JP2010270936A - Tubular flame burner - Google Patents

Tubular flame burner Download PDF

Info

Publication number
JP2010270936A
JP2010270936A JP2009121385A JP2009121385A JP2010270936A JP 2010270936 A JP2010270936 A JP 2010270936A JP 2009121385 A JP2009121385 A JP 2009121385A JP 2009121385 A JP2009121385 A JP 2009121385A JP 2010270936 A JP2010270936 A JP 2010270936A
Authority
JP
Japan
Prior art keywords
combustion chamber
air
introduction path
tubular flame
flame burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009121385A
Other languages
Japanese (ja)
Other versions
JP5462527B2 (en
Inventor
Akishi Kegasa
明志 毛笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2009121385A priority Critical patent/JP5462527B2/en
Publication of JP2010270936A publication Critical patent/JP2010270936A/en
Application granted granted Critical
Publication of JP5462527B2 publication Critical patent/JP5462527B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tubular flame burner which can be inexpensive and compact while demonstrating characteristics of tubular flame more remarkably. <P>SOLUTION: In the tubular flame burner, mixture of fuel gas and air, or the fuel gas and the air, are eccentrically introduced from a slit 3 opened along a tube axial direction of a cylindrical combustion chamber 2 to be turned/burnt. A flow passage width of an introduction passage 5 for introducing the mixture or the fuel gas and the air to the slit 3 is continuously contracted as it approaches to the combustion chamber 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、家庭用、業務用及び産業用の加熱に汎用的に用いることができる管状火炎バーナの構造に関する。   The present invention relates to a structure of a tubular flame burner that can be generally used for heating for home use, commercial use and industrial use.

従来の管状火炎バーナは、円筒状の燃焼室の側面に管軸方向に沿って開口するスリットを設け、そのスリットから燃焼室内面の接線方向に向けて、混合気又は燃料ガスと空気を導入させて旋回燃焼を行い、管状火炎を形成するものであった(例えば、特許文献1参照。)。   A conventional tubular flame burner is provided with a slit that opens along the tube axis direction on the side surface of a cylindrical combustion chamber, and introduces air-fuel mixture or fuel gas and air from the slit toward the tangential direction of the combustion chamber surface. Then, swirl combustion is performed to form a tubular flame (see, for example, Patent Document 1).

特許第3358527号公報Japanese Patent No. 3358527

管状火炎の実用状の利点の1つに、燃焼室の内壁が未燃混合気の層で覆われ、火炎はより中心方向に形成されるため、燃焼室の昇温が抑えられ、バーナタイル等の耐火材料で覆わなくても金属で燃焼室を形成できる点がある。従って、安価かつ輸送中の落下や振動等にも強いバーナを製造できる。   One of the practical advantages of tubular flames is that the inner wall of the combustion chamber is covered with a layer of unburned mixture, and the flame is formed more centrally, so the temperature rise in the combustion chamber is suppressed, burner tiles, etc. Even if it is not covered with a refractory material, the combustion chamber can be formed of metal. Therefore, it is possible to manufacture a burner that is inexpensive and resistant to dropping, vibration, and the like during transportation.

上述の燃焼室昇温を抑え、かつ旋回燃焼を行うためには、燃焼室内面の接線方向から混合気又は燃料ガスと空気を導入するのが必ずしも最上の方策ではない。
また、混合気又は燃焼ガスと空気の流量分布を均一化するために長い導入路を形成することは、バーナ全体をコンパクトかつ安価に製造する上で問題があった。
In order to suppress the above-described temperature increase in the combustion chamber and perform swirl combustion, it is not always the best policy to introduce air-fuel mixture or fuel gas and air from the tangential direction of the inner surface of the combustion chamber.
In addition, forming a long introduction path in order to make the flow rate distribution of the air-fuel mixture or combustion gas and air uniform has a problem in manufacturing the entire burner in a compact and inexpensive manner.

本発明は、かかる点に着目してなされたものであり、その目的は、管状火炎の特徴をより顕著に発揮させると共に安価かつコンパクトな管状火炎バーナを提供する点にある。   The present invention has been made paying attention to such a point, and an object thereof is to provide a tubular flame burner that is inexpensive and compact while making the characteristics of the tubular flame more remarkable.

この目的を達成するために、本発明に係る管状火炎バーナの特徴構成は、円筒状の燃焼室の管軸方向に沿って開口されたスリットから、燃料ガスと空気の混合気又は燃料ガスと空気を偏心導入して旋回燃焼させる管状火炎バーナにおいて、
前記混合気又は燃料ガスと空気を前記スリットに導く導入路の流路幅が、前記燃焼室に接近する側ほど連続的に縮小されている点にある。
In order to achieve this object, the characteristic configuration of the tubular flame burner according to the present invention is that a mixture of fuel gas and air or a fuel gas and air mixture is formed from a slit opened along the tube axis direction of a cylindrical combustion chamber. In the tubular flame burner that introduces eccentricity and swirls and burns,
The flow path width of the introduction path for guiding the air-fuel mixture or fuel gas and air to the slit is continuously reduced toward the side closer to the combustion chamber.

本特徴構成によれば、燃料ガスと空気の混合気又は燃料ガスと空気(以下、混合気等と略称する場合がある)をスリットに導く導入路の流路幅が下流側に向かって縮小することで、スリットの開口幅と同一の一定幅の導入路に比較して、導入路の上流側ほど流路幅が大きくなり、圧損を小さくすることができる。しかも、導入路の流路幅は、連続的に縮小されているので、不連続で縮小させるものと比較しても、圧損を小さくすることができる。従って、本発明により、圧力の低い燃焼用ブロア、ファンを使用できることになり、省エネルギーかつ低コストを実現できる。また、スリットにおける流量分布や流れの方向の指向性も導入路の流路断面において同様に留めることができる。   According to this characteristic configuration, the flow path width of the introduction path that guides the mixture of the fuel gas and air or the fuel gas and air (hereinafter sometimes abbreviated as the mixture) to the slit is reduced toward the downstream side. Thus, as compared with an introduction path having a constant width equal to the opening width of the slit, the flow path width increases toward the upstream side of the introduction path, and the pressure loss can be reduced. In addition, since the flow path width of the introduction path is continuously reduced, the pressure loss can be reduced as compared with the case where the width is reduced discontinuously. Therefore, according to the present invention, a low-pressure combustion blower and fan can be used, and energy saving and low cost can be realized. Further, the flow rate distribution in the slit and the directivity of the flow direction can be similarly maintained in the cross section of the introduction path.

本発明に係る管状火炎バーナの特徴構成は、円筒状の燃焼室の管軸方向に沿って開口されたスリットから、燃料ガスと空気の混合気又は燃料ガスと空気を偏芯導入して旋回燃焼させる管状火炎バーナにおいて、
前記混合気又は燃料ガスと空気を前記スリットに導く導入路を備え、前記スリットから前記混合気又は燃料ガスと空気を、前記燃焼室と同心でかつ前記燃焼室よりも小径である仮想円筒の接線方向又はそれよりも小角度の方向から前記燃焼室に導入させている点にある。
The characteristic structure of the tubular flame burner according to the present invention is that swirl combustion is performed by introducing an eccentric mixture of fuel gas and air or a mixture of fuel gas and air from a slit opened along the tube axis direction of a cylindrical combustion chamber. In the tubular flame burner to let
A tangential line of a virtual cylinder having an introduction path for guiding the air-fuel mixture or fuel gas and air to the slit, and the air-fuel mixture or fuel gas and air from the slit being concentric with the combustion chamber and having a smaller diameter than the combustion chamber In this point, the combustion chamber is introduced from a direction or a direction at a smaller angle.

本特徴構成によれば、燃焼室への混合気等の導入方向を燃焼室内壁の接線方向ではなく、それよりも小径の仮想円筒の接線方向又はそれよりも小角度とすることにより、燃焼室内壁内側の未燃混合気の層をより厚く確実に形成することができる。ここで、燃焼室に対する導入路の接続位置から混合気等を導入させる導入方向に延長させた直線と、その直線に対する仮想円筒の接点を通る法線との成す角度が90度よりも小さな角度として、スリットから前記混合気又は燃料ガスと空気を燃焼室に導入させることにより、スリットから混合気又は燃料ガスと空気を仮想円筒の接線方向よりも小角度の方向から燃焼室に導入させている。仮想円筒をあまりに小径に取りすぎると、何かの拍子に仮想円筒と燃焼室内壁の間に火炎が形成される可能性が生じるので、極端に小さな径を取ることはできない。混合気等の導入角度にもよるが、燃焼室内径の70〜95%程度が適当である。   According to this characteristic configuration, the introduction direction of the air-fuel mixture or the like to the combustion chamber is not the tangential direction of the combustion chamber wall, but the tangential direction of the virtual cylinder having a smaller diameter or a smaller angle than that. It is possible to reliably form a thicker layer of the unburned mixture inside the wall. Here, the angle formed by the straight line extended in the introduction direction for introducing the air-fuel mixture from the connection position of the introduction path to the combustion chamber and the normal passing through the contact point of the virtual cylinder with respect to the straight line is smaller than 90 degrees. By introducing the air-fuel mixture or fuel gas and air from the slit into the combustion chamber, the air-fuel mixture or fuel gas and air are introduced from the slit into the combustion chamber from a direction at a smaller angle than the tangential direction of the virtual cylinder. If the virtual cylinder is made too small, a flame may be formed between the virtual cylinder and the combustion chamber wall at any time, so it is not possible to take an extremely small diameter. Depending on the introduction angle of the air-fuel mixture or the like, about 70 to 95% of the combustion chamber diameter is appropriate.

本発明に係る管状火炎バーナの更なる特徴構成は、前記導入路が板材を曲げて成型されている点にある。   A further characteristic configuration of the tubular flame burner according to the present invention is that the introduction path is formed by bending a plate material.

従来の管状火炎バーナは、例えば、パイプ等の円筒から接線方向に広がる直線上の混合気等の導入路を取り付けたものであったが、導入路が長く四方に張り出して、バーナ全体として嵩高いものであった。本特徴構成では、板材の板金加工によってバーナを安価に成型するとともに、例えば、導入路を燃焼室の外周部位に巻き付けるように曲げることによって、燃焼室と導入路を一体としてみたときに、コンパクトに構成することができる。   A conventional tubular flame burner has, for example, a straight air-fuel mixture that extends in a tangential direction from a cylinder such as a pipe, but the introduction path is long and extends in all directions, and the entire burner is bulky. It was a thing. In this feature configuration, the burner is molded at low cost by sheet metal processing of the plate material, and when the combustion chamber and the introduction path are integrated, for example, by bending the introduction path around the outer periphery of the combustion chamber, it is compact. Can be configured.

本発明に係る管状火炎バーナの更なる特徴構成は、前記導入路が、円弧状に形成されて、前記混合気又は前記燃焼ガスと前記空気を隔てる隔壁を兼用している点にある。   A further characteristic configuration of the tubular flame burner according to the present invention is that the introduction path is formed in an arc shape and also serves as a partition wall that separates the air-fuel mixture or the combustion gas from the air.

上述のように、導入路を燃焼室の外周部位に巻き付けるように構成する場合、最も簡便なのは、円弧を用いることである。これにより、専用の金型を用いなくても、ロールによって導入路を形成することが可能になる。   As described above, when the introduction path is wound around the outer peripheral portion of the combustion chamber, the simplest is to use an arc. Accordingly, the introduction path can be formed by the roll without using a dedicated mold.

本発明に係る管状火炎バーナの更なる特徴構成は、前記燃焼室と前記導入路の一部を板材で一体的に成型した一体成型体の複数を前記燃焼室の軸心を中心として巴状に組み合わせて管状火炎バーナ本体が形成されている点にある。   A further characteristic configuration of the tubular flame burner according to the present invention is that a plurality of integrally molded bodies obtained by integrally molding the combustion chamber and a part of the introduction path with a plate material are formed in a bowl shape around the axis of the combustion chamber. In combination, a tubular flame burner body is formed.

板材にて導入路を形成する場合、さらに進んで燃焼室壁まで一体に成型することが便利であり、安価にバーナを製造することができる。また、比較的薄い板材を使用した場合、板の断面を円弧形状に加工するまでもなく、単に垂直に切断した断面でも、旋回流を形成する上でほとんど問題にならないので、二次加工を省略することができる。   When the introduction path is formed of a plate material, it is convenient to go further and integrally form the combustion chamber wall, and the burner can be manufactured at low cost. If a relatively thin plate material is used, it is not necessary to process the cross section of the plate into an arc shape, and even a cross section cut perpendicularly causes no problem in forming a swirling flow, so secondary processing is omitted. can do.

本発明に係る管状火炎バーナの更なる特徴構成は、前記導入路又は前記燃焼室と前記導入路を形成する板材において前記燃焼室と反対側の端部で、前記導入路での流体の流れ方向と垂直な方向に流体を流す通路の一部を構成している点にある。   A further characteristic configuration of the tubular flame burner according to the present invention is the fluid flow direction in the introduction path at the end opposite to the combustion chamber in the introduction path or the plate member forming the combustion chamber and the introduction path. It is in the point which comprises a part of channel | path which flows a fluid in a perpendicular | vertical direction.

板材にて、導入路又は燃焼室と導入路を構成する場合、導入路での流体の流れ方向と垂直な方向に流体を流す通路を混合気又は燃料ガスと空気のいわゆるヘッダーとし、さらにヘッダーまで一体に成型すれば、一層安価かつ簡便にバーナを製造することができる。管状火炎バーナの場合、一般にヘッダーを用いてその垂直方向にある導入路に混合気等を流量分布を抑えて供給する必要があるので、導入路での流体の流れ方向と垂直な方向に流体を流す通路をヘッダーとして一体成型することがより有用なものとなる。   When the introduction path or the combustion chamber and the introduction path are configured by the plate material, a passage through which the fluid flows in a direction perpendicular to the flow direction of the fluid in the introduction path is a so-called header of air-fuel mixture or fuel gas and air, and further to the header If molded integrally, the burner can be manufactured more inexpensively and easily. In the case of a tubular flame burner, it is generally necessary to supply an air-fuel mixture or the like to the introduction path in the vertical direction by using a header while suppressing the flow distribution, so that the fluid is supplied in a direction perpendicular to the fluid flow direction in the introduction path. It is more useful to integrally mold the flow passage as a header.

本発明に係る管状火炎バーナの更なる特徴構成は、前記導入路の途中に、前記管軸方向及び同一流体の導入路間の流量分布を均一化するための絞り構造を備えている点にある。   A further characteristic configuration of the tubular flame burner according to the present invention is that a throttle structure for equalizing the flow rate distribution between the pipe axis direction and the same fluid introduction path is provided in the middle of the introduction path. .

導入管の流量分布の均一化は、一次的にはヘッダーを用いて行われるが、途中に絞り部分を設けて圧力損失を取ることで、二次的にさらに均一な流量分布を実現することができる。また、燃料ガス等の流量を規制して最大流量を決めることも可能になる。   Evenly, the flow distribution in the inlet pipe is made uniform using a header. However, a more uniform flow distribution can be realized secondarily by providing a throttle part in the middle and taking pressure loss. it can. It is also possible to determine the maximum flow rate by regulating the flow rate of fuel gas or the like.

第1実施形態における管状火炎バーナの斜視図The perspective view of the tubular flame burner in 1st Embodiment 第1実施形態における管状火炎バーナの管軸方向での断面図Sectional drawing in the pipe-axis direction of the tubular flame burner in 1st Embodiment 第2実施形態における管状火炎バーナの管軸方向での断面図Sectional drawing in the pipe-axis direction of the tubular flame burner in 2nd Embodiment 第2実施形態における管状火炎バーナの管軸方向での断面図Sectional drawing in the pipe-axis direction of the tubular flame burner in 2nd Embodiment 第3実施形態における管状火炎バーナの管軸方向での断面図Sectional drawing in the pipe-axis direction of the tubular flame burner in 3rd Embodiment 第4実施形態における管状火炎バーナの管軸方向での断面図Sectional drawing in the pipe-axis direction of the tubular flame burner in 4th Embodiment 第4実施形態における管状火炎バーナの管軸方向での断面図Sectional drawing in the pipe-axis direction of the tubular flame burner in 4th Embodiment 第5実施形態における管状火炎バーナの管軸方向での断面図Sectional drawing in the pipe-axis direction of the tubular flame burner in 5th Embodiment

本発明に係る管状火炎バーナの実施形態を図面に基づいて説明する。
〔第1実施形態〕
図1及び図2は、本発明に係る管状火炎バーナの第1実施形態を示すものである。図1は、本発明に係る管状火炎バーナの斜視図であり、図2は、本発明に係る管状火炎バーナの管軸方向での断面図である。ちなみに、図中白抜き矢印は、管状火炎を例示している。
管状火炎バーナ1は、円筒状の燃焼室2と、燃焼室2の側面に管軸方向(図1中上下方向)に沿って開口するスリット3とを備え、スリット3から燃焼室2内面の接線方向に向けて燃料ガス(例えば天然ガス等の燃料ガス)と空気の混合気を偏心導入させて旋回燃焼させている。燃焼室2の管軸方向の両端はフランジ(図示省略)で閉塞されており気密が保たれているが、一端のみ(図1中上方側)燃焼ガスの通路として燃焼室2の内径と同径の円形状の開口部が同心で開口されている。
An embodiment of a tubular flame burner according to the present invention will be described with reference to the drawings.
[First Embodiment]
1 and 2 show a first embodiment of a tubular flame burner according to the present invention. FIG. 1 is a perspective view of a tubular flame burner according to the present invention, and FIG. 2 is a cross-sectional view in the tube axis direction of the tubular flame burner according to the present invention. Incidentally, the white arrow in the figure illustrates a tubular flame.
The tubular flame burner 1 includes a cylindrical combustion chamber 2 and a slit 3 opened along the tube axis direction (vertical direction in FIG. 1) on the side surface of the combustion chamber 2, and the tangent line from the slit 3 to the inner surface of the combustion chamber 2. A mixture of fuel gas (e.g., fuel gas such as natural gas) and air is eccentrically introduced toward the direction to perform swirl combustion. Both ends in the tube axis direction of the combustion chamber 2 are closed by flanges (not shown) and are kept airtight, but only one end (upper side in FIG. 1) has the same diameter as the inner diameter of the combustion chamber 2 as a passage for combustion gas. These circular openings are concentrically opened.

管状火炎バーナ1は、スリット3にて燃料ガスと空気の混合気を燃焼室2に導入させるために、燃料ガスと空気の混合気を受け入れるヘッダー4と、ヘッダー4の混合気をスリット3に導く導入路5とを備えている。ヘッダー4、導入路5及びスリット3の夫々は、燃焼室2の底部を除く燃焼室2の管軸方向の略全長に亘って配設されている。これにより、後述するが、管軸方向に直交する方向での導入路5の流路幅を燃焼室2に接近する側ほど連続的に縮小させることによる圧損が小さくなるという利点を、燃焼室2の管軸方向の略全長に亘って得ることができ、圧損の低減を効果的に図ることができる。ここで、管状火炎バーナ1の燃焼室について、管状火炎バーナ1内の燃焼空間(燃焼室2)だけでなく、管状火炎バーナ1よりも燃焼ガスの流動方向の下流側の火炎が存在する空間(例えば、図1中鎖線にて囲む空間)をも含めて、管状火炎バーナ1の燃焼室としている。   The tubular flame burner 1 introduces a mixture of fuel gas and air into the combustion chamber 2 through the slit 3, and introduces a header 4 that receives the mixture of fuel gas and air into the slit 3. And an introduction path 5. Each of the header 4, the introduction path 5, and the slit 3 is disposed over substantially the entire length in the tube axis direction of the combustion chamber 2 excluding the bottom of the combustion chamber 2. Thereby, as will be described later, the advantage that the pressure loss due to the continuous reduction of the flow path width of the introduction path 5 in the direction orthogonal to the tube axis direction toward the combustion chamber 2 becomes smaller is the combustion chamber 2. Thus, the pressure loss can be effectively reduced. Here, with respect to the combustion chamber of the tubular flame burner 1, not only the combustion space (combustion chamber 2) in the tubular flame burner 1, but also the space (where the flame on the downstream side in the flow direction of the combustion gas exists from the tubular flame burner 1) For example, the combustion chamber of the tubular flame burner 1 includes a space surrounded by a chain line in FIG.

ヘッダー4は、燃焼室2の管軸方向に沿って延びる円筒状に形成されており、燃焼室2の管軸方向(燃焼室2における燃焼ガスの流動方向と同一方向)に混合気を通流させながら混合気を受け入れる構成となっている。導入路5は、ヘッダー4での混合気の通流方向と直交する方向に混合気を通流させて燃焼室2の側壁に形成されたスリット3に向けて混合気を通流させる構成となっている。そして、管軸方向に直交する方向での導入路5の流路幅が、燃焼室2に接近する側ほど連続的に縮小されている。つまり、導入路5は、燃焼室2側の端部の流路幅がスリット3の開口幅と同等となるように構成されており、燃焼室2から離れるほど流路幅が大きくなるように構成されている。これにより、流路幅をスリット3の開口幅と同等の一定幅とする導入路に比べて、圧損が小さくなる。また、流路幅をスリット3の開口幅と同等の一定幅とする導入路では、一部にへこみ等の変形があると流量分布が大きく崩れることがあったのに比べて、圧損が最も狭い部分で決まるようになり、途中の変形に流量分布が影響され難いという特長もある。また、ヘッダー4や導入路5での混合気の流量については、燃焼用ブロア、ファン等の回転速度を調整する等により混合気の流量を調整自在に構成されており、燃焼室2での燃焼状態が所望の燃焼状態となるようにヘッダー4や導入路5での混合気の流量が調整されている。   The header 4 is formed in a cylindrical shape extending along the tube axis direction of the combustion chamber 2, and allows the air-fuel mixture to flow in the tube axis direction of the combustion chamber 2 (the same direction as the flow direction of the combustion gas in the combustion chamber 2). The air-fuel mixture is accepted while being The introduction path 5 has a configuration in which the air-fuel mixture flows in a direction perpendicular to the air-flow direction of the air-fuel mixture in the header 4 and the air-fuel mixture flows toward the slit 3 formed in the side wall of the combustion chamber 2. ing. The flow path width of the introduction path 5 in the direction orthogonal to the tube axis direction is continuously reduced toward the side closer to the combustion chamber 2. That is, the introduction path 5 is configured such that the flow path width at the end on the combustion chamber 2 side is equal to the opening width of the slit 3, and the flow path width increases as the distance from the combustion chamber 2 increases. Has been. As a result, the pressure loss is smaller than that of the introduction path having a constant width equivalent to the opening width of the slit 3. In addition, in the introduction path in which the flow path width is a constant width equivalent to the opening width of the slit 3, the pressure loss is the narrowest compared to the case where the flow distribution may be greatly collapsed if there is a deformation such as a dent in part. There is also a feature that the flow rate distribution is hardly influenced by deformation in the middle. Further, the flow rate of the air-fuel mixture in the header 4 and the introduction path 5 is configured so that the flow rate of the air-fuel mixture can be adjusted by adjusting the rotational speed of a combustion blower, fan, etc., and combustion in the combustion chamber 2 The flow rate of the air-fuel mixture in the header 4 and the introduction path 5 is adjusted so that the state becomes a desired combustion state.

燃焼室2は、ある程度耐熱性のあるステンレス等の金属管で構成され、導入路5は、金属板にて製作されている。ヘッダー4は、ガス管等の金属管を基にして製作されている。導入路5の金属板の素材に特に制限はなく、塗装鋼板、アルミ亜鉛メッキ鋼板、ステンレス板、アルミ板等が使用可能である。   The combustion chamber 2 is made of a metal tube such as stainless steel having a certain degree of heat resistance, and the introduction path 5 is made of a metal plate. The header 4 is manufactured based on a metal tube such as a gas tube. There is no restriction | limiting in particular in the raw material of the metal plate of the introduction path 5, A coated steel plate, an aluminum galvanized steel plate, a stainless plate, an aluminum plate, etc. can be used.

この第1実施形態では、燃料ガスと空気の混合気をヘッダー4、導入路5、スリット3により燃焼室2に導入させているが、燃料ガスと空気を各別に燃焼室2に導入させることも可能である。つまり、燃料ガスを燃焼室2に導入させるための燃料ガス専用のヘッダー、導入路、スリットを設けるとともに、空気を燃焼室2に導入させるための空気専用のヘッダー、導入路、スリットを設ける。
ヘッダー4、導入路5、スリット3の数については、2つに限るものではなく、1つ以上であれば適宜変更することができる。また、上述の如く、燃料ガスと空気を各別に燃焼室2に導入させるものでは、少なくとも燃料ガス専用のものと空気専用のものとを1つずつ設けていればよく、2つ以上であれば適宜変更することができる。
In this first embodiment, the mixture of fuel gas and air is introduced into the combustion chamber 2 by the header 4, the introduction path 5, and the slit 3, but it is also possible to introduce the fuel gas and air into the combustion chamber 2 separately. Is possible. In other words, a header, introduction path, and slit dedicated to fuel gas for introducing the fuel gas into the combustion chamber 2 are provided, and a header, introduction path, and slit dedicated to air for introducing air into the combustion chamber 2 are provided.
The number of headers 4, introduction paths 5, and slits 3 is not limited to two, and can be changed as appropriate as long as it is one or more. In addition, as described above, in order to introduce the fuel gas and air into the combustion chamber 2 separately, it is sufficient to provide at least one for the fuel gas and one for the air. It can be changed as appropriate.

〔第2実施形態〕
図3及び図4は、本発明に係る管状火炎バーナの第2実施形態を示すものであり、本発明に係る管状火炎バーナの管軸方向での断面図を示している。この第2実施形態は、上記第1実施形態において、スリット3から燃焼室2に導入させる混合気の導入方向についての別実施形態である。その他の構成については、上記第1実施形態と同様であるので、その説明は省略する。
[Second Embodiment]
3 and 4 show a second embodiment of the tubular flame burner according to the present invention, and show a cross-sectional view in the tube axis direction of the tubular flame burner according to the present invention. This 2nd Embodiment is another embodiment about the introduction direction of the air-fuel | gaseous mixture introduce | transduced into the combustion chamber 2 from the slit 3 in the said 1st Embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.

スリット3から燃焼室2に導入させる混合気を、燃焼室2と同心でかつ燃焼室2よりも小径である仮想円筒6の接線方向又はそれよりも小角度の方向から燃焼室2に導入させている。この第2実施形態では、導入路5の流路幅については、スリット3の開口幅と同等の一定幅としている。   The air-fuel mixture introduced into the combustion chamber 2 from the slit 3 is introduced into the combustion chamber 2 from the tangential direction of the virtual cylinder 6 concentric with the combustion chamber 2 and having a smaller diameter than the combustion chamber 2 or from a direction at a smaller angle. Yes. In the second embodiment, the flow path width of the introduction path 5 is a constant width equivalent to the opening width of the slit 3.

図3では、燃焼室2に対する導入路5の接続位置(導入路5の外側の内壁)から混合気を導入させる導入方向に延長させた直線Pが仮想円筒6の接線となるようにスリット3及び導入路5が配置されている。これにより、混合気を仮想円筒6の接線方向に向かって燃焼室2に導入させている。仮想円筒6は、燃焼室2と同心で且つ燃焼室2の内径の70〜95%程度の内径を有している。   In FIG. 3, the slit 3 and the straight line P extended in the introduction direction for introducing the air-fuel mixture from the connection position of the introduction path 5 to the combustion chamber 2 (inner wall outside the introduction path 5) are tangent to the virtual cylinder 6. An introduction path 5 is arranged. Thereby, the air-fuel mixture is introduced into the combustion chamber 2 in the tangential direction of the virtual cylinder 6. The virtual cylinder 6 is concentric with the combustion chamber 2 and has an inner diameter of about 70 to 95% of the inner diameter of the combustion chamber 2.

図4では、燃焼室2に対する導入路5の接続位置(導入路5の外側の内壁)から混合気を導入させる導入方向に延長させた直線Pと、その直線Pに対する仮想円筒6の接点を通る法線Hとの成す角度αが90度よりも小さな角度になるようにスリット3及び導入路5が配置されている。これにより、混合気を仮想円筒6の接線方向よりも小角度の方向から燃焼室2に導入させている。仮想円筒6の内径は図3と同様としている。   In FIG. 4, a straight line P extending in the introduction direction for introducing the air-fuel mixture from the connection position of the introduction path 5 to the combustion chamber 2 (the inner wall outside the introduction path 5) and the contact point of the virtual cylinder 6 with respect to the straight line P are passed. The slit 3 and the introduction path 5 are arranged so that the angle α formed with the normal line H is smaller than 90 degrees. Thereby, the air-fuel mixture is introduced into the combustion chamber 2 from a direction at a smaller angle than the tangential direction of the virtual cylinder 6. The inner diameter of the virtual cylinder 6 is the same as in FIG.

この第2実施形態でも、上記第1実施形態と同様に、ヘッダー4、導入路5及びスリット3の夫々は、燃焼室2の底部を除く燃焼室2の管軸方向の略全長に亘って配設されている。そして、ヘッダー4は、燃焼室2の管軸方向に沿って延びる円筒状に形成されており、燃焼室2の管軸方向(燃焼室2における燃焼ガスの流動方向と同一方向)に混合気を通流させながら混合気を受け入れる構成となっている。また、導入路5は、ヘッダー4での混合気の通流方向と直交する方向に混合気を通流させる構成となっている。   Also in the second embodiment, as in the first embodiment, each of the header 4, the introduction path 5, and the slit 3 is arranged over substantially the entire length in the tube axis direction of the combustion chamber 2 excluding the bottom of the combustion chamber 2. It is installed. The header 4 is formed in a cylindrical shape extending along the tube axis direction of the combustion chamber 2, and mixes the air-fuel mixture in the tube axis direction of the combustion chamber 2 (the same direction as the flow direction of the combustion gas in the combustion chamber 2). The air-fuel mixture is received while flowing. In addition, the introduction path 5 is configured to flow the air-fuel mixture in a direction orthogonal to the air-flow direction of the air-fuel mixture in the header 4.

〔第3実施形態〕
図5は、本発明に係る管状火炎バーナの第3実施形態を示すものであり、本発明に係る管状火炎バーナの管軸方向での断面図を示している。この第3実施形態は、上記第1実施形態において、導入路5を形成するための構成についての別実施形態であり、その他の構成については、上記第1実施形態と同様であるので、その説明は省略する。
[Third Embodiment]
FIG. 5 shows a third embodiment of the tubular flame burner according to the present invention, and shows a sectional view in the tube axis direction of the tubular flame burner according to the present invention. The third embodiment is another embodiment of the configuration for forming the introduction path 5 in the first embodiment, and the other configurations are the same as those of the first embodiment. Is omitted.

導入路5について、一対の板材の夫々を曲げて円弧状の導入路5が形成されている。これにより、同一長さの導入路5であっても、導入路5とヘッダー4も含むバーナ全体の寸法を小さくできる。   About the introduction path 5, each of a pair of board | plate material is bent, and the circular-arc-shaped introduction path 5 is formed. Thereby, even if it is the introduction path 5 of the same length, the dimension of the whole burner also including the introduction path 5 and the header 4 can be made small.

ちなみに、図5では、導入路5について、上記第1実施形態と同様に、導入路5の流路幅が、燃焼室2に接近する側ほど連続的に縮小されているが、この構成に代えて、上記第2実施形態における構成を採用することもできる。つまり、スリット3の開口幅と同等の一定幅とし、スリット3から燃焼室2に導入させる混合気を、燃焼室2と同心でかつ燃焼室2よりも小径である仮想円筒6の接線方向又はそれよりも小角度の方向から燃焼室2に導入させるように構成することもできる。   Incidentally, in FIG. 5, as for the introduction path 5, the flow path width of the introduction path 5 is continuously reduced toward the side closer to the combustion chamber 2, as in the first embodiment. Thus, the configuration in the second embodiment can also be adopted. That is, the air-fuel mixture introduced into the combustion chamber 2 from the slit 3 has a constant width equivalent to the opening width of the slit 3, or the tangential direction of the virtual cylinder 6 that is concentric with the combustion chamber 2 and smaller in diameter than the combustion chamber 2. It can also be configured to be introduced into the combustion chamber 2 from a smaller angle direction.

〔第4実施形態〕
図6及び図7は、本発明に係る管状火炎バーナの第4実施形態を示すものであり、本発明に係る管状火炎バーナの管軸方向での断面図を示している。この第4実施形態は、上記第1実施形態において、燃焼室2、導入路5及びヘッダー4を形成するための構成についての別実施形態であり、その他の構成については、上記第1実施形態と同様であるので、その説明は省略する。
[Fourth Embodiment]
6 and 7 show a fourth embodiment of the tubular flame burner according to the present invention, and show a cross-sectional view in the tube axis direction of the tubular flame burner according to the present invention. This 4th Embodiment is another embodiment about the structure for forming the combustion chamber 2, the introduction path 5, and the header 4 in the said 1st Embodiment, About another structure, it is the said 1st Embodiment. Since it is the same, the description is abbreviate | omitted.

図6では、燃焼室2の一部、導入路5及びヘッダー4を板材で一体的に成型した一体成型体7の複数(例えば2つ)を燃焼室2の軸心を中心として巴状に組み合わせて管状火炎バーナ本体を形成している。燃焼室2の一部及び導入路5を成型した一体成型体7において燃焼室2と反対側の端部に、導入路5での混合気の流れ方向と垂直な方向(管軸方向)に混合気を通す通路をヘッダー4とし、燃焼室2の一部及び導入路5に加えて、ヘッダー4も一体的に成型されている。これにより、燃焼室2の一部、導入路5及びヘッダー4を形成した一体成型体7を巴状に組み合わせるだけで管状火炎バーナ1を製造することができる。   In FIG. 6, a plurality of (for example, two) integrally molded bodies 7 obtained by integrally molding a part of the combustion chamber 2, the introduction path 5, and the header 4 with a plate material are combined in a bowl shape around the axis of the combustion chamber 2. A tubular flame burner body. In the integrally molded body 7 in which a part of the combustion chamber 2 and the introduction path 5 are molded, mixing is performed at the end opposite to the combustion chamber 2 in a direction (tube axis direction) perpendicular to the flow direction of the air-fuel mixture in the introduction path 5. The passage through which air passes is referred to as a header 4, and in addition to a part of the combustion chamber 2 and the introduction path 5, the header 4 is also integrally formed. Thereby, the tubular flame burner 1 can be manufactured only by combining the integral molding 7 which formed a part of combustion chamber 2, the introduction path 5, and the header 4 in the shape of a bowl.

一体成型体7は、板材の両端部から円弧状に曲げて接近させて燃焼室2の壁部を成型し、その燃焼室2の壁部の端部から連続して径方向外側に延びる円弧状の通路を形成して導入部5を成型し、その導入路5の端部に連続して円形の中空空間を形成してヘッダー4を成型している。これにより、導入路5は、上記第3実施形態と同様に、板材を曲げて円弧状に形成されており、複数の一体成型体7の夫々は、略同一形状に形成されている。板材は、適宜溶接等で接続することが可能である。また、板材(金属板)の材質は、ある程度の耐熱材料(例えばステンレス鋼、アルミ亜鉛メッキ鋼板等)が望ましい。   The integrally molded body 7 is bent in an arc shape from both end portions of the plate material to form the wall portion of the combustion chamber 2, and the arc shape extends continuously outward in the radial direction from the end portion of the wall portion of the combustion chamber 2. The introduction portion 5 is formed by forming the passage 4 and the header 4 is formed by forming a circular hollow space continuously at the end of the introduction passage 5. Thereby, the introduction path 5 is formed in an arc shape by bending the plate material, similarly to the third embodiment, and each of the plurality of integrally molded bodies 7 is formed in substantially the same shape. The plate materials can be appropriately connected by welding or the like. The material of the plate material (metal plate) is preferably a certain amount of heat resistant material (for example, stainless steel, aluminum galvanized steel plate, etc.).

図7では、一体成型体7は、燃焼室2の一部及び導入路5を板材で一体的に成型した一体成型体7の複数(例えば2つ)を組み合わせて管状火炎バーナ本体を形成している。一体成型体7は、板材の両端部から円弧状に曲げて接近させて燃焼室2の壁部を成型し、その燃焼室2の壁部の端部から連続して径方向外側に延びる円弧状の通路を形成して導入部5を成型している。金属管等にて成型されたヘッダー4に一体成型体7を取り付けて一体的な部材として、その複数の部材を燃焼室2の軸心を中心として巴状に組み合わせて管状火炎バーナ本体を形成している。   In FIG. 7, the integrally molded body 7 forms a tubular flame burner body by combining a plurality of (for example, two) integrally molded bodies 7 in which a part of the combustion chamber 2 and the introduction path 5 are integrally molded with a plate material. Yes. The integrally molded body 7 is bent in an arc shape from both end portions of the plate material to form the wall portion of the combustion chamber 2, and the arc shape extends continuously outward in the radial direction from the end portion of the wall portion of the combustion chamber 2. These passages are formed to mold the introduction part 5. A tubular flame burner body is formed by attaching the integrally molded body 7 to the header 4 molded with a metal tube or the like as an integral member, and combining the plurality of members in a bowl shape around the axis of the combustion chamber 2. ing.

また、図7では、円弧状の導入路5の途中に、管軸方向及び複数の導入路5間の流量分布を均一化するための絞り構造8を備えている。図7では、ヘッダー4の側壁部に形成された管軸方向に沿って開口するスリット(細長い角穴)にて絞り構造8が構成されている。例えば、管軸方向に多数並べた丸穴にて絞り構造8を構成してもよい。更に、導入路5の最狭部を絞り構造8に兼用することもできる。また、多孔板や金網等で圧損を付けることでも絞り構造8とすることもできる。絞り構造8の配置位置については、ヘッダー4から燃焼室2に至る導入路5の途中であれば適宜変更が可能である。   In FIG. 7, a throttle structure 8 is provided in the middle of the arc-shaped introduction path 5 to make the flow rate distribution between the pipe axis direction and the plurality of introduction paths 5 uniform. In FIG. 7, the diaphragm structure 8 is configured by slits (elongated square holes) formed in the side wall portion of the header 4 and opening along the tube axis direction. For example, the throttle structure 8 may be configured by a large number of round holes arranged in the tube axis direction. Furthermore, the narrowest part of the introduction path 5 can also be used as the throttle structure 8. Moreover, the diaphragm structure 8 can also be obtained by applying pressure loss with a perforated plate or a metal mesh. The arrangement position of the throttle structure 8 can be changed as appropriate in the middle of the introduction path 5 from the header 4 to the combustion chamber 2.

ちなみに、図6及び図7では、導入路5について、上記第1実施形態と同様に、導入路5の流路幅が、燃焼室2に接近する側ほど連続的に縮小されているが、この構成に代えて、上記第2実施形態における構成を採用することもできる。つまり、スリット3の開口幅と同等の一定幅とし、スリット3から燃焼室2に導入させる混合気を、燃焼室2と同心でかつ燃焼室2よりも小径である仮想円筒6の接線方向又はそれよりも小角度の方向から燃焼室2に導入させるように構成することもできる。   Incidentally, in FIG. 6 and FIG. 7, as for the introduction path 5, the flow path width of the introduction path 5 is continuously reduced toward the side closer to the combustion chamber 2, as in the first embodiment. Instead of the configuration, the configuration in the second embodiment may be employed. That is, the air-fuel mixture introduced into the combustion chamber 2 from the slit 3 has a constant width equivalent to the opening width of the slit 3, or the tangential direction of the virtual cylinder 6 that is concentric with the combustion chamber 2 and smaller in diameter than the combustion chamber 2. It can also be configured to be introduced into the combustion chamber 2 from a smaller angle direction.

〔第5実施形態〕
図8は、本発明に係る管状火炎バーナの第5実施形態を示すものであり、本発明に係る管状火炎バーナの管軸方向での断面を模式的に示したものである。この第5実施形態は、上記第4実施形態において、混合気を燃焼室2に導入させる構成に代えて、燃料ガスと空気を各別に燃焼室2に導入させる構成を採用した別実施形態であり、その他の構成については、上記第1実施形態と同様であるので、その説明は省略する。
[Fifth Embodiment]
FIG. 8 shows a fifth embodiment of the tubular flame burner according to the present invention, and schematically shows a cross section in the tube axis direction of the tubular flame burner according to the present invention. The fifth embodiment is another embodiment that adopts a configuration in which fuel gas and air are separately introduced into the combustion chamber 2 in place of the configuration in which the air-fuel mixture is introduced into the combustion chamber 2 in the fourth embodiment. Since other configurations are the same as those in the first embodiment, description thereof is omitted.

図8では、ヘッダー4、導入路5、及び、スリット3の夫々について、燃料ガス用のものと空気用のものと異なる流体の夫々に対応して2種類があり、ヘッダー4、導入路5、及び、スリット3の2種類のものが燃焼室2の周方向において並ぶ状態で複数(例えば2つ)備えられている。燃焼室2の周方向において燃料ガス用ものと空気用のものとが交互に配置されている。絞り構造8については、管軸方向に一列に並んだ多数の丸穴にて構成されている。スリット3について、例えば、管軸方向に間隔を隔てて丸穴を配設してそれら複数の丸穴にてスリットを形成している。   In FIG. 8, there are two types of the header 4, the introduction path 5, and the slit 3 corresponding to the fluids different from those for fuel gas and air, respectively. A plurality of (for example, two) slits 3 are provided in a state in which they are arranged in the circumferential direction of the combustion chamber 2. Fuel gas and air are alternately arranged in the circumferential direction of the combustion chamber 2. The diaphragm structure 8 is composed of a number of round holes arranged in a line in the tube axis direction. For the slit 3, for example, round holes are provided at intervals in the tube axis direction, and the slits are formed by the plurality of round holes.

ちなみに、図8では、導入路5について、上記第1実施形態と同様に、導入路5の流路幅が、燃焼室2に接近する側ほど連続的に縮小されているが、この構成に代えて、上記第2実施形態における構成を採用することもできる。つまり、スリット3の開口幅と同等の一定幅とし、スリット3から燃焼室2に導入させる混合気を、燃焼室2と同心でかつ燃焼室2よりも小径である仮想円筒6の接線方向又はそれよりも小角度の方向から燃焼室2に導入させるように構成することもできる。   Incidentally, in FIG. 8, as for the introduction path 5, the flow path width of the introduction path 5 is continuously reduced toward the side closer to the combustion chamber 2, as in the first embodiment. Thus, the configuration in the second embodiment can also be adopted. That is, the air-fuel mixture introduced into the combustion chamber 2 from the slit 3 has a constant width equivalent to the opening width of the slit 3, or the tangential direction of the virtual cylinder 6 that is concentric with the combustion chamber 2 and smaller in diameter than the combustion chamber 2. It can also be configured to be introduced into the combustion chamber 2 from a smaller angle direction.

本発明は、管状火炎の特徴をより顕著に発揮させると共に安価かつコンパクトにできる各種の管状火炎バーナに適応可能である。   INDUSTRIAL APPLICABILITY The present invention can be applied to various types of tubular flame burners that can exhibit the characteristics of tubular flames more remarkably and can be made inexpensive and compact.

1 管状火炎バーナ
2 燃焼室
3 スリット
5 導入路
6 仮想円筒
7 一体成型体
8 絞り構造
DESCRIPTION OF SYMBOLS 1 Tubular flame burner 2 Combustion chamber 3 Slit 5 Introductory path 6 Virtual cylinder 7 Integral molding 8 Drawing structure

Claims (7)

円筒状の燃焼室の管軸方向に沿って開口されたスリットから、燃料ガスと空気の混合気又は燃料ガスと空気を偏心導入して旋回燃焼させる管状火炎バーナであって、
前記混合気又は燃料ガスと空気を前記スリットに導く導入路の流路幅が、前記燃焼室に接近する側ほど連続的に縮小されている管状火炎バーナ。
A tubular flame burner that performs swirl combustion by introducing an eccentric mixture of fuel gas and air or fuel gas and air from a slit opened along the tube axis direction of a cylindrical combustion chamber,
A tubular flame burner in which the flow path width of the introduction path that guides the air-fuel mixture or fuel gas and air to the slit is continuously reduced toward the side closer to the combustion chamber.
円筒状の燃焼室の管軸方向に沿って開口されたスリットから、燃料ガスと空気の混合気又は燃料ガスと空気を偏芯導入して旋回燃焼させる管状火炎バーナであって、
前記混合気又は燃料ガスと空気を前記スリットに導く導入路を備え、前記スリットから前記混合気又は燃料ガスと空気を、前記燃焼室と同心でかつ前記燃焼室よりも小径である仮想円筒の接線方向又はそれよりも小角度の方向から前記燃焼室に導入させている管状火炎バーナ。
A tubular flame burner that swirls and burns by introducing eccentricity of a mixture of fuel gas and air or fuel gas and air from a slit opened along the tube axis direction of a cylindrical combustion chamber,
A tangential line of a virtual cylinder having an introduction path for guiding the air-fuel mixture or fuel gas and air to the slit, and the air-fuel mixture or fuel gas and air from the slit being concentric with the combustion chamber and having a smaller diameter than the combustion chamber A tubular flame burner introduced into the combustion chamber from a direction or a direction at a smaller angle.
前記導入路が板材を曲げて成型されている請求項1又は2に記載の管状火炎バーナ。   The tubular flame burner according to claim 1 or 2, wherein the introduction path is formed by bending a plate material. 前記導入路が、円弧状に形成されて、前記混合気又は前記燃焼ガスと前記空気を隔てる隔壁を兼用している請求項1〜3の何れか1項に記載の管状火炎バーナ。   The tubular flame burner according to any one of claims 1 to 3, wherein the introduction path is formed in an arc shape and also serves as a partition wall that separates the air-fuel mixture or the combustion gas from the air. 前記燃焼室と前記導入路の一部を板材で一体的に成型した一体成型体の複数を前記燃焼室の軸心を中心として巴状に組み合わせて管状火炎バーナ本体が形成されている請求項1〜4の何れか1項に記載の管状火炎バーナ。   2. A tubular flame burner body is formed by combining a plurality of integrally molded bodies obtained by integrally molding a part of the combustion chamber and the introduction path with a plate material in a bowl shape around the axis of the combustion chamber. The tubular flame burner of any one of -4. 前記導入路又は前記燃焼室と前記導入路を形成する板材において前記燃焼室と反対側の端部で、前記導入路での流体の流れ方向と垂直な方向に流体を流す通路の一部を構成している請求項1〜5の何れか1項に記載の管状火炎バーナ。   A part of a passage that allows fluid to flow in a direction perpendicular to the fluid flow direction in the introduction path is formed at an end of the plate that forms the introduction path or the combustion chamber and the introduction path on the side opposite to the combustion chamber. The tubular flame burner according to any one of claims 1 to 5. 前記導入路の途中に、前記管軸方向及び同一流体の導入路間の流量分布を均一化するための絞り構造を備えている請求項1〜6の何れか1項に記載の管状火炎バーナ。   The tubular flame burner according to any one of claims 1 to 6, further comprising a throttle structure for uniformizing a flow rate distribution between the pipe axis direction and the same fluid introduction path in the middle of the introduction path.
JP2009121385A 2009-05-19 2009-05-19 Tubular flame burner Expired - Fee Related JP5462527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121385A JP5462527B2 (en) 2009-05-19 2009-05-19 Tubular flame burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121385A JP5462527B2 (en) 2009-05-19 2009-05-19 Tubular flame burner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013168923A Division JP2013228207A (en) 2013-08-15 2013-08-15 Tubular flame burner

Publications (2)

Publication Number Publication Date
JP2010270936A true JP2010270936A (en) 2010-12-02
JP5462527B2 JP5462527B2 (en) 2014-04-02

Family

ID=43419118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121385A Expired - Fee Related JP5462527B2 (en) 2009-05-19 2009-05-19 Tubular flame burner

Country Status (1)

Country Link
JP (1) JP5462527B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121762A (en) * 2010-12-08 2012-06-28 Osaka Gas Co Ltd Method and apparatus for producing glass
JP2012240899A (en) * 2011-05-24 2012-12-10 Koa Glass Kk Apparatus and method for melting glass

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338812A (en) * 1985-07-30 1988-02-19 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Duplex type burner
JPH01203809A (en) * 1987-12-21 1989-08-16 Asea Brown Boveri Ag Premixing type combustion method of liquid fuel
JPH08233219A (en) * 1995-01-30 1996-09-10 Abb Manag Ag Burner
JPH11279659A (en) * 1998-03-30 1999-10-12 Nkk Corp Directly firing reduction heating of steel strip and directly firing reduction heating device.
JPH11281018A (en) * 1998-01-27 1999-10-15 Nkk Corp Tubular flame burner
JP3358527B2 (en) * 1998-01-27 2002-12-24 日本鋼管株式会社 Tubular flame burner
JP2006097918A (en) * 2004-09-28 2006-04-13 Hitachi Metals Ltd Combustion furnace and waste treatment facility
JP2007255744A (en) * 2006-03-20 2007-10-04 Mitsubishi Heavy Ind Ltd Tubular flame burner and fuel reforming device
JP2008107031A (en) * 2006-10-26 2008-05-08 Jfe Steel Kk Tubular flame burner and radiant tube type heater

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338812A (en) * 1985-07-30 1988-02-19 ベ−・ベ−・ツエ−・アクチエンゲゼルシヤフト・ブラウン・ボヴエリ・ウント・コンパニイ Duplex type burner
JPH01203809A (en) * 1987-12-21 1989-08-16 Asea Brown Boveri Ag Premixing type combustion method of liquid fuel
JPH08233219A (en) * 1995-01-30 1996-09-10 Abb Manag Ag Burner
JPH11281018A (en) * 1998-01-27 1999-10-15 Nkk Corp Tubular flame burner
JP3358527B2 (en) * 1998-01-27 2002-12-24 日本鋼管株式会社 Tubular flame burner
JPH11279659A (en) * 1998-03-30 1999-10-12 Nkk Corp Directly firing reduction heating of steel strip and directly firing reduction heating device.
JP2006097918A (en) * 2004-09-28 2006-04-13 Hitachi Metals Ltd Combustion furnace and waste treatment facility
JP2007255744A (en) * 2006-03-20 2007-10-04 Mitsubishi Heavy Ind Ltd Tubular flame burner and fuel reforming device
JP2008107031A (en) * 2006-10-26 2008-05-08 Jfe Steel Kk Tubular flame burner and radiant tube type heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121762A (en) * 2010-12-08 2012-06-28 Osaka Gas Co Ltd Method and apparatus for producing glass
JP2012240899A (en) * 2011-05-24 2012-12-10 Koa Glass Kk Apparatus and method for melting glass

Also Published As

Publication number Publication date
JP5462527B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
KR101965676B1 (en) High perimeter stability burner
FI68898B (en) BRAENNARE FOER MONTERING I VAERMNINGS- OCH AONGPANNA
EP3006826B1 (en) Burner
RU147854U1 (en) GAS-BURNING HEAD FOR BURNERS WITH PRELIMINARY MIXING AND A BURNER SUPPORTED TO THE ABOVE BURNING HEAD
AU2014328025A1 (en) Fuel/air mixture and combustion apparatus
RU2539492C1 (en) Air heater with upper heating
CN101903704A (en) Device and method for stabilising the pressure and the flow of a gaseous mixture supplied to a surface-combustion cylindrical burner
US20050014102A1 (en) Recuperator burner including recuperator
JP2011064450A5 (en)
JP5462527B2 (en) Tubular flame burner
US5437248A (en) Fire tube boiler
JP2013228207A (en) Tubular flame burner
JP2010270935A (en) Tubular flame burner
JP5687163B2 (en) Radiant tube burner
JP2005517149A5 (en)
US20020197580A1 (en) Device for burning a gaseous fuel/oxidant mixture
WO2012172846A1 (en) Combustion device
EP3315861B1 (en) Gas burner
RU2529436C1 (en) Air heater with top heating
JP2005337515A (en) Shell-and-tube once-through boiler
US10401055B2 (en) Reduced drag combustion pass in a tubular heat exchanger
CN213178849U (en) Smoke hood assembly and gas water heating device
CA2891997C (en) A combination heat exchanger and burner
CN218672170U (en) Fire grate for burner, burner and water heater
JP2016080333A (en) Combustion method, heating method, combustion device and heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees