate 11 is placed on a container body 10 including a bottom plate 10a and four side plates 10b, 10c, 10d, and 10e. The lid plate 11 is fixed to the container body 10 by using fixing means such as screws 20. However, the shape of the container 1 is not limited to a rectangular parallelepiped. In the present embodiment, the container 1 is made nonconductive by being formed of an acrylic plate. However, you may form the container 1 using nonelectroconductive board | plate materials other than an acrylic board, for example, a polypropylene board, a polyethylene board, etc. Moreover, the container 1 can be made transparent by forming the container 1 with an acrylic board, and the filled soil sample can be visually confirmed from the outside. For example, four legs 12 are attached to the container main body 10 to secure a space for placing the vibration-receiving vibrator 7.

本実施形態では、側板(壁板)10bに熱伝導率計測用プローブ3を挿入する挿入口2を、蓋板(壁板)11に発振側振動子6を取り付ける第1の振動子取付部4を、底板(壁板)10aに受振側振動子7を取り付ける第2の振動子取付部5をそれぞれ設けている。また、挿入口2を設けた側板10bの両側の側板(壁板)10c,10dに電流電極8が取り付けられている。即ち、蓋板11と底板10aが第1及び第2の振動子取付部4,5が設けられる一対の対向する壁板であり、側板10cと側板10dが一対の電流電極8が取り付けられる一対の対向する壁板である。このように本実施形態では、熱伝導率計測用プローブ3、発振側振動子6及び受振側振動子7、一対の電流電極8,8を別々の壁板に取り付けるようにしている。   In the present embodiment, the insertion port 2 for inserting the thermal conductivity measurement probe 3 into the side plate (wall plate) 10 b and the first vibrator mounting portion 4 for attaching the oscillation-side vibrator 6 to the lid plate (wall plate) 11. Are provided with second vibrator attachment portions 5 for attaching the vibration-receiving-side vibrator 7 to the bottom plate (wall plate) 10a. Further, current electrodes 8 are attached to side plates (wall plates) 10c and 10d on both sides of the side plate 10b provided with the insertion port 2. That is, the cover plate 11 and the bottom plate 10a are a pair of opposing wall plates provided with the first and second vibrator mounting portions 4 and 5, and the side plate 10c and the side plate 10d are a pair of current electrodes 8 attached thereto. It is an opposing wall board. As described above, in this embodiment, the thermal conductivity measurement probe 3, the oscillation-side vibrator 6, the vibration-receiving-side vibrator 7, and the pair of current electrodes 8 and 8 are attached to separate wall plates.

挿入口2は側板10bを貫通する孔であり、側板10bの中央に設けられている。熱伝導率計測用プローブ3は挿入口2から容器1内に挿入されている。挿入口2には例えばゴム製のスリーブ13が取り付けられている。スリーブ13は熱伝導率計測用プローブ3がぐらつかないようにしっかりと保持すると共に、側板10bと熱伝導率計測用プローブ3との間の隙間を塞いでシールする。熱伝導率計測用プローブ3を有する測定器として、例えばクリマテック株式会社製の土壌熱伝導率測定器(TP08)の使用が可能である。熱伝導率計測用プローブ3は側板10bから取り外し可能となっている。   The insertion port 2 is a hole that penetrates the side plate 10b and is provided at the center of the side plate 10b. The thermal conductivity measurement probe 3 is inserted into the container 1 from the insertion port 2. For example, a rubber sleeve 13 is attached to the insertion port 2. The sleeve 13 firmly holds the thermal conductivity measurement probe 3 so that it does not wobble, and closes and seals the gap between the side plate 10b and the thermal conductivity measurement probe 3. As a measuring instrument having the probe 3 for measuring thermal conductivity, for example, a soil thermal conductivity measuring instrument (TP08) manufactured by Klimatec Co., Ltd. can be used. The thermal conductivity measuring probe 3 can be detached from the side plate 10b.

第1の振動子取付部4は蓋板11の上面の中央に設けられている。第1の振動子取付部4には蓋板11を貫通する孔14が設けられている。孔14の内径は発振側振動子6の発振部6aの外径とほぼ同一寸法になっており、発振部6aによって孔14を塞ぐことができる。第1の振動子取付部4には発振側振動子6の軸部6bを挟持する一対の支持片15,15が取り付けられている。即ち、一対の支持片15,15で発振側振動子6の軸部6bを挟持し、発振部6aを孔14に挿入し、一対の支持片15,15を第1の振動子取付部4に取り付けることで、発振側振動子6を第1の振動子取付部4に取り付けている。発振側振動子6は第1の振動子取付部4から取り外し可能となっている。   The first vibrator mounting portion 4 is provided at the center of the upper surface of the lid plate 11. The first vibrator mounting portion 4 is provided with a hole 14 that penetrates the lid plate 11. The inner diameter of the hole 14 is substantially the same as the outer diameter of the oscillating portion 6a of the oscillation-side vibrator 6, and the hole 14 can be closed by the oscillating portion 6a. A pair of support pieces 15, 15 that sandwich the shaft portion 6 b of the oscillation-side vibrator 6 is attached to the first vibrator mounting portion 4. That is, the shaft 6 b of the oscillation-side vibrator 6 is sandwiched between the pair of support pieces 15, 15, the oscillation part 6 a is inserted into the hole 14, and the pair of support pieces 15, 15 is attached to the first vibrator attachment part 4. By attaching, the oscillation-side vibrator 6 is attached to the first vibrator attachment portion 4. The oscillation-side vibrator 6 can be detached from the first vibrator mounting portion 4.

各支持片15,15には軸部6bの形状に対応する半円状の窪み15aが設けられており、2つの支持片15,15の窪み15a,15aによって軸部6bをしっかりと挟み込んでいる。窪み15a,15aの大きさは軸部6bを挟み込んだ状態で2つの支持片15,15の間に若干の隙間が生じる大きさとされており、2つの支持片15,15によって発振側振動子6の軸部6bをしっかりと挟み付け、保持することができる。2つの支持片15,15は軸部6bを挟持した状態で例えばボルト16によって結合されている。結合された2つの支持片15,15は、例えばねじ17によって第1の振動子取付部4に固定されている。発振側振動子6の発振部6aの先端面は、蓋板11の裏面と面一になっており、土壌サンプルと接触可能となっている。   Each support piece 15, 15 is provided with a semicircular recess 15 a corresponding to the shape of the shaft portion 6 b, and the shaft portion 6 b is firmly sandwiched between the recesses 15 a, 15 a of the two support pieces 15, 15. . The size of the recesses 15a and 15a is such that a slight gap is generated between the two support pieces 15 and 15 with the shaft portion 6b interposed therebetween. The shaft portion 6b can be firmly clamped and held. The two support pieces 15 and 15 are coupled together by, for example, bolts 16 with the shaft portion 6b sandwiched therebetween. The two support pieces 15 and 15 joined together are fixed to the first vibrator mounting portion 4 by, for example, screws 17. The tip end surface of the oscillating portion 6a of the oscillation-side vibrator 6 is flush with the back surface of the cover plate 11, and can contact the soil sample.

第2の振動子取付部5は底板10aの下面の中央に設けられている。第2の振動子取付部5には底板10aを貫通する孔18が設けられている。孔18の内径は受振側振動子7の受振部7aの外径とほぼ同一寸法になっており、受振部7aによって孔18を塞ぐことができる。第2の振動子取付部5には一対の支持片15,15を使用して受振側振動子7が取り付けられている。受振側振動子7の取付構造は上述の発振側振動子6の取付構造と同一であり、その説明を省略する。   The second vibrator mounting portion 5 is provided at the center of the lower surface of the bottom plate 10a. The second vibrator mounting portion 5 is provided with a hole 18 that penetrates the bottom plate 10a. The inner diameter of the hole 18 is substantially the same as the outer diameter of the vibration receiving portion 7a of the vibration receiving side vibrator 7, and the hole 18 can be closed by the vibration receiving portion 7a. The vibration receiving side vibrator 7 is attached to the second vibrator attaching portion 5 using a pair of support pieces 15 and 15. The mounting structure of the vibration receiving side vibrator 7 is the same as the mounting structure of the oscillation side vibrator 6 described above, and the description thereof is omitted.

本実施形態では第2の振動子取付部5に貫通孔18を設けると共に、当該貫通孔18に挿入した受振側振動子7の受振部7aの先端面を底板10aの内面と面一にすることで、受振部7aを突出させることなく土壌サンプルに接触させている。受振部7aを土壌サンプルに接触させることで、土壌サンプル中を伝播してきた弾性波を直接受振することができる。   In the present embodiment, the second vibrator mounting portion 5 is provided with a through hole 18 and the tip surface of the vibration receiving portion 7a of the vibration receiving side vibrator 7 inserted into the through hole 18 is flush with the inner surface of the bottom plate 10a. Thus, the vibration receiving part 7a is brought into contact with the soil sample without protruding. By bringing the vibration receiving part 7a into contact with the soil sample, the elastic wave propagating through the soil sample can be directly received.

発振側振動子6と受振側振動子7は超磁歪振動子である。超磁歪素子を使用することで、土壌サンプルのみを伝播して受振側振動子7に到達できるような強い弾性波を発生するのが容易になる。   The oscillation-side vibrator 6 and the receiving-side vibrator 7 are giant magnetostrictive vibrators. By using the giant magnetostrictive element, it becomes easy to generate a strong elastic wave that can propagate only the soil sample and reach the receiving-side vibrator 7.

電流電極8は例えば板状の電極で、側板10c,10dの内側面にほぼ全面に亘って設けられている。電流電極8には図示しないリード線が接続されている。リード線は容器本体10と蓋板11との間から外に引き出されている。電流電極8は土壌サンプルに接触している。ただし、電流電極8の位置はこれに限るものではなく、土壌サンプルに比抵抗計測用の電流を流すことができる位置であれば特に制限されるものではない。   The current electrode 8 is, for example, a plate-like electrode, and is provided over the entire inner surface of the side plates 10c and 10d. A lead wire (not shown) is connected to the current electrode 8. The lead wire is drawn out from between the container body 10 and the cover plate 11. The current electrode 8 is in contact with the soil sample. However, the position of the current electrode 8 is not limited to this, and is not particularly limited as long as it is a position where a specific resistance measurement current can be passed through the soil sample.

電位電極9は例えば細長い板状の電極で、例えば側板10b,底板10a,側板10eの内面に電流電極8との間に若干の隙間をあけて設けられている。電位電極9には図示しないリード線が接続されている。リード線は容器本体10と蓋板11との間から外に引き出されている。電位電極9は土壌サンプルに接触している。ただし、電位電極9の位置はこれに限るものではなく、土壌サンプルの2箇所の電位差を計測することができる位置であれば特に制限されるものではない。   The potential electrode 9 is, for example, an elongated plate-like electrode, and is provided, for example, on the inner surfaces of the side plate 10b, the bottom plate 10a, and the side plate 10e with a slight gap between the current electrode 8. A lead wire (not shown) is connected to the potential electrode 9. The lead wire is drawn out from between the container body 10 and the cover plate 11. The potential electrode 9 is in contact with the soil sample. However, the position of the potential electrode 9 is not limited to this, and is not particularly limited as long as it is a position where the potential difference between two locations of the soil sample can be measured.

容器1は熱伝導率計測用プローブ3の周囲(径方向外側及び前方)に少なくとも土壌サンプルの熱伝導率の計測に必要な厚さの土壌サンプルを存在させる内部空間19を有している。つまり、熱伝導率を正確に計測するためには、熱伝導率計測用プローブ3の周囲に熱が伝わる土壌サンプルが存在することが必要である。熱伝導率計測用プローブ3の周囲に厚さtの土壌サンプルが必要であるとすると、容器1は熱伝導率計測用プローブ3の周囲に少なくとも厚さtの土壌サンプルを存在させることができる広さの内部空間19を有している(条件1)。また、容器1内の内部空間19は熱伝導率計測用プローブ3を収容できる大きさであることが必要である(条件2)。   The container 1 has an internal space 19 in which at least a soil sample having a thickness necessary for measuring the thermal conductivity of the soil sample exists around the thermal conductivity measurement probe 3 (outside and in the radial direction). That is, in order to accurately measure the thermal conductivity, it is necessary that there is a soil sample in which heat is transmitted around the thermal conductivity measurement probe 3. If a soil sample having a thickness t is required around the thermal conductivity measurement probe 3, the container 1 can have a soil sample having a thickness t at least around the thermal conductivity measurement probe 3. It has an internal space 19 (condition 1). Moreover, the internal space 19 in the container 1 needs to be large enough to accommodate the thermal conductivity measurement probe 3 (condition 2).

容器1は、発振側振動子6から土壌サンプル中を伝播して受振側振動子7に到達する弾性波(P波)の方が、少なくとも経路の一部において容器1の壁板を伝播して受振側振動子7に到達する弾性波(P波)よりも先に受振側振動子7に到達する形状を有している(条件3)。つまり、土壌サンプルの弾性波速度を計測するためには、発振側振動子6から土壌サンプル中を伝播して受振側振動子7に到達した弾性波(以下、土壌サンプルのみを伝播した弾性波という)と、少なくとも経路の一部において容器1の壁板を伝播して受振側振動子7に到達する弾性波、即ち一部区間において容器1の壁板を伝播して又は容器1の壁板のみを伝播して受振側振動子7に到達した弾性波(以下、容器1の壁板を伝播した弾性波という)とを区別し、前者が受振側振動子7に到達するまでの時間を計測する必要がある。前者を後者とは区別して計測するためには、前者が受振側振動子7に先に到達するようにし、受振側振動子7の検出信号の立ち上がり時を検出すれば良い。弾性波が土壌サンプル中を伝播する速度V1は、容器1の壁板を伝播する速度V2よりも遅い(V1<V2)。したがって、単純に前者の伝播距離を後者の伝播距離よりも短くするだけでは条件3を満たすことはできない。容器1は、伝播速度と伝播距離とを考慮して、前者を後者よりも先に受振側振動子7に到達させる形状、即ち高さH、幅W、奥行きDを有している。   In the container 1, the elastic wave (P wave) that propagates from the oscillation-side vibrator 6 through the soil sample and reaches the receiving-side vibrator 7 propagates through the wall plate of the container 1 at least in part of the path. It has a shape that reaches the receiving-side vibrator 7 earlier than the elastic wave (P wave) that reaches the receiving-side vibrator 7 (condition 3). That is, in order to measure the elastic wave velocity of the soil sample, an elastic wave that has propagated through the soil sample from the oscillation-side vibrator 6 and reached the receiving-side vibrator 7 (hereinafter referred to as an elastic wave that has propagated only the soil sample). ) And an elastic wave that propagates through the wall plate of the container 1 in at least a part of the path and reaches the vibration-receiving-side vibrator 7, that is, propagates through the wall plate of the container 1 in a partial section or only the wall plate of the container 1. And the elastic wave that has reached the vibration-receiving-side vibrator 7 (hereinafter referred to as the elastic wave that has propagated through the wall plate of the container 1), and the time until the former reaches the vibration-receiving-side vibrator 7 is measured. There is a need. In order to measure the former in distinction from the latter, it is only necessary to detect the rise time of the detection signal of the receiving-side vibrator 7 by causing the former to reach the receiving-side vibrator 7 first. The velocity V1 at which the elastic wave propagates through the soil sample is slower than the velocity V2 at which the elastic wave propagates through the wall plate of the container 1 (V1 <V2). Therefore, the condition 3 cannot be satisfied simply by making the former propagation distance shorter than the latter propagation distance. The container 1 has a shape that allows the former to reach the vibration-receiving-side vibrator 7 before the latter, that is, a height H, a width W, and a depth D in consideration of the propagation speed and the propagation distance.

容器1は上記3つの条件1〜3を満足するように形成されている。以下、蓋板11と底板10aの間隔を高さH、電流電極8が取り付けられている側板10c,10dの間隔を幅W、熱伝導率計測用プローブ3が取り付けられている側板10bと当該側板10bに対向する側板10eとの間隔を奥行きDとして、条件1〜3を満たす容器1について検討する。なお、ここでの高さH、幅W、奥行きDは、容器1の内側の寸法とする。   The container 1 is formed so as to satisfy the above three conditions 1-3. Hereinafter, the distance between the cover plate 11 and the bottom plate 10a is H, the distance between the side plates 10c and 10d to which the current electrodes 8 are attached is the width W, and the side plate 10b to which the thermal conductivity measuring probe 3 is attached and the side plate. The container 1 satisfying the conditions 1 to 3 is examined with the distance D from the side plate 10e facing 10b as the depth D. Here, the height H, the width W, and the depth D are the dimensions inside the container 1.

先ず、条件1について検討する。熱伝導率計測用プローブ3の周囲に少なくとも厚さtの土壌サンプルが必要であるため、熱伝導率計測用プローブ3の直径を2rとすると、高さHと幅Wを〔t+2r+t〕=〔2t+2r〕よりも大きくする必要がある。若干の余裕をα1とすると、高さHと幅Wは数式1,2となる。
<数1> H≧2t+2r+α1
<数2> W≧2t+2r+α1
First, condition 1 is examined. Since a soil sample of at least thickness t is required around the thermal conductivity measurement probe 3, if the diameter of the thermal conductivity measurement probe 3 is 2r, the height H and the width W are [t + 2r + t] = [2t + 2r. ] Must be larger than When a slight margin is α1, the height H and the width W are expressed by Equations 1 and 2.
<Equation 1> H ≧ 2t + 2r + α1
<Equation 2> W ≧ 2t + 2r + α1

次に、条件2について検討する。熱伝導率計測用プローブ3の容器1内への挿入部分の長さをL4とすると、奥行きDをL4よりも大きくする必要がある。若干の余裕をα2とすると、奥行きDは数式3となる。ただし、条件1を考慮すると、α2≧tである。
<数3> D≧L4+α2
Next, condition 2 will be examined. When the length of the insertion portion of the thermal conductivity measurement probe 3 into the container 1 is L4, the depth D needs to be larger than L4. Depth D is given by Equation 3 where α2 is a slight margin. However, when Condition 1 is considered, α2 ≧ t.
<Equation 3> D ≧ L4 + α2

次に、図6に基づいて、条件3について検討する。ここで、土壌サンプルを伝播する弾性波の速度:V1、容器1の壁板を伝播する弾性波の速度:V2である。また、発振側振動子6と受振側振動子7は幅Wの中央に設けられている。   Next, Condition 3 will be examined based on FIG. Here, the velocity of the elastic wave propagating through the soil sample is V1, and the velocity of the elastic wave propagating through the wall plate of the container 1 is V2. Further, the oscillation-side vibrator 6 and the receiving-side vibrator 7 are provided at the center of the width W.

(1) 容器1の壁板を伝播する弾性波が、スネルの法則に従って伝播する場合
いま、スネルの法則(全反射が成り立つならば):sinθ=V1/V2である。
図6の土壌サンプル中を伝播する区間aの長さL1は、cosθ=(W/2)/L1より、数式4となる。
<数4> L1=W/2cosθ
(1) The case where the elastic wave propagating through the wall plate of the container 1 propagates according to Snell's law. Snell's law (if total reflection holds): sinθ = V1 / V2.
The length L1 of the section a propagating through the soil sample in FIG. 6 is expressed by Equation 4 from cos θ = (W / 2) / L1.
<Equation 4> L1 = W / 2 cos θ

また、土壌サンプル中を伝播する区間cの長さL3は、L3=L1より、数式5となる。
<数5> L3=W/2cosθ
Further, the length L3 of the section c propagating through the soil sample is expressed by Equation 5 from L3 = L1.
<Equation 5> L3 = W / 2 cos θ

容器1の壁板を伝播する区間bの長さL2は、数式6となる。
<数6> L2=H−L1sinθ×2
=H−(W/2cosθ)×sinθ×2
=H−Wtanθ
The length L2 of the section b propagating through the wall plate of the container 1 is expressed by Equation 6.
<Equation 6> L2 = H−L1sinθ × 2
= H- (W / 2cosθ) × sinθ × 2
= H-Wtanθ

従って、容器1の壁板を伝播する弾性波の伝播時間T2は、数式7となる。
<数7> T2=(L1+L3)/V1+L2/V2
=W/V1cosθ+(H−Wtanθ)/V2
Therefore, the propagation time T2 of the elastic wave propagating through the wall plate of the container 1 is expressed by Equation 7.
<Equation 7> T2 = (L1 + L3) / V1 + L2 / V2
= W / V1cosθ + (H−Wtanθ) / V2

一方、土壌サンプルのみを伝播する弾性波の伝播時間T1は、数式8となる。
<数8> T1=H/V1
On the other hand, the propagation time T1 of the elastic wave propagating only through the soil sample is expressed by Equation 8.
<Equation 8> T1 = H / V1

T1>T2であれば、容器1の壁板を伝播する弾性波が先に受振側振動子7に到達することになる。   If T1> T2, the elastic wave propagating through the wall plate of the container 1 reaches the vibration-receiving-side vibrator 7 first.

ここで、T1=T2の時の幅Wを求めると、H/V1=W/V1cosθ+(H−Wtanθ)/V2より、数式9となる。
<数9> W=Hcosθ(V2−V1)/(V2−V1sinθ)
Here, when the width W when T1 = T2 is obtained, Expression 9 is obtained from H / V1 = W / V1 cos θ + (H−Wtan θ) / V2.
<Equation 9> W = H cos θ (V2−V1) / (V2−V1sin θ)

また、スネルの法則より、数式10,11を数式9に代入すると、数式12となる。
<数10> sinθ=V1/V2

Figure 2010271130
Figure 2010271130
Further, by substituting Equations 10 and 11 into Equation 9 according to Snell's law, Equation 12 is obtained.
<Equation 10> sinθ = V1 / V2
Figure 2010271130
Figure 2010271130

土壌サンプルのみを伝播する弾性波が容器1の壁板を伝播する弾性波よりも先に受振側振動子7に到達するには、幅Wが数式12のWよりも大きければ良いので、数式13となる。

Figure 2010271130
In order for the elastic wave propagating only in the soil sample to reach the receiving-side vibrator 7 before the elastic wave propagating through the wall plate of the container 1, it is sufficient that the width W is larger than W in Expression 12. It becomes.
Figure 2010271130

(2) 容器1の壁板を伝播する弾性波が、壁板のみを伝播するものである場合
容器1の壁板を伝播する弾性波の伝播時間T3は、数式14となる。
<数14> T3=(W/2+H+W/2)/V2
(2) When the elastic wave propagating through the wall plate of the container 1 propagates only through the wall plate The propagation time T3 of the elastic wave propagating through the wall plate of the container 1 is expressed by Equation 14.
<Equation 14> T3 = (W / 2 + H + W / 2) / V2

T1=T3のときのWは、H/V1=(W/2+H+W/2)/V2より、数式15,15となる。
<数15> W=(V2/V1−1)×H
W when T1 = T3 is expressed by Formulas 15 and 15 from H / V1 = (W / 2 + H + W / 2) / V2.
<Equation 15> W = (V2 / V1-1) × H

土壌サンプルのみを伝播する弾性波が容器1の壁板を伝播する弾性波よりも先に受振側振動子7に到達するには、幅Wが数式15のWよりも大きければ良いので、数式16となる。
<数16> W>(V2/V1−1)×H
In order for the elastic wave propagating only the soil sample to reach the receiving-side vibrator 7 before the elastic wave propagating through the wall plate of the container 1, it is sufficient that the width W is larger than W in the formula 15. It becomes.
<Equation 16>W> (V2 / V1-1) × H

(3) なお、発振側振動子6と受振側振動子7を基準に考えると、幅Wと奥行きDは容器1を見る方向の違いであり、弾性波の伝播経路としては同等である。したがって、W≦Dの場合は数式13、16を採用し、条件3に関しては奥行きDを考慮しなくても良いが、W>Dの場合には、数式13,16のWをDに置き換えた数式17((1)の場合),数式18((2)の場合)を採用し、条件3に関しては幅Wを考慮しなくても良い。この関係を表1に示す。

Figure 2010271130
<数18> D>(V2/V1−1)×H
(3) When the oscillation-side vibrator 6 and the receiving-side vibrator 7 are taken as a reference, the width W and the depth D are different directions in which the container 1 is viewed, and are equivalent as elastic wave propagation paths. Therefore, when W ≦ D, Formulas 13 and 16 are adopted, and it is not necessary to consider the depth D for Condition 3. However, when W> D, W in Formulas 13 and 16 is replaced with D. Formula 17 (in the case of (1)) and Formula 18 (in the case of (2)) are adopted, and the width W does not need to be considered for the condition 3. This relationship is shown in Table 1.
Figure 2010271130
<Equation 18>D> (V2 / V1-1) × H

Figure 2010271130
Figure 2010271130

条件1〜3を纏めると、高さHは、条件1の数式1を満たす必要がある。幅Wは、条件1の数式2と、条件3の該当する数式13,16を満たす必要がある。奥行きDは、条件2の数式3と、条件3の該当する数式17,18を満たす必要がある。   When the conditions 1 to 3 are summarized, the height H needs to satisfy the expression 1 of the condition 1. The width W needs to satisfy Expression 2 of Condition 1 and Expressions 13 and 16 corresponding to Condition 3. The depth D needs to satisfy Equation 3 of Condition 2 and Equations 17 and 18 corresponding to Condition 3.

なお、土壌サンプルを伝播する弾性波速度V1として考えられる値を考慮して幅Wを決定すると、幅W=奥行きD(又は幅W≒奥行きD)とすることができる。そして、高さH(条件1)に厚さtを考慮した実用的な数値(例えば厚さt=2cm)を当てはめ、奥行きD(条件2)に長さL4を考慮した実用的な数値(例えば長さL4=8cm,α2=4cm)を当てはめ、さらに幅W=奥行きD(又は幅W≒奥行きD)とすることで、条件3も満たされると考えられる。したがって、条件1,2を考慮し、幅W=奥行きD(又は幅W≒奥行きD)となるように容器1を形成するのが実用的である。   In addition, if the width W is determined in consideration of a value considered as the elastic wave velocity V1 propagating through the soil sample, the width W = depth D (or width W≈depth D) can be obtained. Then, a practical numerical value (for example, thickness t = 2 cm) considering the thickness t is applied to the height H (condition 1), and a practical numerical value (for example, considering the length L4 to the depth D (condition 2)). By applying the length L4 = 8 cm and α2 = 4 cm) and further setting the width W = depth D (or width W≈depth D), it is considered that the condition 3 is also satisfied. Therefore, considering the conditions 1 and 2, it is practical to form the container 1 so that the width W = the depth D (or the width W≈the depth D).

このような観点から土壌サンプルホルダを製作すると、容器1は幅Wと奥行きDに比べて高さHが小さい扁平形状の直方体となる。例えば、高さH:5cm、幅W:12cm、奥行きD:12cmとなる。ただし、これらの値に限るものではなく、条件1,2,3を満足するものであれば変更可能である。また、土壌サンプルホルダの充填量を少なくするという観点からは容器1をできるだけ小さくすることが好ましい。   When the soil sample holder is manufactured from such a viewpoint, the container 1 becomes a flat rectangular parallelepiped having a small height H compared to the width W and the depth D. For example, the height H is 5 cm, the width W is 12 cm, and the depth D is 12 cm. However, it is not limited to these values, and can be changed as long as the conditions 1, 2, and 3 are satisfied. Moreover, it is preferable to make the container 1 as small as possible from the viewpoint of reducing the filling amount of the soil sample holder.

次に、土壌サンプルホルダを使用した計測について説明する。   Next, measurement using a soil sample holder will be described.

容器本体10に熱伝導率計測用プローブ3と受振側振動子7を取り付けた後、容器本体10内に土壌サンプルを充填する。熱伝導率計測用プローブ3の取り付けによって側板10bの挿入口2が塞がれ、受振側振動子7の取り付けによって底板10aの孔18が塞がれるので、たとえ土壌サンプルが水分を含んでいても漏水することはない。土壌サンプルを充填すると、受振側振動子7の受振部7aが土壌サンプルに接触する。また、熱伝導率計測用プローブ3の周囲に計測に十分な厚さの土壌サンプルが充填される。そして、土壌サンプルを所定の高さまで充填した後、発振側振動子6を取り付けた蓋板11を容器本体10に被せて固定する。蓋板11を被せることで発振側振動子6の発振部6aが土壌サンプルに接触する。   After the thermal conductivity measurement probe 3 and the vibration-receiving vibrator 7 are attached to the container body 10, the container body 10 is filled with a soil sample. The insertion port 2 of the side plate 10b is closed by the attachment of the thermal conductivity measurement probe 3, and the hole 18 of the bottom plate 10a is closed by the attachment of the vibration receiving side vibrator 7, so that even if the soil sample contains moisture. There is no leakage. When the soil sample is filled, the vibration receiving portion 7a of the vibration receiving side vibrator 7 comes into contact with the soil sample. In addition, a soil sample having a thickness sufficient for measurement is filled around the thermal conductivity measurement probe 3. Then, after filling the soil sample to a predetermined height, the cover plate 11 to which the oscillation-side vibrator 6 is attached is put on the container body 10 and fixed. By covering the cover plate 11, the oscillation part 6a of the oscillation-side vibrator 6 comes into contact with the soil sample.

次に、土壌サンプルの比抵抗の計測について説明する。この土壌サンプルホルダは2つの電流電極8と2つの電位電極9を使用する4極法に使用される。電流電極8のリード線と電位電極9のリード線を図示しない比抵抗計測器に接続する。そして、電流電極8間に矩形波の電流を流し、その際に生じる土壌サンプルの2箇所の電位差を電位電極9を用いて計測する。容器1は非導電性であるため、電流は土壌サンプルを流れる。計測器としては、例えば応用地質株式会社製のミニオームの使用が可能である。   Next, measurement of the specific resistance of the soil sample will be described. This soil sample holder is used in a quadrupole method using two current electrodes 8 and two potential electrodes 9. The lead wire of the current electrode 8 and the lead wire of the potential electrode 9 are connected to a specific resistance measuring instrument (not shown). Then, a rectangular wave current is passed between the current electrodes 8, and the potential difference between two locations of the soil sample generated at that time is measured using the potential electrode 9. Since container 1 is non-conductive, current flows through the soil sample. As the measuring instrument, for example, a mini-ohm manufactured by Applied Geological Co., Ltd. can be used.

次に、土壌サンプルの弾性波速度の計測について説明する。発振側振動子6を図示しない振動子発振用ドライバアンプ(例えば、日本地下探査製振動子発振用ドライバアンプ )に接続すると共に、発振側振動子6及び受振側振動子7を図示しないオシロスコープに接続する。発振側振動子6の発振部6aから、弾性波(パルス波)を発振させ、土壌サンプル中を伝播した弾性波を受振側振動子7の受振部7aで受振することで、P波の初動到達時刻を計測し、土壌サンプルのP波速度を計測する。オシロスコープによって受振波形と発振波形も読み取り、発振時刻と受振時刻との時間差を読み取ることで弾性波速度を計測する。   Next, measurement of the elastic wave velocity of the soil sample will be described. The oscillation-side vibrator 6 is connected to a vibrator oscillation driver amplifier (not shown) (for example, a vibrator oscillation driver amplifier manufactured by Japan Underground Exploration), and the oscillation-side vibrator 6 and the receiving-side vibrator 7 are connected to an oscilloscope (not shown). To do. By oscillating an elastic wave (pulse wave) from the oscillating unit 6a of the oscillation-side vibrator 6 and receiving the elastic wave propagated through the soil sample by the vibration-receiving unit 7a of the receiving-side vibrator 7, the initial arrival of the P wave Time is measured and the P wave velocity of the soil sample is measured. The oscilloscope also reads the vibration waveform and the oscillation waveform, and measures the elastic wave velocity by reading the time difference between the oscillation time and the vibration reception time.

次に、土壌サンプルの熱伝導率の計測について説明する。熱伝導率計測用プローブ3に一定の熱量を加えることで周囲の土壌サンプルを加熱し、その温度変化を観察することで温度の上昇の仕方(温度の傾き)から熱伝導率を求める。また、熱伝導率を求めることで、その逆数である固有熱抵抗も求めることができる。   Next, measurement of the thermal conductivity of the soil sample will be described. The surrounding soil sample is heated by applying a certain amount of heat to the probe 3 for measuring thermal conductivity, and the thermal conductivity is obtained from the manner of temperature rise (temperature gradient) by observing the temperature change. Moreover, the specific thermal resistance which is the reciprocal number can also be calculated | required by calculating | requiring thermal conductivity.

このように、1つの土壌サンプルホルダを使用して比抵抗、弾性波速度、熱伝導率という3つの物性値を計測することができる。土壌サンプルを詰め替えることなく3つの物性値を連続的に計測することができるので、非常に効率的である。また、それぞれの物性値を計測するために専用の土壌サンプルホルダを個別に製作する必要がない。   Thus, three physical property values, such as specific resistance, elastic wave velocity, and thermal conductivity, can be measured using one soil sample holder. Since three physical property values can be measured continuously without refilling the soil sample, it is very efficient. Moreover, it is not necessary to individually manufacture a dedicated soil sample holder in order to measure each physical property value.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention.

例えば、上述の説明では、蓋板11と底板10aに発振側振動子6と受振側振動子7を取り付け、側板10bに熱伝導率計測用プローブ3を取り付け、側板10cと側板10dに電流電極8を取り付けていたが、必ずしもこれに限るものではなく、例えば図4に示すように、側板10dと側板10cに発振側振動子6と受振側振動子7を取り付け、側板10bに熱伝導率計測用プローブ3を取り付け、蓋板11と底板10aに電流電極8を取り付けても良く、例えば図5に示すように、側板10bと側板10eに発振側振動子6と受振側振動子7を取り付け(側板10eと発振側振動子7の図示省略)、蓋板11又は底板10a(図5では蓋板11)に熱伝導率計測用プローブ3を取り付け、側板10cと側板10dに電流電極8を取り付けても良く、その他でも良い。   For example, in the above description, the oscillation-side vibrator 6 and the vibration-receiving-side vibrator 7 are attached to the lid plate 11 and the bottom plate 10a, the thermal conductivity measurement probe 3 is attached to the side plate 10b, and the current electrode 8 is attached to the side plate 10c and the side plate 10d. However, the present invention is not limited to this. For example, as shown in FIG. 4, the oscillation-side vibrator 6 and the vibration-receiving vibrator 7 are attached to the side plate 10d and the side plate 10c, and the thermal conductivity measurement is applied to the side plate 10b. The probe 3 may be attached, and the current electrode 8 may be attached to the cover plate 11 and the bottom plate 10a. For example, as shown in FIG. 5, the oscillation-side vibrator 6 and the vibration-side vibrator 7 are attached to the side plate 10b and the side plate 10e. 10e and the oscillation-side vibrator 7 are omitted), the thermal conductivity measuring probe 3 is attached to the lid plate 11 or the bottom plate 10a (the lid plate 11 in FIG. 5), and the current electrode 8 is attached to the side plate 10c and the side plate 10d. Also good, the other also good.

また、上述の説明では、受振側振動子7の受振部7aを土壌サンプルに接触させていたが、土壌サンプルのみを伝播した弾性波の受振が可能な場合には必ずしも受振部7aを土壌サンプルに接触させなくても良く、底板10aの外側に取り付けても良い。この場合には、容器本体10の底板10aに孔18をあける必要がなくなり、漏水を完全に防止することができる。ただし、受振側振動子7の受振部7aを取り付ける部分では底板10aの厚みを薄くし、弾性波をより受振し易くすることが好ましい。   In the above description, the vibration receiving portion 7a of the vibration receiving side vibrator 7 is brought into contact with the soil sample. However, when the elastic wave propagating only the soil sample can be received, the vibration receiving portion 7a is not necessarily used as the soil sample. It is not necessary to make it contact, and you may attach to the outer side of the baseplate 10a. In this case, it is not necessary to make holes 18 in the bottom plate 10a of the container body 10, and water leakage can be completely prevented. However, it is preferable to reduce the thickness of the bottom plate 10a at the portion where the vibration receiving portion 7a of the vibration receiving side vibrator 7 is attached to make it easier to receive the elastic wave.

条件1〜3を満たす容器1について設計を行なった。   The container 1 that satisfies the conditions 1 to 3 was designed.

高さHについては、厚さtとして例えば2cm程度必要であり、熱伝導率計測用プローブ3の直径2rと余裕α1を合わせて例えば1cm程度とすると、条件1の数式1より高さHは5cm以上となる。土壌サンプルの充填量を少なくするという観点から高さHは小さい方が好ましいので、高さHを5cmとした。なお、条件1においては、幅Wも高さHと同じ5cmとなる(数式2)。   As for the height H, about 2 cm is required as the thickness t. When the diameter 2r of the thermal conductivity measurement probe 3 and the margin α1 are combined to be about 1 cm, for example, the height H is 5 cm from Equation 1 in Condition 1. That's it. Since it is preferable that the height H is small from the viewpoint of reducing the filling amount of the soil sample, the height H is set to 5 cm. In condition 1, the width W is also 5 cm, which is the same as the height H (Formula 2).

奥行きDについては、熱伝導率計測用プローブ3の容器1内への挿入部分の長さL4は例えば8cmであり、条件2の数式3より、奥行きDは8cm+α2以上となる。土壌サンプルの充填量を少なくするという観点から、奥行きDは小さい方が好ましいので、奥行きDを8cm+α2とした。また、土壌サンプルを伝播する弾性波速度V1として考えられる値を考慮して幅Wを決定すると、幅W=奥行きDとすることができるので、幅Wも8cm+α2とした。   Regarding the depth D, the length L4 of the portion where the thermal conductivity measurement probe 3 is inserted into the container 1 is 8 cm, for example, and the depth D is 8 cm + α2 or more from Equation 3 in Condition 2. From the viewpoint of reducing the filling amount of the soil sample, the depth D is preferably smaller, so the depth D is set to 8 cm + α2. Further, when the width W is determined in consideration of the value considered as the elastic wave velocity V1 propagating through the soil sample, the width W can be set to the depth D, and therefore the width W is also set to 8 cm + α2.

次に、条件3について検討する。例えば、V1:1000m/s、V2:2730m/sとすると、上述のように、高さHは5cm(0.05m)、W=Dであることから、幅Wは、(1)の場合は0.034m(数式13)、(2)の場合は0.087m(数式16)となる。   Next, Condition 3 will be examined. For example, when V1: 1000 m / s and V2: 2730 m / s, as described above, the height H is 5 cm (0.05 m) and W = D, so the width W is (1) In the case of 0.034 m (Formula 13) and (2), it becomes 0.087 m (Formula 16).

つまり、(1)のスネルの法則に従って弾性波が容器1の壁板を伝播する場合は幅W=0.034m(=3.4cm)となり、これは条件1の数式2による5cmよりも小さいので、条件1を考慮することで条件3を考慮する必要がなくなる。   That is, when the elastic wave propagates through the wall plate of the container 1 in accordance with Snell's law of (1), the width W = 0.034 m (= 3.4 cm), which is smaller than 5 cm according to Equation 2 of Condition 1. Considering condition 1, it becomes unnecessary to consider condition 3.

また、(2)の弾性波が容器1の壁板のみを伝播する場合は幅W=0.087m(=8.7cm)となり、これは条件1の数式2による5cmよりも大きくなるが、条件2の8cm+α2(数式3,W=Dの場合)とほぼ同じであることから、条件2を適切に設定することで、条件3を考慮する必要がなくなる。   In addition, when the elastic wave of (2) propagates only through the wall plate of the container 1, the width W = 0.087 m (= 8.7 cm), which is larger than 5 cm according to Equation 2 of Condition 1, 2 is almost the same as 8cm + α2 (in the case of Equation 3, W = D), it is not necessary to consider the condition 3 by appropriately setting the condition 2.

ここで、(1)の場合の幅W:5cmと(2)の場合の幅W:8cm+α2とを比較すると、「(1)の幅W」<「(2)の幅W」であるため、(2)の場合を考慮することで(1)の場合を考慮する必要がなくなる。したがって、(2)の場合を考慮して幅Wを決定すると、結局、幅Wについては、条件2を適切に設定することで、条件1,3を考慮する必要がなくなる。ここでは、条件2のα2を例えば4cmとし、数式3(W=Dの場合)より、W≧12cm(=8cm+4cm)となる。そして、土壌サンプルの充填量を少なくするという観点から、幅Wを12cmとした。
また、W=Dであることから、奥行きDも12cmとした。
Here, when the width W in the case of (1): 5 cm and the width W in the case of (2): 8 cm + α2, since “(1) width W” <“(2) width W”, By considering the case of (2), it is not necessary to consider the case of (1). Therefore, when the width W is determined in consideration of the case of (2), it is not necessary to consider the conditions 1 and 3 by appropriately setting the condition 2 for the width W. Here, α2 in condition 2 is, for example, 4 cm, and W ≧ 12 cm (= 8 cm + 4 cm) from Equation 3 (in the case of W = D). And from the viewpoint of reducing the filling amount of the soil sample, the width W was set to 12 cm.
Moreover, since W = D, the depth D was also set to 12 cm.

なお、条件3において、特に(2)の場合は、土壌サンプルを伝播する弾性波の速度V1が遅くなることで、容器1の壁板のみを伝播する弾性波の方が受振側振動子7に先に到達することも考えられる。しかしながら、本願発明のように土壌サンプルを計測対象にするのであれば、α2を4cmに設定して弾性波が容器1の壁板のみを伝播する場合の伝播経路を十分に長くすることで、土壌サンプルのみを伝播する弾性波よりも容器1の壁板のみを伝播する弾性波の方が受振側振動子7に先に到達するという事態を防止することができる。ただし、実際の計測データからは(2)の場合の弾性波は受振側振動子7に到達していないと推測される。   In condition 3, especially in the case of (2), the velocity V1 of the elastic wave propagating through the soil sample is slowed down, so that the elastic wave propagating only through the wall plate of the container 1 is applied to the receiving-side vibrator 7. It may be possible to reach first. However, if the soil sample is to be measured as in the present invention, α2 is set to 4 cm and the propagation path when the elastic wave propagates only through the wall plate of the container 1 is made sufficiently long. It is possible to prevent a situation in which the elastic wave propagating only through the wall plate of the container 1 reaches the receiving-side vibrator 7 earlier than the elastic wave propagating through only the sample. However, from the actual measurement data, it is presumed that the elastic wave in the case (2) does not reach the vibration receiving side vibrator 7.

以上より、容器1の形状を、高さH:5cm、幅W:12cm、奥行きD:12cmとした。   From the above, the shape of the container 1 was set to height H: 5 cm, width W: 12 cm, and depth D: 12 cm.

1 容器
2 挿入口
3 熱伝導率計測用プローブ
4 第1の振動子取付部
5 第2の振動子取付部
6 発振側振動子
7 受振側振動子
7a 受振側振動子の受振部
8 電流電極
9 電位電極
10a 底板(壁板)
10b,10c,10d 側板(壁板)
11 蓋板(壁板)
19 内部空間
DESCRIPTION OF SYMBOLS 1 Container 2 Insertion port 3 Thermal conductivity measurement probe 4 1st vibrator attachment part 5 2nd vibrator attachment part 6 Oscillation side vibrator 7 Vibration receiving side vibrator 7a Vibration receiving part 8 of vibration receiving side vibrator Current electrode 9 Potential electrode 10a Bottom plate (wall plate)
10b, 10c, 10d Side plate (wall plate)
11 Cover plate (wall plate)
19 Internal space

Claims (3)

土壌サンプルを収容する非導電性の容器と、前記容器の壁板に設けられた挿入口と、前記挿入口から前記土壌サンプルに差し込まれた熱伝導率計測用プローブと、前記容器の対向する一対の壁板に設けられた第1及び第2の振動子取付部と、前記第1の振動子取付部に取り付けられて前記土壌サンプルに接触する発振側振動子と、前記第2の振動子取付部に前記土壌サンプルに向けて取り付けられた受振側振動子と、前記容器の対向する一対の壁板に取り付けられ、前記土壌サンプルに比抵抗計測用電流を流す一対の電流電極と、前記比抵抗計測用電流が流れている状態の前記土壌サンプルの2箇所の電位差を計測する一対の電位電極を備え、前記容器は前記熱伝導率計測用プローブの周囲に少なくとも前記土壌サンプルの熱伝導率の計測に必要な厚さの前記土壌サンプルを存在させる内部空間を有しており、且つ、前記容器は、前記発振側振動子から前記土壌サンプル中を伝播して前記受振側振動子に到達する弾性波の方が、少なくとも経路の一部において前記容器の壁板を伝播して前記受振側振動子に到達する弾性波よりも先に前記受振側振動子に到達する形状を有することを特徴とする土壌サンプルホルダ。   A non-conductive container for storing a soil sample, an insertion opening provided in a wall plate of the container, a thermal conductivity measurement probe inserted into the soil sample from the insertion opening, and a pair of opposing containers First and second vibrator mounting portions provided on the wall plate, an oscillation-side vibrator that is attached to the first vibrator mounting portion and contacts the soil sample, and the second vibrator mounting A receiving-side vibrator attached to the soil sample toward the soil sample; a pair of current electrodes attached to a pair of opposing wall plates of the container; and a specific resistance measurement current flowing through the soil sample; and the specific resistance A pair of potential electrodes for measuring a potential difference between two locations of the soil sample in a state where a current for measurement flows is provided, and the container measures at least the thermal conductivity of the soil sample around the thermal conductivity measurement probe. In The container has an internal space in which the soil sample of a necessary thickness exists, and the container propagates the soil sample from the oscillation-side vibrator and reaches the receiving-side vibrator. The soil sample is characterized in that it has a shape that reaches the receiving-side vibrator earlier than an elastic wave that propagates through the wall plate of the container and reaches the receiving-side vibrator in at least a part of the path. holder. 前記発振側振動子と前記受振側振動子は、超磁歪振動子であることを特徴とする請求項1記載の土壌サンプルホルダ。   The soil sample holder according to claim 1, wherein the oscillation-side vibrator and the receiving-side vibrator are giant magnetostrictive vibrators. 前記受振側振動子の受振部は前記土壌サンプルに接触していることを特徴とする請求項1記載の土壌サンプルホルダ。   The soil sample holder according to claim 1, wherein the vibration receiving portion of the vibration receiving side vibrator is in contact with the soil sample.
JP2009122160A 2009-05-20 2009-05-20 Soil sample holder Expired - Fee Related JP5279081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009122160A JP5279081B2 (en) 2009-05-20 2009-05-20 Soil sample holder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009122160A JP5279081B2 (en) 2009-05-20 2009-05-20 Soil sample holder

Publications (2)

Publication Number Publication Date
JP2010271130A true JP2010271130A (en) 2010-12-02
JP5279081B2 JP5279081B2 (en) 2013-09-04

Family

ID=43419278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009122160A Expired - Fee Related JP5279081B2 (en) 2009-05-20 2009-05-20 Soil sample holder

Country Status (1)

Country Link
JP (1) JP5279081B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278690A (en) * 2013-05-20 2013-09-04 中国石油天然气集团公司 Device and method for applying monitorable axial pressure
CN107356675A (en) * 2017-08-21 2017-11-17 兰州交通大学 Vibration isolator experimental apparatus for capability and method
KR20180077614A (en) * 2016-12-29 2018-07-09 경일대학교산학협력단 Apparatus for evaluating ground condition and measuring method thereof
CN110530666A (en) * 2019-07-08 2019-12-03 武汉磐索地勘科技有限公司 A kind of exploration vibrating static-pressure sampler in situ for different soil properties

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10317358B1 (en) * 2016-03-15 2019-06-11 University Of South Florida Systems and methods for contactless assessment of structures buried in soil

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376186A (en) * 1976-12-17 1978-07-06 Matsushita Electric Ind Co Ltd Production of zinc sulfide fluorescent substance screen
US4149407A (en) * 1978-01-30 1979-04-17 Dames & Moore Apparatus and method for cyclic simple shear testing of soil samples
US4380930A (en) * 1981-05-01 1983-04-26 Mobil Oil Corporation System for transmitting ultrasonic energy through core samples
JPH095269A (en) * 1995-06-22 1997-01-10 Maeda Corp Device and method for measuring water content ratio of sample
JPH10160715A (en) * 1996-11-27 1998-06-19 Taisei Corp Measuring method for shear rigidity of soil
JPH10267809A (en) * 1997-03-26 1998-10-09 Koa Kaihatsu Kk Compaction testing device equipped with specific resistance measuring device
JP2000346819A (en) * 1999-06-08 2000-12-15 Kumagai Gumi Co Ltd Calculating method of bentonite mixing ratio
JP2001235454A (en) * 2000-02-21 2001-08-31 Taisei Corp Consolidometer of soil and its test method
JP2003004712A (en) * 2001-06-22 2003-01-08 Mitsubishi Electric Corp Ultrasonic flaw detector
JP2003035691A (en) * 2001-07-23 2003-02-07 Univ Kansai Apparatus for measuring geological characteristic in rock
JP2005164436A (en) * 2003-12-03 2005-06-23 Railway Technical Res Inst Measuring device and measuring method of electric conductivity
JP2009041269A (en) * 2007-08-09 2009-02-26 Tokyu Construction Co Ltd In-situ ground monitoring method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376186A (en) * 1976-12-17 1978-07-06 Matsushita Electric Ind Co Ltd Production of zinc sulfide fluorescent substance screen
US4149407A (en) * 1978-01-30 1979-04-17 Dames & Moore Apparatus and method for cyclic simple shear testing of soil samples
US4380930A (en) * 1981-05-01 1983-04-26 Mobil Oil Corporation System for transmitting ultrasonic energy through core samples
JPH095269A (en) * 1995-06-22 1997-01-10 Maeda Corp Device and method for measuring water content ratio of sample
JPH10160715A (en) * 1996-11-27 1998-06-19 Taisei Corp Measuring method for shear rigidity of soil
JPH10267809A (en) * 1997-03-26 1998-10-09 Koa Kaihatsu Kk Compaction testing device equipped with specific resistance measuring device
JP2000346819A (en) * 1999-06-08 2000-12-15 Kumagai Gumi Co Ltd Calculating method of bentonite mixing ratio
JP2001235454A (en) * 2000-02-21 2001-08-31 Taisei Corp Consolidometer of soil and its test method
JP2003004712A (en) * 2001-06-22 2003-01-08 Mitsubishi Electric Corp Ultrasonic flaw detector
JP2003035691A (en) * 2001-07-23 2003-02-07 Univ Kansai Apparatus for measuring geological characteristic in rock
JP2005164436A (en) * 2003-12-03 2005-06-23 Railway Technical Res Inst Measuring device and measuring method of electric conductivity
JP2009041269A (en) * 2007-08-09 2009-02-26 Tokyu Construction Co Ltd In-situ ground monitoring method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN4003009595; 佐野吉明、森山茂樹、柏井茂雄: '超音波音速による生型砂の水分測定' 鋳物 Vol.58, No.5, 1986, pp.356-361 *
JPN6013009755; 粕淵辰昭: '土壌の熱伝導率におよぼす水分の影響 : 火山灰土壌,沖積土壌, 洪積土壌について' 日本土壌肥料學雜誌 Vol.43, No.12, 19721225, pp.437-441 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103278690A (en) * 2013-05-20 2013-09-04 中国石油天然气集团公司 Device and method for applying monitorable axial pressure
KR20180077614A (en) * 2016-12-29 2018-07-09 경일대학교산학협력단 Apparatus for evaluating ground condition and measuring method thereof
KR101897656B1 (en) 2016-12-29 2018-09-12 경일대학교산학협력단 Apparatus for evaluating ground condition and measuring method thereof
CN107356675A (en) * 2017-08-21 2017-11-17 兰州交通大学 Vibration isolator experimental apparatus for capability and method
CN107356675B (en) * 2017-08-21 2023-03-28 兰州交通大学 Vibration isolation pad performance experiment device and method
CN110530666A (en) * 2019-07-08 2019-12-03 武汉磐索地勘科技有限公司 A kind of exploration vibrating static-pressure sampler in situ for different soil properties

Also Published As

Publication number Publication date
JP5279081B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5279081B2 (en) Soil sample holder
US4442700A (en) Ultrasonic hydrometer
US9581572B2 (en) Device for determining properties of a medium
AU2007225560B2 (en) Electric field sensor for marine environments
CN101080625B (en) Component measuring instrument
JP6228801B2 (en) Sensing sensor and sensing device
US20220091072A1 (en) Ultrasonic measuring device
US8180582B2 (en) System and method for sensing liquid levels
US10739172B2 (en) Measuring device
JP2017215345A (en) Sensor device
JP2008026099A (en) Resonance vibrator mass detector
BR112014010544B1 (en) surface acoustic wave sensor
JP6088857B2 (en) Sensing sensor
US3080752A (en) Continuous level measuring apparatus
JP2017223699A (en) Sensor device
CN101806776A (en) Acoustic plate mode wave virtual array sensor system and liquid detection method based on same
KR20140089806A (en) Ultrasonic level measurement device
JP2007163369A (en) Biosensor, measuring/analytical system, and examination method therefor
JP2019070630A (en) Elastic surface wave sensor
JP2009068921A (en) Residual quantity measuring device
CN207937014U (en) Ultrasonic flowmeter and its flow sensor
JP2003194615A (en) Method and device for detecting filler
JP5708027B2 (en) Sensing device
JP4369452B2 (en) Concentration sensor and concentration detection device.
JP5239149B2 (en) Surface acoustic wave revolving element and device for measuring substances in solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130517

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5279081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees